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Abstract. Using existing communications infrastructure, such as 802.11 and 
GSM, researchers have demonstrated effective indoor localization. Inspired by 
these previous approaches, and recognizing some limitations of relying on 
infrastructure users do not control, we present an indoor location system that 
uses an even more ubiquitous domestic infrastructure—the residential 
powerline. PowerLine Positioning (PLP) is an inexpensive technique that uses 
fingerprinting of multiple tones transmitted along the powerline to achieve sub-
room-level localization. We describe the basics behind PLP and demonstrate 
how it compares favorably to other fingerprinting techniques. 

1   Introduction 

Recent advances in indoor location systems use existing wireless communication 
infrastructure (e.g., 802.11 and GSM) to provide a value-added location service. The 
major advantage to these approaches is that a consumer does not have to purchase any 
specialized equipment and can still benefit from location-aware computing. 
Leveraging public infrastructure has many advantages, but one major drawback is that 
users have very little control of the infrastructure itself. Service providers adjust the 
operational parameters of WiFi access points and cellular towers with little warning. 
These changes require recalibration of the location system. An alternative is to 
introduce new infrastructure in the home by distributing many low-cost, short-range 
beacons. The time required for installation and the possible impact to home aesthetics, 
however, may limit adoption. 

Inspired by this strategy of leveraging existing infrastructure, and recognizing that 
there are drawbacks to relying on infrastructure not controlled by an individual 
household, we were motivated to invent a solution for indoor localization that would 
work in nearly every household. This paper presents such a solution, with the significant 
insight being the use of the residential powerline as the signaling infrastructure. We 
describe the first example of an affordable, whole-house indoor localization system that 
works in the vast majority of households, scales cost-effectively to support the tracking 
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of multiple objects simultaneously, and does not require the installation of any new 
infrastructure. The solution requires the installation of two small plug-in modules at the 
extreme ends of the home. These modules inject a low frequency, attenuated signal 
throughout the electrical system of the home. Simple receivers, or positioning tags, 
listen for these signals and wirelessly transmit their positioning readings back to the 
environment. This solution, henceforth referred to as PowerLine Positioning, or PLP, 
provides sub-room-level positioning for multiple regions of a room and tracks 
multiple tags simultaneously. PLP has a localization accuracy of 87–95% for 
classifying regions at 3 meters and 67% at 1 meter resolution. We have installed and 
tested this system in a variety of homes and compare the performance against 
previous 802.11 and GSM solutions. 

 

 

 

Fig. 1. Left: Placement of two signal-generating modules at extreme ends of a house. Right: 
The PLP system components. The top shows two examples of off-the-shelf, plug-in tone 
generator modules. The bottom shows a working prototype of the location tag, consisting of a 
receiver and antenna hooked to a handtop computer for analysis. 

2   Related Work 

Indoor positioning has been a very active research problem in the ubicomp 
community in the preceding half decade [5]. Several characteristics distinguish the 
different solutions, such as the underlying signaling technology (e.g., IR, RF, load 
sensing, computer vision or audition), line-of-sight requirements, accuracy, and cost 
of scaling the solution over space and over number of items. Although we do not 
intend to provide a complete survey of this topic, we highlight projects with 
characteristics most relevant to the motivation for powerline positioning, namely the 
requirements for additional infrastructure and algorithmic approach. 
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The earliest indoor solutions introduced new infrastructure to support localization 
[1, 12, 14, 16]. Despite some success, as indicated by commercialized products [15], 
the cost and effort of installation is a major drawback to wide-scale deployment, 
particularly in domestic settings. Thus, new projects in location-based systems 
research reuse existing infrastructure to ease the burden of deployment and lower the 
cost. The earliest demonstrations use 802.11 access points [2, 3, 8], and more recent 
examples explore Bluetooth [9] and wireless telephony infrastructure, such as GSM 
[13] or FM transmission towers [7]. Concerns about system resolution eliminate the 
FM solution for domestic use. Another concern we highlighted in the introduction is 
that individuals and households may not be able to control the characteristics of these 
infrastructures, resulting in the need to recalibrate should parameters change. The 
desire to control the infrastructure and to scale inexpensively to track a large number 
of objects inspired the search for a solution like the powerline system presented here. 

Traditional wireless signal triangulation, such as that using 802.11 access points, 
uses Received Signal Strength Indicator (RSSI) information to estimate distance and 
determine a location based on its geometric calculations  Other techniques include the 
use of Time of Arrival, as in the case of ultrasound, or Angle of Arrival, such as with 
Ultra-wideband positioning [15]. Ultrasonic solutions, such as Cricket [14] and 
Active Bat [1], provide precise centimeter resolution, but require line-of-sight 
operation indoors and thus require considerable sensor installations for full coverage. 
Technologies, such as 802.11 triangulation, avoid issues of occlusion but suffer from 
multipath problems caused by reflections in the environment. 

Fingerprinting of received signals can help overcome the multipath problem. 
Fingerprinting improves upon other means of estimation by taking into account the 
effects that buildings, solid objects, or people may have on a wireless or RF signal, 
such as reflection and attenuation. Fingerprinting works by recording the 
characteristics of wireless signals at a given position and later inferring that position 
when the same signature is seen again. A survey of signals over some space allow for 
the creation of a map that can be used to relate a signal fingerprint to a location.  

Our location system relies on the space’s powerline infrastructure. Powerlines are 
already in place in most homes and the power network reaches more homes than 
either cable systems or telephone lines. Thus, for many years, people have been using 
powerlines in homes to deliver more than just electricity. Several home technologies 
use the powerline for communications and control. The most popular example is the 
X10 control protocol for home automation, a standard that is more than 30 years old 
and is a very popular, low-cost solution for homeowners. Over the past decade, there 
have been a number of efforts to produce powerline communications capabilities, 
driven by industrial consortia like HomePlug Powerline Alliance [6] and efforts such 
as Broadband over Powerline (BPL). 

3   System Overview 

In this section, we present the theory behind the operation of PLP, discuss the two-
phase localization algorithm based on signal fingerprinting, and describe the details of 
our prototype system that we used to evaluate the operation of PLP in real homes. 
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3.1   Theory of Operation 

We developed the PLP system based on a popular wire-finding technique employed 
by many electricians and utility workers to locate or trace hidden wires behind a wall 
or underground. In this technique, an electrician connects an exposed end of the wire 
to a tone generator, which can range from 10–500 kHz, and locates the hidden wire 
using a handheld, inductive tone detector. Some detectors use LEDs to indicate the 
tone strength and others play an audible sound. In either case, the electrician scans the 
area for the loudest tone, indicating the approximate location of the wire. Following 
the presence of the tone reveals the path of the wire. 

We use the following properties of the wire-finding technique to produce a viable 
solution for a location system:  

• it is easy and inexpensive to propagate a signal or tone throughout the entire 
electrical system in a home without any electrical interference; 

• it is possible to set the power of the tone so that it attenuates as it reaches the 
periphery of the home, and the electrical wiring appears in varying densities 
throughout the home, creating a time-independent spatial variation of the 
signal throughout the home; and 

• the tone detectors or receivers are fairly simple, cheap to construct, and have 
low power requirements. 

In the PLP system, we extend the wire-finding technique to include two plug-in 
signal generator modules. We connect the modules directly into electrical outlets, and 
their respective signals emanate from those outlets to the rest of the home. We install 
one of the two modules into an outlet close to the main electrical panel or circuit 
breaker and plug the other into an outlet that is located along the powerline 
infrastructure furthest from the first module (see Figure 1). In most cases, physical 
distance is a good estimate for electrical distance. In the case of a two-story house 
with a basement, for example, one module would be placed at the west end of the 
house in the basement (where the main panel is located) and the other in the east end 
on the second floor. Each module emits a different frequency tone throughout the 
powerline. As part of the installation, the signal strength must be adjusted such that 
significant attenuation occurs and the tone signal still reaches the opposite end of the 
home. Both modules continually emit their respective signals over the powerline and 
portable tags equipped with specially tuned tone detectors sense these signals in the 
home and relay them wirelessly to a receiver in the home. Depending on the location 
of the portable tag, the detected signal levels provide a distinctive signature, or 
fingerprint, resulting from the density of electrical wiring present at the given 
location. A receiving base station in the home (e.g., a wireless receiver connected to a 
PC) analyzes the fingerprint and maps the signal signature to its associated location 
based on a site survey. 

We currently focus on amplitude of the tones only, which has shown good results 
on its own. However, phase difference between tones is another feature characteristic 
that can further assist in localization and is the basis of some of our future work.  

When the modules are active, the tone detector or receiver tag detects the presence 
and amplitude of the attenuated signals throughout the home. Because electrical 
wiring typically branches inside the walls, ceiling, and floors, signal will be present 
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throughout much of the main living areas of the home. Some factors that contribute to 
the amplitude of the received signal at any given location:  

• the distance between the receiver and electrical wiring, 
• the density of electrical wiring in an area, and  
• the length of electrical wiring from the modules to the receiver’s location.  

Figure 2 shows a signal map of a bedroom (left) and of a kitchen (right) from the 
same house. In the bedroom, the strength of both signals increases near the walls 
where there is the greatest concentration of electrical wiring and outlets. The strength 
of signal A (left value in each cell of Figure 2) is weaker than the strength of signal B 
(right value in each cell) in the kitchen, and the opposite is true for the bedroom. 
Because the two rooms are on different floors and at opposing ends of the house, each 
room is closer to a different module. 

     

Fig. 2. Left: Signal map of a bedroom. In each 1 meter cell, the left-hand number corresponds 
to signal strength from one tone generator and the right-hand number corresponds to the signal 
strength of the other tone generator. Right: A similar signal map of the kitchen in the same 
house. 

Most residential houses and apartments in North America and many parts of Asia 
have a single phase or a split single phase electrical system, which enables any signal 
generated on a given outlet to reach the entire electrical system. Larger buildings and 
even some homes in Europe have two and three phase electrical systems, in which the 
electrical system may split into separate legs for lower voltage applications. For 
multi-phase electrical systems, the signal can be coupled between the phases using a 
simple capacitor. In a home, this would typically be plugged-in in a 240 V outlet, 
such as that used for clothes dryer. We currently focus on common residential single 
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or split single-phase electrical systems operating at 60 Hz. However, the system can 
be extended to accommodate other electrical systems. 

3.2   PLP Localization Algorithm 

The PLP system relies on a fingerprinting technique for localization. Although this 
technique often provides more detailed and reliable data, it requires the generation of 
a signal topology via a manual site survey. The granularity of the survey dictates the 
final accuracy of the positioning system. For PLP in the home, the site survey is a 
one-time task provided the modules stay fixed and the electrical characteristics of the 
home remain the same.  

Effective application of fingerprinting requires the signals to have low temporal 
variations, but high spatial variation. As discussed above, the propagation of signals 
transmitted via the powerline exhibits both of these properties, because the detected 
signals vary little unless the modules have been moved or the electrical system has 
been significantly remodeled. The use of two different signals and the variability in 
the electrical wire density throughout the homes provides this spatial variation.  

The localization algorithm used in PLP proceeds in two steps. The first step 
predicts the room, and the second predicts the sub-regions within that room. Both use 
k-Nearest Neighbor (KNN) classification.  

3.2.1   k-Nearest Neighbor (KNN) Classification 
The room and sub-room localizers use a k-Nearest Neighbor (KNN) [11] 
classification to determine the receiver’s room location. KNN-is a memory-based 
model defined by a set of objects known as learned points, or samples, for which the 
outcomes are known. Each sample consists of a data case having a set of independent 
values labeled by a set of dependent outcomes. Given a new case of dependent values 
(the query point or unknown value), we estimate the outcome based on the KNN 
instances. KNN achieves this by finding k examples that are closest in distance to the 
query point. For KNN classification problems, as in our case, a majority vote 
determines the query point’s class. For this task, given an unlabeled sample, χ, we 
find the k closest labeled room samples in our surveyed data and assign χ to the room 
that appears most frequently within the k-subset. For our distance measure d, we use 
the Euclidean distance,  

))((),( 2
2

1
i

i
i yxyxd −= ∑

=

, 

in which tuples x = <Signal Ax1, Signal Bx2> and y = <Signal Ay1, Signal By2>. The 
tuple x refers to the labeled signal point and tuple y refers to the unlabeled query point 
sensed by the receiver tag. For more modules, we increase the dimension to match the 
number of modules. 

3.2.2   Room and Sub-room Localization 
The key differences between the room and sub-room localizers are the labels assigned 
to the data points and the value for k used in the localization. For the room level 
classification, we assign room labels to samples from the site survey. In the sub-room 
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classification, we further subdivide the same samples and assign sub-room labels to 
them. For each home, there is an optimal value of k for the room level localizer. 
Within the same home, there is an optimal value for the sub-room level localizer for 
each room. Thus, for localization, we first execute the KNN classification using the 
room labeled samples and its optimal k value. After determining the room, we execute 
KNN on the sub-room labeled samples from that room and its optimal k value to 
determine the sub-room. 

3.2.3   Training the System and Determining k in KNN 
The choice of k is essential in building the KNN model and strongly influences the 
quality of predictions, for both room-level and sub-room-level localization. For any 
given problem, a small value of k will lead to a large variance in predictions. 
Alternatively, setting k to a large value may lead to a skewed model. Thus, k should 
be set to a value large enough to minimize the probability of misclassification and 
small enough (with respect to the number of cases in the example sample) so that the 
k nearest points are close enough to the query point. Thus, an optimal value for k 
achieves the right balance between the bias and the variance of the model. KNN can 
provide an estimate of k using a cross-validation technique [11].  

Splitting the localization into two steps can help control the cluster sizes. In 
localizing the room, we want to use a larger value of k so that we consider a larger 
region when trying to find where the unknown signal potentially maps. To localize 
within a room, we consider smaller values of k so that we match finer clusters and 
because of the smaller data sets within a room than the whole home.  

The training interface allows end users to build a signal map of the home (see 
Figure 4). The user loads a pre-made or hand-drawn floor plan of the residence into 
the application. The interface displays the floor plan, and we physically travel to 
different locations in the home and choose the approximate location on the floor plan. 
When a location is selected, the application stores the fingerprint for that location, 
which is a one-second average of the two detected signals. The same process 
continues throughout different points in the home. Surveying at a granularity of 
approximately 2-3 meters in each room produces more than sufficient accuracy for 
the test cases presented in Section 4. The interface allows the user to assign 
meaningful labels to different room and sub-room areas, such as “kitchen” and 
“center of master bedroom.” 

For optimal performance in sub-room level localization, we typically segment each 
room into five regions: the center of the room and areas near the four walls of the 
room. The user is free to select the location granularity (assuming sufficient training 
sets) of their choice for important regions. However, the desired segmentation may 
not reflect the actual segmentation the underlying set of signals can provide. For 
example, a user may want to segment the middle part of a bedroom into four regions, 
but there might not be enough signal disparity among those regions for the KNN 
classifier to work well. We provide some assistance in overcoming those limitations 
by automatically clustering the room into potential sub-regions that are likely to be 
accurately classified based on the room’s signal map. We employ a k-means 
clustering algorithm [4, 10, 11] to provide graphical suggestions on where to segment 
for a desired number of sub-regions. 
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After the signal map has been constructed and all data has been labeled, the 
algorithm cross-validates model data to find suitable k values for the room and sub-
room classifiers. Cross-validation involves the division of the data samples into a 
number of v folds (randomly drawn, disjoint sub-samples or segments). For a fixed 
value of k, we apply the KNN model on each fold and evaluate the average error. The 
system repeats these steps for various k values. The system selects the value for k 
achieving the lowest error (or the highest classification accuracy) as the optimal value 
for k. This value for k depends on the home and the number of sample points. 
Generally, we see optimal k values near 10 for the room localizer and k values near 3-
5 for the sub-room localizer. 

3.3   Implementation Details 

3.3.1   Module Design 
For rapid development and investigation, we modified commercially available tone 
generators and tone detectors used by electricians for wire finding. We used the 
Textron Tempo 508S and the Pasar Amprobe 2000 tone generator modules. These 
modules produce a 447 kHz and 33 kHz tone, respectively, on an energized 120 V AC 
powerline without causing any interference to household appliances. Additionally, the 
modules are powerful enough to transmit a tone up to 500 meters over the electrical 
wire (both hot and ground) and can be adjusted to emit at a lower signal strength. For 
the PLP prototype in this paper, we manually adjusted the signal strength depending 
on the size of the residence. We collected samples with the receiver near the module 
and samples near the opposite side of the home where the second module is located. 
We then tuned the signal strength such that we produced a large signal difference 
between the two locations without turning it down so much that the tone did not reach 
the far end. It was important to turn down the output level and use the middle of the 
receiver's dynamic range, because very high signal strengths would overwhelm the 
receiver and would not produce as large of a signal difference. Although we manually 
performed the steps described above, it is possible to build the modules to self-
calibrate its output level during the installation and surveying steps.  

Based on the cost of the commercial wire-finder that inspired the PLP system, the 
cost for each module would be approximately US$50. 

3.3.2   Tag Design 
We modified a Textron Tempo 508R passive wideband tone detector to act as a 
prototype tag that would send sensed signals to a portable computer for analysis (see 
Figures 1 and 3). The toner has a built in frequency divider that maps a range of high 
frequency tones to audible sounds while still preserving the amplitude of the original 
signal. The receiver’s internal frequency divider translated the 447 kHz signal to 
about 1000 Hz and 33 kHz signal to about 80 Hz. We altered the tone detector to 
interface with the audio line-in jack of a portable computer to capture the signals. The 
tone detector also has an integrated omnidirectional antenna.  We found the antenna 
worked best when held vertically (perpendicular to the ground).  When placed in this 
position, the azimuth orientation did not affect the received signal levels. 

For experiments reported in this paper, we used a rather large tag prototype that 
was easier for us to build. There are a variety of ways to construct a small and 
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inexpensive version of this tag. One way is to feed the radio transducer or antenna 
through a series of op-amps and into a DsPIC microcontroller. A low-power Ming or 
Linx RF transmitter would transmit the readings back to a receiving computer. 
Alternatively, we could bypass the need for a microcontroller by using multiple tone 
decoder ICs, similar to the NE567 IC, which supports signal power output. Powered 
by a small lithium cell, the tag could easily be the size of a small key fob and run for a 
significant period of time using a mechanical motion switch. We believe the tags 
could be constructed at US$20 each, based on current retail hobbyist prices. 

 

Fig. 3. Block diagram of the overall tagging system of the PLP System 

3.3.3   Software 
In our experimental set-up, we wrote an application in C++ to sample the signal from 
the sound card’s line-in jack where the prototype receiver tag is connected. The 
application acquires 16-bit samples at a rate of up to 44 kHz and performs a Fast 
Fourier Transform (FFT) on the incoming signal to separate component frequencies 
for our analysis. The application performs this analysis in very close to real-time and 
makes the raw signal strengths for the two frequencies of interest (447 kHz and 33 
kHz) available through a TCP connection for other parts of the PLP system to access 
(see Figure 3). 

A second application, written in Java, performs the machine learning and provides 
the user interface for the system (see Figure 4). The Java application connects to the 
FFT application and reads the raw signal values. The application provides the user 
interface for surveying the home and an interface that shows the current location after 
it has been calibrated. The Weka toolkit [17] allows for real-time programmatic 
execution of KNN queries to our location model. We also use Weka for post hoc 
analysis, such as cross-validating the model when determining optimal k values and 
performance testing. 

The experimental prototype used for empirical validation consisted of a Sony 
Vaio-U handheld computer with all software applications (signal receiver, learner, 
and the user interfaces) loaded and the receiver hardware connected (see Figures 1 
and 4). Using this small but powerful device provided us with an easy method for 
surveying homes.  
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Fig. 4. User interface used for mapping and localizing the position of the connected receiver 

4   Performance Evaluation 

We evaluated the performance of the PLP system in 8 different homes of varying 
styles, age, sizes, and locations within the same metropolitan city. We evaluated new 
homes and older homes, both with and without remodeled and updated electrical 
systems (see Table 1 for specifications of the homes). In addition to evaluating our 
system, we simultaneously conducted infrastructure tests of WiFi and GSM 
availability to provide some comparison with other indoor localization results. The 
infrastructure tests only involved logging the availability of wireless 802.11 access 
points and multiple GSM towers in the home. A WiFi spotter application running on 
the Sony Vaio-U logged the wireless access points, and an application written on the 
Audiovox SMT-5600 GSM mobile phone the multiple cell towers. 

In each home analyzed, we first installed the PLP system, calibrated the two tone 
modules, and created a signal map by surveying the whole home. When creating the 
signal map, we took at least two signal readings every 2-3 meters throughout the 
home to ensure we gathered enough training and test data (Table 2 shows the number 
of sample points for each home). Each reading was taken for 3 seconds with an 
individual holding the receiver in hand (about 1.5 meters from the ground). After 
creating the signal map, we used the interface on the handheld to assign the 
appropriate room and sub-room labels to the data. 

We reported the classification accuracy of the room and sub-room predictors. The 
sub-room accuracy was calculated independent of the room-level predictor. We use 3 
meter regions for the sub-room-level tests. To obtain room-level accuracy, we 
conducted a 10-fold cross-validation test on the room localizer using the collected 
data samples. We repeated this test for various k values to find the best accuracy 
measure, which also served as our reported accuracy value. To determine the sub-
room level accuracy, we took the data samples for each room and performed a 10-fold 
cross-validation using the sub-room localizer, again for different values of k. Similar 
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to the room-level tests, we looked for the k value that provided the highest accuracy 
for predicting regions in a room. After testing each room, we averaged all the sub-
room localization accuracies to produce a single accuracy value for each home.  

Table 1. Details of the homes where the PLP system was deployed and evaluated 

Home Year 
Built 

Electrical 
Remodel 

Year

Floors/ 
Total Size 
(Sq Ft)/ 
(Sq M) 

Style Bedrooms/
Bathrooms/ 
Total Rms. 

Population 
Density 

1 2003 2003 3/4000/371 1 Family House 4/4/13 Suburb 
2 2001 2001 3/5000/464 1 Family House 5/5/17 Suburb 
3 1992 1992 1/1300/120 2 Bed Apartment 2/2/6 Downtown 
4 2002 2002 3/2600/241 1 Family House 3/3/12 Suburb 
5 1967 2001 2/2600/241 1 Family House 3/3/11 Suburb 
6 1950 1970 1/1000/93 1 Family House 2/2/5 Suburb 
7 1926 1990 1/800/74 1 Bed Loft 1/1/5 Downtown 
8 1935 1991 1/1100/102 1 Family House 2/1/7 Suburb  

4.1   PLP Accuracy 

4.1.1   Between Homes Comparison 
In Table 2, we report the results of the PLP room-level and sub-room level accuracies 
for various homes. Room accuracy ranged between 78–100% and sub-room accuracy 
ranged between 87–95%. The modern homes and the older homes with updated 
electrical infrastructure resulted in similar performance results. The updated electrical 
systems in these homes were accompanied with an overall remodel of the home, 
which tends to include the addition of electrical outlets and lighting. The single family 
home that exhibited a significantly lower accuracy (Home 8) was an older home with 
an updated electrical system. However, that home had a two-phase electrical system, 
which we only learned after installing the PLP system. Because it is a smaller house 
and Phase 1 drives a small number of outlets, we simply placed the modules on Phase 
2 to produce acceptable (though not optimal) coverage throughout the house. 
However, installing a simple phase coupler would have improved its performance. 

The condominium and apartment test cases also produced promising results. The 
condominium was converted from an office building, but the electrical system was 
completely remodeled to a residential style system. Although one wall of the 
condominium used a metal conduit to run its electrical wire, PLP still worked because 
the room with the conduit was small and the receiver was never too far from the wall. 
The apartment also featured a similar residential style electrical system. Because of 
the small size of the living spaces, we had to turn down the power of the modules 
significantly in the two cases, unlike the larger homes we tested. 

The older homes without an updated electrical system exhibited lower results for 
two reasons. First, these homes lack a proper electrical ground, resulting in one less 
path for the signal to propagate, because we send the signal both on the hot and 
ground wires. Homes with an updated electrical system have an extra electrical 
ground wire running through the home, which is usually grounded to the copper water  
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Table 2. Accuracy results by home. For each home, we report the accuracy of room-level 
prediction and the average sub-room-level prediction across all rooms (Note the room-level and 
sub-room accuracy values are independent of each other). The sub-room-level regions were 
defined to be approximately a 3 meter square. The WiFi and GSM measurements indicate the 
maximum number of access points or towers seen at all times during the surveying and the total 
number of unique access points or towers seen during the whole surveying period. 

Home Size 
Sq Ft/ 
Sq M 

Sample
points 

Rooms
surveyed

Room 
Accuracy

Sub-
Room 

Accuracy 
at 3 M 

WiFi 
Always/ 

Max  

GSM
Always/ 

Max  

1 4000/371 194 13 89% 92% 3/12 3/5 
2 5000/464 206 15 95% 93% 1/3 2/4 
3 1300/120 95 6 90% 90% 3/7 4/12 
4 2600/241 183 11 88% 87% 1/3 3/5 
5 2600/241 192 10 92% 93% 2/4 3/6 
6 1000/93 76 5 100% 94% 0/2 4/6 
7 800/74 65 5 93% 95% 2/11 3/9 
8 1100/102 80 7 78% 88% 2/6 3/7  

pipes. This grounding enables additional signal propagations to certain areas of the 
home. Second, these homes tended to have fewer electrical outlets than the modern or 
remodeled ones, resulting in poor detection in some areas. 

4.1.2   Understanding Classification Errors 
To understand the types of classification errors encountered by the PLP system, we 
analyzed the confusion matrices for each home. For some homes, most of the 
classification errors resulted from misclassifying rooms as one of the adjacent rooms. 
The adjacency errors appeared when trying to localize very near the boundary or the 
wall of a room. These errors were more prevalent in larger houses near common walls 
between two adjacent rooms of similar size. Open spaces that were divided into 
multiple rooms also resulted in errors. Other homes, however, exhibited more random  
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Fig. 5. The table shows the percentage of incorrect room predictions identifying a room that is 
adjacent to the correct room 
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classification errors possibly due to errors in the survey map, sparse sampling, or in 
error readings coming from the receiver at that time. One possible solution to guard 
against misclassifications is to use hysteresis to compare against certain 
classifications and see if those classifications follow a valid trail. Some homes could 
benefit from hysteresis, especially those with significant random error (see Figure 5). 

4.2   Number of Modules and Performance 

We conducted accuracy tests using a varying number of modules. Although our goal 
was to minimize the additional hardware the user must install in a home, there might 
be cases in which higher accuracy is more desirable. Adding additional modules is the 
main way to increase overall accuracy. Figure 6 shows both room-level and sub-room 
level accuracies for an increasing number of modules for a particular home as an 
example. Additional modules do increase the accuracy for both predictions, but there 
is a point of diminishing returns. For this home (Home 1), two or three modules are 
the best number. We observed similar trends in other homes we tested and generally, 
two modules were sufficient. 

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

Number of Modules

A
cc

u
ra

cy

Room-level

Sub-room

 

Fig. 6. The effect of number of modules on room-level and sub-room-level classification 
accuracies. Tests were conducted on Home 1. 

4.3   Resolution 

In our initial evaluation, we sub-divided rooms into approximately 3 meter regions. 
This resolution yielded high accuracies around 90%. Higher resolution, or smaller 
subdivisions of each room, is possible, but at the cost of accuracy. In addition, higher 
resolution also requires dense mapping of an area. To investigate the specific 
accuracy to resolution tradeoff, we performed a fine-grain survey (sampling down to 
every 0.5 meter for a total of 96 samples) of a room (6m X 6m) in Home 1. With our 
current implementation, the lowest obtainable practical resolution is 1 meter. The 
accuracy falls below 70% for 1 meter regions (see Table 3), because there is a 
theoretical limit to the detectable differences between small movements in the space 
and the signal amplitude. However, finer granularity may be possible by considering 
the phase difference between the two signals. From our observation, the maximum 
amplitude differential is about 20 units when moved 1 meter for a modern home.  
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Table 3. The sub-room-level accuracies for smaller sub-regions for a particular room in Home 1. 
A total of 96 points were surveyed. 

Sub-room region size 4 m 3 m 2 m 1 m 0.5 m 

% Accuracy 94% 91% 74% 67% 42% 

4.4   Temporal Signal Stability 

Fingerprinting works best with a signal that is time-independent but spatially diverse. 
The data presented so far only considered results over relatively short periods of time, 
usually around 1 hour worth of data collected at a particular home. To test the 
stability of the signals over time, we conducted two separate tests. First, in Home 1, 
we conducted separate surveys over the course of several weeks. We trained the 
system on data from one survey and checked its accuracy against data collected from 
different surveys. Room prediction was correct 88% of the time (compared with the 
value of 89% for Home 1 in Table 3) and sub-room level prediction was correct 89% 
of the time (compared with the value of 90% in Table 3). Second, in Home 2, we 
collected 45 hours of data over a three-day period (Saturday through Monday) in a 
single location (the kitchen). The kitchen was an interesting test because it contained 
a large number of features that could affect the tone signals (e.g., plentiful overhead 
lighting, appliances being turned on and off throughout the day, talking on a cordless 
phone, people gathering around the tag). Figure 7 depicts the stability of the signal for 
four different 3-hour intervals. The results suggest there is deviation (17 units on 
average), but it is not significant enough over the full dynamic range to cause major 
classification errors. 

Modifications to the electrical infrastructure can contribute to accuracy errors and 
require recalibration, which was a problem we noted for other infrastructure solutions 
(802.11 and GSM). However, most situations, such as turning on a light switch, only 
energize a portion of the electrical line and do not affect significantly the accuracy in 
our experience. More studies are needed to empirically study this. Construction of a 
“day” and “night” map using a richer data set can allay some of these concerns. The 
addition of an extension cord may impact the accuracy, depending on location and 
length. PLP could be designed to recognize potential changes in the infrastructure 
from past data to notify the user that re-surveying of a particular area is necessary. 

Although we did not observe any problems with electrical interference with our 
continuous logging, during our site tests we did often observe electrical interference 
caused by home electronics and appliances, such as computers, televisions, and 
stereos. When we held the receiver next to some of these electronic devices, its 
broadband electrical noise often overwhelmed the receiver and caused spurious 
readings. This problem only existed when the receiver was very close (within a few 
centimeters) from such devices. To guard against learning or localizing incorrect 
fingerprints, one solution is to look for these signal interferences and filter out those 
readings, indicated by a clear broadband signature, before using the data in analysis.  
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Fig. 7. Temporal signal stability in the kitchen area of Home 2. The graphs show the signal 
values for the two toner modules (combined using the Euclidean distance) over various 
intervals during four days of continuous recording. The average signal values and the 
standard deviations are shown above each graph.  The full dynamic range of the vertical axis 
is 0-1000.  

5   Discussion 

PLP is very promising as an inexpensive and reliable sub-room-level indoor 
positioning service. In this section, we investigate the viability of this system and 
offer some comparison to previous solutions. 

5.1   Infrastructure and Cost Comparison Against WiFi and GSM 

The cost of infrastructure for WiFi is distributed across a community and assuming 
dense enough living conditions, it is a reasonable expectation that a single residence 
will be able to access other WiFi access points nearby. This is less likely in sparser 
housing, in which case users would be required to purchase multiple WiFi access 
points. Various cellular telephony service providers cover the cost of the 
infrastructure for GSM. The coverage is fairly dense in most metropolitan areas and 
will only get better over time. However, coverage is still fairly sparse in rural settings 
and many homes do not get very good cellular service in some rooms (see Table 2). 
Almost every home in the U.S. has electrical power, and it is an assumed cost of the 
homeowner to maintain this infrastructure over the lifetime of the home.  Thus, the 
infrastructure is already available and usually well maintained. 

 



456 S.N. Patel, K.N. Truong, and G.D. Abowd 

One key advantage of leveraging the powerline infrastructure is user control of the 
infrastructure. Users have very little control of the parameters of GSM cellular towers 
or a neighbor’s WiFi access point, thus changes can happen unexpectedly. In contrast, 
users have control of the powerline infrastructure. Furthermore, as we showed in 
Section 4.4, there is stability in signal propagation over this infrastructure. 

The cost and power requirements of the location tags favor that of the PLP system 
because of its simple sensing requirements, as opposed to the more sophisticated 
chipset associated with GSM and WiFi reception. In addition, the cost of the tone 
generating modules would also be cheaper than buying additional access points if one 
were investing in a location system for the home. 

5.2   The Powerline Infrastructure 

In the United States, modern homes now follow a strict electrical code called the 
National Electronic Code (NEC). Electrical codes only became widely enforced in 
the 1980s, although many homes before that already followed similar guidelines. 
Although the specific regulations may change depending on state and city 
ordinances, each follows the same general requirements. These regulations ensure 
the electrical systems are consistent across homes of different sizes and styles. 
Specifically, the requirements outlined in the NEC favor the infrastructure 
requirements needed for the PLP system to work in modern homes. These 
requirements include regulations for certain “homerun” circuits through the house, a 
minimum number of outlets in a given space, and minimum lighting requirements 
throughout the house. Although PLP already performed reasonably well in older 
homes, it consistently achieved very good results in the new or remodeled homes 
that follow these requirements (see Table 3).  

We specifically developed PLP to provide an affordable location system for home 
environments. However, commercial buildings must comply with strict electrical 
codes for which the PLP design must be altered to support. First, commercial wiring 
typically uses a two or three phase electrical system that prevents the signals from 
propagating throughout the entire electrical system. This problem is solved by 
installing an inexpensive phase coupler. Second, most commercial electrical wiring 
runs through a metal conduit, which blocks significant portions of the tone emanating 
from the wire (PVC conduits do not cause a problem). One solution to this problem is 
to increase greatly the signal strength and the other is to send the signal through both 
the electrical wiring and the metallic conduit itself. This problem also applies to 
homes that have been converted from commercial buildings without remodeling the 
electrical system.  

5.3   General Comparison of PLP Against 802.11 and GSM 

The significant advantage of PLP when compared against two popular fingerprinting 
techniques using WiFi/802.11 [2] and GSM [13] lies in the better resolution, control 
of the infrastructure, and power requirements (see Table 4). 
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Table 4. An overall comparison of PLP against two popular location systems that also use 
fingerprinting 

 PLP GSM WiFi 

Output Type symbolic symbolic symbolic 
(geometric using 
triangulation) 

Resolution and 
Accuracy 

3 m – 90% 
1 m – 67% 

20 m – 90% 
2-5 m – 50% [13] 

6 m – 90% 
2-3 m – 50 % [2] 

Infrastructure 
Requirements. 

2 plug-in signal 
modules  

Located within GSM 
cellular service range 

3 – 4 WiFi access points 

Infrastructure 
Control 

Full None Partial (dependent on 
ownership of access points) 

Cost US$20 for tag and 
US$50 per module 

US$25 for tag US$25 for tag and  
US$50 per access point 

Spectral 
Requirements 

10 kHz – 500 kHz 900 MHz and 1800 
MHz 

2.4 GHz 

Update Rate > 20 Hz > 20 Hz > 20 Hz 

Tag power Req. ~50 mA (Pic + op-
amp + antenna) 

~200 mA (GSM 
receiver module) 

~100 mA (microcontroller 
operated WiFi detector) 

Simultaneous 
Tracking 

Theoretically no limit Theoretically no limit Theoretically no limit 
 

6   Conclusions and Future Work 

PLP is a promising indoor positioning system for the home that uses its powerline 
infrastructure and requires only the addition of two plug-in modules to the home 
infrastructure and the use of simple location tags. The system is capable of localizing 
to sub-room level precision using a fingerprinting technique on the amplitude of tones 
produced by the two modules installed in extreme locations of the home. The density 
of electrical wiring at different locations throughout the home provides a time-
independent spatial variation of signal propagation.  

Our critical analysis of PLP, and the experimental validation in eight different 
homes, suggests the following advantages over current indoor location solutions: 

• PLP leverages a truly ubiquitous resource, the powerline infrastructure, 
available in almost all homes. 

• PLP requires very minimal addition to the infrastructure (two plug-in 
modules). 

• PLP achieves superior sub-room-level classification, with an accuracy of 
93% on average at a resolution of 3 meters. 

• PLP does not detract from the appearance of the home. 

Our next step is to build smaller, less expensive, and lower powered tags for practical 
deployments of PLP. In addition, we plan to incorporate other spatially varying signal 
features, such as phase differences between the tones in addition to the amplitude to 
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increase the accuracy and resolution of PLP in the fingerprinting process. Further 
stability analysis is also planned to determine the full viability of PLP. 
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