
Asymptotic Conditional Probabilities for
Conjunctive Queries

Nilesh Dalvi, Gerome Miklau, and Dan Suciu

University of Washington

1 Introduction

Two seemingly unrelated applications call for a renewed study of probabilistic
properties of logical formulas. One is the study of information about a sensitive
query which is disclosed by a public view [10]. The other is a study of queries with
uncertain predicates [1]. Both have been studied using a certain probabilistic
model, which, as we show here has some limitations. In this paper we propose a
new probabilistic model of databases, considered before for random graphs [12,
9] but not for databases, and study properties of conjunctive queries under this
new model. This model provides a characterization of information disclosure
between a query and view, with query answerability at one end of the spectrum,
and logical independence (or perfect security) at the other.

Motivation 1: Information Disclosure We start by illustrating the lim-
itation of the probabilistic model in [10]. The owner of a database I wishes to
publish a view V (I) over the database, and would like to determine whether
certain sensitive information is disclosed by the view. The sensitive data is ex-
pressed in terms of a query, called the sensitive query, Q(I). The query-view
security problem requires one to check whether the view V does not leak any se-
cret information about the query. In [10] this problem is modeled by comparing
the a priori knowledge an adversary possesses about Q(I), with the knowledge
about Q(I) given V (I). The adversary’s knowledge is described as the proba-
bility of Q(I) attaining a certain value, when I is chosen randomly. If both the
view and the sensitive query are boolean, the a priori probability is P(Q), while
the a posteriori probability is the conditional probability P(Q | V). When the
two values are identical, then the query is said to be perfectly secure w.r.t. the
view. The work in [10] is focused on deciding, for conjunctive queries Q and V ,
when perfect security holds. Notice that the definition is for one fixed domain
and probability distribution, although the results in [10] show that it is largely
independent of both.

The problem is that perfect security is often too restrictive for practical
purposes, rejecting as insecure query-view pairs that are probably acceptable in
practice. This is illustrated in the following example:

Example 1. Suppose we have a sensitive database Employee(name, department,
email), and suppose we would like to publish a view V consisting of all de-
partments but hiding all employee names. Limiting our discussion to boolean
queries and views, suppose we want to publish that one of the departments

is called Amateur Astronomy, but would like to hide the fact that one of the
employees is John Smith. Then Q and V would be defined as follows:

V ← Employee(−, “Amateur Astronomy”,−)
Q← Employee(“John Smith”,−,−)

Here Q is not perfectly secure w.r.t. to the view V . For a quick justification,
consider the case where the domains for name, department, and email each con-
sist of a single value (say js@mystartup.com for email). Then there are only two
database instances, ∅ and {(“John Smith”, “Amateur Astronomy”, “js@mystart-
up.com”)}, and assume each has probability 0.5, hence P(Q) = 0.5. By contrast,
P(Q | V) = 1. In fact, it can be shown that for every domain and probability dis-
tribution1 P we have P(Q | V) > P(Q), and therefore the query is not perfectly
secure w.r.t. the view. However, the difference between the two probabilities is
tiny for large domains, and for practical purposes the information disclosure
should be considered negligible. In practice, users are usually willing to publish
the set of department’s, even if the employee name’s are sensitive. Thus, the
notion of perfect security is a higher standard than what is currently used in
practice.

Capturing practical security, as opposed to perfect security, was left open
in [10].

Motivation 2: Query Answering in the Presence of Uncertainties
For integrating large numbers of data sources the Local As View (LAV) approach
has been proposed [7]. A global data instance I is specified indirectly, through
a number of view definitions V (I), one corresponding to each local data source.
Only the materialized views v = V (I) are known, but not the instance I, and
any instance J is considered possible as long as2 v = V (J). A tuple t is a certain
answer to a query Q(I) if t ∈ Q(J) for every possible instance J .

When integrating and querying unfamiliar data sources however, one of-
ten needs to deal with uncertainties. Uncertain facts in databases have been
addressed for example in [5], where they have been modeled as probabilistic
databases. A probabilistic database is a probability distribution P(I) over all
instances I. There are several ways in which one can derive such a probability
distribution. In one application, for example, predicates in a user query are in-
terpreted as uncertain, and the degree to which a tuple in the database matches
the predicate is transformed into a probability [1].

We propose to use probabilistic databases for query answering using views,
thus allowing uncertainties to be handled during data integration. We still have
local sources described as views, and are given the materialized views only. But
now we have a probability distribution P(J) on all possible database instances
J , and the probability of a tuple t is the sum of P(J) over all J ’s for which
t ∈ Q(J). All certain tuples will have probability 1, but other tuples may have
probability close to 1, and should be considered as probable answers.
1 We require P to be 6= 0 everywhere.
2 Or v ⊆ V (J) for the Open World Assumption.

2

Example 2. Continuing Example 1, suppose the company publishes two views,
one with all (name, department) pairs in the database, and the other with all
(department, email) pairs. Suppose we receive an email from js@mystartup.com,
and would like to use these two views to find out the name of the person who
sent out that email. As before, we restrict the discussion to boolean views and
queries, and model the problem with the two boolean views below, and a boolean
query (asking whether “John Smith” is the sender):

V ′ ← Employees(“John Smith”, “Amateur Astronomy”,−)
V ′′ ← Employees(−, “Amateur Astronomy”, “js@mystartup.com”)
Q← Employees(“John Smith”,−, “js@mystartup.com”)

In order for Q to be a certain answer we need to have the logical implication
V ′V ′′ → Q, which does not hold in this example. That is, Q is not a certain
answer given V . We argue, however, that a system should report “John Smith”
as a possible answer to the query. To see why, assume for the moment that there
are, on average, 5 employees per department. Then “John Smith” is an answer
with probability 20%. Clearly, in some applications it is critical to return it as
an answer. Assume now that we know nothing about the database, except that
V ′ and V ′′ are true, and that the Employees table has a number of records
which is much smaller than the size of the domains for the three attributes.
Then, if the domain size is very large, the probability of “John Smith” being an
answer approaches 1. Indeed, if we populate a fixed (say 100) number of tuples
in Employee with random values from a huge domain, the probability that two
tuples have the same department value is close to 0. Hence, the probability that
the two tuples satisfying V ′ and V ′′ are in fact the same tuple approaches 1, and
“John Smith” is an answer with a probability close to 1.

This surprising example justifies our quest for an investigation of the asymp-
totic conditional probability of queries.

Contributions In this paper we show that a certain new probability model
provides a reasonable definition for both practical security and probable answers.
In this model individual tuples have a uniform probability of occurring in the
database, but the probability of each tuple t is now such that the expected size
of the relation instance R is a given constant S (different constants may be used
for different relation names). As the domain size n grows to ∞, the expected
database size remains constant. Hence, in the case of directed graphs (i.e. a
single, binary relation R), the probability that two given nodes are connected
by an edge is S/n2. Denoting by µn[Q] the probability that a boolean query Q
is true on a domain of size n, our goal is to compute µn[Q | V] as n→∞.

For Information Disclosure we will propose, as a definition of practical secu-
rity, the condition limn µn[Q | V] = 0. This is justified as follows. The adversary
faces a large domain. For example, if he is trying to guess whether “John Smith”
is an employee, then he has only a tiny probability of success: 1/n where n is the
size of the domain. On the other hand, the size of the database is much smaller,
and the adversary often knows a good approximation. This definition relaxes the
previous definition of perfect security for sensitive queries Q (see Sec. 3).

3

For Query Answering we will propose, as a definition of probable answer,
the condition limn µn[Q | V] = 1. Again, this relaxes the definition of certain
answers (see Sec. 3).

The key technical contribution in this paper is to show that limn µn[Q | V]
for conjunctive queries Q and V always exists and to provide an algorithm for
computing it. The key technical lemma is to show that, for each conjunctive
query Q there exists two number c, d s.t. µn[Q] = c/nd + O(1/nd+1). Moreover,
both d and c can be computed algorithmically. Since µn[Q | V] = µn[QV]/µn[V],
the main result follows easily.

Our main result leads to the following classification for query Q and view V ,
describing a spectrum of information disclosure and answerability.

Perfect query-view security µn[Q | V] = µn[Q] for all n large enough. Here
V provides no information about Q. This is the condition studied in [10].

Practical query-view security limn→∞ µn[Q | V] = 0. This implies that the
difference of probabilities is zero in the limit (since limn µn[Q] = 0 for all
practical purposes). For finite n, V may in fact contain some information for
answering Q, but it is considered negligible under our model.

Practical Disclosure 0 < limn→∞ µn[Q | V] < 1. Disclosure is non-negligible
in this case. Our main result allows us to compute this quantity in terms of
expected database size S.

Probable Query Answer limn→∞ µn[Q | V] = 1. For any n, the answer to Q
is not determined by V . However as n→∞, Q is almost surely true.

Certain Query Answer µn[Q | V] = 1 for all n. Here V determines the an-
swer to Q. That is, true is a certain answer to boolean query Q, given V .

Related Work When restricted to graphs, our random database model is
an instance of the random graphs introduced by Erdös and Rényi [2]. A random
graph on n is a graph on n vertices where each edge is chosen randomly and
independently with probability p(n). The study of convergence laws on random
graphs was initiated independently by Fagin [3] and Glebskĭi et al. [6]. They
consider random graphs with p(n) a constant and proved a 0-1 law for statements
of first order logic, i.e. the asymptotic probabilities always converge to either 0
or 1. These results hold for a pure relational vocabulary, without constants or
function symbols.

The work was later extended to a class of edge probabilities of the form
p(n) = βn−α, where α, β ≥ 0. The results of Shelah and Spencer [12] and Lynch
[9] show that a convergence law holds for all α ≥ 1 and for all irrational α
between 0 and 1, although the limit need not be 0 or 1. For the case of one
binary predicate our random databases correspond to the case α = 2 and β = S
(the expected size).

The problem of evaluating asymptotic conditional probabilities has received
relatively less attention. Fagin [3] shows that conditional probabilities do not
always converge for first order probabilities. Liogon’kĭi [8] proves that even the

4

problem of determining if conditional probabilities converge is undecidable for
first order logic, but is decidable when restricted to only unary predicates.

Paper organization In Sec. 2 we review probability distributions for databases.
In Sec. 3 we introduce the probabilistic model analyzed here. Sec. 4 contains the
main theorems, with proofs deferred to the Appendix. We illustrate our main
results on several examples in Sec. 5. We conclude in Sec. 6.

2 Basic Definitions and Background

We fix a vocabulary of relation names R1, R2, . . . Rm. The number of attributes
in relation Ri is its arity, denoted A(Ri). For a finite domain D, a tuple for Ri

is an element of DA(Ri), and we denote Tup the disjoint union of DA(Ri), for
i = 1, . . . ,m. A database instance I over D is any subset of Tup, and inst(D)
denotes the set of all database instances over D.

The probability distributions over database instances that we consider are
always derived by choosing tuples independently. Each tuple t ∈ Tup is assigned
a probability P[t] that it will occur in the database instance. This induces the
following probability distribution on instances I ∈ inst(D):

P[I] =
∏
t∈I

P[t] ·
∏
t/∈I

(1−P[t]) (1)

The problem considered in this paper concerns the probability of a query.
Our discussion will be restricted to conjunctive queries, possibly with the in-
equality operators 6=. Thus, a query is a conjunction of predicates, where each
predicate is either a relational predicate R(t1, . . . , tk), called a subgoal, or an
inequality predicate x 6= t; here x is a variable, while t, t1, . . . , tk are either vari-
ables or constants. We use letters from the end of the alphabet for variables, e.g.
x, y, z, u, v, and from the beginning of the alphabet for constants, e.g. a, b, c.

Our results are presented only for boolean queries. They also apply to non-
boolean queries under the Open World Assumption (OWA), using the simple
transformation illustrated for the query below:

q(x, y)← R(x, a, z), S(z, y)

Here q is non-boolean. Suppose its answer includes the tuples (a, b) and (c, b).
This is expressed as q(a, b)∧ q(c, b), which becomes the following boolean query:

Q← R(a, a, z1), S(z1, b), R(c, a, z2), S(z2, b)

Statements about q and the fact that its answers include (a, b) and (c, b) are thus
rephrased into statements about the boolean query Q. In the rest of this paper
we will consider only boolean queries, unless otherwise stated.

Given a boolean query Q and a probability distribution over database in-
stances, the following expression represents the probability that Q is true on a
randomly chosen database instance I:

P[Q] =
∑

{I∈inst(D)|Q(I)=true}
P[I] (2)

5

3 Probabilistic Model

We now introduce our new twist to the probabilistic model, in which we let the
domain size tend to ∞ while keeping the expected size of each relation instance
fixed. Let Dn denote a domain of size n.

For each relation Ri in the vocabulary, fix a number Si representing the
expected size of Ri. We then define a specific probability distribution, denoted
µn (instead of P), having the following properties:

1. For each relation Ri, each tuple (element of (Dn)A(Ri)) belongs to Ri inde-
pendently and with equal probability.

2. For each relation Ri, the expected size of Ri is Si, independent of n.

It follows that, for every tuple t of Ri, µn[t] = Si/nA(Ri).
Given a boolean query Q, its probability, µn[Q] given by the formula (2), is

the probability that Q is true on an instance I randomly chosen from inst(Dn).
Similarly, define µn[Q1 | Q2] to be the conditional probability that a database
chosen randomly from inst(Dn) satisfies Q1, given that it satisfies Q2. It is
equal to µn[Q1Q2]/µn[Q2]. We are concerned with the following two asymptotic
probabilities:

Definition 1. For conjunctive query Q, the asymptotic probability of Q is
µ[Q] = limn→∞ µn[Q], if the limit exists.

For conjunctive queries Q1, Q2, the conditional asymptotic probability
is µ[Q1 | Q2] = limn→∞ µn[Q1 | Q2], if the limit exists.

It is known[12] that µ[Q] exists for every pure relational FO formula Q (and,
hence, for any conjunctive query without constants), and that it is not necessarily
0 or 1 (hence this model does not have a 0/1-law). To see the latter, consider
the vocabulary of a single binary relation R, and the query Q ← R(x, y). The
query checks R 6= ∅. For each n > 0, µn[t] = S/n2 for any tuple t, and µn[Q] =
1− (1− S/n2)n2

. Hence, µ[Q] = 1− e−S .
Queries like the above are not interesting in database applications. More

generally, call a subgoal of Q1 trivial if it has no constants, and all its variables are
distinct and do not occur in any other subgoals of Q1 (they may occur however
in inequality predicates). Trivial subgoals can be eliminated from a query Q1, by
splitting it into into a query Q without trivial subgoals, and several statements
of the form R 6= ∅. For example, if Q1 ← R(x, y), T (u, a, b) (where R(x, y) is a
trivial subgoal), then µn[Q1] = µn[R 6= ∅]µn[Q] where Q ← T (u, a, b), and we
have computed µn[R 6= ∅] above. For that reason we will assume throughout the
paper that queries do not have trivial subgoals. It follows from our main results
that in that case µ[Q] = 0; conversely, µ[Q] > 0 only if Q is a conjunction of
queries of the form “Ri is non-empty”.

Finally, we can define:

Definition 2. Let Q and V be two boolean conjunctive queries.

1. Q is practically secure w.r.t. V if µ[Q | V] = 0.

6

2. Q is a probable answer given V if µ[Q | V] = 1.

This definition relaxes previous definitions from the literature. Indeed, if Q
has no trivial subgoals then µ[Q] = 0; hence, if it is perfectly secure w.r.t V (i.e.
µn[Q | V] = µn[Q] for all n) then it is practically secure w.r.t V (µ[Q | V] = 0).
Similarly, if Q is a certain answer given V (µn[Q | V] = 1 for all n) then it is a
probable answer (µ[Q | V] = 1).

4 Main Results

Throughout this section we consider conjunctive queries with inequality predi-
cates 6=, and without trivial subgoals.

4.1 Main Result: Part I

Half of our main result is captured by the following theorem:

Theorem 1. For every conjunctive query Q, there exists two numbers c, d such
that:

µn(Q) = c(1/n)d + O((1/n)d+1)

where d is an integer, d ≥ 1. We denote c and d by cQ = coeff(Q) and dQ =
exp(Q) respectively.

It follows that µ[Q] = 0. The number exp(Q) depends only on the query Q,
while coeff(Q) depends both on the query Q and on S1, . . . , Sm, the expected
cardinalities of the database relations. The second half of our main result shows
how to compute exp(Q) and coeff(Q): we postpone it until we introduce the
necessary notations.

Theorem 1 also implies the existence of the conditional asymptotic probability
of formulas Q1 and Q2:

Corollary 1. For any two boolean conjunctive queries Q1, Q2 the conditional
asymptotic probability, µ(Q1|Q2), always exists and is as follows:

µ(Q1|Q2) =

{
0 exp(Q1Q2) < exp(Q2)
coeff(Q1Q2)/coeff(Q2) exp(Q1Q2) = exp(Q2)

We next show how to compute coeff(Q) and exp(Q).

4.2 Intuition

Here we illustrate the main intuition behind Theorem 1 and also motivate the
notations needed to express exp(Q) and coeff(Q). We use a relational schema
consisting of two tables, R and T , with arities 2 and 3 respectively, and expected
sizes S1 and S2. Thus, given a domain Dn = {a1, . . . , an}, the probability of a

7

tuple R(ai, aj) is p1 = S1/n2 and the probability of a tuple T (ai, aj , ak) is
p2 = S2/n3. We consider the following three queries:

Q1 ← R(a, x)
Q2 ← R(a, x), T (x, y, b), R(y, c)
Q3 ← T (a, b, x), T (a, y, c)

Here a, b, c are constants and we will assume that they occur in the domain Dn

(hence n ≥ 3). For each query Q, our goal is to express its probability as µn[Q] =
c/nd + O(1/nd+1), focusing on computing cQ = exp(Q) and dQ = coeff(Q).

Let’s start with Q1. There are n possible ways to substitute it’s variable x
with constants in the domain Dn, and, for each substitution {ai/x}, the proba-
bility of the tuple (a, ai) is p1 = S1/n2, hence:

µn[Q1] ≈ n× p1 = n× S1

n2
=

S1

n
(3)

suggesting dQ = 1, cQ = S1. Of course, this is not a rigorous calculation, since
we have approximated the probability of R(a, a1) ∨ . . . ∨R(a, an) with the sum
of their probabilities. A rigorous calculation confirms the values for cQ and dQ:

µn[Q1] = 1− (1− p1)n = np1 +
n(n− 1)

2
p2
1 + . . . =

S1

n
+ O(

1
n2

)

Consider now Q2. Using the same informal reasoning, there are n2 possible
substitutions for the variables x, y, and for each substitution {ai/x, aj/y}, the
probability that all three tuples R(a, ai), T (ai, aj , b), and R(aj , c) appear in the
database is S1/n2 · S2/n3 · S1/n2. Thus:

µn[Q2] ≈ n2 × S1S2S1

n2+3+2
=

S2
1S2

n5
(4)

which suggests dQ = 5 and cQ = S2
1S2. A rigorous, but much more complex

calculation (which is omitted) confirms that µn[Q2] = S2
1S2/n5 + O(1/n6).

Formulas (3) and (4) suggest the following definition:

Definition 3. Let Q be a conjunctive query, and let goals(Q) denote the set of
its subgoals. We define several parameters, for each subgoal g ∈ goals(Q) and for
the entire query Q. For a subgoal g, we assume g is a predicate on the relation
Ri, i.e. g = Ri(t1, . . . , tk). Recall that Si is the expected cardinality of Ri.

A(g) = A(Ri) the “arity” of subgoal g

C(g) = Si the “coefficient” of subgoal g

V (Q) = the number of distinct variables in Q

A(Q) =
∑
{A(g) | g ∈ goals(Q)}

D(Q) = A(Q)− V (Q) the “exponent” of Q

C(Q) =
∏
{C(g) | g ∈ goals(Q)} the “coefficient” of Q

8

For our running example we have:

D(Q1) = 2− 1 = 1 C(Q1) = S1

D(Q2) = (2 + 3 + 2)− 2 = 5 C(Q2) = S1S2S1 = S2
1S2

D(Q3) = (3 + 3)− 2 = 4 C(Q3) = S2
2

Generalized to any query Q, our informal argument says that there are
nV (Q) substitutions of its variable, each leading to an event with probability
C(Q)/nA(Q); thus µn[Q] ≈ C(Q)/nD(Q). This suggests exp(Q) = D(Q) and
coeff(Q) = C(Q). However, this is not true on Q3, i.e. µn[Q3] 6= S2

2/n4+O(1/n5),
because the two subgoals in Q3 unify to T (a, b, c), hence µn[Q3] ≥ µn[T (a, b, c)] =
S2/n3. We will show that µn[Q3] = S2/n3 + O(1/n4). The example Q3 suggests
that we need to consider unifications between subgoals in the query. We do that
next.

4.3 Unifications

We assume here a conjunctive query Q with 6= predicates. From Q, we gener-
ate a set of queries Q0 by unifying some of the subgoals. Each Q0 is obtained
by (1) applying some substitution to Q, (2) dropping all 6= predicates and (3)
eliminating duplicate subgoals. While generate this set, we do not consider two
Q0 which are isomorphic. The steps are formally defined below.

Substitutions A substitution, η, is a mapping from variables to variables and
constants. Importantly, we restrict substitutions to use only constants already
in Q, thus, formally η : V ar(Q) → V ar(Q) ∪ Const(Q). A substitution may
not be defined on Q, if it violates some of the 6= predicates. We denote Q |= η
if the substitution is defined on Q, and in that case η(Q) denotes the result of
applying η to the subgoals of Q (we drop the 6= predicates). For example, if
Q ← R(a, x), R(x, y), R(y, z), x 6= y then the substitution η = {b/x, y/y, y/z}
is defined on Q and by applying it we obtain the query Q0 = η(Q), Q0 ←
R(a, b), R(b, y), R(y, y). By contrast, the substitution η′ = {x/x, x/y, z/z} is not
defined on Q.

Each substitution η defines a partition P on goals(Q), such that two sub-
goals g, g′ are in the same equivalence class if η(g) = η(g′). We call η a uni-
fier for the partition P . Notice that η(Q) has exactly |P | subgoals, i.e. one for
each equivalence class in P . For a trivial illustration, consider the query Q ←
R(a, x, b), R(x, y, v), R(z, z, w) and the substitution η = {z/x, z/y, b/v, b/w}.
Then η(Q)← R(a, z, b), R(z, z, b), and η defines the partition P = { {R(a, x, b)},
{R(x, y, v), R(z, z, w)}}, since the last two subgoals are mapped to the same sub-
goal by η.

A substitution η0 is called the most general unifier for a partition P if for
any other unifier η for P there exists a substitution θ s.t. η = θ ◦ η0. In this
case we call η(Q) a most general unifying query of Q. Continuing our example,
η is not a most general unifier for Q: the mgu is given by η0 = {z/x, z/y, w/v},
which results in η0(Q) ← R(a, z, b), R(z, z, w). Indeed, η is obtained as θ ◦ η0,
for θ = {b/w}.

9

Dropping 6= All the 6= predicates are dropped from the unifying query
Q0 = η(Q). However, the 6= predicates in Q are not ignored: they determine
which substitutions we may apply to obtain all unifying queries.

Eliminate Duplicate Subgoals Since goals(Q0) is a set, this is an obvious
operation. Considering again Q ← R(a, x, b), R(x, y, v), R(z, z, w) and the sub-
stitution η = {z/x, z/y, b/v, b/w}, if we apply mechanically η to Q we obtain
Q0 ← R(a, z, b), R(z, z, b), R(z, z, b). The subgoal R(z, z, b) is a duplicate, how-
ever, and should be eliminated, i.e. Q0 ← R(a, z, b), R(z, z, b). While this sounds
evident, we insist on it because the functions D(−) and C(−) return different
(and wrong) results if we fail to eliminate duplicates.

Drop isomorphic queries When generating all unifying queries Q0, we do
not include two queries that are identical up to variable renaming.

We now formally define the set of unifying queries.

Definition 4. Let Q be a conjunctive query. Define:

UQ(Q) = the set of all unifying queries Q0 of Q, Q0 = η(Q)
MGUQ(Q) = {Q0 | Q0 ∈ UQ(Q) and Q0 is a most general unifying query}

Note that any two distinct queries Q0, Q
′
0 ∈ UQ(Q) are not isomorphic.

4.4 Main Result: Part II

The second half of our main result, complementing Theorem 1 is:

Theorem 2. Let Q be a conjunctive query possibly with 6= predicates, and with-
out trivial subgoals. Then the exponent exp(Q) and the coefficient coeff(Q) in
Theorem 1 are given by:

exp(Q) = min{D(Q0) | Q0 ∈ UQ(Q)} (5)

coeff(Q) =
∑
{C(Q0) | Q0 ∈ UQ(Q), D(Q0) = exp(Q)} (6)

Thus, to compute exp(Q) we have to iterate over all unifying queries Q0

and take the minimum value of D(Q0). To compute coeff(Q) we have to iterate
over all unifying queries Q0 that achieve the minimum D(Q0). While this is an
exponential time algorithm, as the next section shows, this cannot be avoided.
Before illustrating the theorem, we prove that in both formulas (5) and (6) it
suffices to iterate over MGUQ(Q) rather than UQ(Q). The algorithm becomes
much more efficient, but remains exponential in the worst case. The correctness
follows easily from the following:

Lemma 1. Let Q0 ∈ UQ(Q)−MGUQ(Q). Then there exists Q1 ∈MGUQ(Q)
s.t. D(Q1) < D(Q0).

Proof. Let Q0 = η(Q), and let η define a partition P with k sets. Let η1 be
the most general unifier for the same partition, and denote Q1 = η1(Q); Q1 ∈
MGUQ(Q). There exists θ s.t. Q0 = θ(Q1). Both Q0 and Q1 have exactly

10

k distinct subgoals, hence A(Q0) = A(Q1). Moreover, θ is not an isomorphism
(since Q0 6∈MGUQ(Q)), hence it either maps at least one variable to a constant,
or it maps two distinct variables to the same variable. In both cases V (Q0) <
V (Q1), hence D(Q0) = A(Q0)− V (Q0) > D(Q1) = A(Q1)− V (Q1).

In all examples below we will compute exp(Q) and coeff(Q) by using MGUQ(Q)
instead of UQ(Q) in Theorem 2. The proof, however, will be for UQ(Q).

We now illustrate Theorem 2 on several examples. For our three queries
above, we have MGUQ(Q1) = {Q1}, MGUQ(Q2) = {Q2}, and MGUQ(Q3) =
{Q3, Q

′
3} where Q′3 ← T (a, b, c). This confirms the values for exp(Qi), coeff(Qi)

we have found above for i = 1, 2. For Q3, we have D(Q′3) = 3 < D(Q3) = 4,
hence exp(Q3) = 3 and coeff(Q3) = C(Q′3) = S2.

For a slightly more complex example, consider the following two queries:

Q4 ← R(a, x), R(y, b)
Q5 ← R(a, x), R(y, b), x 6= b

Here MGUQ(Q4) = {Q4, Q
′
4}, where Q′4 ← R(a, b). We have D(Q4) = D(Q′4) =

2 = exp(Q4), hence coeff(Q4) = C(Q4)+C(Q′4) = S2
1 +S1, according to Equation

(6). By contrast, MGUQ(Q5) = {Q4}, since Q′4 is not a unifying query for Q5.
It follows:

µn[Q4] =
S2

1 + S1

n2
+ O(

1
n3

) µn[Q5] =
S2

1

n2
+ O(

1
n3

)

4.5 Complexity of evaluating coeff and exp

Theorem 3. Given a conjunctive query Q expected sizes of the relations, and a
number k, deciding exp(Q) ≤ k is NP-hard and evaluating coeff(Q) is #P -hard
in the size of the query.

The proof is omitted. Although evaluating these parameters is hard in the
general case, there are several cases where its very efficient. An example is a
query where no two sub-goals can be unified. For instance, a query with no
relation occuring multiple times, or same relation always occuring with different
constants.

5 Applications

We illustrate here our main results with five examples, corresponding to the
five classes of query-view pairs described in Sec. 1. Recall that µ[Q | V] =
limn→∞ µn[Q | V]

Perfect query-view security This class is defined by µn[Q | V] = µn[Q]
for all n large enough. An example is:

V ← R(a, x); Q← R(b, x)

11

We showed[10] that P(Q | V) = P(Q) for all domains D and tuple-independent
probability distributions P. The view leaks absolutely nothing about the query.

Practical query-view security This class is defined by µ[Q | V] = 0.
Consider the following example:

V ← R(a, y); Q← R(x, b)

We have exp(V) = 2−1 = 1, and exp(QV) = 2 (see query Q4 in Sec. 4.4). Hence
µ[Q | V] = 0. Example 1 in Sec. 1 is a variation. There:

V ← R(x, b, z); Q← R(a, y′, z′)

and we have exp(V) = 3 − 2 = 1, and exp(QV) = 2, since UQ(QV) = { {
R(x, b, z), R(a, y′, z′) }, {R(a, b, z)} }. Again, µ[Q | V] = 0. In both cases,
although V leaks a tiny amount of information about Q, it is safe to publish V
while keeping Q secret as long as the domain D is very large.

Practical disclosure This class is defined by 0 < µ[Q | V] < 1. For an
illustration, consider

V ← R(a, y), R(x, b); Q← R(a, b)

We have exp(V) = 2, coeff(V) = S + S2 (see query Q4 in Sec. 4.3). For
QV we note that MGUQ(QV) = {{ R(a, y),R(x, b),R(a, b)}, {R(a, b),R(x, b)},
{R(a, b),R(a, y)}, {R(a, b)}}, and that the minimum D(−) is attained only by
the last query, R(a, b). Hence exp(QV) = 2, coeff(QV) = S. It follows that
µ[QV] = 1/(1 + S). Depending on the application, this may be considered to be
an important leakage. For example, if the database has S = 1000 tuples, then
an attacker has a chance of 0.1% of guessing the answer to Q.

This is an important example in practice. Suppose R(name, phone) repre-
sents names and phone numbers, and the owner wants to publish all names, then
separately all phone numbers, and wonders if the association between names and
phone numbers remains secret. Clearly, it does not, since an attacker can pick a
random name and phone number and associate them with about 1/S chance of
success. Unless S is huge, this is an important leakage.

Probable query answering Recall that this class is defined by µn[Q | V] =
1. We illustrate this with an abstraction of Example 2 in Sec. 1:

V ← R(a, b, z), R(x, b, c); Q← R(a, y, c)

Here MGUQ(V) = {{R(a, b, z), R(x, b, c)}, {R(a, b, c)}} and the minimum
D(−) is attained only by R(a, b, c), hence exp(V) = 3 and coeff(V) = S. In a sim-
ilar way, MGUQ(QV) = {{R(a, b, z),R(x, b, c),R(a, y, c)}, {R(a, b, c),R(a, b, z)},
{R(a, b, c), R(a, y, c)}, {R(a, b, c), R(x, b, c)}, {R(a, b, c)}}, and the minimum
D(−) is also attained only by the last query, hence exp(QV) = 3, coeff(QV) = S.
It follows that µ[Q | V] = 1.

This may also be important in practice. Although V does not logically im-
ply Q, one may argue that for practical purposes if we know that V is true

12

then we also know Q. For example, suppose we integrate two data sources
R1(name, phone) and R2(phone, email), by describing them as projections of
a global relation R(name, phone, email). Suppose a user wants to find the email
address of “John Smith”, and that R1 contains (“John Smith”, 1234) and R2

contains (1234, js@com). The tuple (“John Smith”, js@com) is not a certain
answer, however it is a very probable answer, and should normally be returned
to the user.

Certain answers Recall that this class is defined by µn[Q | V] = 1 for all
n. An example is:

V ← R(a, x, x); Q← R(a, y, z)

6 Conclusion

Our results show that for conjunctive queries, asymptotic conditional probabil-
ities always exist, and can be evaluated algorithmically. Our results also hold
when constants are allowed in the logic, which is required when queries need to
refer to specific objects, and when converting non-boolean queries to boolean
queries. We have shown that this model has interesting applications both to
information disclosure and query answering.

References

1. N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases. In
Conference on Very Large Data Bases, 2004.

2. P. Erdös and A. Rényi. On the evolution of random graphs. Magyar Tud. Akad.
Mat. Kut. Int. Kozl., 5:17–61, 1960.

3. R. Fagin. Probabilities on finite models. Journal of Symbolic Logic, 41(1):50–58,
1976.

4. C. Fortuin, P. Kasteleyn, and J. Ginibre. Correlation inequalities on some partially
ordered sets. Comm.in Math. Physics, 22:89–103, 1971.

5. N. Fuhr and T. Rlleke. A probabilistic relational algebra for the integration of
information retrieval and database systems. ACM Transactions on Information
Sysytems, 15(1):32–66, 1997.

6. Y. V. Glebskĭi, D. I. Kogan, M. I. Liogon’kĭi, and V. A. Talanov. Range and
degree of realizability of formulas in the restricted predicate calculus. Kibernetika,
2:17–28, 1969. [Engl. Transl. Cybernetics, vol. 5, 142–154 (1972)].

7. A. Halevy. Answering queries using views: A survey. VLDB Journal, 10(4):270–
294, 2001.

8. M. I. Liogon’kĭi. On the conditional satisfyability ratio of logical formulas. Math-
ematical Notes of the Academy of the USSR, 6:856–861, 1969.

9. J. F. Lynch. Probabilities of sentences about very sparse random graphs. Random
Struct. Algorithms, 3(1):33–54, 1992.

10. G. Miklau and D. Suciu. A formal analysis of information disclosure in data
exchange. In ACM SIGMOD International Conference on Management of Data,
pages 563–574, June 2004.

11. C. E. Shannon. Communication theory of secrecy systems. In Bell System Technical
Journal, 1949.

12. J. Spencer and S. Shelah. Zero-one laws for sparse random graphs. J. Amer. Math.
Soc., pages 97–115, 1988.

13

A Appendix

We prove here Theorems 1 and 2.
An event is a set of tuples, e ⊆ Tup, and we denote µn[e] the probability that all tuples are

in a randomly chosen database instance. Since all tuples are independent events, we have µn[e] =Q
t∈e µn[t]. If e1, . . . , em are events then e1 ∨ . . . ∨ em denotes the event that at least one of them

happens, i.e. a randomly chosen database instance contains all tuples in ei, for some i = 1, . . . , m.
The proof of theorems 1 and 2 relies on the following inequalities, representing a lower bound and
an upper bound for µn[e1 ∨ . . . ∨ em], and which are standard in probability theory:

X
i=1,m

µn[ei]−
X

1≤i<j≤m

µn[eiej] ≤ µn[e1 ∨ . . . ∨ em] ≤
X

i=1,m

µn[ei] (7)

The event eiej represents the fact that all tuples in ei and ej are chosen; it is equivalent to the
event ei ∪ ej .

Given a conjunctive query Q0, denote Q6=
0 the query obtained by adding all possible 6= predicates,

between any two distinct variables in Q0, and between any variable and constant in Q. For example,

if Q0 ← R(a, x), R(x, y) then Q6=
0 ← R(a, x), R(x, y), x 6= y, x 6= a, y 6= a. The proof of the main

result consists proving the following two equalities, then applying Eq.(7) to each of them.

Q ≡
_
{Q6=

0 | Q0 ∈ UQ(Q)} (8)

Q
6=
0 ≡

_
{θ(Q

6=
0) | Q6=

0 |= θ} (9)

In Eq.(9) the substitution θ ranges over all substitutions of the variables in Q0 with constants3 in
Dn. This equation is the standard semantics of conjunctive queries, and we will not illustrate or
discuss it further. Instead, we focus on Eq.(8). We first illustrate it on Q ← R(a, x), R(x, y). This
query has five unifiers, UQ(Q) = {Q, Q1, Q2, Q3, Q4}:

Q1 ← R(a, a), R(a, y), Q2 ← R(a, x), R(x, a), Q3 ← R(a, z), R(z, z), Q4 ← R(a, a)

We have seen Q6=; similarly Q6=
1 ← R(a, a), R(a, y), y 6= a, etc. Eq.(8) says:

Q ≡ Q
6= ∨Q

6=
1 ∨Q

6=
2 ∨Q

6=
3 ∨Q

6=
4

Now we prove (8). The containment in one direction is easy: Q0 ⊆ Q for Q0 ∈ UQ(Q) follows

from the standard homomorphism theorem (since Q0 = η(Q)), and Q6=
0 ⊆ Q0 is also immediate. For

the other direction, consider one database instance I where Q is true, and let θ be the substitution

that makes Q true. We will find some Q0 ∈ UQ(Q), s.t. Q6=
0 is also true in I. Let const(Q) be

all constants in Q, and C = {c1, . . . , cm} be all constants in θ(Q) that are not in const(Q). Let
z1, . . . , zm be m fresh variables, one for each constant in C. Define the following substitution η on
Q’s variables. If θ(x) ∈ const(Q), then η(x) = θ(x); otherwise, if θ(x) = ci, i = 1, . . . , m, then
η(x) = zi. Let Q0 = η(Q). By definition UQ(Q) contains some isomorphic copy of Q0, so assume

w.l.o.g. Q0 ∈ UQ(Q). The valuation θ0 defined by θ0(zi) = ci, i = 1, m is defined on Q6=
0 , and

θ0(Q0) = θ(Q), proving that Q6=
0 is true on the instance I.

We now sketch the proof of Theorems 1 and 2, by proving an upper bound and a lower bound
for µn[Q].

Upper bound We apply the upper bound in (7) twice: first to Eq.(8), then, for each unifying
query Q0 ∈ UQ(Q), to Eq.(9). We obtain:

µn[Q] ≤
X

Q0∈UQ(Q)

X
θ:Q 6=0 |=θ

µn[θ(Q
6=
0)]

For each substitution θ that is defined on Q6=
0 we have µn[θ(Q6=

0)] = C(Q0)/nA(Q0) (see Definition 3

for notations). This is because θ(Q6=
0) is a set of tuples having one distinct tuple for each subgoal

in Q0: the 6= predicates prevent θ from mapping two subgoals to the same tuple. Moreover, there

are nV (Q0) − O(nV (Q0)−1) substitutions θ that are defined on Q6=
0 . Hence, for each unifier Q0,

the inner sum above is C(Q0)/nD(Q0) − O(1/nD(Q0)+1). When summing up over all unifiers, the

3 Unlike our definition in Sec. 4.3, here we do allow the substitution θ to use constants
that do not appear in the query.

14

dominant terms are those with the lowest D(Q0), hence we have proven the following upper bound
(see Theorem 2 for exp(Q) and coeff(Q)):

µn[Q] ≤
coeff(Q)

nexp(Q)
+ O(

1

nexp(Q)+1
)

Lower bound This is harder, because we have to prove that the second order terms in the lower
bound of Eq.(7) are negligible: more precisely we show that the total contribution of these terms

is O(1/nexp(Q)+1). We first apply the lower bound to Eq.(8). The second order terms are here

expressions of the form µn[Q6=
0 Q6=

1], where Q0, Q1 ∈ UQ(Q). Here Q6=
0 Q6=

1 represents the conjunction
of the two boolean queries, and is obtained by first renaming all variables in Q0 and Q1 to make
them disjoint, and then taking the union of all predicates in the two queries, both subgoals and
6= predicates. The number of such expressions depends only on Q, not on n, so it suffices to show

that each such expression is O(1/nexp(Q)+1). This follows from the following lemma, and our already
proven upper bound:

Lemma 2. Let Q0 and Q1 be two non-isomorphic conjunctive queries, without 6= predicates.
Then:

exp(Q
6=
0 Q

6=
1) ≥ min(D(Q0), D(Q1)) + 1

Indeed, for Q0, Q1 ∈ UQ(Q) the upper bound we have already shown gives us µn[Q6=
0 Q6=

1] =

O(1/nexp(Q
6=
0 Q

6=
1)), and the lemma implies that exp(Q6=

0 Q6=
1) ≥ exp(Q)+1. We now prove the lemma.

Assume the contrary, that exp(Q6=
0 Q6=

1) ≤ D(Q0) and exp(Q6=
0 Q6=

1) ≤ D(Q1). The first assumption

implies that there exists a unifier Q′
0 = η(Q6=

0 Q6=
1) s.t. D(Q′

0) ≤ D(Q0). Since goals(η(Q6=
0)) ⊆

goals(η(Q6=
0 Q6=

1)) we have D(η(Q6=
0)) ≥ D(η(Q6=

0 Q6=
1)); with the equality holding only if goals(η(Q6=

0))

= goals(η(Q6=
0 Q6=

1)), because there are no trivial subgoals in η(Q6=
0 Q6=

1). (One can verify that if Q
has no trivial subgoals, then η(Q) has no trivial subgoals either.) Moreover, η maps all subgoals of

Q6=
0 to distinct subgoals, because of the 6= predicates, hence D(Q0) ≥ D(η(Q6=

0)), and equality holds

only if η is an isomorphism. We have thus shown that D(Q0) ≥ D(η(Q6=
0 Q6=

1)) ≥ exp(Q6=
0 Q6=

1) and,

given our first assumption, all three numbers are equal. This implies that η(Q6=
0 Q6=

1) is an isomorphic
copy of Q0, which means that η is an injective function from Q1 to (an isomorphic copy of) Q0.
Similarly, using the second assumption we prove the existence of an injective function from Q0 to
Q1, implying that Q0 and Q1 are isomorphic, and contradicting the lemma’s assumption.

We have shown so far
P

Q0∈UQ(Q) µn[Q6=
0]−O(1/nexpQ+1) ≤ µn[Q]. Given the upper bound, it

suffices to consider in the sum only unifiers Q0 for which D(Q0) = exp(Q): the others result in lower

order terms. We apply now Eq.(9) to Q6=
0 , and then the lower bound in (7). The higher order terms

are now of the form µn[θ(Q6=
0)θ′(Q6=

0)], and we will show that their combined effect is O(1/nexp(Q)+1).

The number of such terms is now dependent on n. Denote e = θ(Q6=
0) and e′ = θ′(Q6=

0). Both e and
e′ are sets of tuples, and they have both the same number of tuples, namely equal to the number
of subgoals in Q0, because both θ and θ′ are injective (due to the 6= predicates). We examine their
overlap. Consider two tuples t ∈ e and t′ ∈ e′ s.t. t = t′. They cannot come from two distinct
subgoals in Q0, because in that case those two subgoals were unifiable, and, after unifying them,
one obtains Q1 ∈ UQ(Q) s.t. D(Q1) < D(Q0), contradicting the fact that D(Q0) = exp(Q). So
t and t′ correspond to the same subgoal in Q0. Consider all subgoals in Q0 that are mapped to
the same tuples by θ and θ′. Define a new boolean query Q1 consisting of precisely these subgoals;
hence goals(Q1) ⊂ goals(Q0) (we cannot have equality because θ 6= θ′). The intuition here is that,
when Q1 has few subgoals (or, e.g., is empty), then µn[ee′] is very small, since e and e′ are largely
independent; when Q1 has many subgoals, then we use the fact that there cannot be too many pairs
of valuations θ, θ′ that agree on all subgoals in Q1. For these we need the following inequalities, which

are easily checked. (1) µn[θ(Q6=
0)θ′(Q6=

0)] = O(1/n2A(Q0)−A(Q1)), and (2) the number of pairs of

substitutions θ, θ′ which agree precisely on the subgoals in Q1 is O(n2(V (Q0)−V (Q1))). Now we can
add the second order terms and obtain:

X
Q0(6=)|=θ,θ′

µn[θ(Q
6=
0)θ

′
(Q

6=
0)] =

X
Q1:goals(Q1)⊂goals(Q0)

O(
n2(V (Q0)−V (Q1))

1/n2A(Q0)−A(Q1)
)

=
X

Q1:goals(Q1)⊂goals(Q0)

O(
1

n2D(Q0)−D(Q1)
) ≤ O(1/n

D(Q0)+1
)

For the last inequality we have used the fact that D(Q1) < D(Q0), since goals(Q1) ⊂ goals(Q0)
and Q0 has no trivial subgoals.

15

