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A b s t r a c t .  We develop a new schema for unstructured data. Traditional 
schemas resemble the type systems of programming languages. For un- 
structured data, however, the underlying type may be much less con- 
strained and hence an alternative way of expressing constraints on the 
data is needed. Here, we propose that both data and schema be repre- 
sented as edge-labeled graphs. We develop notions of conformance be- 
tween a graph database and a graph schema and show that there is a 
natural and ei:iiciently computable ordering on graph schemas. We then 
examine certain subclasses of schemas and show that schemas are closed 
under query applications. Finally, we discuss how they may be used in 
query decomposition and optimization. 

1 I n t r o d u c t i o n  

The ability to represent and query data with little or no apparent  structure arises 
in several areas: biological databases, database integration, and query systems for 
the World-Wide Web[PGMW95, TMD92, BDHS96a, MMM96, QRS+95, KS95, 
CM90]. The general approach is to represent data  as a labeled graph. Data  values 
and schema information, such as field and relation names, are kept in one data  
structure, blurring the distinction between schema and instance. 

Although these models merge schema and data, distinguishing between them 
is important ,  because schemas are useful for query decomposition and optimiza- 
tion and for describing a database's structure to its users. The biological database 
system ACeDB [TMD92] allows flexible representation of data, but  also has a 
schema-definition language that  limits the type and number of edges stored 
in a database. The OEM [PGMW95] model supports database integration by 
providing a structure in which most traditional forms of data  (relational, object- 
oriented, etc.) can be modeled. Even the World-Wide Web, which appears to be 
completely unstructured,  contains structured subgraphs. Fig. 1 depicts a frag- 
ment of the web site h t t p : / / ~ r u ~ . u c s d ,  edu, in which pages connecting schools, 
departments,  and people are structured. Queries applied to this graph's link 
structure can benefit from structural information, for example, by knowing there 
exists at most one department on any path from the root  to a leaf and that  every 
paper is reachable from a department.  

We describe a new notion of schema appropriate for an edge-labeled graph 
model of data. We use this model to formulate, optimize, and decompose queries 
for unstructured data  [BDS95, BDHS96a, Suc96]. Informally, a database is an 
edge-labeled graph, and a schema is a graph whose edges are labeled with for- 
mulas. A database DB conforms to a schema S if there is a correspondence 
between the edges in DB and S, such that  whenever there is an edge labeled 
a in DB, there is a corresponding edge labeled with predicate p in S such that  
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Fig.  1. A fragment of h t t p : / / u v w ,  ucsd .  edu. 

p(a) holds. This notion of conformance is a generalization of similarity [HHK95]. 
We investigate the properties of such schemas, and show that  there is a natural  
subsumption ordering on schemas - a generalization of similarity. We then inves- 
tigate a "deterministic" subclass of schemas and argue that  it is appropriate to 
have deterministic schemas although data  may be "nondeterministic". Finally, 
we examine queries on a database with a known schema and consider when we 
can compute a schema for the result of the query. We also discuss how schemas 
can improve the optimization and decomposition of queries in UnQL [BDHS96a]. 

2 B a s i c  D e f i n i t i o n s  

Let/4 be the universe of all constants (/4 = IntUStringUBoolU...) .  We adopt the 
data model of [BDHS96a], where a graph database is a rooted graph with edge 
labels in/4. Formally, D B  = (V, E, vo), where V is a set of nodes, E C V x/4 x V, 
and v0 E V is a distinguished root. Fig. 1 is an example of a graph database. 
This model is powerful enough to encode relational databases, as illustrated in 
Fig. 2(a), which encodes a relation R(A : Int, B : Int, C : String), but  flexible 
enough to represent unstructured data, like Fig. 2(b) and (c). Sets, records, and 
variant nodes are equivalent in this model. Graphs may have arbi t rary cycles 
and sharing. Two graphs are considered equal if they are bisimilar [BDHS96b]. 
Briefly, D B  and DB t are bisimilar if there exists a binary relation ,~, from the 
nodes of D B  to those of DB'  such that  (1) v0 ,~, v~) where Vo,V~ are the two 
roots, and (2) whenever u ,~, u ~, then for every u ~ v in DB,  there exists u ~ --~ v ~ 
in DB ~ such that  v ,~ v ~, and for every u ~ --~ v ~ in D B  ~, there exists u --~ v in 
D B  such that  v ~ v ~. 

In earlier work [BDHS96a], we introduced a notation for specifying graphs, 
e.g., the tree database in Fig. 2(c) is written as {tup =~ {A, {D ::~ {3}}}}. Also, 
we defined a union operation on two graph databases in which their two roots 
are collapsed (Fig. 3(a)). For example, in Fig. 3(b) DB1 = {a ~ {b}, c}, DB2 = 
{a =.~ {d}}, and DB1 U DB2 = {a =~ {b}, c, a ~ {d}}. 
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(a) (b) (c) 

Fig. 2. Three examples of graph databases. 

(a) (b) 

DB1 U D ~  

Fig. 3. Union of graph databases. 

To define graph schema, consider a set of base predicates over/4, P1, P2,. . . ,  
such that the first order theory T generated by/4 (i.e. the first order sentences 
true in /4) is decidable. A unary formula is a formula with at most one free 
variable. 

Definition 1. A graph schema is a rooted, labeled graph, in which the edges 
are labeled with unary formulas. 

Although our results apply to every decidable theory, we use theories gen- 
erated by unary predicates, with equality and with names for all constants in 
our universe. Typical predicates include Int(x), String(x), Nat(x), and Bool(x), 
which denote x E Int, x E String, x E Nat, and x E Boo1, and user-defined 
unary predicates, P(x).  The theory has an equality operator, so we have predi- 
cates such as x = 5 and x = "abcdq Such a theory is decidable, because it admits 
quantifier elimination: e.g. 3y.(Int(x) A Int(y) A x ¢ y) is equivalent to Int(x). 

Fig. 4 (a) depicts a graph schema S. By convention, we drop the free variable 
from unary formulas which are boolean combinations of unary predicates, thus 
writing A and IntV String instead of x = A and Int(x) V String(x). Intuitively, a 
graph schema captures some knowledge about the structure of a graph database. 
In particular, the graph schema S says that a graph database that conforms 
to S has only tup-edges emerging from the root, possibly followed by A, B, 
or C edges, and these possibly followed by integers or strings respectively. The 
graph database encoding a relational database in Fig. 2(a) conforms to this graph 
schema, but the graph in Fig. 2(c) does not. The database in Fig. 2(b) also 
conforms to this schema, although it does not encode any relational database. 

In schemas (c), (d), (e), (f) in Fig. 4, isnept(x) and isPaper(x) are user- 
defined predicates testing whether x is a string denoting a department (e.g., 
"Computer Science Department" or "Electrical Engineering Department") or a 
paper. Schema (d) says that there is at most one department on every path 
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Fig.  4. Six examples of graph schema. 

starting at the root, while that  in (e) says that  no paper edge may occur before 
a department edge. The database in Fig. 1 conforms to both these schemas. 

D e f i n i t i o n  2. A database D B  conforms to a graph schema S, D B  ~ S,  if there 
exists a simulation from D B  to S, i.e. a binary relation ~ from the nodes of D B  
to those of S satisfying: (1) the root  nodes of D B  and S are in the relation _~, 
(2) whenever u ~ u ~ and u -~ v is an edge labeled a in D B ,  then there exists 

some edge u ~ ~ v ° in S such that  p(a) is true and v ~ v *. 

A graph schema cannot enforce the presence of some label. This is consistent 
with the notion of schema in ACeDB [TMD92]. In particular, the empty database 
(one node, no edges) conforms to any graph schema S, i.e., 0 -~ S. A graph 
schema cannot model variants, nor can it prevent a node from having several 
outgoing edges with the same label, as occurs in Fig. 2(b). Finally, any database 
D B  can be viewed as a schema, by replacing every label a with the unary formula 
x = a, which gives us a notion of simulation between databases, D B  _~ D B  ~. 

In keeping with our view that  two graphs are considered equal if they are 
bisimilar, we can show that  if D B  ~ S and D B  and D B '  are bisimilar, then 
D B  ~ ~ S. However, note that  D B  - ~ D B  ~ and D B  ~ ~ D B  does not necessarily 
imply that  D B ,  D B  ~ are bisimilar. 

Graph schemas can be viewed as infinite databases. For example, we view 

an edge u ._~t v in S, as representing infinitely many edges, u -~ v, u -~ v, u -~ 
v, . . . .  We call the expansion of S, denoted S ~ ,  the (possibly infinite) database 
obtained from replicating each edge in S once for every constant in the universe 
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U satisfying the unary formula on that edge. See Fig. 5 for an example. If any of 
the schema edges is labeled with the formula fa/se, that edge disappears in S °°. 

Nat A Nat 

0 0 

Fig. 5. A graph schema S and its infinite expansion S °°. 

One can easily check that for any database DB and graph schema S, DB ~ S 
iff DB ~ S °°. The latter relation is a simulation between two databases, one of 
which may be infinite. 

3 C o m p l e x i t i e s  

Palge and Tarjan [PT87] give an O(m log n) algorithm for the relational coarsest 
partition problem, which computes a bisimulation relation on a graph, where 
n is the number of nodes and m the number of edges. The algorithm tests 
whether two rooted graphs G1 and G2 are bisimilar: take their disjoint union 
G, compute a bisimulation ,~ on G, then test whether the two roots of G1 and 
G2 are in ~. Although bisimulation and simulation are related, they require 
different algorithms. Henzinger, Henzinger, and Kopke [HHK95] have recently 
found an O(mn) time algorithm to compute the simulation between two graphs 
with labeled nodes. 

Neither algorithm applies directly to our framework, because they asso- 
ciate labels with nodes, not edges. We can reduce the problem of finding a 
(bi)simulation of two edge-labeled graphs with a total of n nodes and m edges 
to that of finding a (bi)simulation between two node-labeled graphs with a to- 
tal of m + n nodes and 2m edges. We split each labeled edge x ~ y into two 
unlabeled edges x ~ z ~ y, in which z is a new node labeled a, and we label 
all other nodes with a new, unique label. Finally, we compute a (bi)simulation 
for the new graphs, in time O(2mlog(m + n)) = O(mlogm) for bisimulation, 
or O((m + n)2m) = O(m 2) for simulation. We may assume m > n, because the 
graphs G1, G2 are connected, but unlike in [HHK95], we no longer necessarily 
have m < n 2. This still does not allow us to test DB ~ S, because when we 
expand S into a database we get an infinite graph. We can, however, adapt the 
algorithm in [HHK95] to get: 

P ropos i t ion  3. Suppose one can test validity of sentences of the theory T in 
time t. Then there exists an algorithm for checking whether DB ~ S that runs 
in time O(m2t). Here m is the total number of edges in DB and S, which are 
each assumed to be connected. 

4 E x p r e s s i v e n e s s  o f  g r a p h  s c h e m a s  

Graph schemas differ from relational or object-oriented schemas. A relational 
database has only one schema. A graph database, however, may conform to 
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several graph schemas such as those in Fig. 4 (d) and (e). Moreover, there exists 
a schema ST (Fig. 4 (b)) to which all graph databases conform. Since graph 
schemas are meant to capture partial information about the structure of data  
with the purpose of optimizing queries, we could store multiple graph schemas 
for the same data  and offer multiple "hints" to a query optimizer. 

The relationship between graph database and graph schemas raises several 
questions. First, given two graph schemas S and S I, how do we know if S says 
more about some database than S~? How do we know that  graph schemas S 
and S * are "equivalent", i.e. DB ~ S iff DB ~ S ~, for any DB? For example, 
the graph schema in Fig. 4(f) captures more information about a database than 

either schema in (d) or (e). Formally, if IS] ~ f  {DB [ DB -~ S}, then we want 
to check whether IS] C IS'] and IS] = IS']. We show that  both IS] C IS'] and 
IS] = IS 1 can be checked in polynomial time. 

Second, given two graph schemas S and S ~, which express different con- 
straints on a database, can we describe with a single graph schema S" their com- 
bined constraints ? We want some graph schema S" such that  DB ~ S A D B  ~ S ~ 
iff DB -~ S ' .  We show that  S" always exists. For example, when S, S ~ are those 
in Fig. 4 (d), (e), then S" is the schema in (f). 

Last, when DB 2~ S, what "fragment" DBo of DB does conform to S? This 
question is important if we wish to use graph schema as data guides [Abi97]. 
Assume we optimize queries based on the assumption that  the Web site in Fig. 1 
follows schema S in Fig. 4 (d) as a guide. Since the schema does not enforce 
conformance it is unclear what the optimized query means. We show here that  
for any database DB and schema S there exists a canonical "fragment" DBo of 
DB that  conforms to S. Moreover, whenever DB .~ S, then DBo is DB. We can 
now state what we expect from an optimizer. Given a query Q and schema S, we 
expect a correct optimizer to produce an optimized query Qopt such that  for any 
database DB, Qopt(DB) = Q(DBo). This implies that  Qopt(DB) = Q(DB) 
whenever D B _~ S. 

4.1 Subsumption  of  graph schemas 

We define schema subsumption and equivalence as follows. 

De f in i t i on4 .  Given two graph schemas S ,S  ~ we say that  S subsumes S ~, in 
notation S ~ S ~, if there exists a binary relation ~ between the nodes of S and 
S' such that: (1) v0 ~ v~, where v0, v~ are the roots of S, S', (2) whenever u ~ u',  
for every labeled edge u --~ v in S and every a E U s.t. 1/4 ~ p(a), there exists an 

edge u'  ~ v' in S' s.t. U ~ p'(a) and v :~ v'. S and S' are equivalent if S Z~ S' 
and S I _~ S. 

The subsumption relation, S ~ S I, naturally extends the simulation relation 
between databases. Recall that  a graph schema S represents its possibly infinite 
expansion, S °°, i.e., an edge x ~ y represents infinitely many edges, one for 
each a for which U ~ p(a). Each such edge may be simulated in S I by some 

unary formula. First, we choose a E ///, then decide which edge x * -~ y~ in 
S ~ will "mimic" the edge x ~ y in S. For example, let S = {Int V String 
{5 D ,  S'  = {Int ~ {Int}, String =~ {Int}}, then S ~ S', because Va e U for which 
Int(a) V String(a) there is a corresponding edge in S *. 
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Proposition h. S "< S' iff S ~ ~ S '°°. 
between (possibly infinite) databases. 

The latter is the simulation relation 

In particular, a database DB conforms to a graph schema S, DB ~ S, iff 
DB when viewed as a graph schema subsumes S, for which we use the same 
notation D B _~ S. 

We now determine whether S _< S *. From [HHK95], this problem is decidable. 
Moreover, our algorithm in Fig. 6 checks whether S _~ S ~ in polynomial time. 

Let R ( {(~,~') I~ e nodes(S),u' • nodes(S')} 
while any change do 

find (u, u') • R and edge u ~ v in S 
such that H ~ 3a.p(a) A (Ai=l,k -upS(a)) 

where u' ~ v[, i = 1, k are all edges from u' in S' 
R R -  

r e t u r n  ((vo,v~) • R) 

Fig. 6. An algorithm checking whether S ~ S *. 

P r o p o s i t i o n 6 .  The algorithm in Fig. 6 checks in time m°(1)t whether S <_ S', 
where t is the time needed to check validity of a sentence in the theory T. 

We want to use this algorithm to check whether IS] c [Sq. Corollary 8, 
which says that IS] c [Sq is equivalent to S ~ S *, allows us to do that. To prove 
it, we observe that the subsumption relation ~ on graph schemas is preorder 
(from Proposition 5), and this allows us to define the least upper bound of a 
set of graph schemas, as in any preordered set. We review here the definition 
for completeness. Let 79 be a set of graph schemas. S is a least upper bound 
for D if (1) VS0 E D, So .~ S, and (2) when another graph schema S' has this 
property, it follows that S -~ S '. We use LJ D for the set of least upper bounds of 
79. Since ~ is a preorder rather than an order relation, U D may have more than 
one element, but all are equivalent, i.e. S, S ~ E U 79 ~ S ~ S ~ and S ~ ~ S. 
This justifies abbreviations like U 79 ~ s '  for 3S E U 79, s -~s ' .  The following 
theorem relates the order relation ~ to the meaning of a graph schema, IS]: 

T h e o r e m  7. I] 79 = [51 then S E L] 79. 

Before proving this result, we prove a corollary: 

Corol la ry  8. S "~ S' iff IS] C [Sq. Hence S, S' are equivalent iff IS] = IS']. 

Proof. Obviously, S ~ S' ~ IS] c [S']. The converse follows from Theorem 7, 
because IS] c IS ~] implies U[S] ~ U[S'], hence S .~ S'. 

Together, Corollary 8 and Proposition 6 imply that [S] c_ IS'] and [51 = [Sq 
are decidable in polynomial time. The rest of this subsection contains the proof of 
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Theorem 7, in which we approximate graph databases with trees. A tree database 
is a database whose graph is a finite tree. For a database DB, the approximations 
of DB is the set appt (DB) = { T D B  ] T D B  a TDB ~ DB}. When DB is 
cycle-free, then appr (DB) is a finite set; when DB is a tree database itself, 
then DB Eappr (DB). When DB has cycles, appr (DB) is infinite, and can be 
thought of as the set of all finite unfoldings of DB. Approximations allow us to 
infer simulations: 

P r o p o s i t i o n 9 .  appr (DB) C_appr (DB') i~ DB ~ DB'.  

Proof. DB  -~ DB ~ implies appr (DB) C_appr (DB~). For the converse, let u 
be some node in DB, and DBu be the same graph database DB, but  whose 
root is u. More precisely, when DB = (V, E, vo) then DBu = (V, E,u).  We 
define the relation ~ from the nodes of DB to those of DB ~ to be u _~ u ~ iff appr 
(DBu) C appr (DB~,). Obviously, vo -~ v~, where v0, v~ are the roots of DB, DB ~ 
respectively. Now we have to prove that  ~ is a simulation. Assume u ~ u ~ and 
let u ~ v be an edge in DB. The tree ({u, v}, {(u, a, v)}, u) (consisting of a 
single edge u --~ v with root  u) is in appr (DBu), hence it is in appr (DB~,), 
so there exists at least one a-labeled edge leaving u ~. Let u ~ ~ v~ , . . . ,  u ~ ~ v~ 
be the set of all such edges, k > 1. We use the fact that  this set is finite and 

I show that  there exists some i s.t. appr (DBv) C_appr (DB~v;), implying v ~ vi. 
Suppose by contradiction that  this is not true: then for each i = 1, k there exists 
some tree database TDB~ Eappr (DBv) s.t. TDBi  Cappr (DB*v~). Consider the 

tree T D B  = {a :-~ (TDB1 U . . .  U TDBk)}.  We have T D B  Eappr (DBu), but  
T D B  Cappr (DB' u,) - a contradiction. 

This proposition also holds for some infinite databases. Let us call some infinite 
database, DB, label finite if for any node u and label a, the set of outgoing edges 
u --~ is finite. From the proof of Proposition 9, we derive: 

C o r o l l a r y  10. Let appr (DB) C appr (DB'), with DB, DB'  possibly infinite 
databases, but with DB ~ label-finite. Then DB _~ DB ~. 

Example 1. Let DB = {a=*. {0, 1, 2 , . . . }}  and DB' = {a=V.to, a=~t l ,  a=:~t2,. . .},  
where tk = {0, 1 , . . . ,  k - 1, k + 1, k -4- 2 , . . .} .  Then appr (DB) =appr (DB') but  
DB ~ DB ~, proving that  Corollary 10 fails when DB ~ is not label finite. 

We now prove Theorem 7 using Proposition 9. We extend the notat ion appr 
to graph schemas, i.e. appr (S) = { T D B  i T D B  ~ S, T D B  is a tree d.b.} =appr 
(S°°). Suppose S ~ satisfies VDB E T), DB  ~ S~: we have to prove S ~ S ~. First 
we show appr (S) C appr iS'): T D B  -~ S ==*. T D B  E l) ==*. T D B  ~ S' 
T D B  Eappr (S~). Now we observe that  S *°° is label-finite, hence Corollary 10 
implies S °° ~ S ~c¢. Finally Proposition 5 implies S _~ S *. 

4.2 GLB's and LUB's  of  graph schemas 

Next, we show how to construct a schema S that  expresses the combined con- 
straints of two graph schemas $1 and $2. Given two schemas $1 and $2, we show 
that  there exists a schema S s.t. [51 = [$1] t3 [$2]. Take the nodes of S to be pairs 

(Ul, U2), with ui a node in Si, i = 1, 2, and take edges to be (Ul, U2) plAT2 (•1, V2), 
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for any two edges ui ~ v~ in Si, i = 1, 2. One can show [51 = [$1] n [$2]. It fol- 
lows that S is the greatest lower bound of $1 and $2, in notation $1 n $2. For 
example, when $1, $2 are given by Fig. 4(d) and (e), then $1 M $2 is given by the 
schema in (c) which is equivalent to that of if), assuming the predicates isDept 
and isPaper are disjoint. 

A similar fact does not hold for union or complement. Let us say that a se t / )  
of databases is representable if it is of the form/)  = IS] for some graph schema 
S. Then it is easy to show that any representable se t / )  is an ideal [Gun92], i.e.: 
(1) /) is nonempty, (2) /) is downwards closed, i.e. D B  ~ DB'  and DB" E /)  
implies D B  E /), and (3) /) is directed, i.e. DBi ,  DB2 E / )  implies 3DB E / )  
s.t. DB1 ~ DB and DB2 ~ DB.  It follows immediately that, if/)1 and/)2  
are representable, then the complement of/)1 and/)1 U/)2 are, in general, not 
representable. Let idl(/)) denote the ideal generated by the set / ) ,  i.e. idl(/)) = 
{ D B i U . . . U D B ~  I 3 D S ~ , . . . , D S ~ e / ) ,  s.t. D S ~ D B ~ , i = l , k } .  Then we 
can prove that when /)1,/)2 are representable, so is idl(/)l U/)2)- For $1,$2 
graph schemas representing/)1 and/)2  respectively, we define S to be their 
union(Section 2). It follows that IS] = idl([S1] U [$2]) and that S is the least 
upper bound of $1, $2, in notation $1 U $2. 

4.3 F ragmen t s  of  da tabases  

Finally, we address the problem of finding for some database DB and graph 
schema S, a canonical "fragment" DBo of DB such that DBo ~ S. This is 
important if we wish to use graph schemas as data guides [Abi97]. Instead of 
insisting that a database DB strictly conforms to some schema S, we require 
that there be a "large fragment" of DB which conforms to S. By "fragment" we 
mean a database DBo s.t. DBo .~ DB.  The name "fragment" is justified, because 
whenever DBo ~ DB,  there exists some graph D B  t which is bisimilar to D B  
(hence, D B  and DB' denote the same data) of which DBo is a subgraph. E.g. 
consider the graph schema S in Fig. 4 (a), and let D B  = {tup=~ {A, D =~ {3}}} 
be the database in Fig. 2(c). Then DBo = {tup ::~ {A}}. 

We observe that for any DB, S, the empty database 0 Cone node, no edges) 
is a fragment satisfying the requirement above, i.e. 0 ~ D B  and 0 .~ S. This 
is not the "canonical" fragment we want, because it is not the largest fragment 

under the simulation relation ~. By taking DBo deJ D B  n S we can prove: 

Proposition 11. For any graph database D B and graph schema S, there exists 
some database DBo s.t. (1) DBo _~ D B  and DBo -~ S, and (2) for any other 
database D B~ satisl~ying this property, D B~ ~ D Bo. Moreover D Bo can be com- 
puted in PTIME, and if D B  -~ S then DBo is bisimilar to DB.  We call DBo 
the canonical fragment of DB satis]ying S. 

5 D e t e r m i n i s m  

Nodes in a schema have the potential to classify nodes in a database. This 
could be useful, for example, in a distributed environment, where we could use 
a schema to describe how such a database is distributed.. For example, suppose 
that the database DB in Fig. 1 is distributed on two sites, such that all nodes 
before a department edge are located on site 1, while those after a department 
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edge are on site 2. We could describe this formally using the schema in Fig. 4(d), 
which has two nodes u',v': database nodes conforming to u'  will be on site 1, 
while those conforming to v ~ on site 2. However, the schema in Fig. l(e) does not 
classify the nodes uniquely, because whenever we encounter an edge u ~ v in 

DB such that  isDept(a), we may either follow the edge u ~ isDe~t v, or the edge 

u, not(:_~aper)'~-- u~ in the schema. We say that  the first schema is deterministic, 
while the second one is not. 

In object-based graph database models, determinism is natural.  For example, 
the semantics of ACeDB trees imposes that  instance databases be determinis- 
tic, and in the Tsimmis data  model, each node has a unique object identifier 
making the instance database deterministic. In our graph model, however, a de- 
terministic representation of relational databases requires adding unnecessary 
object identifiers to sets. For example, in order to make the tree representation 
of a relational database in Fig. 2(a) deterministic we would use a different object 
identifier for every tup edge, say tupl, tup2, tup3. Determinism for graph schemas 
in any model, however, is natural.  Note that  the tree representation of the rela- 
tional graph schema in Fig. 4 (a) for the database of Fig. 2(a) is deterministic. 

We show that  certain nondeterministic schemas are not equivalent to any de- 
terministic ones. A natural  question arises then: given a nondeterministic schema 
S, how can we best approximate it with a deterministic schema Sd ? We show 
here that  a canonical Sd always exists. 

We call an edge-labeled graph G deterministic if for every node x and label 
a, there exists at most one edge labeled a going out of x. This definition is not 
invariant under bisimulation 3. A database DB is deterministic if there exists 
some deterministic graph bisimilar to it. Similarly, we call a graph schema S 
deterministic iff S °° is deterministic. The following is a sufficient condition for 
checking if a graph schema S is deterministic: 

P r o p o s i t i o n l 2 .  Let S be a graph schema. S is deterministic if for any node u 

and any two distinct edges u -+ v ,u  ~ v', we have Lt ~ -~(3x.p(x) ^ f ( x ) ) .  

Deterministic graph schemas are important  because of the following: 

P r o p o s i t i o n  13. Let S be deterministic and T D B  a tree database s.t. T D B  _~ 
S~ Then T D B  conforms to S "in a unique way". More precisely there exists a 
function ~ from the nodes of T D B  to those o r s  s.t. for any simulation -~ from 
T D B  to S, and for every node u off T D B ,  u 5 ~(u). 

This follows from the observation that  nodes in a tree database are in 1-1 
correspondence with sequences of labels, al . . .  an. Such a sequence is mapped 
uniquely into some node in S, because S is deterministic, and this defines the 
function qo. qo(u) classifies nodes: u and v are in the same class iff ~(u) = qo(v). 

Deterministic schemas are less "expressive" than nondeterministic ones. For 
example, the nondeterministic graph schema S = {a ~ {b}, a ~ {c}} is not 
equivalent to any deterministic graph schema, i.e. [S] # [Sd] for any deterministic 
graph schema Sd. The "closest" we can get is the deterministic graph schema 

a The tree {a} is deterministic and bisimilar to the tree {a, a}; but the latter is not 
deterministic. 
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Sd = {a ~ {b, e}}. In general, for any nondeterministic graph schema S, there 
exists a "closest" deterministic graph schema Sd. The latter is constructed in a 
way reminiscent of the DFA equivalent to an NDFA: 

Proposition 14. For any graph schema S, there exists some deterministic graph 
schema Sd with the following properties: (1) S _~ Sd, (2) whenever S .~_ S* and 
S ~ is deterministic then Sd _~ f t .  

The proof is based on a standard powerset construction and is given in [BDFS96]. 
An interesting case is when S is a database (i.e. all unary formulas on its edges 

are equalities with constants); then Sa is precisely the deterministic automata 
obtained from S. For the example in which S = (a ~ (b),a ~ {c}}, we get 
Sd • (a ~ {b, c}}. 

In general, the number of nodes in Sd is exponential in that of S. But when 
S is a tree database, then the number of nodes in Sd is less than or equal to 
that of S [Per90, pp.7]. When we generalize to unary formulas, then the number 
of nodes in Sd may be exponential, even when S is a tree. For example, let 
S = (Pl,P2,. . .  ,Pn}, then Sd : ( r0 , r l , . . .  ,r2--1}, where each ri = Vj=0,n--1 qJ, 
with qj = pj or qj = -~pj, depending on whether the j ' s  bit in the binary 
representation of i is 1 or 0. Such arbitrary sets of unary formulas Pl, P2, . . . ,  Pn 
rarely occur in practice, because the base predicates are either constants, or 
taken from a list of disjoint predicates, like Int, String, Boo1, Nat, isDept. The 
graph schemas in Figure 4 have this property. Then we can prove: 

Proposition 15. Let S be a tree schema in which for every two distinct unary 
formulas p(x),p'(x), either is a constant (i.e. of the form x = a), or they are 
disjoint (i.e. II ~ -~3x.(p(x) A p'(x))). Then S d has at most as many nodes as 
S, and can be computed in polynomial time. 

6 G r a p h  S c h e m a s  a n d  Q u e r i e s  

In [BDHS96a], we propose UnQL, a language for querying and restructuring 
graph databases. UnQL is compositional, has a simple select . . .  where . . .  con- 
struct, supports flexible path expressions, and can express complex restructuring 
of the graph database. Consider the simple UnQL query Q: 

select {x ~ {x}}  where \x  <-- DB 

Q takes a graph database of the form (al ~ t l , . . . ,  an :=~ tn} and returns the 
graph database ( a i  ~ ( a l  } , .  • • ,  an ~ (an)} ,  i.e., Q doubles each edge in the first 
level of edges in DB. 

Recall from Section 2 that graph schemas can be thought of as finite descrip- 
tions of infinite sets of databases, i.e. S defines the set [S] = ( D B  [ DB _~ S}. We 
consider whether, given a schema S and an UnQL query Q, we can describe the 
set (Q(DB) [ DB _~ S} by a schema S *. This question is important for two rea- 
sons. First, we use graph schemas in query optimization of UnQL. Since UnQL 

is compositional, when we optimize a composed query Q(DB) d=ef Q2(Qi (DB)) 
whose input conforms to some graph schema, DB _~ S, we first optimize Qt 
according to graph schema S, then optimize Q2 according to the graph schema 
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of the set (Qi(DB) I DB ~ S}, hence the need to compute the latter. Sec- 

ond, UnQL queries can be used to define views, like V de f Q(DB). Given that  
DB ~ S, we want to optimize queries against the view. This requires a graph 
schema for the set {Q(DB) I DB ~ S}. 

Given a graph schema S and a query Q, there is a natural way to compute 
a graph schema Q(S), with the property: ( ,)  VDB ~ S, Q(DB) ~ Q(S). Since 
UnQL queries are just graph transformations, we can compute Q(S) much in the 
same way in which we compute Q(DB). Where the construct is less obvious, we 
take a conservative action. For example, for a subquery Q(DB) = {x ~ DB}, 
having a free variable x bound in a surrounding context, we define Q(S) to 
be {true:=~S}, or if any predicate P(x) is known about the variable x (e.g. Q 
occurs in the then branch of an if P(x) then . . .  else . . .  construct), then we take 
Q(S) = {P ~ S}. This ensures that  (.) holds, but Q(S) may not necessarily get 
the tightest description of the set {Q(DB) I DB ~ S}. 

We omit the full description of Q(S) from this abstract, but mention that  
Q(S) can be computed in PTIME, and that  it satisfies (*). But (,)  can be 
trivially satisfied by taking Q(S) = ST (Fig. 4 (b)), which is a maximal element 
in the partial order L<. We would like to make the claim Q(S) = U{Q(DB) I 
DB ~ s}S}: thus showing that  Q(S) describes precisely the set T) de=f {Q(DB) I 
DB L< Unfortunately, this does not hold. Worse, there are examples of simple 
queries Q and graph schema S for which U D does not exist. Consider the graph 
schema S = {Nat} and the UnQL query Q from above. This query doubles 
every label in the database, e.g. on the database DB = {2, 4,5} Q returns 
{2 =~ {2}, 4 =~ {4}, 5 ~ {5}}. Our method computes the graph schema S' = Q(S) 
to be {Nat ~ {Nat}}, but this is not UT). The sequence of graph schemas 
$i, 32, • • • where S, = {0 =~ {0}, 1 =~ {I},..., n =~ {n},p, ~ {Nat} }, with p, (x) = 
(x # 0 A . . .  A x # n A Nat(x)), forms an infinite, strictly descending chain of 
graph schemas, each offering a better approximation of :D. In fact, we can prove 
directly t h a t / )  has no least upper bound. 

Graph schemas cannot describe all sets of the form {Q(DB) I DB ~ S}, 
because they cannot impose equality constraints on edges in the database. We 
can partially fix this by extending the notion of graph schema to allow equality 
constraints between certain values on edges. Formally, we define an extended 
graph schema with variables Z l , . . . ,  zn to be a rooted graph (V, E, vo), in which 
the edges are labeled with formulas as explained below, and with n > 0 distin- 
guished subgraphs, denoted Gzl,... ,  Gz.. Each subgraph Gz is called-the scope 
of the variable z, and is given by (1) a set of nodes Vz C V, (2) a set of edges 
Ez c E, s.t. for every edge u ~ v in Ez, both u and v are in Vz, (3) a set of 
input nodes Iz C Vz, and (4) a set of output  nodes Oz C Vz. We impose several 
conditions on extended graph schemas: (1) For every edge u ~ v entering some 
graph Gz (i.e. u ~ Vz and v 6 Vz), v is one of the inputs of Gz. (2) Similarly, 
every edge u ~ v leaving some graph Gz exits from an output  node, u 6 Oz. 
(3) Each formula labeling some edge in the scope of k variables z l , . . . ,  zk may 
have k + 1 free variables: z l , . . . ,  zk and a distinguished variable x as before. (4) 
The scopes of variables follow traditional rules in programming languages: for 
z ~ z', either Gz C Gz,, or Gz, C Gz, or Gz and Gz, are disjoint. 

Graph schemas are particular cases of extended graph schemas with no vari- 
ables (n = 0). As with graph schemas, an extended graph schema S can be 
modeled by its infinite expansion S °°. Each graph Gz is replicated once for each 
value z 6/4, and their input and output nodes are collapsed. Fig. 7 contains two 
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examples of extended graph schemas with one variable z. Iz has a single node 
in both (a) and (b); Oz is empty in (a) and has one node in (b). The expansion 
in (b) is incomplete: not(O) should be further expanded with all atoms a E H, 
a # 0, etc. Unlike graph schemas, S °° may have infinitely many nodes. Some 
care is needed when collapsing the input and output nodes. In a formal definition 
presented elsewhere, we use e edges to define S ~ (see [BDHS96a] for a definition 
of e edges). 

Zf...,,' """~ .... \ .  

Ca) 

.....,.' 

ba 

iZ 
i no  

\ 

~d N~a~z) 

° 
, /  

(b) 
Fig. 7. Two examples of extended graph schemas and their expansions. 

Since extended graph schemas are a more sophisticated way of specifying an 
infinite graph, we can extend previous results for graph schemas. We can define 
what it means for a database DB to conform to an extended graph schema S, 
DB ~ S, and for an extended graph schema S to subsume some other extended 
graph schema S', S -~ S', etc. From [HHK95], both DB -~ S and S -~ S' are 
decidable. Unfortunat-ely, S c¢ is not generally label-finite, and  Theore~n 7 fails 
in general for extended graph schemas. For example, take S = {a ~ {Nat}}. 
Then S °° = DB with DB from Example 1, and IS] =appr (DB). Take S' to be 
the graph G = Gz = {u z=a__.~t(z) Nat(z)~xCz 

v w} with Iz ~f ~ and Oz = O, 
then S '~  = DB' of Example 1, and S' is an upperbound but S 2~ S'. 
Intuitively, S' is better than S = {a ~ {Nat}} because it says that after each 
a-edge, at least one natural number is missing. Using two variables zl, z2 we 
can say that at least two natural numbers are missing, etc. In fact the set [~  
does not have a least upper bound in the preordered set of extended schemas. 
Fortunately, we can address this problem if we are restricted to deterministic 
extended graph schemas. More precisely, we can prove the following theorem, 
which is the most complex result of this paper. Here a positive UnQL query 
is a query whose translation into UnCAL does not use the only non-monotone 
operator in UnCAL, isempty (see [Suc96] for a more detailed discussion). 

T h e o r e m  16. Let Q be a positive UnQL query. Then.for every (extended) graph 
schema S there exists an extended graph schema Q(S), computable in P T I M E  
such that: for every deterministic, extended graph schema S', if VDB ~ S =~ 
Q(DB) 5 S', then Q(S) ~ S'. 

The proof appears in [BDFS96]. For the UnQL query Q at the beginning of this 
section and schema S = (Nat}, Q(S) is the schema in Fig. 7 Ca). 
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7 C o n c l u s i o n s  a n d  F u t u r e  W o r k  

When querying unstructured data, the ability to use whatever structure is known 
about the data can have significant impact on performance. Examples abound 
in optimizations for generalized path expression (see [CACS94, CCM96], among 
others). We have explored a new notion of a graph schema appropriate for edge- 
labeled graph databases. Since the known structure of graph databases may be 
weaker than that of a traditional database, we use unary formulas instead of con- 
stants for edge labels. We describe how a graph database conforms to a schema 
and observe that a graph database may conform to multiple schemas. Since there 
is a natural ordering on graph schemas, it is possible to take the least upper 
bound of a set of schemas and combine into a single schema all their constraints. 
We then describe a "deterministic" subclass of schemas that uniquely classi- 
fies nodes of (tree) databases. When optimizing queries for distributed graph 
databases, node classification allows us to decompose and specialize the query 
for a target site [Suc96]. 

In current work, we are using schemas for query optimization and query 
decomposition. Consider the following UnQL query Q [Suc96], which selects all 
papers in the Computer Science Department in Fig. 1: 

select "Papers'.t where _*. "CS-Department"._.. "Papers'.t +- D B 

Without any knowledge about the data's structure, one has to search the entire 
database. We can exploit knowledge about the structure of the data in order 
to prune the search. For example, if we know that the data conforms to the 
the schema in Fig. 4(d), we can prune the search after every department edge 
that is not a Computer Science Department. This can be described by another 
query, Qopt. An interesting question is what happens if the database DB fails 
to conform to the schema S, which is likely in unpredictable data sources like the 
Web. As discussed in Subsection 4.3, one can still describe the precise semantics 
of Qopt(DB), namely as Q(DBo), where DBo is the canonical fragment of DB 
conforming to S (Subsection 4.3). Similarly, we plan to address query decom- 
position. [Suc96] describes a query decomposition technique that ignores any 
information about the structure of the data, or how it is distributed. Assuming 
the database DB is distributed on two sites, the technique in [Suc96] poses three 
different queries on each site. We plan to use deterministic schemas to describe 
data in a distributed environment. For example, we could use the schema in 
Fig. 4(d) to describe how the nodes in the database are located on the two sites 
and reduce the queries posed at each site from three to one. Maximizing the 
benefits of these techniques for query decomposition and optimization is an area 
of future work. 

The definition of a graph schema we have given is extremely general. For 
example, it cannot constrain a graph to be an instance of a relation in the 
sense that Fig. 2(a) describes a relation, because multiple edges with the same 
attribute name are allowed in the graph instance. Furthermore, our schemas only 
place outer bounds on what edges may emanate from a node. In future work, 
we may consider a dual notion of schema that places inner bounds on edges 
by requiring certain edges to exist. One could consider further constraints that 
restrict the number of edges that emanate from a node, as is done in [TMD92] 
to model variants. 
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