Tutorial: Causality and Explanations in Databases

Alexandra Meliou Sudeepa Roy Dan Suciu

> VLDB 2014 Hangzhou, China

We need to understand unexpected or interesting behavior of systems, experiments, or query answers to gain knowledge or troubleshoot

Unexpected results

genreselect distinct g.genre Fantasy from Director d, Movie_Directors md, History Movie m, Genre g Horror where d.lastName like 'Burton' Music and g. mid=m.mid Musical and m. mid=md.mid My/ery and md. did=d.did nce order by g.genre

I didn't know that Tim Burton directs Musicals! Why are these items in the result of my query?

Inconsistent performance

Why is there such variability during this time interval?

Understanding results

Why does the performance of my algorithm drop when I consider additional dimensions?

Causality in science

- Science seeks to understand and explain physical observations
 - Why doesn't the wheel turn?
 - What if I make the beam half as thick, will it carry the load?
 - <u>How</u> do I shape the beam so it will carry the load?
- We now have similar questions in databases!

What is causality?

- Does acceleration cause the force?
- Does the force cause the acceleration?
- Does the force cause the mass?

We cannot derive causality from data, yet we have developed a perception of what constitutes a cause.

Some history

Causation is a matter of perception

We remember seeing the <u>flame</u>, and feeling a sensation called <u>heat</u>; without further ceremony, we call the one <u>cause</u> and the other <u>effect</u>

David Hume (1711-1776)

Statistical ML

Forget causation! Correlation is all you should ask for.

Karl Pearson (1857-1936)

Forget empirical observations! Define causality based on a network of known, physical, causal relationships

Judea Pearl (1936-)

Tutorial overview

Part 1: Causality

- Basic definitions
- Causality in Al
- Causality in DB

Part 2: Explanations

- Explanations for DB query answers
- Application-specific approaches

Part 3: Related topics and Future directions

- Connections to lineage/provenance, deletion propagation, and missing answers
- Future directions

Part 1: Causality

- a. Basic Definitions
- b. Causality in Al
- c. Causality in DB

Part 1.a

BASIC DEFINITIONS

Basic definitions: overview

- Modeling causality
 - Causal networks
- Reasoning about causality
 - Counterfactual causes
 - Actual causes (Halpern & Pearl)
- Measuring causality
 - Responsibility

Causal networks

- Causal structural models:
 - Variables: A, B, Y
 - Structural equations: Y = A v B

- Modeling problems:
 - E.g., A bottle breaks if either Alice or Bob throw a rock at it.
 - Endogenous variables:
 - Alice throws a rock (A)
 - Bob throws a rock (B)
 - The bottle breaks (Y)
 - Exogenous variables:
 - Alice's aim, speed of the wind, bottle material etc.

Intervention / contingency

 External interventions modify the structural equations or values of the variables.

Counterfactuals

- If $\underline{not A}$ then $\underline{not \varphi}$
 - In the absence of a cause, the effect doesn't occur

$$C = A \wedge B, \quad A = 1 \wedge B = 1 \leftarrow B$$
 Both counterfactual

- Problem: Disjunctive causes
 - If Alice doesn't throw a rock, the bottle still breaks (because of Bob)
 - Neither Alice nor Bob are counterfactual causes

Actual causes

[simplification]

A variable X is an <u>actual cause</u> of an effect Y if there exists a contingency that makes X counterfactual for Y.

$$C=A\vee B, \quad A=1\wedge B=1$$
 —— A is a cause under the contingency B=0

Example 1

$$Y = X_1 \wedge X_2$$

$$X_1 = X_2 = 1 \Rightarrow Y = 1$$

 $X_1=1$ is counterfactual for Y=1

Example 2

$$Y = X_1 \vee X_2$$

$$X_1 = X_2 = 1 \Rightarrow Y = 1$$

 $X_1=1$ is **not** counterfactual for Y=1

 $X_1=1$ is an <u>actual</u> cause for Y=1, with contingency $X_2=0$

Example 3

$$Y = (\neg X_1 \land X_2) \lor X_3$$

$$X_1 = X_2 = X_3 = 1 \Rightarrow Y = 1$$

X₁=1 is not counterfactual for Y=1

 $X_1=1$ is **not** an actual cause for Y=1

Responsibility

A measure of the degree of causality

$$\rho = \frac{1}{1 + \min_{\Gamma} |\Gamma|} - \frac{\text{size of the contingency set}}{\text{contingency set}}$$

Example

$$Y = A \wedge (B \vee C)$$

$$A = B = C = 1 \Rightarrow Y = 1$$

A=1 is counterfactual for Y=1 (ρ =1)

B=1 is an actual cause for Y=1, with contingency C=0 (ρ =0.5)

Basic definitions: summary

- Causal networks model the known variables and causal relationships
- Counterfactual causes have direct effect to an outcome
- Actual causes extend counterfactual causes and express causal influence in more settings
- Responsibility measures the contribution of a cause to an outcome

Part 1.b

CAUSALITY IN AI

Causality in AI: overview

 Actual causes: going deeper into the Halpern-Pearl definition

Complications of actual causality and solutions

Complexity of inferring actual causes

Dealing with complex settings

 The definition of actual causes was designed to capture complex scenarios

Permissible contingencies

Not all contingencies are valid => Restrictions in the Halpern-Pearl definition of actual causes.

Preemption

Model priorities of events => one event may preempt another

Permissible contingencies

A: Alice loads Bob's gun

B: Bob shoots

C: Charlie loads and shoots his own gun

Y: the prisoner dies

Additional restriction in the HP definition:

Nodes in the causal path should not change value.

Causal priority: preemption

A: Alice throws a rock

B: Bob throws a rock

Y: the bottle breaks

 $A \lor B = A \lor \bar{A}B$

Even though the structural equations for Y are equivalent, the two causal networks result in different interpretations of causality

Complications

- Intricacy
 - The definition has been used incorrectly in literature: [Chockler, 2008]
- Dependency on graph structure and syntax

Counterintuitive results

Shock C

Network expansion

Defaults and normality

- World: a set of values for all the variables
- Rank: each world has a rank; the higher the rank, the less likely the world

 Normality: can only pick contingencies of lower rank (more likely worlds)

Addresses some of the complications, but requires ordering of possible worlds.

Complexity of causality

Counterfactual cause	Actual cause
PTIME	NP-complete

Proof: Reduction from SAT.

Given F, F is satisfiable iff X is an actual cause for $X \wedge F$

For non-binary models: Σ_2^P -complete

Tractable cases

1. Causal trees

Actual causality can be determined in linear time

Tractable cases

2. Width-bounded decomposable causal graphs

It is unclear whether decompositions can be efficiently computed

Tractable cases

3. Layered causal graphs

Layered graphs are decompositions that can be computed in linear time.

Causality in AI: summary

- Actual causes:
 - permissible contingencies and preemption
 - Weaknesses of the HP definition: normality
- Complexity:
 - Based on a given causal network
 - Tractable cases

Part 1.c

CAUSALITY IN DATABASES

Causality in databases: overview

 What is the causal network, a cause, and responsibility in a DB setting?

Motivating example: IMDB dataset

Query

Actor aidfirstNamelastNameDirector didfirstNamelastNameMovie midranknameyear Movie_Directors Genre didmidmidqenreCasts midaidrole

IMDB Database Schema

What can databases do

Provenance / Lineage:

The set of all tuples that contributed to a given output tuple

[Cheney et al. FTDB 2009], [Buneman et al. ICDT 2001], ...

But

In this example, the lineage includes

137 tuples !!

From provenance to causality

Causality for database queries

Input: database D and query Q. Output: D'=Q(D)

- Exogenous tuples: D^x
 - Not considered for causality: external sources, trusted sources, certain data
- Endogenous tuples: Dⁿ
 - Potential causes: untrusted sources or tuples

Causality for database queries

Input: database D and query Q. Output: D'=Q(D)

- Causal network:
 - Lineage of the query

Causality of a query answer

Input: database D and query Q. Output: D'=Q(D)

- $t \in D^n$ is a counterfactual cause for answer α If $\alpha \in Q(D)$ and $\alpha \not\in Q(D-t)$
- $t\in D^n$ is an actual cause for answer α If $\exists \Gamma\subset D^n$ such that t is counterfactual in $D-\Gamma$ contingency set

Relationship with Halpern-Pearl causality

- Simplified definition:
 - No preemption
 - More permissible contingencies
- Open problems:
 - More complex query pipelines and reuse of views may require preemption
 - Integrity and other constraints may restrict permissible contingencies

Complexity

- Do the results of Eiter and Lukasiewicz apply?
 - Specific causal network → specific data instance
- What is the complexity for a given query?
 - A given query produces a family of possible lineage expressions (for different data instances)
 - Data complexity:
 the query is fixed, the complexity is a function of the data

Complexity

For every conjunctive query, causality is:
 Polynomial, expressible in FO

Responsibility is a harder problem

Responsibility: example

Directors

	did	firstName	lastName				
	28736	Steven	Spielberg				
	67584	Quentin	Tarantino				
s_1	23488	Tim	Burton				
	72648	Luc	Besson				

Movie_Directors

mid						
82754						
17653						
17534						
27645	1					
81736	1					
18764						
	82754 17653 17534 27645 81736					

 r_1

 r_2

Query: (Datalog notation)

q :- Directors(did,'Tim','Burton'),Movie_Directors(did,mid)

Lineage expression: $s_1r_1 \vee s_1r_2$

Responsibility: $ho_t = rac{1}{1 + \min_{\Gamma} |\Gamma|}$

$$\rho_{s_1} = 1 \qquad \Gamma = \emptyset$$

$$\rho_{r_1} = \frac{1}{2} \qquad \Gamma = \{r_2\}$$

Responsibility dichotomy

	PTIME		NP-hard
$q_1 :-$	R(x,y), S(y,z)	$h_1^* :=$	A(x), B(y), C(z), W(x, y, z)
$ q_2 :-$	$A(x)S_1(x,v), S_2(v,y),$	$h_2^* :-$	R(x,y), S(y,z), T(z,x)
	$B(y,u), S_3(y,z), D(z,w), C(z)$	$h_3^* :=$	A(x), B(y), C(z),
			R(x,y), S(y,z), T(z,x)

Responsibility in practice

Context Aware Recommendations

Solution

- Extension to view-conditioned causality
 - Ability to condition on multiple correct or incorrect outputs
- Reduction of computing responsibility to a Max SAT problem
 - Use state-of-the-art tools

Reasoning with causality VS Learning causality

Learning causal structures

Conditional independence:

Is one actor's popularity conditionally independent of the popularity of other actors appearing in the same movie, given that movie's success

Learning causal structures

Causal intuition in humans:

Understand it to discover better causal models from data

Experimentally test how humans make associations

Discovery: Humans use context, often violating Markovian conditions

Causality in databases: summary

Provenance as causal network, tuples as causes

- Complexity for a query (rather than a data instance)
 - Many tractable cases
- Inferring causal relationships in data

Part 2: Explanations

- a. Explanations for general DB query answers
 - b. Application-Specific DB Explanations

Part 2.a

• EXPLANATIONS FOR GENERAL DB QUERY ANSWERS

So far,

Fine-grained Actual Cause = Tuples

- Causality in AI and DB
 - defined by intervention
- In DB, goal was to compute the "responsibility" of individual input tuples in generating the output and rank them accordingly

Coarse-grained Explanations

= Predicates

- For "big data", individual input tuples may have little effect in explaining outputs. We need broader, coarse-grained explanations, e.g., given by predicates
- More useful to answer questions on aggregate queries visualized as graphs
- Less formal concept than causality
 - definition and ranking criteria sometimes depend on applications (more in part 2.b)

Why does this graph have an increasing slope and not decreasing?

Example Question #1

Why is the avg. temp. high at time 12 pm and 1 pm, and low at time 11 am?

Example Question #2

Question on aggregate output

Dataset:

Pre-processed DBLP + Affiliation data

(not all authors have affiliation info)

Why is there a peak for #sigmod papers from industry in 2000-06, while #academia papers kept increasing?

Ideal goal: Why = Causality

But, TRUE causality is difficult...

True causality needs controlled, randomized experiments (repeat history)

 The database often does not even have all variables that form actual causes

 Given a limited database, broad explanations are more informative than actual causes (next slide)

Broad Explanations are more informative than Actual Causes

We cannot repeat history and individual tuples are less informative

Time	Sensor	Volt	Humi	d Temp		100					
11	1	2.64	0.4	34		100					
11	2	2.65	0.3	40							\neg
11	3	2.63	0.3	35	(du				_		
12	1	2.7	0.5	35	AVG(Temp)	50	 				
12	2	2.7	0.4	38) <u></u>						-
12	3	2.2	0.3	100	\geqslant						
1	1	2.7	0.5	35							
1	2	2.65	0.5	38							
1	3	2.3	0.5	80			11	12		1	
								Time			

More informative

predicate:
Volt < 2.5 & Sensor = 3

Explanation can still be defined using "intervention" like causality!

Explanation by Intervention

Causality (in AI) by intervention:

```
X is

a cause of Y,

if removal of X

also removes Y

keeping other conditions unchanged
```

Explanation (in DB) by intervention:

```
A predicate X is

an explanation of one or more outputs Y,

if removal of tuples satisfying predicate X

also changes Y

keeping other tuples unchanged
```


Why is the AVG(temp.) at 12pm so high?

predicate: Sensor = 3

Why is the AVG(temp.) at 12pm so <u>high</u>? predicate: Sensor = 3

We need a scoring function for ranking and returning top explanations...

Scoring Function: Influence

$$infl_{agg}(p) = \frac{Change in output}{(# of records to make the change)}$$

Scoring Function: Influence

$$infl_{agg}(p) = \frac{Change in output}{(# of records to make the change)^{\lambda}}$$

Top explanation for $\lambda = 1$

Top explanation for $\lambda = 0$

$$Sensor = 3$$

Sensor
$$= 3$$
 or 2

$$\frac{21.1}{1} = 21.1$$

$$\frac{22.6}{2}$$
 = 11.3

One tuple causes the change

Two tuples cause the change

Leave the choice to the user

Summary: System "Scorpion"

- Input: SQL query, outliers, normal values, λ, ...
- Output: predicate p having highest influence
- Uses a top-down decision tree-based algorithm that recursively partitions the predicates and merges similar predicates
 - Naïve algo is too slow as the search space of predicates is huge
- Simple notion of intervention (implicit):
 - Delete tuples that satisfy a predicate

More Complex Intervention: Causal Paths in Data

Intervention in general due to a given predicate:

Delete the tuples that satisfy the predicate, also delete tuples that directly or indirectly depend on them through causal paths

- Causal path is inherent to the data and is independent of the DB query or question asked by the user
- Next: Illustration with the DBLP example

Causal Paths by Foreign Key Constraints

Intervention through Causal Paths

Two sources of complexity

- 1. Huge search space of predicates (standard)
- 2. For any such predicate, run a recursive query to compute intervention (new)
 - The recursive query is poly-time, but still not good enough
- Data-cube-based bottom-up algorithm to address both challenges
 - Matches the semantic of recursive query for certain inputs, heuristic for others (open problem: efficient algorithm that matches the semantic for all inputs)

Qualitative Evaluation (DBLP)

Q. Why is there a peak for #sigmod papers from industry during 2000-06, while #academia papers kept increasing?

Intuition:

- 1. If we remove these industrial labs and their senior researchers, the peak during 2000-04 is more flattened
- 2. If we remove these universities with relatively new but highly prolific db groups, the curve for academia is less increasing

Summary: Explanations for DB

In general, follow these steps:

- Define explanation
 - Simple predicates, complex predicates with aggregates, comparison operators, ...
- Define additional causal paths in the data (if any)
 - Independent of query/user question
- Define intervention
 - Delete tuples
 - Insert/update tuples (future direction)
 - Propagate through causal paths
- Define a scoring function
 - to rank the explanations based on their intervention
- Find top-k explanations efficiently

Part 2.b

• APPLICATION-SPECIFIC DB EXPLANATIONS

Application-Specific Explanations

- 1. Map-Reduce
- 2. Probabilistic Databases
- 3. Security
- 4. User Rating

We will discuss their notions of explanation and skip the details

Disclaimer:

 There are many applications/research papers that address explanations in one form or another; we cover only a few of them as representatives

1. Explanations for Map Reduce Jobs

[Khoussainova et al., 2012]

A MapReduce Scenario

Explanation by "PerfXPlain"

DFS block size >= 256 MB and #nodes = 150

J₁ 3 hours **32 GB** 32 GB / 256 MB = 128 blocks.

There are 150 nodes!

Completion time = time to process one block.

_

1 GB / 256 MB = 4 blocks Completion time = time to process one block. J₂ 3 hours 1 GB

Why was the second job as slow as the first job? I expected it to be much faster!

Explanation by "PerfXPlain"

DFS block size >= 256 MB and #nodes = 150

PerfXPlain uses a log of past job history and returns predicates on cluster config, job details, load etc. as explanations

2. Explanations for Probabilistic Database

[Kanagal et al, 2012]

Review: Query Evaluation in Prob. DB.

Probabilistic Database D

Boolean query Q: $\exists x \exists y AsthmaPatient(x) \land Friend(x, y) \land Smoker(y)$

Q(D) is not simply true/false, has a probability Pr[Q(D)] of being true

Lineage:
$$F_{Q,D} = (x_1 \wedge y_1 \wedge z_1) \vee (x_1 \wedge y_2 \wedge z_2) \vee (x_2 \wedge y_3 \wedge z_2)$$

Q is true on D ⇔ F_{Q,D} is true

$$Pr[F_{Q,D}] = Pr[Q(D)]$$

Explanations for Prob. DB.

Explanation for Q(D) of size k:

- A set S of tuples in D, |S| = k, such that Pr[Q(D)] changes the most when we set the probabilities of all tuples in S to 0
 - i.e. when tuples in S are deleted (intervention)

Example

Lineage: $(a \wedge b) \vee (c \wedge d)$

Probabilities: Pr[a] = Pr[b] = **0.9**,

Explanation of size 1: {a} or {b}

Explanation of size 2:

NP-hard, but poly-time for special cases

Pr[c] = Pr[d] = 0.1

Any of four combinations {a,b} x {c, d} that makes Pr[Q(D)] = 0 and **NOT** {a, b}

3. Explanations for Security and Access Logs

[Fabbri-LeFevre, 2011] [Bender et al., 2014]

3a. Medical Record Security

- Security of patient data is immensely important
- Hospitals monitor accesses and construct an audit log
- Large number of accesses, difficult for compliance officers monitor the audit log
- Goal: Improve the auditing system so that it is easier to find inappropriate accesses by "explaining" the reason for access

Consider this sample audit log and associated database:

Lid	Date	User	Patient
1	1/1/12	Dr. Bob	Alice
2	1/2/12	Dr. Mike	Alice
2	1/3/12	Dr. Evil	Alice

Audit Log

Patient	Date	Doctor
Alice	1/1/12	Dr. Bob

Appointments

Doctor	Department
Dr. Bob	Pediatrics
Dr. Mike	Pediatrics

Departments

An access is explained if there exists a path:

- From the data accessed (Patient) to the user accessing the data (User)
- Through other tables/tuples stored in the DB

An access is explained if there exists a path:

- From the data accessed (Patient) to the user accessing the data (User)
- Through other tables/tuples stored in the DB

Lid	Date	User	Patient
1	1/1/12	Dr. Bob	Alice
2	1/2/12	Dr. Mike	Alice 🖊
2	1/3/12	Dr. Evil	Alice
	Audit		

Alice had an appointment with Dr. Bob, and Dr. Bob and Dr. Mike are Pediatricians (same department)

Departments

Why did **Dr. Mike** access **Alice**'s record?

An access is explained if there exists a path:

- From the data accessed (Patient) to the user accessing the data (User)
- Through other tables/tuples stored in the DB

Lid	Date	User	Patient
1	1/1/12	Dr. Bob	Alice
2	1/2/12	Dr. Mike	Alice
2	1/3/12	Dr. Evil	Alice

Audit Log

No path exists, suspicious access!!

Patient	Date	Doctor
Alice	1/1/12	Dr. Bob

Appointments

Doctor	Department
Dr. Bob	Pediatrics
Dr. Mike	Pediatrics

Departments

Why did **Dr. Evil** access **Alice**'s record?

3b. Explainable security permissions

- Access policies for social media/ smartphone apps can be complex and fine-grained
- Difficult to comprehend for application developers
- Explain "NO ACCESS" decisions by what permissions are needed for access

Example: Base Table

User

uid	name	email
4	Zuck	zuck@fb.com
10	Marcel	marcel@fb.com
12347	Lucja	lucja@cornell.edu

Example: Security Views

CREATE VIEW V1 AS SELECT * FROM User WHERE uid = 4

CREATE VIEW V2 AS SELECT uid, name FROM User

CREATE VIEW V3 AS SELECT name, email FROM User

User

uid	name	email
4	Zuck	zuck@fb.com
10	Marcel	marcel@fb.com
12347	Lucja	lucja@cornell.edu

Example: Security Policy

- CREATE VIEW V1 AS
 SELECT * FROM User
 WHERE uid = 4
- CREATE VIEW V2 AS SELECT uid, name FROM User
- CREATE VIEW V3 AS SELECT name, email FROM User

User

uid	name	email
4	Zuck	zuck@fb.com
10	Marcel	marcel@fb.com
12347	Lucja	lucja@cornell.edu

Permitted

Not Permitted

Example: Security Policy Decisions

CREATE VIEW V2 AS SELECT uid, name FROM User

CREATE VIEW V3 AS
SELECT name, email
FROM User

User

uid	name	email
4	Zuck	zuck@fb.com
10	Marcel	marcel@fb.com
12347	Lucja	lucja@cornell.edu

Permitted

Not Permitted

Query issued by app

Example: Security Policy Decisions

CREATE VIEW V2 AS SELECT uid, name FROM User

CREATE VIEW V3 AS SELECT name, email FROM User

User

uid	name	email
4	Zuck	zuck@fb.com
10	Marcel	marcel@fb.com
12347	Lucja	lucja@cornell.edu

Permitted

Not Permitted

Query issued by app

Example: Why-Not Explanations

- CREATE VIEW V1 AS
 SELECT * FROM User
 WHERE uid = 4
- CREATE VIEW V2 AS SELECT uid, name FROM User
- CREATE VIEW V3 AS SELECT name, email FROM User

SELECT name
FROM User
WHERE uid = 4

Query issued by app

Why-not explanation: V1 or V2

4. Explanations for User Ratings

[Das et al., 2012]

How to meaningfully explain user rating?

Why is the average rating 8.0?

How to meaningfully explain user rating?

- IMDB provides demographic information of the users, but it is limited
- Need a balance between individual reviews (too many) and final aggregate (less informative)

Meaningful User Rating

Solution:

Explain ratings by leveraging information about users and item attributes (data cube)

OUTPUT

Summary

- Causality is fine-grained (actual cause = single tuple), explanations for DB query answers are coarse-grained (explanation = a predicate)
 - There are other application-specific notions of explanations
- Like causality, explanation is defined by intervention

Part 3:

Related Topics and Future Directions

Part 3.a:

RELATED TOPICS

Related Topics

- Causality/explanations:
 - how the inputs affect and explain the output(s)
- Other formalisms in databases that capture the connection between inputs and outputs:
 - 1. Provenance/Lineage
 - 2. Deletion Propagation
 - 3. Missing Answers/Why-Not

[Cui et al., 2000] [Buneman et al., 2001] [EDBT 2010 keynote by Val Tannen] [Green et al., 2007] [Cheney et al., 2009] [Amsterdamer et al. 2011]

1. (Boolean) Provenance/Lineage

 Tracks the source tuples that produced an output tuple and how it was produced

Provenance vs. Causality/Explanations

- Provenance is a useful tool in finding causality/explanations e.g., [Meliou et al., 2010]
- But, causality/explanations go beyond simple provenance
 - Causality points out the responsibility of each tuple in producing the output that helps ranking input tuples
 - Explanations return high-level abstractions as predicates which also help in comparing two or more output aggregate values

Example

For questions of the form

```
"Why is avg(temp) at time 12 pm so high?"

"Why is avg(temp) at time 12 pm higher than that at time 11 am?"
```

Provenance returns individual tuples, whereas a predicate is more informative:

```
"Sensor = 3"
```

2. Deletion propagation

- An output tuple is to be deleted
- Delete a set of source tuples to achieve this
- Find a set of source tuples, having minimum side effect in
 - output (view): delete as few other output tuples as possible, or
 - source: delete as few source tuples as possible

[Buneman et al. 2002] [Cong et al. 2011] [Kimelfeld et al. 2011]

Deletion Propagation: View Side Effect

- To delete T(a1, c1)
- Need to delete one of 4 combinations: {r1, s1} x {r2, s2}

[Buneman et al. 2002] [Cong et al. 2011] [Kimelfeld et al. 2011]

Deletion Propagation: View Side Effect

- To delete T(a1, c1)
- Need to delete one of 4 combinations: {r1, s1} x {r2, s2}

[Buneman et al. 2002] [Cong et al. 2011] [Kimelfeld et al. 2011]

Deletion Propagation: Source Side Effect

- To delete T(a1, c1)
- Need to delete one of 4 combinations: {r1, s1} x {r2, s2}

Deletion Propagation vs. Causality

- Deletion propagation with source side effects:
 - Minimum set of source tuples to delete that deletes an output tuple
- Causality:
 - Minimum set of source tuples to delete that together with a tuple t deletes an output tuple
- Easy to show that causality is as hard as deletion propagation with source side effect (exact relationship is an open problem)

3. Missing Answers/Why-Not

- Aims to explain why a set of tuples does not appear in the query answer
- Data-based (explain in terms of database tuples)
 - Insert/update certain input tuples such that the missing tuples appear in the answer

[Herschel-Hernandez, 2009] [Herschel et al., 2010] [Huang et al., 2008]

- Query-based (explain in terms of the query issued)
 - Identify the operator in the query plan that is responsible for excluding the missing tuple from the result
 - [Chapman-Jagadish, 2009]
 - Generate a refined query whose result includes both the original result tuples as well as the missing tuples

[Tran-Chan, 2010]

3. Why-Not vs. Causality/Explanations

- In general, why-not approaches use intervention
 - on the database, by inserting/updating tuples
 - or, on the query, by proposing a new query

Future direction:

A unified framework for explaining missing tuples or high/low aggregate values using why-not techniques

e.g. [Meliou et al., 2010] already handles missing tuples

Other Related Work

- OLAP techniques e.g. [Sathe-Sarawagi, 2001] [Sarawagi, 2000] [Sarawagi-Sathe, 2000]
 - Get insights about data by exploring along different dimensions of data cube
- Connections between causality, diagnosis, repairs, and viewupdates [Bertossi-Salimi, 2014] [Salimi-Bertossi, 2014]
- Explanations for data cleaning [Chalamalla et al., 2014]
- Causal inference and learning for computational advertising e.g. [Bottou et al., 2013]
 - Uses causal inference and intervention in controlled experiments for better ad placement in search engines
- Lamport's causality: [Lamport, 1978]
 - To determine the causal order of events in distributed systems

Part 3.b:

FUTURE DIRECTIONS

Extending causality

- Study broader query classes
 - e.g. for aggregate queries, can we define counterfactuals/responsibility in terms of increasing/ decreasing the value of an output tuple instead of deleting it totally?
- Analyze causality under the presence of constraints
 - E.g., FDs restrict the lineage expressions that a query can produce. How does this affect complexity?

Refining the definition of cause

- Do we need preemption?
 - Preemption can model intermediate results/views that perhaps cannot be modified
 - Some complexity of the Halpern-Pearl definition may be valuable
- Causality/explanations for queries:
 - Looking for causes/explanations in a query, rather than the data

Find complex explanations efficiently

- Complex explanations
 - Beyond simple predicates,e.g. avg(salary) ≥ avg(expenditure)
- Efficiently explore the huge search space of predicates
 - Pre-processing/pruning to return explanations in real time

Ranking and Visualization

- Study ranking criteria
 - for simple, general, and diverse explanations
- Visualization and Interactive platform
 - View how the returned explanations affect the original answers
 - Filter out uninteresting explanations

Conclusions

- We need tools to assist users understand "big data".
 Providing with causality/explanation will be a critical component of these tools
- Causality/explanation is at the intersection of AI, data management, and philosophy
- This tutorial offered a snapshot of current state of the art in causality/explanation in databases; the field is poised to evolve in the near future
- All references are at the end of this tutorial
- The tutorial is available to download from <u>www.cs.umass.edu/~ameli</u> and homes.cs.washington.edu/~sudeepa

Acknowledgements

- Authors of all papers
 - We could not cover many relevant papers due to time limit
- Big thanks to Gabriel Bender, Mahashweta Das, Daniel Fabbri,
 Nodira Khoussainova, and Eugene Wu for sharing their slides!
- Partially supported by NSF Awards IIS-0911036 and CCF-1349784.

- 1. [Bender et al., 2014] G. Bender, L. Kot, J. Gehrke: Explainable security for relational databases. SIGMOD Conference, pages1411-1422, 2014.
- 2. [Bertossi-Salimi, 2014] L. E. Bertossi, B. Salimi: Unifying Causality, Diagnosis, Repairs and View-Updates in Databases. CoRR abs/1405.4228, 2014.
- 3. [Bottou et al., 2013] L. Bottou, J. Peters, J. Quiñonero Candela, D. X. Charles, M. Chickering, E. Portugaly, D. Ray, P. Simard, E. Snelson: Counterfactual reasoning and learning systems: the example of computational advertising. Journal of Machine Learning Research 14(1): 3207-3260, 2013.
- 4. [Buneman et al., 2001] P. Buneman, S. Khanna, and W. C. Tan. A characterization of data provenance. ICDT, pages 316-330, 2001.
- 5. [Buneman et al., 2002] P. Buneman, S. Khanna, and W. C. Tan. On propagation of deletions and annotations through views. PODS, pages 150-158, 2002.
- 6. [Chalamalla et al., 2014] A. Chalamalla, I. F. Ilyas, M. Ouzzani, P. Papotti. Descriptive and prescriptive data cleaning. SIGMOD, pages 445-456, 2014.
- 7. [Chapman-Jagadish, 2009] A. Chapman, H. V. Jagadish. Why not? SIGMOD, pages 523-534, 2009.
- 8. [Cheney et al., 2009] J. Cheney, L. Chiticariu, and W. C. Tan. Provenance in databases: Why, how, and where. Foundations and Trends in Databases, 1(4):379-474, 2009.
- 9. [Chockler-Halpern, 2004] H. Chockler and J. Y. Halpern. Responsibility and blame: A structural-model approach. J. Artif. Intell. Res. (JAIR), 22:93-115, 2004.
- 10. [Cong et al., 2011] G. Cong, W. Fan, F. Geerts, and J. Luo. On the complexity of view update and its applications to annotation propagation. TKDE, 2011.

- 11. [Cui et al., 2000] Y. Cui, J. Widom, and J. L. Wiener. Tracing the lineage of view data in a warehousing environment. ACM Trans. Database Syst., 25(2):179-227, 2000.
- 12. [Das et al., 2012] M. Das, S. Amer-Yahia, G. Das, and C. Yu. Mri: Meaningful interpretations of collaborative ratings. PVLDB, 4(11):1063-1074, 2011.
- 13. [Eiter- Lukasiewicz, 2002] T. Eiter and T. Lukasiewicz. Causes and explanations in the structural-model approach: Tractable cases. UAI, pages 146-153. Morgan Kaufmann, 2002.
- 14. [Fabbri-LeFevre, 2011] D. Fabbri and K. LeFevre. Explanation-based auditing. Proc. VLDB Endow., 5(1): 1-12, Sept. 2011.
- 15. [Green et al., 2007] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings. PODS, pages 31-40, 2007.
- 16. [Hagmeyer, 2007] Y. Hagmayer, S. A. Sloman, D. A. Lagnado, and M. R. Waldmann. Causal reasoning through intervention. Causal learning: Psychology, philosophy, and computation, pages 86-100, 2007.
- 17. [Halpern-Pearl, 2001] J. Y. Halpern and J. Pearl. Causes and explanations: A structural-model approach: Part 1: Causes. UAI, pages 194-202, 2001.
- 18. [Halpern-Pearl, 2005] J. Y. Halpern and J. Pearl. Causes and explanations: A structural-model approach. Part I: Causes. Brit. J. Phil. Sci., 56:843-887, 2005. (Conference version in UAI, 2001).
- 19. [Halpern, 2008] J. Y. Halpern. Defaults and Normality in Causal Structures. In KR, pages 198-208, 2008
- 20. [Herschel-Hernandez, 2009] M. Herschel, M. A. Hernandez, and W. C. Tan. Artemis: A system for analyzing missing answers. PVLDB, 2(2):1550-1553, 2009.

- 21. [Herschel et al., 2010] M. Herschel and M. A. Hernandez. Explaining missing answers to SPJUA queries. PVLDB, 3(1):185-196, 2010.
- 22. [Huang et al., 2008] J. Huang, T. Chen, A. Doan, and J. F. Naughton. On the provenance of non-answers to queries over extracted data. PVLDB, 1(1):736-747, 2008.
- 23. [Hume, 1748] D. Hume. An enquiry concerning human understanding. Hackett, Indianapolis, IN, 1748.
- 24. [Kanagal et al, 2012] B. Kanagal, J. Li, and A. Deshpande. Sensitivity analysis and explanations for robust query evaluation in probabilistic databases. SIGMOD, pages 841-852, 2011.
- 25. [Khoussainova et al., 2012] N. Khoussainova, M. Balazinska, and D. Suciu. Perfxplain: debugging mapreduce job performance. Proc. VLDB Endow., 5(7):598-609, Mar. 2012.
- 26. [Kimelfeld et al. 2011] B. Kimelfeld, J. Vondrak, and R. Williams. Maximizing conjunctive views in deletion propagation. PODS, pages 187-198, 2011.
- 27. [Lamport, 1978] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Commun. ACM, 21(7):558-565, July 1978.
- 28. [Lewis, 1973] D. Lewis. Causation. The Journal of Philosophy, 70(17):556-567, 1973.
- 29. [Maier et al., 2010] M. E. Maier, B. J. Taylor, H. Oktay, and D. Jensen. Learning causal models of relational domains. AAAI, 2010.
- 30. [Mayrhofer, 2008] R. Mayrhofer, N. D. Goodman, M. R. Waldmann, and J. B. Tenenbaum. Structured correlation from the causal background. Cognitive Science Society, pages 303-308, 2008.

- 31. [Meliou et al., 2010] A. Meliou, W. Gatterbauer, K. F. Moore, and D. Suciu. The complexity of causality and responsibility for query answers and non-answers. PVLDB, 4(1):34-45, 2010.
- 32. [Meliou et al., 2010a] A. Meliou, W. Gatterbauer, K. F. Moore, D. Suciu: WHY SO? or WHY NO? Functional Causality for Explaining Query Answers. MUD, pages 3-17, 2010.
- 33. [Meliou et al., 2011] A. Meliou, W. Gatterbauer, S. Nath, and D. Suciu. Tracing data errors with view-conditioned causality. SIGMOD Conference, pages 505-516, 2011.
- 34. [Menzies, 2008] P. Menzies. Counterfactual theories of causation. Stanford Encylopedia of Philosophy, 2008.
- 35. [Pearl, 2000] J. Pearl. Causality: models, reasoning, and inference. Cambridge University Press, 2000.
- 36. [Roy-Suciu, 2014] S. Roy, D. Suciu: A formal approach to finding explanations for database queries. SIGMOD Conference, pages 1579-1590, 2014
- 37. [Salimi-Bertossi, 2014] Babak Salimi, Leopoldo E. Bertossi: Causality in Databases: The Diagnosis and Repair Connections. CoRR abs/1404.6857, 2014
- 38. [Sarawagi, 2000] S. Sarawagi: User-Adaptive Exploration of Multidimensional Data. VLDB: pages 307-316, 2000
- 39. [Sarawagi-Sathe, 2000] S. Sarawagi and G. Sathe. i3: Intelligent, interactive investigation of olap data cubes. SIGMOD, 2000.
- 40. [Sathe-Sarawagi, 2001] G. Sathe, S. Sarawagi: Intelligent Rollups in Multidimensional OLAP Data. VLDB, pages 531-540, 2001

- 41. [Schaffer, 2000] J. Schaffer. Trumping preemption. The Journal of Philosophy, pages 165-181, 2000
- 42. [Silverstein et al., 1998] C. Silverstein, S. Brin, R. Motwani, J. D. Ullman: Scalable Techniques for Mining Causal Structures. VLDB: pages 594-605, 1998
- 43. [Tran-Chan, 2010] Q. T. Tran and C.-Y. Chan. How to conquer why-not questions. SIGMOD, pages 15-26, 2010.
- 43. [Woodward, 2003] J. Woodward. Making Things Happen: A Theory of Causal Explanation. Oxford scholarship online. Oxford University Press, 2003.
- 44. [Wu-Madden, 2013] E. Wu and S. Madden. Scorpion: Explaining away outliers in aggregate queries. PVLDB, 6(8), 2013.

Thank you!

Questions?