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ABSTRACT
We study the optimal communication cost for computing a
full conjunctive query Q over p distributed servers. Two
prior results were known. First, for one-round algorithms
over skew-free data the optimal communication cost per
server is m/p1/τ∗(Q), where m is the size of the largest input
relation, and τ∗ is the fractional vertex covering number of
the query hypergraph. Second, for multi-round algorithms
and unrestricted database instances, it was shown that any
algorithm requires at least m/p1/ρ∗(Q) communication cost
per server, where ρ∗(Q) is the fractional edge covering num-
ber of the query hypergraph; but no matching algorithms
were known for this case (except for two restricted queries:
chains and cycles).

In this paper we describe a multi-round algorithm that
computes any query with load m/p1/ρ∗(Q) per server, in the
case when all input relations are binary. Thus, we prove
this to be the optimal load for all queries over binary input
relations. Our algorithm represents a non-trivial extension
of previous algorithms for chains and cycles, and exploits
some unique properties of graphs, which no longer hold for
hyper-graphs.

Keywords
Conjunctive queries, Multi-round, Worst-case optimal load

1. INTRODUCTION
In recent years, a new family of query evaluation algo-

rithms has emerged with proven optimal cost. Traditional
query engines choose a join order, then compute the joins
one at a time, and, as a consequence, may compute inter-
mediate results that are much larger than the final query
output. This leads to suboptimal evaluation algorithms,
even if the best join order is chosen by the optimizer. In
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contrast, the new class of algorithms achieve optimality by
computing all joins at once, and thus avoiding to compute
potentially large intermediate results. For complex queries
on very large datasets, the new class of algorithms can be
significantly more efficient than traditional query plans.

In the case of sequential algorithms, running on a single
server, the complexity is given by the runtime. The optimal
runtime for a full conjunctive query Q on a database in-
stance where the largest relation has m tuples is given by the
largest possible query output. Atserias, Grohe, and Marx [4]

have shown that the query output has size ≤ mρ∗(Q), where
ρ∗(Q) is the optimal edge covering number of the query hy-
pergraph and m is the size of the largest relation; this bound
is referred to as the AGM bound. Several algorithms have
been described in the literature that run within this bound:
Leapfrog-trie-join [16], NPRR [13], and Generic Join [14].

In this paper we study distributed algorithms, which run
on a cluster of p servers, usually called a shared nothing
architecture. A formal model for a shared nothing architec-
ture was described in [12] and is called the Massively Par-
allel Communication model, hence MPC. In this model the
servers compute a query in several rounds, where each round
consists of a local computation followed by a communication
step where the entire data is reshuffled among the p servers.
The complexity of an algorithm in the MPC model is given
by the communication cost, defined as the largest amount of
data received by any single server during any round of com-
munication, and also called load per server. An ideal load
is Õ(m/p), with m the size of the largest relation, but often
queries require a larger load.1 Unlike the sequential setting,
the optimal load for computing full conjunctive queries in
the MPC model is open. However, two important partial
results have been described recently.

First, Koutris et al. [6] consider the MPC model under two
restrictions: there is only one round of communication, and
the database instances are skew free. A simplified definition
of a skew-free database is one where every data value oc-
curs at most m/p times in any input relation. Under these
restrictions, the authors showed that the optimal load is
O(m/p1/τ∗(Q)), where τ∗(Q) is the optimal fractional ver-
tex covering number of the query hypergraph.

A second result was shown by the same authors in [11].
They dropped both restrictions, and proved the following
lower bound: any algorithm, with r number of rounds, must
incur a communication cost that is at least m/(r · p1/ρ∗(Q)).
They also gave matching algorithms, but only for cycles

1In this paper, Õ hides a factor logr(p), with r the largest
arity of any relation.
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and for chain queries: no matching algorithm is known in
general. The proof of the lower bound relies on the AGM
bound, and can be described informally as follows. Consider
a worst-case database instance, on which the query’s output
is the AGM bound mρ∗(Q). Assume an algorithm that com-
putes the output of this query using a load L. Then, any
server receives at most r ·L tuples from each input relation,
and thus it can output at most (r · L)ρ

∗(Q) tuples, by the
AGM bound. Since the p servers must return all output
tuples, p · (r · L)ρ

∗(Q) ≥ mρ∗(Q), and therefore the load is

≥ m/(r ·p1/ρ∗(Q)). We assume O(1) rounds throughout this

paper, and then the lower bound becomes Ω(m/p1/ρ∗(Q)).
These two lower bounds work under quite different as-

sumptions. The first lower bound of m/p1/τ∗(Q) works for
one round of communication and holds even for databases
where each value occurs at most once in any input relation
(in particular, they are skew-free). Therefore, the query’s
output is no larger than m, the size of the largest input rela-
tion. The second lower bound, m/p1/ρ∗(Q), removes any re-
strictions on the number of rounds, and applies to databases
where the query returns the largest output, in other words
where the AGM bound is tight. The fractional vertex cover
τ∗(Q) seems related to skew-free databases, where the out-
put is small, while the fractional edge cover ρ∗(Q) seems re-
lated to skewed databases where the output is large. Since
no matching algorithm is known for the general case, it is
open which of these two bounds, if any, will turn out to be
optimal.

In this paper we prove that any full conjunctive query
where the input relations are binary can be computed with
load Õ(m/p1/ρ∗(Q)). Since this matches the general lower
bound, our algorithm is optimal, and proves that the optimal
load is given by ρ∗(Q) rather than τ∗(Q), when all input
relations are binary.

Our techniques build upon, and extend in non-trivial ways,
techniques introduced by Koutris et al. [11] for computing
chain queries and cycle queries in multiple rounds with load
m/p1/ρ∗(Q). Their main insight was a simple algorithm for
computing the two-way semi-join query,

H(x, y) :- R(x),S(x, y),T(y),

in two rounds, with load m/p. If we restrict the num-
ber of rounds to one, then any algorithm requires a load
≥ m/p1/2, because τ∗(Q) = 2. But in two rounds we can
simply compute R(x),S(x, y) first, with load m/p by hash-
partitioning on x, then compute the second semi-join by
hash-partitioning on y and using the fact that the inter-
mediate result is no larger than the size of S. Thus, the
two-way semi-join can be computed with load m/p1/ρ∗(Q),
since ρ∗(Q) = 1. The algorithm for chains and cycles in [11]
consists of repeatedly separating the values in the database
into light and heavy hitters, and handling the heavy hit-
ters in multiple rounds, through semi-join reductions. The
specific techniques however apply only to chains and cycles
(and can be generalized to trees). The paper left open the
optimal communication cost for queries beyond chains and
cycles.

Our result represents a non-trivial generalization of the
algorithms for chains and cycles. We use the same building
blocks as in [11], namely splitting the input values into light
and heavy hitters, then computing the query separately on
the two sets, but we require several new ideas to compute
arbitrary queries over binary relations. We use three key

properties of graphs (which, in general, do not hold on ar-
bitrary hypergraphs): ρ∗(Q) + τ∗(Q) equals the number of
nodes; τ∗(Q) ≤ ρ∗(Q); and the graph admits a half-integral
optimal fractional edge packing. Our algorithm starts by
computing an optimal half-integral edge packing f for the
query’s graph. Then the exact strategy depends on the
structure of f . The easy case is when f is tight, mean-
ing that f describes both an edge packing and edge cover.
The general case is when f is non-tight, and here we iden-
tify fragments of the query having a tight edge packing and
compute them as before.

Thus, our results show that, at least in the case of queries
over binary relations, the communication cost for multi-
round algorithms is given by ρ∗(Q) rather than τ∗(Q). We
leave open the optimal communication cost for queries over
relations of arbitrary arity. In particular, it is not known
what this bound might be for queries where τ∗(Q) > ρ∗(Q).
In general, the best algorithm we know to compute the query
over skew-free database instances is the one-round algorithm
with load m/p1/τ∗(Q). (The two-way semi-join query is an
exception where τ∗(Q) > ρ∗(Q) and we happen to know how
to compute it in two rounds with load given by ρ∗(Q).) On
the other hand, the best multi-round lower bound we know
follows from the AGM bound and is m/p1/ρ∗(Q): to close the
gap one needs to either design a new multi-round algorithm
for skew-free databases, or prove a new multi-round bound
that is stronger than that implied by the AGM bound.

Outline.
We introduce the necessary definitions in Section 2. Sec-

tion 3 describes the MPC model. In Section 4 we introduce
the basic building blocks which are used in Section 5 to
describe our main result, a worst-case optimal multi-round
algorithm for parallel-evaluation of conjunctive queries. In
Section 6 we briefly relate to the external memory model.
We conclude in Section 7.

2. DEFINITIONS

Instances and Queries.
For a set S and positive integer n we denote by |S| the

number of elements in S and by [n] the set {1, . . . , n}. Let
dom be an infinite domain of data values. A schema σ is a
finite set of relation symbols R with associated arities ar(R).
For relation symbol R and tuple t = (d1, . . . , dn) over dom,
we call R(t) a fact if n = ar(R). A fact R(t) is said to be
over database schema σ if R ∈ σ. An instance I over σ is
a finite set of facts over σ. For relation name R we denote
by RI the tuples in instance I with relation symbol R, that
is RI = {t | R(t) ∈ I}. A query over input schema σ1 and
output schema σ2 is a generic mapping from σ1-instances to
σ2-instances.

Conjunctive Queries.
We assume an infinite set of variables var disjoint from

dom. An atom over schema σ is of the form R(x), where
R is a relation symbol in σ and x is a tuple (x1, . . . , xn)
of variables from var with n = ar(R). A conjunctive query
(CQ) Q over input schema σ is a query of the form

H(x0) :- S1(x1),S2(x2), . . . ,S`(x`),

where Si(xi) are atoms over σ and H(x0) is an atom with
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H 6∈ σ. Atom H(x0) is called the head of Q, and the set
{Si(xi) | i ∈ [`]} its body. We assume that every variable in
the head of a query also occurs in its body. For conjunctive
query Q and subset C of body atoms, we sometimes write
QC to denote the query obtained by removing from Q all
atoms not in C.

By vars(Q) we denote the variables of query Q and by
atoms(Q) its body atoms. If vars(Q) = x0 we call Q full.
If Si 6= Sj for all i 6= j, with i, j ∈ [`], we say that Q is
without self-joins. In the remainder of this document we
only consider CQs that are full and without self-joins. For
simplicity, we also assume each variable to occur at most
once in every atom. We call a variable isolated if it occurs
only in unary atoms.

The semantics of conjunctive queries is defined in terms
of valuations. A valuation V for query Q is a mapping from
the variables in Q to values in dom. A valuation V for Q
satisfies on instance I if all the facts obtained by applying
V over the body atoms of Q are in I. The output Q(I)
of a conjunctive query Q over instance I is the set of facts
obtained by applying satisfying valuations for Q on I over
its head atom.

For query Q, we define the degree of variable x ∈ vars(Q)
as the number of atoms containing x, and the degree of Q,
denoted d(Q), as the maximum degree of any variable in
Q. For set of variables X ⊆ vars(Q), the residual query
Q[X] is the query obtained by removing variables X from
Q, and decreasing accordingly the arities of the relations
that contain those variables.

Example 1. For an example, consider the chain query,

L2(x1, x2, x3, x4) :- S1(x1, x2),S2(x2, x3),S3(x3, x4).

The residual query L2[{x2, x3}] takes the form:

L2(x1, x4) :- S1(x1),S2(),S3(x4).

Henceforth, we omit mentioning schemas for queries and
instances when they are clear from the context.

Fractional Covers and Packings.
We recall the definition of fractional edge (vertex) packing

and fractional vertex (edge) cover of a query’s hypergraph.
Let f be a mapping from the atoms in Q to positive weights;
f is a fractional edge packing if∑

a:x∈vars(a)

f(a) ≤ 1, for every x ∈ vars(Q), (1)

where a is over atoms(Q). If instead∑
a:x∈vars(a)

f(a) ≥ 1, for every x ∈ vars(Q), (2)

where a is again over atoms(Q), then f is called a frac-
tional edge cover for Q. In both cases we refer to the sum∑
a∈atoms(Q) f(a) as the value of f for Q, and are mostly in-

terested in mappings f with optimal value. Optimal means
maximum for fractional edge packings, and minimum for
fractional edge covers.

Both LP-problems have a natural dual over the variables
of Q: A mapping f ′ from the variables in Q to positive
weights is a fractional vertex cover if∑

x∈vars(a)

f ′(x) ≥ 1, for every a ∈ atoms(Q), (3)

and describes a fractional vertex packing if instead∑
x∈vars(a)

f ′(x) ≤ 1, for every a ∈ atoms(Q). (4)

Similar as before, for mappings f ′ we refer to the result of∑
x∈vars(Q) f

′(x) as their value for Q and we are interested
in finding fractional vertex covers with minimum value, and
fractional vertex packings with maximum value. At opti-
mality, the value of the fractional edge packing coincides
with the value of the fractional vertex cover, and is called
the fractional vertex covering number for Q, denoted τ∗(Q).
Similarly, at optimality the value of fractional edge cover
coincides with the value of fractional vertex packing, and is
called the fractional edge covering number, denoted ρ∗(Q).

In general there is no clear relation between τ∗(Q) and
ρ∗(Q), unless f or f ′ are tight. We call f tight if the inequal-
ities in conditions (1) and (2) are equalities. Similar for f ′

and conditions (3) and (4). A tight fractional edge packing
is also a fractional edge cover, thus implying τ∗(Q) ≥ ρ∗(Q).
Similarly, a tight fractional vertex cover is also a fractional
vertex packing, thus τ∗(Q) ≤ ρ∗(Q).

Degree Information.
Let I be an input instance and S a relation symbol. For

a value c ∈ dom, and column i of relation S, i ∈ [ar(S)],
denote by degS(c, i) the frequency of value c in column i of
relation SI . When S is unary, degS(c, 1) = 1 if S(c) ∈ SI
and degS(c, 1) = 0 if S(c) 6∈ SI .

Given a query Q, we are usually interested in the frequen-
cies of values for variables, rather than relation columns.
Therefore we introduce the following abbreviations: For this,
consider value c ∈ dom, variable x ∈ vars(Q), and let a be
a body atom of Q where x is incident to. By degS(c, x)
we denote the frequency of value c in in the column of SI

corresponding to the position of x in atom a. For example,
for atom S(x, y), degS(c, x) = degS(c, 1) and degS(c, y) =
degS(c, 2). Further, by deg(c, x) we denote the maximal fre-
quency over all relations where x is incident to in Q. The
latter means that deg(c, x) = maxR{degR(c, x)}, where R is
over those relations incident to variable x in Q.

3. THE MULTI-ROUND MPC MODEL
We study query evaluation in the Massively Parallel Com-

munication model (MPC) [12, 5], which takes a number p
of servers and allows to express large-scale data processing
algorithms in a sequence of rounds. Each round consists of
two phases: a global communication phase in which data
is reshuffled; and a local computation phase in which each
server processes its local data fragment. Servers are assumed
to be part of a complete communication network and have
unlimited computation power. For a given algorithm, the
maximum load is expressed in number of tuples and denotes
the maximum amount of tuples that a server receives dur-
ing any of the communication rounds. Initially, the input
instance is assumed to be uniformly partitioned over the
available servers, thus yielding load m/p. The query’s an-
swer is also distributed over the p servers, and consists of
the union of all output fragments on all servers.

Worst-Case Load.
In this paper we consider the same framework as in [11]

and are interested in algorithms for computing conjunctive
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queries with worst-case optimal load. The latter particularly
means that we place no restrictions on the input instance,
which thus may have skew. Skew refers to the maximum
frequency of values occurring in certain columns of instance
relations.

Allowing p rounds enables servers to collect the entire in-
put instance and thus generate the desired output for a given
query with load at most m/p in a trivial way. To prevent
this undesirable behaviour from happening, we consider only
algorithms that run in a constant number of rounds. As our
focus is on large-scale data we consider data complexity and
additionally assume that the size of the data is significantly
larger than the number of servers: m > p2.

Lower Bound.
The following lower-bound was obtained recently:

Lemma 1 ([11]). For any randomized algorithm computing
a CQ Q over p servers in O(1) rounds, there exists an input
instance where all relations have size ≤ m such that the

load is Ω
(
m/p1/ρ∗(Q)

)
w.h.p. in the random choices of the

algorithm.

Henceforth we say that a CQ Q has an X-load algorithm
if an algorithm exists to compute Q in the above described
model using p servers in a constant number of rounds with

load at most Õ
(
m/p1/X

)
w.h.p., where m denotes the size

of the largest relation, and X is a non-negative number,
usually ρ∗(Q).

For specific classes of CQs, like chain queries and cycle
queries, a ρ∗(Q)-load algorithm is given in [11], thus showing
that for these queries the lower bound is tight.

4. BUILDING BLOCKS
In this section we set the stage by introducing the ba-

sic building blocks for our worst-case optimal multi-round
algorithm, which is described in Section 5.

4.1 Hypercube
The hypercube algorithm was introduced by Afrati and

Ullman [1] in the context of Mapreduce, where it is called
shares algorithm, and has since then been intensively stud-
ied [5, 6, 3, 11]. For a conjunctive query Q, the hypercube
algorithm defines a reshuffling strategy based on hashing of
data values allowing to compute Q through local evaluation
on servers in parallel.

First, we assign to every variable xi of Q a number pi,
which is called the share of xi. Then, the p servers are con-
ceptually ordered in a space S = [p1]× [p2]×· · ·× [p|vars(Q)|],
where every coordinate in S points to a unique server. Here
it is assumed that

∏
pi ≤ p. Additionally, to every variable

a randomly chosen hash function hi : dom→ [pi] is assigned
which maps data values to a bucket in the associated share.

During its single communication round, the HC algorithm
sends every fact R(a1, . . . , an) over atom R(xi1 , . . . , xin) to
the set of servers agreeing on the partial coordinate defined
by its values and associated hash functions. More concrete,
it sends the fact to all servers with coordinates in the set

{c ∈ S |
∧
j∈[n]

cij = hij (aj)}.

It has been shown that the HC algorithm can compute

CQs in the one round setting with optimal load when values
are light, as made precise in the following lemma:

Lemma 2 ([6]). Let Q be a CQ, I an instance, m be the
maximal size over all relations in I, and f a fractional ver-
tex cover for Q. Define pi = pf(xi)/(

∑
j f(xj)) for every vari-

able xi. Suppose that for every atom aj = Sj(xj) in Q,
every subset of variables y ⊆ xj , and every tuple t over
y: degSj (t,y) ≤ m/Πxi∈ypi (when this condition holds we

say the database is skew-free). Then the HC algorithm with

shares p = (p1, . . . , pk) has a load Õ(m/p1/
∑
i f(xi)) with

high probability over the choices of the random hash func-
tions.

Here, degSj (t,y) is defined as the frequency of tuple t over

the columns of relation Sj that correspond to variables y.
By choosing f the optimal fractional vertex cover, we ob-

tain a one round, τ∗(Q)-load algorithm, but in this paper we
will also use the HC algorithm with different, non-optimal
fractional vertex cover. When each relation has arity at
most two, the skew-free condition simplifies to the follow-
ing: for every variable xi and value v ∈ dom, deg(v, xi) ≤
m/pf(xi)/

∑
j f(xj).

4.2 Semi-Join Decompositions
It is a common strategy in distributed query evaluation

to reduce relations using semi-joins before sending them
over the network. Interestingly, it has been observed in [11]
that semi-join queries can be computed in the multi-round
MPC setting with significantly less load compared to single-
round algorithms, even when instances have no skew. That
technique extends to any guarded query Q, which is a con-
junctive query that has some atom b ∈ atoms(Q) for which
vars(b) = vars(Q). We call b a guard atom for Q.

Lemma 3 ([11]). Let Q be a guarded query, then Q can
be computed using a constant number of rounds with load
Õ (m/p) over p servers.

The number of rounds depends on the number of non-
guard atoms. If the guard has arity at most two (which we
assume through the paper), only two rounds are needed.

Example 2. We illustrate the underlying algorithm by an
example. For this, consider the generalized semi-join query
H from the introduction, H(x, y) :- R(x),S(x, y),T(y).

The algorithm takes only two rounds: the first round com-
putes S′(x, y) :- R(x),S(x, y), and the second round com-
putes H(x, y) :- S′(x, y),T(y). We explain in detail the first
round only: the second round is similar, since the size of S′

is no larger than that of S. Call a value c in column x of
S(x, y) a light hitter if degS(c, x) ≤ m/p: otherwise we call
it a heavy hitter. The database has at most p heavy hitters
and we may assume throughout the paper that all p servers
know all heavy hitters c: this can be achieved in a prepro-
cessing phase, using another round of communication. The
algorithm treats separately the subsets of the relations R(x)
and S(x, y) where x is a light hitter or a heavy hitter. For the
light hitters, the algorithm uses a standard partitioned hash-
join on the variable x: since all values are light, the maxi-
mum load per server is Õ(m/p) w.h.p. For the heavy hitters,
the algorithm uses a standard broadcast join: broadcast all
heavy-hitter tuples in R(x) to all p servers, and S(x, y) is
not reshuffled, then join the local fragment of S(x, y) with
the entire relation R(x). Since there are ≤ p heavy hitters,
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the size of the broadcast relation R(x) is ≤ p, hence the load
per server is ≤ m/p because p2 ≤ m.

Notice that the optimal load for computing H over in-
stances without skew in the one-round MPC setting requires
load m/p1/2, by Lemma 2, which is significantly higher than
load m/p.

Definition 1. Let Q be a query. A semi-join decomposition
for Q is a minimal subset of atoms V ⊆ atoms(Q) such that
every atom a 6∈ V is contained in some atom b ∈ V, more
precisely vars(a) ⊆ vars(b). Given a semi-join decomposi-
tion V of Q, the reduced query QV is defined as the query
consisting of all atoms in V.

If S is a relation symbol in V we sometimes denote SV its
occurrence in QV . The semi-join reduction consists of |V|
queries of the form

SV(x) :- S(x),R1(x1),R2(x2), . . . ,Rk(xk),

where Ri are all atoms with xi ⊆ x. It is straightforward
to check that any algorithm for computing QV can be used
to compute Q in two steps: (1) compute all semi-join reduc-
tions to obtain reduced relations SV , and (2) compute QV on
the reduced relations SV .

A semi-join decomposition is not necessarily unique (e.g.,
when two atoms have vars(a) = vars(b)), but always exists.
We can easily obtain one by iteratively removing atoms from
Q that are variable-contained in other atoms. The remaining
atoms form a semi-join decomposition V for Q.

Example 3. For an example consider query Q,

H(x, y, z) :- R(x, y),S(y, z),T(y).

Then, the semi-join decomposition V for Q is the set {R(x, y),
S(y, z)}. The semi-join reduction consists of queries:

RV(x, y) :- R(x, y),T(y) and SV(y, z) :- S(y, z),T(y),

and the reduced query QV takes the form:

H(x, y, z) :- RV(x, y),SV(y, z).

We have the following generalization of Lemma 3:

Lemma 4. Let Q be a CQ over relations with arity at most
two and V a semi-join decomposition for Q. All queries in
the semi-join reduction can be computed in two rounds using
p servers with load at most Õ (m/p), where m is the maximal
size of relations.

4.3 Heavy-Hitter Configurations
Finally, we introduce the notion heavy-hitter configura-

tion, which allows to partition instances based on where
heavy hitters are located in the query structure. A simi-
lar technique is used in [11].

For an instance I, query Q, and given threshold value
δ ∈ [0, 1], we call a value c for variable x heavy (w.r.t. δ) if
deg(c, x) > m/pδ, with m the number of tuples in the largest
relation of I; and light otherwise. Notice that our definition
of heavy and light is relation independent, therefore a vari-
able x may have up to k · pδ many heavy hitters, with k the
number of distinct atoms where x is incident to.

A heavy-hitter configuration Ψ for query Q is a pair (H, δ)
with δ a threshold value and H a subset of the variables inQ.
For any atom S(x1, . . . , xk) in Q, we call a fact S(c1, . . . , ck)

(from instance I) compatible with Ψ if for all variables xi
and corresponding values ci: deg(ci, xi) > m/pδ if xi ∈
H, and deg(ci, xi) ≤ m/pδ if xi 6∈ H. By I|Ψ we denote
the subset of instance I containing all facts compatible with
configuration Ψ. We call IΨ the Ψ-compatible instance (w.r.t
I). It is straightforward to check that

⋃
H⊆vars(Q) I|(H,δ) =

I, for every δ ∈ [0, 1].
A case of special interest is when H = ∅. Then we call

a tuple in IΨ a light hitter, and call IΨ the skew-free subin-
stance of I, with respect to chosen threshold value δ. In
particular, if δ = 0 then IΨ = I, and if δ = 1 then IΨ
contains only values with degree ≤ m/p.

Example 4. For an example, let p = 4 and consider the
join query R(x, y), S(y, z) over instance I,

I = {R(a, d),R(b, d),R(c, e),S(d, a),S(e, b),S(c, d)}.

Thus, m = 3. For threshold value δ = 1/2, we have m/pδ =
3/2 and we distinguish the following heavy-hitter configura-
tions:

I|({y},δ) = {R(a, d),R(b, d),S(d, a)},
I|(∅,δ) = {R(c, e),S(e, b),S(c, d)}.

For all other sets H ⊆ vars(Q): I|(H,δ) = ∅.

Sometimes we want to express a subinstance in which
certain values are fixed. For this, let Q be a query, I an
instance, and X ⊆ vars(Q). Let t = (c1, . . . , cn) be a
sequence of values from dom, denoting exactly one value
for each variable in X = {x1, . . . , xn}. Then, by It,X we
denote the subinstance of I consisting of all facts from I
that are compatible with choice t for variables X in Q.
More specifically, I|t,X consists of all relations RI|t,X de-
fined as follows: if R(y1, . . . , yk) is an atom in the query, then

RI|t,X = {R(d1, . . . , dk) ∈ I | ∀yi, xj : yi = xj ⇒ di = cj}.
For example, recall instance I and query Q from Exam-
ple 4, in which we want to express the subinstance of I
compatible with value c on the position of variable x. Then
Ic,x = {R(c, e),S(d, a),S(e, b),S(c, d)}. In other words, Ic,x
restricts the values of R(x, y), but leaves the values of S(y, z)
unrestricted since this atom does not contain x.

A CQ Q can be computed over an instance I by fixing
a threshold value and evaluating Q over each Ψ-compatible
subinstance of I separately:

Lemma 5. For CQ Q, threshold value δ, and X ⊆ vars(Q):

1. Q(I) =
⋃
H⊆vars(Q)Q(I|H,δ); and

2. Q(I) =
⋃

t∈dom|X| Q(It,X).

By the assumption that degree information is known for
every value in the considered input instance, servers can rec-
ognize Ψ-compatible facts autonomously for specified config-
urations.

5. A WORST-CASE OPTIMAL LOAD
ALGORITHM

In this section we present our main result:

Theorem 3. Every CQ Q over relations with arity at most
two can be computed with a ρ∗(Q)-load algorithm using at
most seven rounds.
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We assume that all heavy hitters are known by all servers.
If that is not the case, then one additional round of computa-
tion is required to compute and broadcast all heavy hitters.
In a nutshell, our strategy is to first identify structural prop-
erties of the target query and then attack each heavy-hitter
configuration in parallel using customized algorithms. More
precise, we focus on a distraction-free subset of conjunctive
queries, called simple queries, defined in Section 5.1. Here
we also show that algorithms for simple queries can be gen-
eralized to the more general class of queries considered in
Theorem 3. We then gradually provide algorithms for sim-
ple queries with desired load: for queries with tight edge
packing first, in Section 5.3, then for queries without such
packing in Section 5.4.

5.1 Simple and Connected Queries
We introduce the class of connected CQs first, then pro-

ceed to simple queries.

Connected Queries
A CQ is called connected when its query graph is connected,
meaning that for every pair of variables x, y ∈ vars(Q) there
is a sequence of atoms a1, . . . , an such that x ∈ vars(a1), y ∈
vars(an), and for every i ∈ [1, n−1]: vars(ai)∩vars(ai+1) 6=
∅. A subset C of atoms in CQ Q is called a connected-
component of Q if QC is connected and C is maximal with
this property.

By definition, the edge covering number is additive, mean-
ing that the sum of fractional edge covering numbers over
the connected components of a query equals its fractional
edge covering number. We use this observation in the fol-
lowing lemma:

Lemma 6. Let Q be a CQ and A and B be disjoint subsets
of atoms from Q, with atoms(Q) = A ∪ B and vars(A) ∩
vars(B) = ∅. Then,

1. ρ∗(QA) + ρ∗(QB) = ρ∗(Q); and

2. Q has a ρ∗(Q)-load algorithm if QA has a ρ∗(QA)-load
algorithm and QB has a ρ∗(QB)-load algorithm.

Simple Queries
We now introduce the class of simple CQs. A CQ Q is
called simple if (i) Q has only binary atoms and (ii) there
are no distinct atoms a, b ∈ atoms(Q) for which vars(a) ⊆
vars(b). Notice that simple queries denote exactly those CQs
representing a simple graph without self-loops (i.e. edges
R(x, x)). The following lemma shows that we can transform
every query into a simple query by doing a semi-join de-
composition, without affecting the fractional edge covering
number.

Lemma 7. Let Q be a connected CQ where each relation
has arity at most 2, and let V be a semi-join decomposition
for Q (see Def. 1). Then (1) the reduced query QV is simple,
and (2) ρ∗(Q) = ρ∗(QV).

Proof. (1) Since the query is connected, every atom that has
only one variable has that variable occurring in at least one
atom with two variables and, thus, will be eliminated by the
semi-join decomposition. For (2), we show that (i) every
fractional edge cover for QV defines also a fractional edge
cover for Q with same value, and that (ii) every fractional

edge cover for Q can be transformed into a fractional edge
cover for QV with same value. The equality then follows.

For (i), observe that, by construction, every atom bV in
QV corresponds to an atom b in Q which is a guard in Qb.
Therefore, given fractional edge cover f for QV , fractional
edge cover f ′, where f ′(b) = f(bV) if Qb exists and f ′(b) = 0
otherwise, is as desired.

For (ii), let f be a fractional edge cover for Q. Notice that
for every atom a ∈ atoms(Q) there is an atom b ∈ V. Let
π be the function mapping atoms a onto the corresponding
atoms b, particularly their annotated versions, as described.2

We define π so that π(∅) denotes the set of all atoms not
in the range of π. Then, for every atom b ∈ atoms(QV), let
f ′(b) =

∑
a∈π−1(b) f(a). It now follows by construction that

f ′ satisfies the LP-constraints for QV , and that f ′ has the
same value for QV as f for Q.

Example 5. For an example we recall query Q and semi-
join decomposition V from Example 3. Here, the optimal
edge cover f for QV is unique and assigns weight 1 to both
its atoms. It is easy to observe that f describes also an
optimal edge cover for Q.

By the above lemma, a similar result as for unconnected
queries can be obtained for queries with a semi-join decom-
position:

Lemma 8. Let Q be a connected CQ where all relations
have arity at most 2, and let V be a semi-join decomposition
for Q. If QV has a ρ∗(QV)-load algorithm in r rounds, then
Q has a ρ∗(Q)-load algorithm in r + 2 rounds.

Proof. Let p be the number of available servers and m the
size of the largest considered relation.

First, compute the semi-join reductions for V, in two rounds,
following the strategy in Lemma 4, with load at most Õ (m/p).
Next, compute QV over the reduced relations using the al-
gorithm assumed by the lemma. Notice that the size of
the semi-join reduced relations is at most m, and ρ∗(Q′) =
ρ∗(Q), thus the load is as desired.

5.2 Light Hitters
At a very high level, our strategy for computing Q(I) is

to consider all configurations of heavy hitters, and compute
the query separately for each such configuration. We start
by discussing the case when all variables are light: here, we
compute the query using a particular choice of fractional
vertex cover in Lemma 2. To explain it, we review a couple
of nice properties from graph theory.

Of particular interest in this context is the result that, for
simple graphs, every optimal fractional edge packing has a
half-integral equivalent. The latter means a fractional edge
packing with optimal value, and over range {0, 1/2, 1}. As
shown in [15], one can obtain such packing by searching
for an optimal fractional edge packing that also maximizes
the number of 0-weight edges. Interestingly, these packings
have a very particular structure, in which 1/2-weight edges
express variable-disjoint odd-length cycles. Henceforth we
denote the set of atoms inQ with weight 1/2 under fractional
edge packing f by Cf (Q). Translated to conjunctive queries,
we now have the following property:

2Notice that π exists but is not necessarily unique, as multi-
ple atoms b may exist. Then one can arbitrarily choose one
of the available options.
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Lemma 9 ([15]). Let Q be a simple CQ. Then Q has a
half-integral fractional edge packing with value τ∗(Q), and
set Cf (Q) contains only disjoint odd-length cycles.

In the case of simple graphs, there exists a simple rela-
tionship between the fractional vertex covering number and
fractional edge covering number, which does not hold in gen-
eral on hypergraphs:

Lemma 10 ([15]). For any simple CQ Q,

1. τ∗(Q) ≤ |vars(Q)|/2 ≤ ρ∗(Q); and

2. τ∗(Q) + ρ∗(Q) = |vars(Q)|.

The proof of Lemma 10.1 follows by considering the as-
signment f(x) = 1/2 to every variable x. Since f is both
a fractional vertex packing and a fractional vertex cover (Q
is simple, hence every edge R(x, y) connects two distinct
nodes x, y and thus is covered, f(x) + f(y) = 1), with value
is
∑
x f(x) = |vars(Q)|/2, it implies τ∗(Q) ≤ |vars(Q)|/2 ≤

ρ∗(Q). The proof of Lemma 10.2 follows by noting that f is a
vertex packing iff f ′ is a vertex cover, where f ′(x) = 1−f(x),
and furthermore

∑
x f(x) +

∑
x f
′(x) = |vars(Q)|.

Our algorithm computes the query on the light hitters by
running the HC algorithm using the vertex cover f(x) = 1/2
for every variable x, implying:

Lemma 11. Let Q be a simple CQ. Consider the heavy-
hitter configuration Ψ = (∅, 1/|vars(Q)|). Then Q can be
computed by a 2/|vars(Q)|-load algorithm in one round on
the instance IΨ. We call the tuples in IΨ light hitters.

The proof follows by applying the HC algorithm in Lemma 2,
and noting that 1/(

∑
j f(xj)) = 2/|vars(Q)|, and that the

share of each variable xi is pf(xi)/
∑
j f(xj) = p1/|vars(Q)|. In

particular, the lemma gives a ρ∗(Q)-load algorithm for the
subinstance IΨ.

Thus, our strategy for computing Q(I) is to consider all
possible heavy-hitter configurations Ψ = (H, δ), for some δ
(to be determined) and for all choices of heavy hitter vari-
ables H ⊆ vars(Q) and compute the query separately on
IΨ.

5.3 Tight Edge Packings
We show how to compute a conjunctive query under the

assumption that it has a tight half-integral edge packing
f ; in the next section we remove this restriction. As ob-
served before (Sec. 2), existence of a tight f implies ρ∗(Q) ≤
τ∗(Q), thus for simple CQs Q we have τ∗(Q) = ρ∗(Q) =
|vars(Q)|/2, by Lemma 10. Throughout this section we de-
note L = vars(Q) \H = vars(Q[H]). To start, we show how
to handle a simple case, when Q[H] has no binary atoms.

Lemma 12. Let Q be a simple CQ. Assume that Q admits
a tight edge packing f , and let Ψ = (H, 1/|vars(Q)|) be a
heavy-hitter configuration, where Q[H] has no binary atoms.
Then Q can be computed over the Ψ-compatible instance by
a ρ∗(Q)-load algorithm in two rounds.

Proof. Let I be the Ψ-compatible instance. (Recall that I
is the subset of some instance J with maximal-relation size
m.) If |vars(Q)| ≤ 2 the result follows trivially, as then Q
consists of either a single atom (nothing needs to be done),
or two disjoint unary atoms (Lemma 6 applies). Henceforth

we assume |vars(Q)| > 2, which implies ρ∗(Q) ≥ 3/2 (with
ρ∗(Q) = 3/2 when Q is the triangle query).

Let I be an arbitrary Ψ-compatible instance. For the com-
putation of Q(I) we consider a different threshold value,
namely δ′ = 2/|vars(Q)| and split instance I in IΨ′ for each
heavy-hitter configuration Ψ′ = (H ′, δ′). Notice that heavy-
hitters under δ remain heavy under δ′, particularly because
m/p1/|vars(Q)| > m/p2/|vars(Q)|. We now compute Q for ev-
ery subinstance IΨ′ over the p servers in parallel. For this
let L′ = vars(Q) \H ′.

We first show the case L′ = ∅. Then instance IΨ′ is very
small. More precise |I ′Ψ| ≤ O(p4/vars(Q)). Thus, we can send
all facts in IΨ′ to a single server and compute Q(IΨ′) locally.
The load is as desired by assumption m > p2, |vars(Q)| ≥ 3,
and ρ∗(Q) = vars(Q)/2.

If |L′| ≥ 1. We observe |L′| ≤ |vars(Q)|/2. Indeed, every
variable in L′ is incident to a set of relations with 1 as the
sum of weights (due to tightness of the packing), and no vari-
ables in L′ share a relation, thus |L′| ≤ ρ∗(Q) = |vars(Q)|/2.
Further, by the assumption that Q[H] has no binary atoms,
it follows that Q[H ′] has no binary atoms either.

Now, to compute Q, let Q′ be the query obtained by re-
moving from Q all atoms not incident to a variable in L′.
Then Q′ consists of unconnected components all represent-
ing a star with variable from L′ in its center.

For Q(IΨ′) we hash-partition the tuples over relations in
Q′ as for computing Q′(IΨ′) using the HC-algorithm over

p2|L|/|vars(Q)| servers, by allocating weight 1 for all variables
from L′ and weight 0 to all others. The load is at most
m/p2/|vars(Q)| by Lemma 2.

Tuples over relations not in Q′ are broadcast to all servers.
As all these tuples are heavy, this does not affect the load
(the analysis is analogous to case L′ = ∅). Then the final
output is obtained by computing Q′ on every server.

By Lemma 12, in the remainder of the section we assume
Q[H] has at least one binary atom, thus |L| ≥ 2. As a
warm-up towards the general case, whereQ[H] may generate
unary and binary atoms, we first show the case where heavy-
hitter configurations do not generate isolated variables: in
that case semi-join decomposition QV of Q[H] is also simple
(because the only unary relation symbols that can remain
in the semi-join decomposition contain isolated variables).

Lemma 13. Let Q be a simple CQ. Assume that Q admits
a tight edge packing f , and let Ψ = (H, 1/|vars(Q)|) be a
heavy-hitter configuration, such that Q[H] is without isolated
variables. Then Q can be computed over the Ψ-compatible
instance by a ρ∗(Q)-load algorithm using three rounds.

Proof. Let p be the number of available servers and I the Ψ-
compatible instance. We use item 2 of Lemma 5 and write:

Q(I) =
⋃
h

Q(Ih,H) (5)

where h ranges over all heavy-hitter tuples. The algorithm
proceeds by allocating for every heavy-hitter tuple a group of
p′ = c · p|L|/|vars(Q)| exclusive servers, where c = 1/d(Q)|H|

is a constant (recall that d(Q) denotes the degree of the
query graph). Then for every heavy-hitter tuple h, Q(Ih,H)
is computed over its assigned set of servers.

Before giving the details, notice that the number of heavy-
hitter tuples is at most p|H|/|vars(Q)|/c and |L| + |H| =
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|vars(Q)|, thus we use a total number of servers ≤ p′ ·
p|H|/|vars(Q)|/c = p.

Next, we show how to compute Q(Ih,H) over its p′ servers.
Consider an atom R(x, y) that has a variable x ∈ H. If
also y ∈ H, then, for the purpose of computing Q(Ih,H),
R(x, y) is a single Boolean value (true or false), which we
broadcast to all servers. Assume y ∈ L. Then R becomes
a unary relation R(y). To compute Q(Ih,H) it thus suffices
to compute Q[H], where the unary relations depend on the
particular heavy-hitter tuple h. To obtain the final output,
output facts for Q[H] are augmented with values h and are
in the output for Q only if the required booleans are present.

To show the computation of Q[H], let V be a semi-join
decomposition for Q[H]. The computation proceeds as fol-
lows:

Step 1: Compute the semi-join reductions for V in two
rounds, using load m/p′ (see Lemma 4). We note that

m/p′ = m/(c · p|L|/|vars(Q)|) ≤ m/(c · p2/|vars(Q)|) = m/(c ·
p1/ρ∗(Q)), because |L| ≥ 2.

Step 2: Compute the reduced queryQV ofQ[H], on the semi-
join reduction from the previous step, in one round, using
the 2/|vars(QV)| = 2/|L|-load algorithm in Lemma 11; recall
that QV is simple, hence Lemma 11 applies.

We still need to prove (1) all tuples in Ih,H are “light”
(as per Lemma 11) for the residual query Q[H], hence the
application of HC in Lemma 11 is correct, and (2) the load
is within our budget. For (1) note that, by assumption, I
is a (H, 1/|vars(Q)|)-compatible instance, hence every value

of a variable 6∈ H has degree ≤ m/p1/|vars(Q)|. Since L =

vars(QV), it follows that its degree is also ≤ m/(p′)1/|L|,
proving that it is light according to Lemma 11. For (2), we
note that the load of the HC algorithm given by Lemma 11 is
m/(p′)2/|vars(QV)| = m/(p′)2/|L| = m/p1/ρ∗(Q), proving that
this is a ρ∗(Q)-load algorithm.

Example 6. For an example illustrating the above algo-
rithm, consider query Q,

H(x) :- R1(x1, x2),R2(x2, x3),R3(x3, x4),R4(x4, x5),

R5(x5, x6),R6(x6, x1),R7(x2, x5),R8(x3, x6)

and heavy-hitter configuration Ψ = (H, 1/6) with H = {x1, x4}.
For Q, τ∗(Q) = ρ∗(Q) = 3, and τ∗(Q[H]) = 4, which
shows at least two rounds are necessary to compute Q with
desired load over a Ψ-compatible instance. Residual query
Q[H] takes the form:

H(x′) :- R1(x2),R2(x2, x3),R3(x3),R4(x5),

R5(x5, x6),R6(x6),R7(x2, x5),R8(x3, x6).

Semi-join decomposition V for Q[H] has the following semi-
join reductions:

R
V

2(x2, x3) :- R2(x2, x3),R1(x2),R3(x3).

R
V

5(x5, x6) :- R5(x5, x6),R4(x5),R6(x6).

R
V

7(x2, x5) :- R7(x2, x5).

R
V

8(x3, x6) :- R8(x3, x6).

As there are only 4 ·p1/3 heavy-hitter tuples for x1 and x4,
we can compute Q for every heavy-hitter tuple h1, h4 sepa-
rately over the remaining p2/3 servers.3 The semi-joins can
3Notice that both x1 and x4 are incident to two atoms, thus
each have at most 2p1/6 many heavy-hitters.

be computed with load m/p2/3. Then, it remains to compute
reduced query QV,

HV(x2, x3, x5, x6) :- R
V

2(x2, x3),R
V

5(x5, x6),

R
V

7(x2, x5),R
V

8(x3, x6),

using the HC algorithm, which can be done with load m/p1/3

in one round over the assigned fraction of p2/3 servers. Fi-
nally, we need to compute the cross product of the locally
found tuples for QV with the output for query Q[vars(Q)\H]
over the broadcast facts.

In the next lemma we drop the restriction that Q[H] can
have no isolated variables. When the semi-join decomposi-
tion QV is the cartesian product of a simple query, and sev-
eral isolated unary predicates, the above strategies no longer
work. While we could use Lemma 6 to compute separately
the connected components of QV , the problem is that ρ∗(QV)
(which is ≤ ρ∗(Q[H])) is too high. In Lemma 13 we used
implicitly the fact that ρ∗(Q) = |H|/2 + ρ∗(QV): this holds
because the tight fractional edge packing for Q is also a tight
fractional edge packing for Q[H] and the fact that QV is sim-
ple, which implies ρ∗(Q[H]) = ρ∗(QV) = |L|/2. But when
QV is not simple, then ρ∗(QV) can be as high as ρ∗(Q) (for ex-
ampleQ = H(x) :- R(x, y), S(y, z), T (z, u), U(u,w),W (w, z)
has the tight packing f(R) = 1, f(T ) = f(U) = f(W ) =
1/2, f(S) = 0 and ρ∗(Q) = 5/2, but when H = {y}
thenQ[H] = R(x), S(z), T (z, u), U(u,w),W (w, z) andQV =
R(x), T (z, u), U(u,w),W (w, z) thus ρ∗(Q[H]) = 5/2). No-
tice that also the technique from Lemma 12 does not help
for the example query. To overcome this issue a more rigor-
ous share-allocation technique is needed. Here, we need to
assume that the tight fractional edge packing is half integral,
and distinguish two cases: when vars(Cf (Q)) ∩H is = ∅ or
6= ∅. (recall that Cf (Q) is the set of atoms with weight 1/2).

Lemma 14. Let Q be a simple CQ. Assume that Q admits a
tight, half-integral edge packing f , and Ψ = (H, 1/|vars(Q)|)
is a heavy hitter configuration, where vars(Cf (Q)) ∩H = ∅
and Q[H] has at least one binary atom. (Q[H] may have
isolated variables.) Then Q can be computed over the Ψ-
compatible instance by a ρ∗(Q)-load algorithm in three rounds.

Proof. Let I be the Ψ-compatible instance. The definition of
L and Q[H] are as before. Now let L1 = {x1, . . . , xk} be the
set of isolated variables in Q[H]. Recall that vars(Q[H]) =
L, thus L1 ⊆ L. Let L2 = L\L1. We have |L2| ≥ 2, because
Q[H] has at least one binary atom.

By the assumption that all variables in Cf (Q) are light
it follows that vars(Cf (Q)) ⊆ L2, and particularly that ev-
ery variable xi ∈ L1 is incident to an atom Ri(xi, yi) of Q
with weight 1 under f . Denote H1 = {yi | f(Ri(xi, yi)) =
1 and xi ∈ L1}: thus, each xi ∈ L1 chooses a unique yi ∈ H1

based on the matching f . H1 ⊆ H (since xi became isolated)
and |H1| = |L1| (because of the matching). Further, define
H2 = H \H1. Denote:

p′ = c · p|L2|/|vars(Q)|, and

pi,h = p2/|vars(Q)| · degRi(h, yi)/m, for i ∈ [k],

with yi ∈ H1, h a heavy-hitter value for yi, and c = 1/d(Q)|H2|

a constant. Notice that
∑
h pi,h ≤ p2/|vars(Q)|. Further, de-

note ph = p′ ·
∏
i∈[k] pi,hi , with h = (h1, . . . , hk).

As in Lemma 13, we compute Q for every heavy-hitter
tuple for variables H separately, using item 2 of Lemma 5.
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Only now we make a distinction between the heavy-hitter
tuples h for H1 and g for H2. To compute Q(I|h,g), we
need to compute the residual query Q[H], whose semi-join
decomposition we denote QV : we will compute this query
using ph exclusive servers (note that this number depends
on h but not on g). We do not exceed budget p, because∑

h

ph = p′
∏
i∈[k]

(
∑
hi

pi,hi) ≤ p
′ · p2|H1|/|vars(Q)|

= c · p(|H1|+|L1|+|L2|)/|vars(Q)|,

there are at most p|H2|/|vars(Q)|/c heavy-hitter tuples g, and
|L1|+ |H1|+ |H2|+ |L2| = |vars(Q)|.

We can compute the semi-join reductions for V over the
assigned ph servers using Lemma 4. The latter is with de-
sired load because p′ ≥ p2/|vars(Q)| (due to |L2| ≥ 2). It
remains to show how to compute QV using ph servers. The
query QV consists of the cross product:

QV = Q′V ×R
V

1(x1)× · · · ×R
V

k(xk) (6)

where Q′V is a semi-join decomposition for Q[H ∪ L1], and
R
V

i(xi), i ∈ [k] are the isolated unary relations obtained from
the binary relations Ri(xi, yi) with xi ∈ L1 and yi ∈ H1; no-
tice that the size of R

V

i(xi) is degRi(hi, yi). To compute this
cross product, we organize the ph servers into a (k + 1)-
dimensional hypercube, of sizes p′ ·

∏
i∈[k] pi,hi : we compute

the query Q′V using the p′ servers of the first dimension,
and hash-partition R

V

i(xi) to the pi,hi servers in its dimen-

sion: the load is as desired because Õ
(
|RV

i
Ih,g |/pi,hi

)
=

Õ
(
degRi(hi, yi)/pi,hi

)
≤ Õ

(
m/p2/|vars(Q)|

)
.

Notice that the query Q′V is computed repeatedly, namely∏
i∈[k] pi,hi times, while each relation R

V

i(xi) is replicated

p′ ·
∏
j∈[k],j 6=i pj,hj times.

It remains to show how to compute Q′V using p′ servers.
QV′ is a simple query (since it is obtained by removing iso-
lated unary relations from QV) and all tuples in Ih,H over
the modified schema of QV′ are “light”, thus we can use
the algorithm of Lemma 11. Particularly, the load of the
HC algorithm given by Lemma 11 is m/(p′)2/|vars(QV′ )| =

m/(p′)2/|L2| = m/p2/|vars(Q)| = m/p1/ρ∗(Q), proving that
this is a ρ∗(Q)-load algorithm.

To summarize, the algorithm is the following. For each
heavy-hitter tuple h for H1 and g for H2, use ph exclusive
servers to compute Q(I|h,g) as follows:

Step 1: Compute the semi-join reductions for V in two
rounds over instance I|h,g as in Lemma 4.

Step 2: Compute the cross product in Eq.(6) by organizing
the ph servers into a (k + 1)-dimensional hypercube. Along
the first dimension, compute the query Q′V (the result of
the semi-join reduction in the first step) using p′ servers
using the algorithm of Lemma 11, by assigning a weight
f(x) = 1/2 to each variable. Along all other dimensions,
hash partition R

V

i(xi) (the result of the semi-join reduction
in the first step).

Lemma 14 provides an alternative to the strategy in [11]
to compute even-length cycles.

Example 7. For an example consider the even-length cycle
C8 = {Ri(xi, x(i mod 8)+1) | i ∈ [8]} and heavy-hitter config-
uration Ψ = (H, 1/8), and H = {x1, x2, x3, x6, x7}. There

is one isolated variable, L1 = {x8} and, assuming f(Ri) =
(i mod 2), we pair x8 with H1 = {x7}. Partition the p avail-

able servers in groups of size ph = p4/8 ·degR7
(h, x7)/m, one

group for each heavy-hitter tuple h over H, where h denotes
the value for variable x7 ∈ H in h. Let semi-join decompo-
sition for Q[H] be:

R
V

7(x8) :- R8(x8),R7(x8).

R
V

4(x4, x5) :- R4(x4, x5),R3(x4),R5(x5).

Query QV takes the form:

HV(x4, x5, x8) :- R
V

4(x4, x5),R
V

7(x8).

Compute for each heavy-hitter tuple h the respective semi-
joins in V for I|h over its fragment of ph servers. Here-
after, hash-partition the tuples in RV

4 over a fragment of

p2/8 servers and hash-partition the tuples in R
′V
7 over the re-

maining fragment of p2/8 · degR7
(h, x7)/m servers. Further

broadcast all heavy-hitter tuples in I|h. Then by comput-
ing QV locally on every server and taking the cross product
with the locally computed output for Q[vars(C8)\H] over the
broadcast heavy-hitter tuples, we obtain the output for Q.

Finally, we generalize Lemma 14 to the case where some
variables in Cf (Q) may be heavy.

Lemma 15. Let Q be a simple CQ. Assume Q admits a
tight, half-integral edge packing f , and Ψ = (H, 1/|vars(Q)|)
is a heavy hitter-configuration, where Q[H] has at least one
binary atom. (vars(Cf (Q)) ∩H may be 6= ∅ and Q[H] may
have isolated variables.) Then Q can be computed over the
Ψ-compatible instance by a ρ∗(Q)-load algorithm using five
rounds.

Proof. Let C1, . . . , C` be the odd-length cycles in Cf (Q) with
heavy variables. For every cycle Ci we (arbitrarily) choose
one of its heavy variables and call it xi. Let H ′ be the
set of selected variables and let Q[H ′] be the residual query
obtained by removing these variables from Q. Let L′ =
vars(Q) \H ′ = vars(Q[H ′]).

To computeQ we again make use of item 2 of Lemma 5, by
computingQ for every heavy-hitter tuple h forH ′ separately

over an exclusive group of p′ = c · p|L
′|/|vars(Q)| servers, with

p the total number of available servers and c = 1/d(Q)|H
′|

a constant. There are at most p|H
′|/|vars(Q)|/c many heavy

tuples over H ′, and p′ ·p|H
′|/|vars(Q)|/c = p, thus the number

of used servers is within budget.
Interestingly, for the semi-join decomposition V of Q[H ′],

query QV satisfies the conditions of Lemma 14. For this to
see let f ′ be the fractional edge packing obtained from f by
updating all interrupted 1/2-weighted cycles in QV to paths
with alternating weights 1 and 0. More formally, for each
cycle Ci = a1, . . . , ak where a1 and ak denote the atoms
involving variable xi, define f ′(aVi) = 0 if i is odd, and
f ′(avi ) = 1 if i is even. For all other atoms aV ∈ QV , let
f ′(aV) = f(a). Notice that all atoms aVi are in QV except for
aV1 and aVk. From {a | aV ∈ atoms(QV)} ⊆ atoms(Q) it fol-
lows that f ′ describes a fractional edge packing for QV . By
construction, f ′ is tight for QV and thus τ∗(QV) = ρ∗(QV) =
|vars(QV)|/2 = ρ∗(Q)− |H ′|/2.

The computation of Q[H ′] now proceeds by first com-
puting the semi-join reductions for V over relations where
Q[H] is based on heavy-hitter tuple h and then comput-
ing QV over the semi-join reduced relations for configuration
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(H ′, 1/|L′|) using the algorithm from Lemma 14 and 6 over
the assigned p′ servers. Notice that the semi-join reductions
can be computed with desired load, as p′ ≥ p1/ρ∗(Q) (be-
cause there is at least one cycle Ci, with |vars(Ci)| ≥ 3, and
only one of its variables is removed). Further notice that

m/(p′)2/|L′| = m/p2/|vars(Q)|.

Example 8. For an example consider the query Q,

H(x) :- R1(x1, x2),R2(x2, x3),R3(x3, x4),

R4(x4, x5),R5(x5, x3),

and heavy-hitter configuration Ψ = (H, δ) with H = {x4}
and δ = 1/5. To compute Q assign to every heavy-hitter

value h a unique fraction of p′ = p4/5 servers. As there at
most p1/5 many values h, 4 we do not exceed budget p. To
compute Q first consider the residual query Q[H] and semi-
join reduce the relations accordingly, with Q[H] as below:

H(x′) :- R1(x1, x2),R2(x2, x3),R3(x3),

R4(x5),R5(x5, x3),

which is simplified to query QV by use of a semi-join decom-
position. Here QV takes the form:

HV(x′) :- R
V

1(x1, x2),R
V

2(x2, x3),R
V

5(x5, x3).

Now we have ρ∗(Q) = 5/2 and ρ∗(QV) = 2. For QV we know

how to compute it with load m/p1/2, thus over a fraction p′

of the servers we obtain load m/p2/5 as desired.

Combining the above Lemmas we obtain:

Theorem 1. Let Q be a simple CQ that admits a tight, half-
integral fractional edge packing. Then Q can be computed by
a ρ∗(Q)-load algorithm using five rounds.

Proof. To compute query Q over arbitrary instance I, one
can simply compute Q for each heavy-hitter configuration
Ψ = (H, 1/|vars(Q)|) separately, with H ⊆ vars(Q), over
instance IΨ following the algorithms in Lemma 12 and 15.
Correctness follows from Lemma 5. Particularly notice that
the load increases only by constant 2|vars(Q)|, which corre-
sponds to the number of possible heavy-hitter configura-
tions.

5.4 Non-Tight Edge Packings
For CQ Q, let Nf (Q) denote the set of variables in Q in-

cident to only 0-weighted predicates under fractional edge
packing f . Given that f is optimal and maximizes the num-
ber of 0-weighted predicates, Nf (Q) denotes exactly those
variables witnessing non-tightness of f .

Example 9. For an example consider query Q,

H(x) :- R1(x1, x2),R2(x2, x3),R3(x3, x4),

R4(x4, x5),R5(x5, x3),R6(x6, x2),

which is essentially the same query as in Example 8 ex-
cept for additional atom R6. Query Q has no tight frac-
tional edge packing due to predicates R1 and R6. Here,
τ∗(Q) = 5/2, and ρ∗(Q) = 7/2. We divide the p servers

in shares p1 = p2/7 and p2 = p5/7. Now hash-partition the
tuples for R6 over share p1 and proceed the computation of

4Technically there can be 2 · p1/5 heavy values, which we
ignore, as this influences the load only by a constant factor.

Q without predicate R6 over share p2. Notice that the latter
query now has a tight edge packing, we can thus proceed as
in Example 8.

We first show the case where none of the variables in
Nf (Q) are heavy. Notice that we now consider a different
threshold value.

Lemma 16. Let Q be a simple CQ Q with non-tight half-
integral edge packing f , and heavy-hitter configuration Ψ =
(H, 1/ρ∗(Q)), satisfying Nf (Q) ∩ H = ∅. Then, Q can be
computed over the Ψ-compatible instance by a ρ∗(Q)-load
algorithm using five rounds.

Proof. As before, let L = vars(Q) \ H. By assumption,
Nf (Q) ⊆ L and Nf (Q) 6= ∅, as otherwise f is tight.

Notice that all atoms in Q have at least some variable not
in Nf (Q), as otherwise f cannot be optimal. Indeed, then
one can obtain a fractional edge packing with higher value
by simply assigning weight 1 to the selected predicate.

We partition the atoms of Q in two sets A and B. Set A
contains all the atoms from Q where variables in Nf (Q) are
incident to, and B = atoms(Q) \A.

Now compute Q by computing the cross product Q′ =
QA × QB , and then post process the answer by selecting
only those tuples where values for variables of QA equal the
values for corresponding variables in QB . Observe that this
indeed provides us the desired output result.

To compute QA and QB , consider share definitions:

p1 = pτ
∗(Q1)/ρ∗(Q)

p2 = pρ
∗(Q2)/ρ∗(Q).

We first argue p1 · p2 = p. For this, notice that τ∗(QA) =
|Nf (Q)|, which is because Nf (Q) defines an (integral) ver-
tex cover for QA, and one can easily obtain an edge pack-
ing with same value by selecting for each variable in Nf (Q)
exactly one incident atom.5 Further notice that τ∗(Q) =
|Cf (Q)|/2 + (|vars(Q)| − |Cf (Q)| − |Nf (Q)|)/2, thus from
Lemma 10 we obtain ρ∗(Q) = |vars(Q)|/2 + |Nf (Q)|/2.
The result now follows by the additional observation that
ρ∗(QB) = vars(QB)/2 due to tightness of f for QB , where
vars(QB) = vars(Q) \ Nf (Q).

We compute QA over a share of p1 servers by allocating to
all the variables in Nf (Q) a weight of 1 and to all others a
weight 0. This strategy works as desired because IΨ is light
for all variables in Nf (Q), and the meaning of light is not
affected by considering only p1 servers. Indeed,

m/p1/ρ∗(Q) = m/p
1/τ∗(Q1)
1

and τ∗(QA) = |Nf (Q)|. Following Lemma 2 the load is as
desired and requires only one round.

The computation of QB over IΨ relies on Theorem 1 us-
ing a share of p2 servers. This algorithm uses at most five
rounds, and by choice of p2 the load is as desired.

Finally, in Lemma 17 we deal with the case where variables
in Nf (Q) are heavy:

Lemma 17. Let Q be a simple CQ with heavy-hitter config-
uration Ψ = (H, 1/ρ∗(Q)). Let f be a non-tight half-integral
edge packing for Q with Nf (Q) ∩ H 6= ∅. Then Q can be

5This strategy works because A consists of disjoint star-
queries, one for each variable in Nf (Q).
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computed over the Ψ-compatible instance by a ρ∗(Q)-load
algorithm using seven rounds.

Proof. Let I be an arbitrary Ψ-compatible instance. Let
H ′ = Nf (Q)∩H, and Q[H ′] be the residual query obtained
by removing from Q the variables in H ′, and L′ = vars(Q)\
H ′.

Let V be a semi-join decomposition for Q[H ′]. Fractional
edge packing f describes a fractional edge packing for QV
when ignoring the annotation of relation symbols. Particu-
larly, then f is also maximal for QV , as only 0-weight atoms
are removed from Q to obtain QV , and non-optimality would
thus contradict the assumed optimality of f for Q. There-
fore τ∗(QV) = τ∗(Q).

Similar as before we compute Q for every heavy hitter
tuple h over H ′ separately over a unique set of p′ servers,

where p′ = c · pρ
∗(QV)/ρ∗(Q), and c = 1/d(Q)|H

′| a constant.

As there are only p|vars(H
′)|/ρ∗(Q)/c many such tuples we re-

main within budget. Indeed, ρ∗(Q) = |vars(Q)| − τ∗(QV) =
ρ∗(QV)+ |H ′|, following Lemma 10, |vars(Q)| = |vars(QV)|+
|H ′|, and the earlier made observation τ∗(Q) = τ∗(QV). The
computation then proceeds in two steps:

Step 1: Compute the semi-join reductions defined by V over
instance I|h,H′ using the strategy in Lemma 4.

Step 2: Reshuffle the semi-join reduced relations from the
previous step to compute QV by following the algorithm in
Lemma 16. Then broadcast heavy-hitter tuples in I|h,H′
over the schema of Q[L′], and compute locally on every
server the crossproduct Q[L′] × QV to obtain the desired
output.

Completeness of the output follows from Lemma 16 and
Lemma 5. Step 1 is done in two rounds with desired load
because p′ ≥ c · p1/ρ∗(Q). The latter particularly follows
from the fact that QV does not contain isolated variables
and cannot be empty, as both would contradict the assumed
optimality of f for Q.

For Step 2, notice that QV and f indeed satisfy the condi-
tions of Lemma 16 and thus the obtained load using at most

five rounds is Õ
(
m/p1/ρ∗(Q)

)
.

Similar to Theorem 1, for conjunctive queries with non-
tight half-integral edge packing we now obtain the following
result:

Theorem 2. Let Q be a simple CQ and f a non-tight half-
integral edge packing. Then Q can be computed by a ρ∗(Q)-
load algorithm using seven rounds.

Proof. for every heavy-hitter configuration (H, 1/ρ∗(Q)) in
parallel, using Lemma 16 if vars(Nf (Q)) ∩H = ∅, and the
algorithm in Lemma 17 otherwise.

5.5 Wrap-Up
By combining the two theorems we obtain a general algo-

rithm for computing conjunctive queries over relations with
arity at most two: first simplify the query by considering a
semi-join decomposition V for Q.

Step 1: Compute a semi-join decomposition QV using the
algorithm in Lemma 8.

Step 2: Compute a half-integral fractional edge packing f
for QV . If f is tight then use the algorithm in Theorem 1; if
f is non-tight use the algorithm in Theorem 2.

Hence our main result:

Theorem 3. Every CQ Q over relations with arity at most
two can be computed with a ρ∗(Q)-load algorithm using at
most nine rounds.

As our algorithm takes a fractional edge packing as pa-
rameter, notice that, in contrast to finding a maximum ver-
tex cover for a given graph, which is well-known to be NP-
complete, the problem of finding maximum (integral) edge
packings (i.e., maximum matchings), is solvable in polyno-
mial time. Interestingly, finding optimal half-integral edge
packings for a graph (or simple query) with the properties
of Lemma 9 is comparably easy. For a polynomial time al-
gorithm based on iteratively finding augmenting paths (i.e.,
paths with alternating assignment of weight 0 and 1 to its
edges) and blossoms (i.e., odd-length cycles) we refer to [7].

When a query has multiple optimal fractional edge pack-
ings satisfying the conditions of Lemma 9, then one of the
packings may yield a preferred evaluation strategy over the
other:

Example 10. For an example consider query Q,

H(x̄) :- R1(x1, x2),R2(x2, x3),R3(x3, x1),R4(x3, x4),

R5(x4, x5),R6(x5, x6),R7(x6, x4),

which represents two triangles connected by an edge. Here
ρ∗(Q) = τ∗(Q) = 3. We can consider the fractional edge
packing assigning weight 1/2 to predicates R1, R2, R3, R5,
R6, R7 and 0 to predicate R4, or alternatively the edge pack-
ing assigning weight 1 to predicates R1, R4, R6, and 0 to all
others. The latter seems beneficial as Lemma 14 guarantees
three rounds in contrast to five for Lemma 15, particularly
if certain variables are heavy.

Notice that disallowing multiple occurrences of the same
variable in a single atom is without loss of generality. In-
deed, given a query that violates this condition, we can sim-
ply ignore duplicates variable occurrences by implementing
a preprocessing step in which each server autonomously dis-
cards those tuples not satisfying the by the query implied
equality types.

Finally, notice that our algorithm can be generalized to
conjunctive queries with existential quantification (projec-
tions) and self-joins in the usual way by duplicating the self-
joined relations and implementing projections as a post pro-
cessing step. Then, however, we inevitably lose optimality
as the AGM bound is no longer the right notion to express
the worst-case output size [8].

5.6 Higher-Arity Relations
Unfortunately it is unclear how to generalize our tech-

niques to higher-arity relations, as the graph properties we
rely on do not generalize to hypergraphs. More specifically,
they fail already for ternary relations. First, in general the
inequality τ∗(Q) ≤ ρ∗(Q) does not hold.

Example 11. For an example of a query Q, where τ∗(Q) >
ρ∗(Q), consider

H(x) :- R(x1, y1, z1),T(x2, y2, z2),

S1(x1, x2),S2(y1, y2),S3(z1, z2).

Here, τ∗(Q) = 3, which is easy to see as all three predicates
S1, S2, S3 need to be covered, and do not share variables.
On the other hand, ρ∗(Q) = 2 is witnessed by the cover
containing predicates R and T .
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Therefore, taking the HC algorithm as a building block
seems to not work in general for higher-arity relations. Par-
ticularly for query Q from Example 11, it is even unclear
how to compute Q with ρ∗(Q)-based load over instances
without skew. Unless, for example, in the special case where
all columns of relations are keys, as then intermediate join
outputs can grow only by a constant factor with respect
to the input (the factor is caused by the arity of the out-
put relation). In fact, the only class of queries over higher-
arity relations that is currently known to be computable
with ρ∗(Q)-load algorithm are those having a guard atom,
as in Lemma 4.

Second, ρ∗(Q) + τ∗(Q) = |vars(Q)| in general does not
hold for hypergraphs either. Again, this can be observed
by considering query Q from Example 11. There, ρ∗(Q) +
τ∗(Q) = 5 < |vars(Q)|.

6. EXTERNAL MEMORY MODEL
Recently, much attention went also to worst-case I/O-

optimal algorithms for computing join queries in the external
memory model [9, 10]. The external memory model is a se-
quential computation model in which a distinction is made
between space for data storing (external memory) and pro-
cessing (internal memory). The former is unbounded, the
latter is bounded by parameter w, which expresses its size
in number of disc blocks: a disc block is the amount of data,
denoted B, moved from external to internal memory (or vice
versa) in a single I/O operation. For a more comprehensive
description of the model we refer to [2].

In [11] it was observed that algorithms for the MPC model
can be simulated straightforwardly in the external memory
model, given that they are tuple-based, and that the internal
memory is at least as large as the maximal amount of space
needed by any of the individual servers (i.e., w ≥ r · L/B).

The tuple-based MPC model is the MPC model, as de-
scribed in Section 3, where additionally only tuples from
subqueries of Q are communicated, and the communication
depends only on the data statistics that are initially avail-
able to the algorithm. As the algorithm from Section 5 satis-
fies these conditions, the following Corollary follows steadily
from the results in [11].

Corollary 1. For every CQ Q over relations with arity at
most two, an external memory algorithm exists that, for any

w > mρ∗(Q)/(ρ∗(Q)+1), computes Q with Õ
(

mρ
∗(Q)

wρ
∗(Q)−1·B

)
I/O cost, by simulating the algorithm from Section 5 with

p = (m/w)ρ
∗(Q).

7. CONCLUSION
In this paper we introduced an algorithm for computing

conjunctive queries over binary atoms in parallel shared-
nothing settings. Our algorithm runs with load m/p1/ρ∗(Q),
and therefore obtains the worst-case optimal load when re-
lations have the same size m. In combination with the lower
bound given in [11], it shows that the load in this setting is
given by the fractional edge covering number ρ∗(Q) rather
than the fractional vertex covering number τ∗(Q), at least
when relations are binary.

Our techniques build upon, and extend in a non-trivial
way, techniques introduced in [11] computing chain queries
and cycle queries in multiple rounds with worst-case opti-
mal load. Our result critically relies on key properties from

graphs, which in general do not hold for hypergraphs, al-
ready for arity three. Therefore we leave open the opti-
mal communication cost for queries over relations of ar-
bitrary arity. Particularly it is unclear what the bound
might be for queries where τ∗(Q) > ρ∗(Q), as in general,
the best algorithm we know to compute queries over skew-
free database instances is the one-round HC algorithm with
load m/p1/τ∗(Q). On the other hand, the best multi-round
lower bound we know follows from the AGM bound and is
m/p1/ρ∗(Q). To close the gap one needs to either design a
new multi-round algorithm for skew-free databases, or prove
a new multi-round bound that is stronger than that implied
by the AGM bound.
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