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Abstract

In this paper, we propose a method for
maintaining a semantic cache of material-
ized XPath views. The cached views include
queries that have been previously asked, and
additional selected views. The cache can be
stored inside the database, or on a different
host machine. We describe a notion of XPath
query/view answerability, which allows us to
reduce tree operations to string operations for
matching a query/view pair. We show how to
store and maintain the cached views in rela-
tional tables, so that cache lookup is very ef-
ficient. We also describe a technique for view
selection, given a warm-up workload. Finally,
we experimentally demonstrate the efficiency
of our caching techniques, and performance
gains obtained by employing such a cache.

1 Introduction

XML is increasingly being used in data intensive ap-
plications. Major database vendors are incorporating
native XML support in the latest versions of their re-
lational database products. Data meant for web ser-
vices, and data exchange applications is often most
conveniently stored directly as XML. In this scenario,
the number and size of XML databases is rapidly in-
creasing, and XML data becomes the focus of query
evaluators and optimizers.

In a relational database system, the in-memory
buffer cache is crucial for good performance. A similar
buffer cache can, and is, employed in XML systems.
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However, XML query processing presents a different
set of challenges. Query execution on semistructured
data is intrinsically harder to optimize. The buffer
cache reduces the disk I/O cost, but not the computa-
tional cost. We propose maintaining a semantic cache
of query results [DFJ+96]. It will address the compu-
tational cost and thus, complement the buffer cache.
It is simple to have the semantic cache. In our scheme,
it is maintained in three tables in the database (two
purely relational, and one with an XML column). Fur-
ther, the semantic cache can also be maintained on a
different database system, on a remote host. Thus,
unlike the page-based buffer cache, it can be employed
in a distributed setting too.

We describe in this paper, a framework for main-
taining and using a semantic cache of query results.
The cached queries are basically materialized views,
which can be used in query processing. Thus, at
any moment, the semantic cache contains some views
{V1, . . . , Vn}. When the system has to evaluate a new
query Q, it inspects each view V in the cache and de-
termines whether it is possible to answer Q from the
result of V. In our setting, the views are XPath expres-
sions, while the queries are either XPath or a restricted
XQuery fragment (which we describe later). For now,
we will take Q to be XPath, and describe the extension
to XQuery, later. We say that view V answers query
Q if there exists some other query C which, when ex-
ecuted on the result of V, gives the result of Q. We
write this as C◦V = Q. We call C the Composing
Query (CQ). When some cached view answers a posed
query, we have a hit; otherwise we have a miss.

There are several applications for such a semantic
cache. First, consider its use inside the XML database
system. Suppose some query Q is answered by view V,
with C being the CQ. Then Q is answered by executing
C, which is simpler than Q, on the result of V, which is
a much smaller XML fragment than the original data
instance. This can result in a significant speedup, as
we show in our experiments. The semantic cache can
also be maintained at the application tier. Here, there
will be additional savings for a hit, from not having to



connect to the backend database. For a heavily loaded
backend server, these savings can be large. This kind
of middle-tier caching has become popular for web ap-
plications using relational databases [LKM+02]. Fi-
nally, the semantic cache can also be employed in a
setting like distributed XQuery [RBHS04] where sub-
queries of a query might refer to remote XML data
sources, connected over a WAN. Here, a subquery that
hits in the local cache, will not have to be sent over
the network, and the savings can be huge.

Checking query/view answerability requires match-
ing operations between the tree patterns of the query
and view (we discuss this in Section 3). Looking up
the semantic cache by iterating over all views, will be
very inefficient when the number of views is large. We
list below our main contributions:

• We show a method for checking query/view an-
swerability ∃C.Q ≡ C ◦ V , by string operations
which capture the semantics of the required tree
operations.

• We describe a novel cache organization, in which
view expressions are stored in relational tables,
and cache lookup is done by issuing SQL queries.

• We demonstrate that cache lookup is very effi-
cient, even when there are several hundred thou-
sand cached views.

• We describe a method for warm-up view selection,
when given a warm-up query workload.

• We demonstrate impressive speedups for query
workloads having locality.

Example: We now present some examples of how
queries are answered from the cache. They will make
clearer the challenges in doing efficient lookup in a
large cache, and also illustrate query rewriting for
cache hits. Suppose we have three cached views, as
shown below.

V1 /a[u[@v]/w][x]
V2 /a[x//y][p//r]
V3 //a[@v>50]

Suppose query Q1 is /a[x][u[w]/@v]/b. It is clear V1
answers it, with the Composing Query C1 being /*/b.
In this case, a recursive reordering of predicates will
make V1 a prefix string of Q1. Consider query Q2 =
/a[p/q/r][x/y//z]/b. It is answered by V2, with C2
being just Q2. In this case, we need to check that view
predicate [p//r] “contains” query predicate [p/q/r],
and so on. Finally, let query Q3 be //a[@v>100]. It
is answered by V3, with C3 being /*[@v>100].

The rest of this paper is organized as follows. We
start with related work in Section 2. Section 3 de-
scribes how we determine query/view answerability.
Section 4 describes how our cache is stored, and looked

up. Section 5 talks about view selection, based on the
warm-up workload of queries. In Section 6, we present
our experimental results, and then conclude in Sec-
tion 7.

2 Related Work

A related problem is that of containment between
XPath queries. In [MS02], this problem is shown to be
coNP-complete. A polynomial time algorithm is also
presented for checking containment, which is sound
but not complete. However,note that V contains Q
does not imply V answers Q. For example, let V =
/a/b, and Q = /a[x]/b. It is clear that Q is con-
tained in V. But it is not possible to answer Q from
the result of V. [BOB+04] is the only other work we
are aware of, that proposes using materialized XPath
views. Their criterion for query/view answerability is
exactly containment between them. Their version of
what we call Composing Queries can require navigat-
ing up from the result nodes of the view being used.
For each view, they store one or more of XML frag-
ments, object ids, and typed data values.

We chose to restrict ourselves to just XML frag-
ments, and defined query/view answerability accord-
ingly. This choice allows us to maintain our cache
outside the database too, and target applications like
middle-tier caching and distributed XQuery, which we
mentioned earlier. Application-tier caching for rela-
tional databases has received a lot of attention lately,
in the context of database-driven web sites [LKM+02,
YFIV00, FLSY99]. These sites serve dynamic content,
obtained by querying the database. Caching query
results and maintaining materializing views, at the
middle-tier, has become increasingly common. Fur-
ther, an XML database system maintaining the cache
can easily choose to store object ids of the result nodes,
instead of the entire result fragment. The techniques
that we describe in this paper, will still remain appli-
cable.

3 Using XPath Views

We now look at query/view answerability. The ques-
tion that we consider is this: Given a view V and query
Q, does V answer Q, and if yes, then what should C be
so that C◦V ≡ Q. XPath queries are naturally repre-
sented as tree patterns. We are going to reason using
these, to derive a sound but incomplete procedure for
answering this question.

We first present an example showing how
a XPath query is represented as a tree pat-
tern. Figure 1 shows the tree pattern for Q
= a[v]/b[@w=”val1”][x[.//y]]//c[z>val2]. Child
and descendant axes are respectively shown by single
line and double line edges. The ellipse-shaped nodes
are predicates qualifying their parent nodes. Note that
the result node “c” of the query is marked by double



Figure 1: Example Tree Pattern

circles.

Defn 1 The Query Axis is the path from the root
node to the result, in the query tree pattern. Nodes
on this path are the “axis nodes”, while the others are
“predicate nodes”. The Query Depth is the number
of axis nodes.

Defn 2 Prefix(Q,k) is the query obtained by trun-
cating query Q at its k-th axis node. The k-th axis node
is included, but its predicates are not. Preds(Q,k) is
the set of predicates of the k-th axis node of Q.

Example: Consider the query Q of Figure 1. It
has depth three, with a,b,c respectively being its first,
second and third axis nodes. Prefix(Q,2) = a[v]/b,
and Preds(Q,2) = {[@w=”val1”],[x[.//y]]}.

The XPath fragment we cover includes the ’/’ and
’//’ axes, and ’*’ node labels. Predicates can be any
of these: equalities with string or numeric constants,
comparisons with numeric constants, or an arbitrary
XPath expression from this fragment.

3.1 Criteria for Answerability

Given some C, we will check equivalence between C◦V
and Q, by checking equivalence between their tree pat-
terns. We first describe how the tree pattern for C◦V
is obtained from C and V. Let the axis of V (from root
to result) be (x1, x2, . . . , xk) (see Figure 2). Observe
that C is applied to the result of V. The label of the
root of C must match that of the result of V if C◦V is
to return anything. Let C have axis (xk, xk+1, . . . , xn).
Then, to obtain the tree for C◦V, we combine the trees
of V and C by fusing the result node of V with the root
node of C. Figure 2 illustrates this, and shows the two
tree patterns we have to check for equivalence. Qk de-
notes the subtree of Q rooted at its k-th axis node.
We now briefly talk about XPath minimality and con-
tainment.
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Figure 2: Tree Patterns for C◦V and Q

V answers Q if:
1. Prefix(V,k) and Prefix(Q,k) have isomorphic

trees, where k is the query depth of V.
2. ∀ view–pred ∈ Preds(V,k) ∃ qry–pred ∈

Preds(Q,k) such that qry–pred ⊆ view–pred.

Table 1: Criteria for answerability

Defn 3 (XPath Minimality) A XPath query Q is
minimal [FFM03] if it is not possible to drop a subtree
from its tree pattern, and get an equivalent query.

XPath Containment Mappings: A containment
mapping [MS02] from XPath query A to B, is a map-
ping from nodes in the A tree pattern to those in the
B tree pattern such that:

• Labels of mapped nodes match.

• A’s root and result nodes respectively go to B’s
root and result.

• Child edges go child edges, and descendant edges
to downward paths.

The existence of such a mapping is sufficient, but not
necessary, for B ⊆ A to hold. However, in most prac-
tical settings, we expect this mapping to exist when
containment holds. In this paper, we check contain-
ment using these mappings.

Theorem 1 If two tree patterns are minimal, and
containment mappings exist both ways (so that they
are equivalent), then they are isomorphic i.e., they are
the same tree.

Table 1 lists a set of sufficient (but not necessary)
conditions for checking if view V answers query Q.



Example: Let V = /a[u[@v]/w]/b[x//y][p//r],
and Q = /a[u[w]/@v]/b[x/y//z][p/q/r]/c. V
has depth 2. Prefix(V,2) = /a[u[@v]/w]/b,
and Prefix(Q,2) = /a[u[w]/@v]/b. They are
equivalent, and the first condition is satisfied.
Preds(V,2) = {[x//y],[p//r]}, and Preds(Q,2) =
{[x/y//z],[p/q/r]}. Containment between corre-
sponding predicates can be easily checked by contain-
ment mappings, and the second condition too is satis-
fied. Thus, V answers Q.

We now present the intuition behind these condi-
tions. Assume that V and Q are minimal. As in the
relational case, we expect real, user-written queries to
be minimal. Since we can choose to minimize the Com-
posing Query C, we take C too to be minimal. By
Theorem 1, we need the minimized tree of C◦V to be
isomorphic to the tree of Q. In minimizing, suppose the
tree for Prefix(V,k) remains unchanged, where k is the
query depth of V. Note that it is a subtree of V, and
thus, minimal to start with. Then, we can see from
Figure 2 that the tree for Prefix(V,k) needs to be iso-
morphic to that of Prefix(Q,k). This gives us the first
condition. We now need to make the lower subtrees
isomorphic. Note that the subtree rooted at xk is sim-
ply C, with the predicates at its root node augmented
by Preds(V,k). Minimizing this subtree should give us
Qk, the subtree of Q rooted at its k-th axis node yk.
From Theorem 2 below, C is just Qk. Thus, if we add
the predicates Preds(V,k) to the root node of Qk, and
then minimize, we get back Qk. Then, from Lemma
5 in [FFM03], each of these predicates must contain
some subtree rooted at a child of Qk. This gives us
the second condition.

Theorem 2 Suppose view V of depth k answers query
Q. Then the Composing Query C is just Qk, the subtree
of Q rooted at its k-th axis node.

Proof: Denote by C’, C with its root node augmented
by Preds(V,k). As observed above, minimizing C’
should give us Qk. Thus, they are equivalent, and
Qk◦V ≡ C’◦V. Observe that C’◦V ≡ C◦V. The for-
mer is just the latter, with the predicates at node xk

augmented by Preds(V,k). But xk already has this
set of predicates, in the latter. Adding them again
leaves the semantics of the query unchanged. Com-
bining these equivalences, we get that Qk◦V ≡ C◦V.
We can choose C to be Qk. ¥

We now have the conditions for determining if V
answers Q. If it does, we also know how to find C. The
first condition requires checking isomorphism between
two trees, and the second condition requires setting
up containment mappings between trees representing
predicates. Looking up a cache storing a large number
of views, by checking these tree-based conditions for
each view, will give a very high lookup overhead.

Normalize-Tree(T)
1. Let T have axis (x1,. . . ,xk).
2. For i=1,. . . ,k Normalize-Node(xi).
3. Concatenate the node labels of x1,. . . ,xk, with

appropriate axes in between.
4. Return the query string formed.
Normalize-Node(x)
1. Let x have predicate node children p1,. . . ,pn.
2. For i=1,. . . ,n Normalize-Node(pi).
3. Sort p1,. . . ,pn lexicographically by their labels.
4. For i=1,. . . ,n append “[pi.label]” to x.label.

Table 2: Normalizing a tree pattern

3.2 String-Based Answerability Checking

To achieve efficient cache lookup, we will look to check
answerability using string matching. This will be
cheaper, and more importantly, amenable to index-
ing. The first condition in Table 1 is not the same as
string equality between Prefix(V,k) and Prefix(Q,k).
This is because of reordered predicates, use of differ-
ent syntax for the same predicate (e.g. “[x/y]” instead
of “[x[y]]”), and so on. We describe in Table 2 a proce-
dure for obtaining a unique XPath query string from
a tree pattern T. Recall that axis nodes are the nodes
lying on the query axis, while the others are predicate
nodes.

Thus, the “normal form” of a query is obtained by
normalizing its tree pattern. For example, the normal
form of /a[q][p]/b[x[z]/y] is /a[p][q]/b[x[y][z]]. It
is clear from our definition that a given tree pattern
has a unique normal form. Thus, if V and Q are rewrit-
ten in normal form, the first condition reduces to just
string equality between Prefix(V,k) and Prefix(Q,k).

To check the second condition, for each result node
predicate that the view has, we have to look for a con-
tainment mapping from its tree to trees of, potentially,
each of the predicates in Preds(Q,k). Having to do this
for a large number of candidate views for a query, can
be quite expensive. Note that, we need to check this
condition only for views that satisfy the first condi-
tion. However, for a cache with a very large number
of views, the number of views satisfying the first con-
dition may not be small. We want to avoid the over-
head of repeatedly setting up containment mappings.
This is what we do. For the tree of each predicate in
Preds(Q,k), we generate all the trees that map to it.
We normalize the root nodes of these trees, obtain-
ing the set of all normalized predicates that contain
some predicate in Preds(Q,k). We denote this set by
ConPreds(Q,k). Now, checking the second condition
is simple. We just need to check that every predi-
cate in Preds(V,k) is also present in ConPreds(Q,k).
This only requires string matching between predicate
strings.

Generating Containing Trees: We now describe
how, all the trees mapping to a given tree T can be



V answers Q if:
1. Prefix(V,k) = Prefix(Q,k) where k is the depth

of V.
2. Preds(V,k) ⊆ ConPreds(Q,k)

Table 3: Checking answerability by string matching

generated. Consider any subset S of the node set of
T. Consider each pair of nodes x, y ∈ S such that no
other node on the path from x to y in T, is in S. If
this path is a single child edge, put either a child or
a descendant edge between x and y. Otherwise, put a
descendant edge. This gives us a tree with node set S,
which contains T. Iterating over all possible choices of
S, and for each such S, taking all possible combinations
of edges between such node pairs x, y in S, gives us all
the trees that map to T.

Example: The set of all predicates containing the
predicate [x/y//z] is listed in the table below. For
the sake of clarity, we have not normalized them, thus
avoiding the nested square brackets.
[x] [x/y] [x/y//z]
[x//y] [x//y//z] [x//z]
[.//y] [.//y//z] [.//z]

It is clear that the number of containing trees that
we generate for any tree T is exponential in the num-
ber of nodes of T. However, tree patterns of individ-
ual predicates are typically very small. Further, these
trees have to be generated only once for a given query.
At the risk of getting more cache misses, we can choose
to restrict ourselves to containing patterns that are lin-
ear paths. This is what we do in our implementation.

In Table 3, we restate the conditions for checking
if view V answers query Q. They capture the same
semantics as the tree-based conditions, and use only
string operations. We assume V and Q have been
rewritten in normal form.

3.3 Supporting Comparison Predicates

The last thing we need to do for our query/view match-
ing procedure, is incorporate support for compari-
son predicates. So far, when generating containing
trees, we had assumed that in a containment map-
ping, if two nodes match, their labels have to be
identical. However, tree patterns can include nodes
which are comparison predicates qualifying their par-
ent node (see Figure 1). We will refer to them as
Comparison Tags, or CTs. Our current scheme will re-
turn that view //book[@price>50] can’t answer the
query //book[@price>100], which is clearly wrong.
We need to allow two CT nodes to match in a con-
tainment mapping, if the node label in the contain-
ing tree is “more general” than that in the contained
tree. Thus, label “> x” can map to “> y” provided
y ≥ x. Similarly, “< x” can go to “< y” provided
y ≤ x. This is what we do to allow this. For each

XmlData (viewId int, fragment XML)
Prefix (prefixId int, prefix string)
View (viewId int, prefixId int, pred string, allPreds
string, CTs string)

Table 4: Schema of the cache tables

predicate being checked, we yank out all the CTs it
contains, and store them separately. Thus, in the
predicate sets involved in the second condition in Ta-
ble 3, each predicate now has two components: the
first stores the predicate string, and the second stores
the CT’s, and their positional information. For ex-
ample, the predicate “@price>50” would be stored
as “(@price,(6,>50))” indicating that CT with label
“>50” occurs at position 6. When comparing some
predicate p in Preds(V,k) with q in ConPreds(Q,k),
we first match the string components. If they match,
we then match the CT components, with CT labels
being matched as described above. If the CTs also
match, then p ∈ ConPreds(Q,k).

4 Cache Organization and Use

This section describes how our semantic cache is
stored, maintained and used. Our views are stored in
relational tables, and their results are stored as XML
fragments. The scheme we present here assumes a re-
lational database with native XML support. It can
trivially be adapted to the case when the relational
and XML database systems are different. Table 4
shows the schema of the three tables storing the cache.
Note that the “fragment” column is of type XML. In
our experiments, we used the beta release of Microsoft
SQL Server 2005, which supports storing and querying
XML.

4.1 Inserting a View

We will illustrate how the cache is stored by showing
how a new view V is inserted into the cache. We first
execute V on the XML database, and fetch its result.
This result fragment is inserted into the fragment col-
umn in table XmlData. The viewId field is a system
generated key, and we record the value that it takes
in the inserted tuple. We rewrite V in its normal form
(see Section 3.2). Suppose V has depth k. We insert
Prefix(V,k) in the prefix column in table Prefix, if it
is not already present. prefixId is again a system gen-
erated key, and we record the value that it takes. We
finish by inserting a tuple in table View for V. The
viewId and prefixId fields in View are foreign keys ref-
erencing XmlData and Prefix respectively. They take
the values we have just recorded for them. Now, con-
sider Preds(V,k), the set of predicates at the result
node of V. Each predicate has a string portion and a
CTs (Comparison Tags) portion. Thus, we have a set
of strings, and an associated set of CTs. From the



strings, we choose one to insert into the pred column.
In Section 4.3, we describe how we make a “good”
choice. The remaining strings are combined, and in-
serted into the allPreds column. One or both of these
columns will be NULL, when Preds(V,k) respectively
has one or zero elements. Finally, we combine all the
CTs and insert them into the CTs column. This com-
pletes the tuple. The values for the allPreds and CTs
columns are constructed so that the constituent strings
and CTs can be recovered (we can insert suitable de-
limiters, or use any other such simple scheme). Thus,
view V and its result XML can be recovered from the
cache.

Example: Let V = /a[v]/b[x][@y=50][z>100].
If 1 and 2 are generated for viewId and pre-
fixId, then tuple (1,XML Result) goes into Xml-
Data, tuple (2,”/a[v]/b”) into Prefix, and tuple
(1,2,”@y=50”,”z|x”,”|(1,>100)|”) into View.

4.2 Cache Lookup

We now describe how the cache is looked up, for a
given query Q. Recall from Table 3, the conditions we
need to check to determine if some view V answers
Q. Suppose Q has depth n. From the first condition,
it is clear that any V of depth k can possibly work
only if k ≤ n. Further, we will prefer using a V with
as large a k as possible. The larger k is, the simpler
the Composing Query C is, and the smaller the view
result fragment is. Thus, we want to try candidate
views in order of decreasing depth. Also, observe that
the query-dependent part of the conditions in Table 3
involves Prefix(Q,k) and ConPreds(Q,k). Once we fix
k, these get fixed. Our approach will be this. We will
iterate over k going from n to 1. For each k value,
we will execute a single SQL query which will return
a small set of all candidate views of depth k. We will
inspect the returned views, and if any of them works,
we have a hit. Otherwise we try the next value of k,
and so on. Figure 3 lists this algorithm, including the
SQL query used. If no view was found which answers
Q, then we have a cache miss. Q is executed on the
XML database, and inserted as a new view.

In the SQL query shown, ConPreds(Q,k) stands
for the list of string portions of the predicates in
ConPreds(Q,k). The query returns tuples in the View
table. Each such tuple represents a single cached view
V. Consider any such V returned. The prefix field
for V is Prefix(Q,k). Thus, V satisfies the first condi-
tion for answering Q. Further, its pred field is either
NULL, which means Preds(V,k) is empty, and the sec-
ond condition is trivially satisfied. Or it matches the
string portion of some predicate in ConPreds(Q,k),
which means the second condition is partially satis-
fied. ConPreds(Q,k) will be tiny relative to the set
of result node predicates of all cached views. We ex-
pect the selection on the pred field to make the SQL
query very selective, and return a small set of candi-

Cache-Lookup(Q)

For k = n,. . . ,1
Execute this SQL query:

Select V.*
From Prefix P, View V
Where P.prefix = Prefix(Q,k) and

P.prefixId = V.prefixId and
(V.pred is NULL
or V.pred in (ConPreds(Q,k)))

Inspect the returned views.
If some view answers Q, return it and exit.

Return null.

Figure 3: Cache lookup for query Q

date views for us to inspect. We sequentially examine
the returned tuples for the second condition, till we
find a view V that satisfies it. Recall that Preds(V,k)
can be reconstructed from the returned tuple for V.

If Q is a cache hit, and some V of depth k answers
it, the Composing Query C is just the subtree of Q
rooted at its k-th axis node, as we saw in Theorem 2.
We further simplify C by removing from its root node,
those predicates which also occur in Preds(V,k).

Example: Suppose our cache has three views, as
shown below.
V1 /a/b[z]/c
V2 /a/b[@y=”str”][z>200]
V3 /a/b[w][@y=”str”]

Suppose Q = /a/b[w[x]][@y=”str”][z>100]/c. For
k = 3, we get no candidate views. For k = 2, the SQL
query returns V2 and V3. The matching of Compari-
son Tags for Preds(V2,2) fails, since [z>200] does not
contain [z>100]. However, V3 is found to answer Q,
with C being /b[w[x]][z>100]/c.

4.3 Cache Policies

To support our SQL query, we create clustered indexes
on Prefix(prefix) and View(prefixId,pred). We now de-
scribe how, when inserting views, the predicate to put
in the pred column is chosen. The selectivity of our
SQL query very much depends on this choice. Among
all views having the right prefix, the query returns
those whose pred field lies in ConPreds(Q,k). If we
choose for the pred column a more popular predicate,
then this view is likely to more often be retrieved as a
false positive. On the other hand, if we choose a rarer
predicate, then this view has a much lesser chance of
being retrieved as a false positive. So, we need to iden-
tify the rarer predicates in Preds(V,k). Predicates can
be equalities, comparisons, or paths (XPath expres-
sions without any equality or comparison predicates).
Equality predicates can take a lot of different values,
since a typical attribute or element will take many dif-
ferent values in the XML data instance. Path predi-
cates are however, restricted by what the DTD allows,
and can take far fewer values. The CTs of comparison



predicates are stored separately, reducing the string
portion to just a path predicate. Equality predicates
are the best choice. Thus, if Preds(V,k) has any equal-
ity predicates, we randomly choose one of them as the
one that goes into the pred column.

When query Q is a cache miss, we insert it as a
new view in the cache. However, there is a catch here.
We do not want to insert Q if its result size is very
large. Our motivation for caching is to be able to exe-
cute simpler queries on small, cached fragments when
we have a cache hit. Querying large fragments may
not be of much benefit. Further, the XML database
will typically maintain suitable indexes over the data.
However, we don’t maintain any indexes for the cached
fragments. The overhead of indexing them was found
to be more than the benefit. Running a query on a
large, unindexed fragment could easily be worse than
running it on the database itself. Further, the space
cost for large fragments is also high. Thus, we keep a
size limit on cached views. If some view has result size
greater than this limit, we choose not to cache it. In
our experiments, we used a size limit of 128 KB.

4.4 Answering XQuery

We first describe the XQuery fragment we cover.
Given an XQuery X, we define any XPath query em-
bedded in X to be a base XPath of X, if evaluating its
value requires accessing the data, and can’t be done
from the current environment. For example, suppose
X were this:
for $b in /site/regions
return $b//item
Then, the XPath in the “for” clause is a base XPath
of X. It determines the binding for $b. However, the
XPath in the “return” clause can be evaluated from
the binding for $b, and is not a base XPath. Thus,
the results of the base XPaths of X define all the XML
data needed to evaluate X. The XQuery fragment we
cover consists of those X whose base XPath queries do
not contain references to other variables in X (they are
meaningful queries independently), and which belong
to the XPath fragment that we cover.

We now describe how we can use the cache in an-
swering an XQuery X in this fragment. Suppose the
base XPaths of X are {Q1,. . . ,Qk}. We lookup each
Qi in the cache, setting Vi to the view that answers it,
and Ci to the corresponding CQ. If Qi is a cache miss,
it will be executed, and inserted as a new view. We
then rewrite X by replacing each Qi with the query Ci,
over the result fragment of Vi. This rewritten query is
equivalent to X, and can be evaluated using only the
cached data. Due to our fragment size limit, it may
not be possible to have a Vi in the cache that answers
Qi, for some i. In that case, we execute X directly on
the XML database.

5 Warm-up View Selection

We now describe how we warm-up the cache, given a
warm-up workload of queries. The conventional way
would be to just pose the queries in the warm-up work-
load, to the cache. Those that are cache misses would
be brought in as new views, and the cache would be
populated. It turns out that we can do better by be-
ing more proactive in choosing which views to insert.
If the warm-up workload is representative of the test
workload (in other words, if it comes from the same
hypothetical query generation process that generates
the test workload), then we can use it to obtain a much
larger workload S which the test workload is likely to
have a significant overlap with. We can then warm-
up by inserting an optimal set of views that answers
all of S, and thus, formulate cache warm-up as a view
selection problem.

5.1 Generating Potential Queries

We first look at how we obtain workload S from the
warm-up workload W . The problem setting here is
this: Given W , we want to obtain all the queries likely
to be in the test workload. A possible approach that
is likely to work well would be a machine learning one,
which would use a probabilistic model for the query
generation process, and learn its parameters using W .
Then, potential queries could be generated in order of
decreasing probabilities. Such an approach is beyond
the scope of this paper. Here we use a much sim-
pler technique, which is likely to work well for a query
workload having locality.

We obtain the template of a XPath query by
yanking out all string and numeric constants oc-
curring inside predicates. The template is a
parameterized query, which captures the struc-
ture of the original query. For example, the
template for /a[v]/b[w][@x=”str1”][y/z>50] is
/a[v]/b[w][@x=#][y/z>#], where the # symbols
indicate missing parameters. An instance of this tem-
plate is created by inserting a string value for the first
parameter, and a numeric value for the second. We
record all the distinct templates we see in the warm-
up workload W . Our set S will consist of instances of
exactly these templates.

We next describe how we obtain the parameter val-
ues, that we will use in instantiating these templates.
The label for a template parameter is created by com-
bining the labels of the corresponding predicate, and
the axis node to which this predicate is attached. In
the above example, the label of the first parameter is
b[@x], and that of the second is b[y/z]. Note that dif-
ferent query templates can have parameters with the
same label. For example, the template //b[@x=#]/c
has a parameter with label b[@x]. We treat such pa-
rameters with the same label, as the same. This is
because, in most cases, the parameter label will iden-
tify a unique path from the root to the parameter, in



the XML tree. Thus, parameters with the same label
will have the same domain of meaningful values that
they can take. For each parameter, we record all the
different values that it is seen to take in W , and the
number of times each of these values occurs.

We now have a set of templates, and a set of param-
eter values, extracted from the warm-up workload W .
Observe that the locality of a workload comes from
locality in the templates and parameter values used,
in creating the workload queries. Further, suppose the
hypothetical query generation process independently
selects the query template, and parameter values. This
will often be the case. For example, we expect the
“hot” values for some parameter like book[@author]
to be the same, across different query templates having
this parameter. This is how we we create the workload
S: we create instances of each recorded template by
trying all combinations of recorded values of its pa-
rameters, and then, take the union over all templates.
Under the assumption of locality, the test workload
will have a significant overlap with S. We now want
to insert views so as to be able to answer all queries in
S.

The main cost in warm-up, is that of executing
queries on the XML database, to bring in new views.
The size of S will typically be orders of magnitude
larger than W . To ensure that the time taken for
cache warm-up is reasonable, we put a bound M on
the maximum number of views that we may insert. In
our experiments, we set M to be three times the size
of the warm-up workload. Under this constraint, we
want to select a set of views that answers as large a
subset of S as possible. This defines our view selection
problem. We next describe the approach that we take.

5.2 View Selection

The set of views that we will consider is the queries
of S itself. We define the “utility” of a view to be
the cardinality of the subset of S that it answers. The
larger this value, the better the view is for caching.
The problem setting here is just a variant of the set
cover problem, which is known to be NP-complete.
Each view represents a subset of S. We want to pick
subsets which together cover a maximal subset of S,
under the constraint that we can pick at most M sub-
sets. The algorithm we will use is a simplification of
the popular greedy approximation algorithm for this
problem [CLR90]. We sort the queries of S in order
of decreasing utilities, and pick them in that order. If
a picked query is a cache miss, it gets inserted as a
new view. We stop when we have inserted M views,
or reached the end of this sorted list. Unfortunately,
the algorithm as described, is computationally very ex-
pensive. Computing the utilities of the views requires
query/view matching between all pairs of queries of S,
and S is very much larger than the warm-up workload
W .

View-Select()

1. Compute Utility(T) for each template T.
2. Sort templates by decreasing utilities.
3. Suppose the sorted order is (T1,. . . ,Tn)
4. Set Inserted = 0.
5. For i = 1,. . . ,n

If Ti is marked covered, skip to next iteration.
Obtain all query instances (Q1,. . . ,Qk) of Ti

For j = 1,. . . ,k
Pose Qj to cache.
If its a cache miss, do Inserted++.
If Inserted = M , exit.

Mark as covered each Ti’ that Ti answers.

Figure 4: Warm-up View Selection

It turns out that the same result can be achieved
at a much lesser cost, if we work directly with the
query templates, instead of their instances. Given
templates T and T’, we say T answers T’ if, for ev-
ery instance of T’, there exists an instance of T which
answers it. For example, /a/b[p//r=#] answers
/a/b[@x=#][p/q/r=#]/c. We just need to make
the values of the parameters b[p//r] and b[p/q/r]
equal. It can be easily shown that if some instance
q′ of T’ is answered by q of T, then T answers T’.
Further, every parameter in T will have a matching
parameter in T’. The instances of T’ that some in-
stance of T answers, are obtained by varying those T’
parameters which either don’t have matching parame-
ters in T, or match with a T parameter which occurs in
a result node comparison predicate in T (we explain
this later). In the above example, there is a single
such T’ parameter, b[@x]. Thus, each instance of T
answers exactly the same number of instances of T’.
This implies that, for any template T, all instances of
T answer the same number of queries in S, and thus
have the same utility value. We call this the “utility”
of the template, and its value is given by:

Utility(T) =

∑
T’ count(T’)

count(T)

where the sum is taken over all T’ that T answers,
and count(T’) denotes the number of instances that
T’ generates. Observe that computing the utilities for
all templates requires query/view matching between
all pairs of templates, as opposed to all pairs of in-
stances of these templates. To match templates, we
just match canonical instances of them, obtained by
choosing some fixed value for each parameter. Thus,
the queries of S can be obtained in the required order
by sorting the templates in order of decreasing util-
ities, and then replacing each template with all the
instances it generates. Figure 4 shows the view selec-
tion algorithm.



5.3 Some Warm-up Heuristics

The above algorithm may fail to bring in views that
cover all of the queries in workload S. We now briefly
describe three heuristics that were found to improve
the view selection, and give a higher cache hit rate on
the test workload.

Recall that, when recording values taken by a pa-
rameter, we also record the number of times each of
these values is seen. We can put a bound K on the
maximum size that the value list for a parameter can
take. If some parameter takes more than K values,
we retain only the top K. Basically, we are removing
queries from S which are less likely to occur in the test
workload. We set K to 30 in our experiments.

Suppose some template parameter occurs in a
comparison predicate at the result node. For example,
the template //book[@price>#][@author=#]
has such a parameter book[@price]. Suppose
the smallest value in the value list for this pa-
rameter is v. Observe that if we can answer
the instance //book[@price>v][@author=
”str”], we can answer any other instance
//book[@price>w][@author=”str”], since w ≥ v

will hold. A similar comment holds when we have a
“<” comparison. In that case, we choose v to be the
largest value instead. Thus, for all templates, we can
fix the values of such parameters (and thus, they are
no longer considered parameters). When applicable
for a template T, this reduces the number “count(T)”
of instances that T generates, and increases its utility
value. Thus, this optimization has an important effect
on which views get inserted.

For selecting views, we have so far considered only
the warm-up workload templates. However, it might
be the case that there are other, better views. Recall
that a view is good if it has a high utility value, and
if its result size is less than our size limit (otherwise it
won’t be cached at all). We now describe a heuristic
to add new templates to the set of templates we are
considering. We “generalize” a template by truncat-
ing it as much as possible, while still retaining one pa-
rameterized predicate. For example, the generalization
of /a/b[@x=#][y/z>#]/c[v=#] is /a/b[@x=#].
For each template T, we add its generalization G to
our set of templates. We expect such a G to be a good
view template. It clearly answers T. It will be a short
template, and is likely to answer a few other warm-up
templates too. Further, since it has a parameterized
predicate, instances of G will, in most cases, not have
very large results, and will be cacheable. Thus, the
set of templates we consider in the view selection al-
gorithm of Figure 4 now becomes larger. Everything
else remains the same.

Generate-Path()
1. Set cur to the root node.
2. Set path = “/cur.label”; depth = 1.
3. With probability (depth/max depth)2, exit.
4. If cur has no outgoing edges, exit.
5. If cur has outgoing edges {e1,. . . ,ek}, take one,

where probability of taking ei is ∝ w(ei).
6. Set cur to the new node reached.
7. Set path = path + “/cur.label”; depth++.
8. Go back to step 3.

Figure 5: Simple Path Generation

6 Experiments

6.1 XPath Generator

We implemented an elaborate XPath query generator,
to create real-looking workloads for our experiments.
To generate a query, it first generates a simple path,
and then, creates and inserts predicates. A key feature
of the query generator is that predicates are created us-
ing values actually taken by elements and attributes in
the XML data. Thus, it generates meaningful queries,
many of which return non-null results when executed.
We used a 300 MB XML document generated by the
XMark [SWK+01] generator, in our experiments. We
now describe the steps involved in generating a query.

Generating a Simple Path: The document DTD
is preprocessed, and converted into a directed graph
the usual way. We insert an edge from x to y if y is a
child or attribute of element x. Any path from the
root node to any other node represents a simple path
expression, without predicates. Each edge e, going
from some node x to y, is assigned a weight w(e)
which is the average number of y children that each x

element has, in the XML data instance (this is
obtained by executing suitable “count” queries). We
have a parameter max depth which is the maximum
depth of any generated query. Figure 5 shows how a
simple path is generated. Note that we are not
generating the descendant axis or wildcard labels.
Choosing Predicates: The number n of predicates
that are inserted is given by (r × depth), rounded to
the nearest integer, where depth is the number of
nodes in the generated path, and r is a real-valued
parameter. The set of available predicate types
(considering only structure) consists of path
predicates, and attributes of the path nodes. We
count a path predicate at each path node, as a single
predicate type, just like an attribute predicate.
Children of path nodes having textual (#PCDATA)
content are also included among the attribute
predicates, to give us more choices. We then
randomly choose some n predicate types from this
set. For each of them, a predicate is created, and
inserted at the appropriate place in the query.
Creating Attribute Predicates: In a



preprocessing phase, for each attribute, we extract
and store all the distinct values it takes in the XML
data. We also store whether its a string or numeric
attribute. To create a predicate for some chosen
attribute, we take the attribute name, and append an
’=’ sign for string attributes, or randomly any of ’=’,
’>’ or ’<’ for a numeric attribute. We then select a
value from the stored values for this attribute using a
zipf distribution with exponent z (thus, the
probability of choosing the i-th value is ∝ 1/iz),
where z is a parameter. We then append this value,
completing the predicate.
Creating Path Predicates: We restrict ourselves
to linear paths, instead of arbitrary trees. Our
approach here is similar to that used in generating
simple paths. We first choose a child of the path
node for which we are creating the predicate. This is
done as in step 5 of Figure 5. We set the current
node cur to this child, and set the predicate to
“cur.label”. If cur has some m attributes, then with
an equal probability of 1/(m+2), we either choose
one of the m attributes, or stop at cur itself, or
choose to take an outgoing edge to some child of cur

( again as in step 5 of Figure 5). If we choose an
attribute, then we create an attribute predicate as
described above, append it to complete the predicate,
and stop. If we move to a child of cur, we set cur to
that child, append “cur.label”” to the predicate, and
proceed similarly as before.

Workloads Used: For the workloads we gener-
ated, the max depth parameter was set to 7, and r to
0.6. Thus, queries of depths 3, 4 and 5 had 2, 2 and 3
predicates respectively. Below we show three example
generated queries:

• /site/open auctions/open auction[initial][@id =
”open auction1001”]

• /site/people/person[homepage][name=”Aenne
Ermakov”]/emailaddress

• /site/regions/samerica/item[quantity>2][name]
[@id=”item14898”]/location

6.2 Cache Lookup Performance

Cache lookup for a query Q involves returning the
viewId (see Table 4) of a view V that answers Q, and
the query C to be applied to result of V. We now see
how much time it takes to lookup the semantic cache.
Note that lookup does not include obtaining the result
of Q, by executing C (for a cache hit) or Q (for a cache
miss). In fact, for the experiments in this subsection,
we skipped the execution of the XPath queries. Thus,
when some Q missed in the cache, it was inserted as a
new view, without its accompanying result.

The experiments were run on a Pentium 4 machine
with 512 MB RAM, running Windows. We used the
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Figure 6: Hit Rate vs Zipf Exponent

beta release of Microsoft SQL Server 2005, for both
the cache and XML databases. The cache parame-
ter M (maximum number of views to be inserted dur-
ing warm-up) was set to three times the size of the
warm-up workload. For warm-up heuristics (see Sec-
tion 5.3), K was set to 30, and the “generalized tem-
plates” heuristic was not used.

We will compare our semantic cache with a naive
cache, which stores (query, result) pairs in a table with
schema (query string, result XML). A Query Q is a hit
for the naive cache only if the exact same query string
is present in the cache. Thus, the naive cache does not
use its cached queries as views. Figure 6 shows how the
hit rate varies with the zipf exponent z used for cre-
ating attribute predicates, in the workload generation
(see Section 6.1). We used warm-up and test work-
loads of 5,000 and 50,000 queries respectively, for each
z value. The semantic cache gives hit rates which are
more than 30% higher. The query/view answerabil-
ity we capture is thus, much richer than naive string
matching. For the remaining experiments, we have
used workloads generated using z = 1.5.

Figure 7 shows how the average cache lookup time
varies with the size of the test workload. Here we
are looking to determine how well lookup scales to a
large number of stored views. In all cases, the same
warm-up workload of size 20,000 was used. We can see
that the lookup time for the semantic cache remains
constant at around 13 ms, even as the workload size
increases to half a million queries. This time is very
small compared to the time taken to execute a typical
XPath query in the workload. This is exactly what
we would like to have. The naive cache takes a mere
0.47 ms per lookup. However, in query processing, this
difference will be offset by the higher hit rate of the
semantic cache, as we will see later.

Recall that lookup for a query Q of depth n will
require executing some d SQL queries, where d ≤ n,
and inspecting their results (see Figure 3). The depth
of the Composing Query C will be exactly d. If Q is
a cache miss, then d will be n. Figure 8 shows lookup
times separately for different subsets of the test work-
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notes hits having Composing Queries of depth d
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load. Hit-d denotes the set of queries whose Compos-
ing Queries were of depth d. As expected, as d in-
creases, the lookup time for Hit-d increases. Here, we
had again used a test workload of 500,000 queries, and
warmed up on 20,000. Finally, Figure 9 shows how the
hit rate varies with the test workload size.

6.3 Query Processing Performance

We now show the speedup obtained in query process-
ing, by employing the semantic cache. The experimen-

0

100

200

300

400

500

600

700

800

900

1000

Semantic Cache Naïve Cache No Cache

A
vg

 T
im

e 
/ Q

ue
ry

 (
m

s)
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Figure 11: Query Times by Lookup Outcomes

tal setup is the same as in the previous subsection, with
a couple of differences. First, we turned on the “gen-
eralized templates” heuristic. Second, we filtered the
generated queries, and included in the test workload
only those which were found to execute in at most 5
seconds. Some of the generated queries were taking
more than a minute on the 300 MB XML database
(even after creating the path index for XML data that
SQL Server allows [PCS+04]). These queries, when an-
swered from the cache, could give us speedup results
which were misleadingly high, and where the bulk of
the speedup came from a few select cache hits. The
workload zipf exponent z, used in creating attribute
predicates, was again 1.5. This seems high. However,
note that, for most attributes, we were sampling from
tens of thousands of values. Further, our XPath gen-
erator generates query structure completely randomly,
and a higher z value compensates for this absence of
locality in structure.

We used warm-up and test workloads of 1500, and
8500 queries respectively. Figure 10 shows the aver-
age time per query, for three different configurations.
When not caching, the queries took 880 milliseconds
each. Having the naive cache brought this down to 700
ms, while employing the semantic cache brought this
down to 340 ms, which is a speedup by a factor of 2.6.
Recall that Hit-d denotes the subset of queries, having



Semantic Naive
Cache Cache

Avg Time/Hit (ms) 26.11 5.03
Avg Time/Miss (ms) 1428.39 1255.22
Final Size (KB) 6037.29 3634.29
Hit Rate 0.78 0.44

Table 5: Cache measurements

Composing Queries of depth d. Figure 11 shows, for
different values of d, the average time taken for queries
in Hit-d. The increase in time, as d increases, is much
sharper than what we saw for cache lookup alone in
Figure 8. This confirms one of our main motivations
for caching: small depth queries, executed on small
fragments, run faster than larger depth queries, exe-
cuted on larger fragments. A cache miss of depth n

can be thought of as an extreme case, where a query
of depth n is executed on a very large fragment, the
entire XML data.

Finally, Table 5 shows some additional measure-
ments. For a query which is a cache hit , the semantic
cache needs to query a cached fragment. This is unlike
the naive cache, which simply returns the whole frag-
ment (at least for XPath workloads). Considering this,
the average hit time of 26 ms for the semantic cache is
impressive. An interesting observation is that the av-
erage time per miss for the semantic cache is 1428 ms,
which is much higher than the average of 880 ms, for
a query on the XML database. We know that cache
lookup only takes an extra 15 ms. Thus, the workload
queries that are cache misses, have a larger average ex-
ecution time on the XML database, than those which
are cache hits. This can be explained as follows. If
query Q is a hit, and is answered using view V, then
the database can clearly answer Q from the disk pages
it needed for answering V. It is likely that some or
all of these disk pages are still in memory, when Q
is presented. Thus, when not using a semantic cache,
queries which would have been cache hits, still execute
faster on average than those which would have been
misses. Finally, despite a higher hit rate, the semantic
cache ends up with a larger size. This is because of its
proactive view selection during warm-up.

7 Conclusions

We described a technique for employing a semantic
cache of materialized XPath views. Our notion of
query/view answerability gave a much higher hit rate
than a naive string matching cache. We used string
operations for cache lookup, and demonstrated the
scalability of our lookup method to a large number of
views. Cache hits were processed well over an order of
magnitude faster than misses. We obtained impressive
speedups on XPath workloads having locality. Seman-
tic caching is likely to prove very useful, where appli-
cable. Interesting directions for future work would be
to answer a larger XQuery fragment, to study more so-

phisticated methods for view selection, and to explore
methods for maintaining these views in the presence
of XML database updates.
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