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Since their invention in the early 70s, relational databases
have been deterministic. They were designed to support
applications s.a. accounting, inventory, customer care, and
manufacturing, and these applications require a precise se-
mantics. Thus, database systems are deterministic. A row
is either in the database or is not; a tuple is either in the
query answer or is not. The foundations of query process-
ing and the tools that exists today for managing data rely
fundamentally on the assumption that the data is determin-
istic.

Increasingly, today we need to manage data that is un-
certain. The uncertainty can be in the data itself, in the
schema, in the mapping between different data instances, or
in the user query. We find increasingly large amounts of un-
certain data in a variety of domains: in data integration, in
scientific data, in information extracted automatically from
text, in data from the physical world. Large enterprises to-
day can sometimes afford to cope with the uncertainty in
their data by completely removing it, by using some expen-
sive data cleaning or ETL tools. But increasingly today
organizations or users need to cope directly with uncertain
data, either because cleaning it is prohibitively expensive
(e.g. in scientific data integration or in integration of Web
data), or because it is even impossible to clean (e.g. sen-
sor data or RFID data). It becomes clear that we need
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to be able to manage data that is uncertain. Such data
is usually represented by explicitly annotating it with the
degree of uncertainty, which is almost always a probability.
Hence, our quest to develop data management techniques for
probabilistic data. In most cases only a fraction of a large
database is uncertain: it can be a table representing the
fuzzy match between two otherwise clean data sources, or
some automatically extracted information enriching a clean,
reference database. The tools that we develop for managing
uncertain data must therefore be natural extensions of the
current database management tools.

Probabilistic databases have been studied almost continu-
ously since the late 80’s [10, 6, 28, 41, 60]. Recently, there
has been an increased interested in probabilistic databases
and in the management of probabilistic data in general be-
cause of the need to cope with uncertainties in large scale
data management. Active research groups working on prob-
abilistic data management include, among others, the Trio
project at Stanford [58], the MystiQ project at the Uni-
versity of Washington [9, 48], the Orion project at Purdue
University [47, 12], the group at the University of Mary-
land [31], and the MayBMS project at the University of
Saarland [4]. Far from being solved, the problem of prob-
abilistic data management is an active and challenging re-
search area, spanning data management, probabilistic in-
ference, and logic. In this short paper we illustrate a few
scenarios requiring the management of uncertain data, then
give a brief overview of the main research questions in the
area.

1. INSTANCES OF UNCERTAIN DATA
In fuzzy object matching the problem is to reconcile ob-

jects from two collections that have used different naming
conventions. This is a central problem in data cleaning and
data integration, and has also been called record linkage, de-
duplication, or merge-purge [26, 3, 11, 29, 34, 36, 14, 59, 5].
The basic approach is to compute a similarity score between
pairs of objects, usually by first computing string similarity
scores on their attributes, then combining these scores into
a global score for the pair of objects. Next, this score is
compared with a threshold, and each pair of objects is clas-
sified into a match, a non-match, and a maybe-match [3]. Ré
et al. [48] propose to convert these scores into probabilities1

and store them directly in a probabilistic database. There is
no more need for a threshold: instead all potential matches
are stored together with their probabilities, then used dur-
ing query processing to rank the answers. Fig 1 illustrates

1They are often already expressed as a probability.



MovieReviewMatch
Review Movie P
12 Monkeys Twelve Monkeys 0.4
12 Monkeys Twelve Monkeys (1995) 0.3
12 Monkeys Monk 0.013
Monkey Love Twelve Monkeys 0.35
Monkey Love Love Story 0.27

This example is adapted from [48]

Figure 1: Illustration of a fuzzy join between some
movies in the IMDB movie database and reviews
found on the Web. The movie titles and the re-
views almost never match exactly. The fuzzy join
computes a similarity score between the movie ti-
tles and the reviews. The result is a probabilistic
table.

Text document: ...52 A Goregaon West Mumbai ...

PersonAddress
PersonID House-No Area City P
1 52 Goregaon West Mumbai 0.1
1 52-A Goregaon West Mumbai 0.5
1 52 Goregaon West Mumbai 0.2
1 52-A Goregaon West Mumbai 0.3
2 7 Westlake . . . . . .

This example is adapted from [35].

Figure 2: Text segmentation of street addresses.
Each address has several possible segmentations.
Wile the standard approach is to retain only the
most likely segmentation, the other possible segmen-
tations are often quite important in query answer-
ing, and can be kept in a probabilistic relation.

a small fragment of such a match table between movie titles
from IMDB and reviews from the Web.

The goal of Information Extraction is to extract struc-
tured data from a collection of unstructured text documents.
Usually the schema is given in advance by the user, and the
extractor is tailored to that specific schema [51]. All ap-
proaches to extraction are imprecise, and most often can
associate a probability score to item extracted. Gupta and
Sarawagi [35] describe how to use a probabilistic database to
store the result of text segmentation with Conditional Ran-
dom Fields: Fig. 2 illustrates the possible segmentations of
an address, together with their probabilities.

Data produced by information extraction systems is often
used by applications in conjunction with other data. For ex-
ample a marketing company may integrate this data with a
data about incomes to answer the query find 500 people with
the highest income living in West Mumbai. Correct extrac-
tions are critical for such applications otherwise the query
has low recall, e.g. it will miss all customers whose real
address is West Mumbai but the system extracted Mumbai
instead. Today’s common practice is to retain only the most
likely extraction for each piece of text, and discard the oth-
ers, but this loses a lot of valuable information. Indeed [35]
has shown a strong correlation between the probability re-
turned by a CRF-based extractor and the fraction of extrac-
tions that are correct. For example if one manually inspects
all extracted items that have probability between, say, 0.3
and 0.35, then one finds that approximatively 30 − 35% of
them are correct in a given instance. As a consequence,

keeping only the most likely segmentation will miss many
correct segmentations. Instead, [35] proposes to keep all
segmentations in the probabilistic table, hence the need to
support general-purpose queries on a probabilistic database.

RFID Data Management is an emerging class of applica-
tions whose goal is to manage readings of RFID tags. The
RFID Ecosystem deployed at the University of Washing-
ton is based on a building-wide RFID infrastructure with
80 RFID readers, 300 antennas, tens of tagged people, and
thousands of tagged objects [55]. All data is streamed from
the readers into a central database, where it is accessible
to applications. One goal of the RFID Ecosystem is to
study and develop applications of RFID-based, community-
oriented pervasive computing, and the data management as-
pects play a central role in this study. The raw data collected
by the RFID system is a table Sighting(Time, TagID, An-

tennaID), where each triple captures the time and location
where a reader sighted an RFID tag near one of its antennas.
Four such readings are illustrated by the large (red) dots in
the four diagrams in Fig. 3. The raw antenna readings are
too noisy to be used directly by the applications: readings
are missed, or tags are read by two adjacent antennas, etc.
Probabilistic models are used to extract higher level events
from the raw, low level readings. For example, as a first
step, a particle filter is used to compute a probability dis-
tribution on a person’s location, as that person walks along
a corridor: these are the small, yellow dots in Fig. 3. The
resulting data is thus probabilistic, and is stored in a prob-
abilistic table LocatedAt(Time, TagID, Location, P), as
shown in Fig. 3. The next step is to develop applications
that query this data in complex way, e.g. retrieve all stu-
dents who took my book to the coffee room, and for that one
needs a probabilistic database management system.

Social Network Analysis A new and interesting example
of uncertain data are social networks [2]. The data in large
social networks is invaluable for marketing, health, commu-
nication, and other applications, and this has renewed the
interest in Social Network Analysis (SNA) [27, 54]. Novel so-
cial network applications enable individuals to connect with
old friends and colleagues and form bridges to new indi-
viduals in areas ranging from business (e.g. Visible Path
[45] and Linked In [39]) to socialization (e.g. Facebook [25]
and MySpace [44]) and to entertainment (e.g. iLike [15]).
Given the way the data about social networks is collected,
it is almost always imprecise. For example, data is collected
through automated sensors [13], or is anonymized commu-
nication data (e.g. e-mail headers [1]), or is extracted from
self-reporting/logging on Internet-scale networks [17, 30] as
a proxy for real relationships and interactions. Further-
more, approximation algorithms [57] intended to calculate
network properties (e.g. various centrality measures) on
these increasingly large networks creates additional uncer-
tainty. Typically the data for SNA is a graphical represen-
tation in which nodes—called actors —represent individu-
als or groups. An edge (potentially labeled) in this graph
represents the relationship between actors and generally in-
dicates the possibility of information flow between them. In
the early history of SNA, this graph data was collected by
survey, interview, and other observational techniques [27,
37, 54, 56]. While the results were potentially tainted by
biased observations, missed observations, and misreporting,
the intimate involvement of the researcher (frequently, over
extended periods) provided some confidence that the data



LocatedAt

Time TagID Location P
1244 T388 L2 0.2

L3 0.4
L5 0.4

1245 T388 L3 0.3
L4 0.1
L5 0.2
L6 0.4

1246 . . .

Figure 3: An example in which raw readings from
RFID tags are converted into a probabilistic table
representing a person’s location. The RFID anten-
nas are the large blue dots: the red dots in each
diagram show which antenna is receiving a signal
from the RFID tag at that time. A particle filter
generates at each moment in time 100 samples of
the persons location, which can be used to derive a
probability space over that person’s location. This is
stored in a probabilistic table illustrated here. The
images are courtesy of Julie Letchner.

Influences

Name1 Name2 P
Alice Bob 0.5
Alice Kim 0.2
Bob Kim 0.9
Bob Alice 0.5
Kim Fred 0.75
Fred Kim 0.4

This example is adapted from [2]

Figure 4: A social network

was precise. As those studying and utilizing social networks
have moved to enormous scales, they have frequently sacri-
ficed some accuracy as careful methodologies have become
increasingly difficult or impossible. Furthermore, in wild and
uncontrolled environments such as the Internet, biases can
develop due to application design (e.g. default friends on
MySpace) and malicious individuals (e.g. spammers build-
ing network connections in some automated way). The re-
sult of this “noise” is the introduction of tremendous levels
of uncertainty in the data which are ill-supported by current
large scale data management systems. A brief illustration
of a social network and its representation as a probabilistic
database is given in Fig. 4.

The quest for a general purpose probabilistic database
management system. Clearly, what all these applications
have in common is their need to manage some probabilis-
tic data. In addition, they need to support general-purpose
queries over this probabilistic data, or over a mixed database
consisting of both probabilistic and deterministic databases.
Consider for example a query asking for all movies that re-
ceived a high review from both reviewers Jim and Joe (a two
thumbs up movie):

SELECT DISTINCT m.title

FROM Movie x, MovieReviewMatch m1, Review y1,

MovieReviewMatch m2, Review y2

WHERE x.title = m1.movie and m1.review = y1.review

and y1.reviewer = ’Joe’ and y1.rating >= 3

and x.title = m2.movie and m2.review = y2.review

and y2.reviewer = ’Jim’ and y2.rating >= 3

The query mentions twice the table MovieReivewMatch in
Fig. 1 in addition to two deterministic tables, Movie and
Review. The challenge for the query processor is to com-
pute not just the distinct movie titles, but also their prob-
abilities, based on the uncertain evidence contained in the



MoviewReviewMatch table. Moreover, it needs to integrate
this probabilistic inference with standard query processing,
s.a. index lookups, join computations, and groupbys. The
answers to such a query will be returned to the user an-
notated with the systems’ confidence (a probability), and
ranked in decreasing order of that confidence. It is criti-
cal for all applications of uncertain data to support such
general-purpose queries, expressed in some database query
language s.a. SQL.

2. CHALLENGES
Query processing The answer to a standard SQL query

over a probabilistic database is a set of probabilistic tuple
answers: each tuple returned by the system has a probabil-
ity of being in the query’s answer set. The system needs to
compute these probabilities, and is this difficult, because it
is an instance of the probabilistic inference problem, which
has been extensively studied in the AI literature [16], and
is known to be notoriously hard [40]. To process large scale
probabilistic data we need to develop specific probabilistic
inference techniques that can be integrated well with SQL
query processors and optimizers, and that scale to large vol-
umes of data. This has a lead to a line of research [20, 19,
52, 48] that has adapted probabilistic inference algorithms
to various classes of SQL queries and various representation
formalisms for probabilistic data. An important result from
this line of research is the observation that database queries
admit a dichotomy in terms of their complexity over prob-
abilistic databases: each query q can either be computed
in PTIME in the size of the probabilistic database, or is
#P-hard 2 in the size of the probabilistic database. The
complexity of the query evaluation problem on probabilistic
databases has been studied in [32, 20, 23, 22, 49] for various
SQL fragments and various representation formalisms.

Representation formalisms In its most general form, a
probabilistic database is a probability space over all possible
instances of the database, called possible worlds. It is impos-
sible in practice to enumerate all possible instance: instead
we need a concise representation formalism that can describe
all possible worlds and their probabilities. The most com-
monly used techniques in Knowledge Representation exploit
conditional independence between variables and represent a
probability space in terms of a graphical model [46]. In prob-
abilistic databases, because they are used to manage data
with uncertainties, we also need to represent the lineage, or
the provenance of each item in the data, to capture the rea-
son for its uncertainty. The problem of representing both the
uncertainty and the lineage has been addressed in the Trio
project [58, 8, 7], which has introduced the term ULDB. An
important observation of this line of research is that the lin-
eage can be expressed naturally using some form of boolean
expressions. Such expressions had been studied before to
represent incomplete databases (c-table) [38] and probabilis-
tic databases [28]. In particular, the lineage contains suffi-
cient information to enable a general-purpose probabilistic
inference algorithm to compute the output probabilities of
any SQL query, although using this approach in practice
is likely to be quite inefficient. More generally, lineage and

2#P is a complexity class introduced by Valiant [53] and
consists of all numerical functions f s.t. there exists a poly-
nomial time, non-deterministic Turing Machine M s.t. on
every x, f(x) is the number of accepting computations of M
on input x.

provenance expressions are instances of expressions in a com-
mutative semiring, as described by Green at al. [33].

Query answering from probabilistic views In many
scenarios we do not have access to the full information about
the probability space. One example is the partial repre-
sentation of probabilistic views described in [50]. Here the
representation only describes which tuples are independent
and which tuples are disjoint, leaving unspecified all other
correlations. This representation is very efficient, since it
removes a lot of detailed lineage information, but a query
can use the view only if its answer is independent on the
correlations left unspecified. This enables a system to use
previously answered queries to speedup the evaluation of a
new query, much in the spirit of query answering using views
and semantic caching. In another, more general scenario,
there are probabilistic mappings between data sources [24].
Such mappings are likely to increase in the future in large-
scale data integration projects, because of the difficulties
to compute automatically accurate, deterministic mappings
between complex data sources. It is know from the deter-
ministic case that query answering in the presence of LAV
(“local as view”) mappings is equivalent to query answer-
ing using views. Except for some initial results in [21], the
query answering problem over probabilistic views is largely
unexplored.

Security and Information Leakage The probabilistic
data model has been used to reason about information leak-
age in views, and more generally, in data exchange. Here
the data is private and the owner wishes to publish a certain
view, and the concern is that the view might leak private in-
formation in the data. One approach to measure the amount
of information leakage is to model the attacker’s background
knowledge as a probability space, and to check whether the
a posteriori probability of the secret (after seeing the view)
is significantly different from the a priori probability: perfect
security is when the two are equal [43, 42], while practical
security is when the two are close [18]. The difficulty here
is to compute the query’s answer when the input probabil-
ities are not even known. A different, yet very important
problem, is the design of security policies in the case when
the data is uncertain. Today’s common practice in defining
access control rules is to specify them in terms of certain
credentials offered by a user. For example, a rule for pre-
serving private information in RFID data might say “if a
user $U was at the same location as a user X at the same
time T, and queries the location of $X at time T then he/she
should be granted access to that location”. An open problem
is to define the right semantics for such access control poli-
cies when the credential is probabilistic: if the system has
only 70% confidence that the user $U was a certain location
at time T, should it answer the query or should it deny it ?

3. REFERENCES
[1] L. A. Adamic and E. Adar. How to search a social

network. Social Networks, 27(3):187–203, 2005.
[2] E. Adar and C.Re. Managing uncertainty in social

networks. IEEE Data Engineering Bulletin,
30(2):15–22, 2007.

[3] R. Ananthakrishna, S. Chaudhuri, and V. Ganti.
Eliminating fuzzy duplicates in data warehouses. In
VLDB, 2002.

[4] L. Antova, C. Koch, and D. Olteanu. MayBMS:
Managing incomplete information with probabilistic
world-set decompositions In ICDE, 2007.



[5] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact
set-similarity joins. In VLDB, 2006.

[6] D. Barbara, H. Garcia-Molina, and D. Porter. The
management of probabilistic data. IEEE TKDE,
4(5):487–502, 1992.

[7] O. Benjelloun, A. Das Sarma, A. Halevy, and
J. Widom. ULDBs: Databases with uncertainty and
lineage. In VLDB, 2006.

[8] O. Benjelloun, A. Das Sarma, C. Hayworth, and
J. Widom. An introduction to ULDBs and the Trio
system. IEEE Data Eng. Bull, 29(1):5–16, 2006.

[9] J. Boulos, N .Dalvi, B. Mandhani, S. Mathur, C. Re,
and D. Suciu. Mystiq: A system for finding more
answers by using probabilities. In SIGMOD, 2005.

[10] R. Cavallo and M. Pittarelli. The theory of
probabilistic databases. In of VLDB, 1987.

[11] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani.
Robust and efficient fuzzy match for online data
cleaning. In ACM SIGMOD, San Diego, CA, 2003.

[12] R. Cheng and S. Prabhakar. Managing uncertainty in
sensor databases. SIGMOD Record, 32(4), 2003.

[13] T. Choudhury, M. Philipose, D. Wyatt, and J. Lester.
Towards activity databases: Using sensors and
statistical models to summarize people’s lives. IEEE
Data Eng. Bull., 29(1):49–58, 2006.

[14] W. Cohen, P. Ravikumar, and S. Fienberg. A
comparison of string distance metrics for
name-matching tasks. In IIWeb, 2003.

[15] Garage Band Corp. www.ilike.com.
[16] R. Cowell, P. Dawid, S. Lauritzen, and

D. Spiegelhalter, editors. Probabilistic Networks and
Expert Systems. Springer, 1999.

[17] D. M. Boyd. Friendster and publicly articulated social
networking. In CHI 2004, 2004.

[18] N. Dalvi, G. Miklau, and D. Suciu. Asymptotic
conditional probabilities for conjunctive queries. In
ICDT, 2005.

[19] N. Dalvi, Chris Re, and D. Suciu. Query evaluation on
probabilistic databases. IEEE Data Engineering
Bulletin, 29(1):25–31, 2006.

[20] N. Dalvi and D. Suciu. Efficient query evaluation on
probabilistic databases. In VLDB, 2004.

[21] N. Dalvi and D. Suciu. Answering queries from
statistics and probabilistic views. In VLDB, 2005.

[22] N. Dalvi and D. Suciu. The dichotomy of conjunctive
queries on probabilistic structures. In PODS, 2007.

[23] N. Dalvi and D. Suciu. Management of probabilistic
data: Foundations and challenges. In PODS, 2007.
(invited talk).

[24] X. Dong, A. Halevy, and C. Yu. Data integration with
uncertainty. In VLDB, 2007.

[25] Facebook. www.facebook.com.
[26] I. Felligi and A. Sunter. A theory for record linkage.

Journal of the American Statistical Society,
64:1183–1210, 1969.

[27] L. C. Freeman. The Development of Social Network
Analysis: A Study in the Sociology of Science.
Empirical Press, 2004.

[28] N. Fuhr and T. Roelleke. A probabilistic relational
algebra for the integration of information retrieval and
database systems. ACM Trans. Inf. Syst., 15(1):32–66,
1997.

[29] H. Galhardas, D. Florescu, D. Shasha, E. Simon, and
C.A. Saita. Declarative data cleaning: Language,
model, and algorithms. In VLDB, 2001.

[30] L. Garton, C. Haythornthwaite, and B. Wellman.
Studying online social networks. Journal of
Computer-Mediated Communication, 3, 1997.

[31] L. Getoor. An introduction to probabilistic graphical
models for relational data. IEEE Data Engineering
Bulletin, Special Issue on Probabilistic Data

Management, 29(1):32–40, March 2006.
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