
Demonstration of the Cosette Automated SQL Prover

Shumo Chu, Daniel Li, Chenglong Wang, Alvin Cheung and Dan Suciu
University of Washington

{chushumo, dli132, clwang, akcheung, suciu}@cs.washington.edu

http://cosette.cs.washington.edu

ABSTRACT
In this demonstration, we showcase Cosette, the first au-
tomated prover for determining the equivalences of SQL
queries. Despite theoretical limitations, Cosette leverages
recent advances in both automated constraint solving and
interactive theorem proving to decide the equivalences of a
wide range of real world queries, including complex rewrite
rules from the database literature. Cosette can also val-
idate the inequality of queries by finding counter exam-
ples, i.e., database instances which, when executed on the
two queries, will return different results. Cosette can find
counter examples of many real world inequivalent queries
including a number of real-world optimizer bugs. We show-
case three representative applications of Cosette: proving
a query rewrite rule from magic set rewrite, finding counter
examples from the infamous optimizer bug, and an interac-
tive visualization of automated grading results powered by
Cosette, where Cosette is used to check the equivalence
of students’ answers to the standard solution. For the demo,
the audience can experience through the three applications,
and explore the Cosette by interacting with the tool using
an easy-to-use web interface.

1. INTRODUCTION
We present Cosette, the first automated SQL prover

that can decide whether two SQL queries are equivalent or
not. Built on top of prior research on the theoretical limi-
tations of reasoning about semantic query equivalences, we
have used Cosette to the equivalences of a wide range of
real world SQL queries efficiently [7].

The Cosette Prover. To determine the equivalences of
SQL queries, Cosette leverages recent advances in both au-
tomated constraint solving and interactive theorem proving.
If two queries are inequivalent, Cosette uses rosette [16],
an automatic constraints solver, to find counter examples,
i.e., database instances in which running the two queries on
will return different results. If two queries are equivalent,
Cosette finds a formal proof for the equivalence and val-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’17, May 14 - 19, 2017, Chicago, IL, USA
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3058728

idates the proof using a proof assistant, Coq [3], a widely
used in verifying machine checkable proofs.

Cosette encodes SQL queries to logic formulas to find
counter examples of inequivalent SQL queries by constraint
solvers. Cosette encodes SQL queries to K-Relations [10],
where each relation R is represented as a mathematical func-
tion that takes a tuple as input and returns its multiplic-
ity in R. This allows the proof assistant to easily search
for machine checkable proofs of equivalence. In addition,
Cosette includes a number of optimizations to make solv-
ing and proof search efficient. For example, our data model
allows constraints to be easily generated and solved, and we
have also developed a number of proof tactics to speed up
proof search. Besides the fully automated mode, Cosette
also allows developers to interact with the tool by writing
their own proof scripts using a library of lemmas provided
by Cosette. As a result, Cosette can solve a wide range
of real world SQL queries, including equivalent SQL rewrites
and inequivalent SQL queries such as real world optimizer
bugs efficiently [7].

Applications of Cosette. As a computer-aided tool for
reasoning about SQL query equivalences, Cosette can be
used in a variety of real-world database applications:

Correctness of RDBMS Rewrite rules are the basis of
query optimizers. Creating new rewrite rules is error prone,
and discovering bugs in them is difficult. One example is
the infamous COUNT bug [11], which took 5 years identify.
Using Cosette, on the other hand, it only takes fewer than
10 seconds to generate a counter example to prove that the
rewrite is not sound.

Semantic Caching. Prior work on query caching is based
on the exact matching of query strings, which loses the op-
portunity to cache semantically equivalent queries. Using
Cosette, many database applications can cache query re-
sults and use them to answer a wider range of queries, which
will improve application efficiency.

Automatic Grading. The need for computer science edu-
cation keeps growing recently. Unfortunately, grading stu-
dents’ homework is a tedious and time consuming task. Cosette
provide a scalable solution for grading data management
course homework, and can mitigate the workload of course
instructors. In addition, the counter examples returned by
Cosette can help students to learn SQL interactively on-
line, where usually timely reaction to students is lacking.

Using Cosette. Both machine checkable theorem proving
and constraints generation require high experty in formal
methods. To use Cosette, users needs to understand none

Constraint
Generator

UniNomial
Generator

Constraint
Solver

Proof
Assistant

Web UI

Constraints UniNomials

DSL Parser

Subgoals

Result: Equiv./ Inequiv. / Unknown

Increase
relation size

R(a:int, …);
Q1=SELECT …;
Q2=SELECT …;
Q1 = Q2?

Frontend
Backend

Figure 1: Cosette architecture, where texts and ar-
rows in blue indicate user interactions.

of them. Cosette provide a DSL (Domain Specific Lan-
guage) to let users specify queries to be verified. Given the
input, Cosette will compile users’ queries to encodings that
will be sent to the proof assistant and constraint solvers. The
Cosette DSL supports declarations of schemas, relations
and predicates, and queries to be checked using SQL syn-
tax. In addition, Cosette DSL supports symbolic relations
and predicates as well as extensible schemas, so that users
can use Cosette to check the equivalences of two templated
queries in addition to concrete queries. Cosette provides
a web interface for users to write Cosette DSL in the edi-
tor pane and shows the result as well as error messages. If
the result is not equivalent, the web interface will show the
counter examples.

Detailed examples of using Cosette will be provided in
Sec. 3.

2. Cosette OVERVIEW
In this section, we present an overview of Cosette as the

context for understanding the novel applications that we will
demonstrate.

Figure 1 shows the overall architecture of Cosette. Cosette
takes users’ query rewritten in the Cosette DSL using the
web interface (shown in Figure 2). In the Cosette DSL,
users can write declarations of schemas, relations, predi-
cate and aggregation functions. Users then specify the SQL
queries to be checked on these declarations as well as liter-
als. Cosette web user interface passes user inputs to the
DSL parser, which parses them to Cosette ASTs (Abstract
Syntax Tree) and passes the ASTs to the two compilation
toolchains shown in the bottom of Figure 1.

On one hand, the constraint generator translates the ASTs
into constraints. During the translation, the constraints gen-
erator bounds the size of each symbolic relation. The gen-
erator uses fresh symbolic variables to represent each of the
tuples in the symbolic relations, and translates the seman-
tics of the input queries into constraints over the symbolic
variables. The constraint solver then solves the generated
constraints. If a counter example is found, the input queries
are inequivalent, and the example is returned to the user via
the web interface. If a counter example cannot be found, the
generator increases the size of the symbolic relations, gen-
erates constraints on the increased sized symbolic relations

Figure 2: Cosette Web User Interface.

and calls the constraint solver again. This process will be
repeated until timeout or a counter example is found.

On the other hand, if the constraint solver cannot find a
counter example until timeout, Cosette will forward the
ASTs to the uninomial generator. The generator compiles
the symbolic relations to K-relations, which are mathemat-
ical functions that return the multiplicity of a given tuple,
and translates the queries into algebraic expressions over K-
relations called UniNomials. The generator sends the Uni-
Nomials to the proof assistant. The proof assistant uses our
proof search heuristics (tactics) to find a valid proof for the
equivalences of the queries. If the proof assistant cannot find
proof, it will return unknown to the user through the web
interface. The user has the following options:

1. Increase the time budget so that a larger counter ex-
ample can be searched.

2. Manually complete the unfinished proof and check the
validity of the proof using the proof assistant. The user
can still use the lemmas from the Cosette library as
well as use automatic tactics for proving subgoals and
constraint solver for disproving subgoals.

Cosette includes many optimization to make solving effi-
cient. For example, we use standard syntactic rewrites [5] to
support grouping on top of K-relations. We model multiplic-
ity as symbolic variables so that many aggregation queries
requires less symbolic variables to encode. More details can
be found in [7, 8].

3. DEMONSTRATIONS
We demonstrates three use cases of Cosette, 1) proving

equivalent rewrite rules, 2) finding optimizer bugs, and 3)
automated homework grading and analysis. Cosette’s web
interface and the Cosette DSL will be demonstrated when
we walk through these use cases.

3.1 Proving Query Equivalences
Users can use Cosette to prove query equivalences by

specifying queries to be checked in Cosette DSL. Figure 3
shows an example of specifying one of magic set rewrite
rules, introduction of θ-semijoin, in Cosette. Magic set
rewrites are well-known rewrite rules that are used for rewrit-
ing complex decision support queries in commercial systems

� �
-- schema declarations
schema s1(??);
schema s2(??);
-- table declarations
table r1(s1);
table r2(s2);
-- predicate declarations
predicate θ(s2,s1);
-- queries
query q1 =
select * from r1 x, r2 y where θ(x,y);
query q2 =
select * from (r2 SEMIJOIN r1 ON θ) x, r1 y

where θ(x,y);
-- verify statement
verify q1 q2;� �

Figure 3: Example of using Cosette DSL to specify
one of the magic set rewrite rules: Introduction of
θ-SemiJoin

Figure 4: Result of running the Cosette program in
Figure 3.

such as IBM’s DB2 database [13, 15]. The queries we show
here is from one of the three basic rewrite rules that can
compose magic set rewrites [15].

As shown in Figure 3, schemas and tables need to be first
declared using the Cosette DSL. Since this rewrite rules
does not require any specific attributes on the schemas of
the both tables, we put ?? in the schema declaration, which
means schema s1 and s2 can contain any attribute of any
datatype. Then we declare the predicate that will be used
in the queries, θ, and the schema of the tuples that this
predicate will be evaluated on. In this example, θ(s2, s1)
means θ will be evaluated on tuples with the schema that
is the union of s2 and s2. The predicate we defined here is
called symbolic predicate. It will be used in the queries to
be checked later. If we prove the equivalence of queries with
symbolic predicates, the equivalencies of queries where such
symbolic predicates are instantiated with any concrete pred-
icate is also proved. For example, if we proved the equiv-
alences of the queries in Figure 3, the equivalences of the
two concrete queries by replacing θ with x.a = y.a (or any
other predicate) is also validated.

After declaring schemas and predicates, users write the
queries that are to be proved using standard SQL syntax.
These queries can have literals, such as numbers and strings,
as well as the symbolic tables and symbolic predicates that
are declared earlier. When using symbolic predicates such
as θ in queries, users need to replace its schemas with the

� �
-- schema declarations
schema s(pnum:int , shipdate:int);
schema p(pnum:int , qoh:int);
-- table declarations
table parts(p);
table supply(s);
-- query 1
query q1 =
select x.pnum as xp
from parts x
where qoh = (select count(y.shipdate)

from supply y
where y.pnum = parts.pnum and

shipdate < 10);
-- query 2
query q2 =
select x.pnum as xp
from parts x,

(select y.pnum as suppnum ,
count(y.shipdate) as ct

from supply y
where y.shipdate < 10
group by y.pnum) temp

where x.qoh = temp.ct and x.pnum = temp.suppnum
;

-- verify statement
verify q1 q2;� �

Figure 5: COUNT bug specified in Cosette DSL

actual tables that this predicate is on, in the example, θ(x,
y) means that θ is evaluated on x and y.

The editor provided by the Cosette web interface shown
in Figure 2 is where users write the queries to be checked
using the Cosette DSL. The web editor supports syntax
highlighting and visual marking on parsing errors for users’
convenience. In this example, after submitting the Cosette
DSL program using the web UI, since the two queries are
indeed equal, Cosette shows the proof script containing
the steps it takes to prove the equivalence (Figure 4).

3.2 Finding Counter Examples for Inequiva-
lent Queries

Cosette can also be used to find counter examples of in-
equivalent queries. The steps that users take to find counter
examples is similar to the steps that are used to prove equiv-
alent queries. We provided a example Cosette program ex-
pressing the infamous COUNT optimizer bug. The bug was a
proposed rewrite rule for rewriting queries with aggregation
and grouping by Kim [11]. This rewrite rule is discovered to
be incorrect in a paper published 5 years later [9]. Figure 5
shows the COUNT bug expressed in Cosette DSL.

When users runs this program in Cosette, Cosette will
return the counter example it finds for these two queries
(in our experiment this was done within 1 second). The
counterexample contains two concrete tables as shown in
Figure 2. While solving, Cosette will show the process of
increasing the bound of size of the symbolic tables to the
users. If Cosette cannot find a counterexample given the
default time limit, the users could choose to increase the
time budget or allocating more computational power to the
backend.

3.3 Automated Grading
Cosette can be used to power automated grading of data

management course homework, especially in MOOC set-

Figure 6: SandDance visualization of students an-
swer on a homework problem in undergraduate
database course at the University of Washington.
Each square represents one student’s answer. Each
bar represents an equivalence class.

tings. These courses often need to teach students to write
complex SQL queries. Previous automated grading solu-
tion runs students answers using some test input, and check
whether the results are the same as the result by running the
standard solution. This has two drawbacks. 1) the test in-
put provided may not capture some of the errors in student
answer. 2) designing good test input is hard and requires
extra work. Using Cosette can solve these two problems
with the ability to reason about the equivalences automat-
ically. In addition, being able to return counter examples
when the answers from students are wrong can provide sim-
ilar feedback compared with a human tutor. The students
are able to reason about the their errors by using the counter
examples provided.

We demonstrate an automated grading result of a home-
work problem from the undergraduate data management
course (CSE344 [1]) using Cosette. Figure 6 shows an
interactive visualization for the course tutors based on the
result of running students’ answers using Cosette. This
visualization is inspired by the SandDance visualization [2]
from Microsoft. In this visualization, we clustered all the
answers into equivalence classes based on their semantic
equivalences. Each square represents an student’s answer.
Naively, this requiresO(N2) times calling Cosette by check-
ing equivalences of the answers pairwise. However, some
checkings can be avoided since we know the transitivity of
the equivalences, e.g., Q1 = Q2 ∧ Q2 6= Q3 ⇒ Q1 6= Q3.
In Figure 6, the size of each bar is proportional to the size
of the equivalence class that it represents. The course tu-
tor can use such visualization to identify the most common
error made by the students very easily. When the cursor is
hovered on top of a square, the student answer that it repre-
sents will show up as well. The demo audience will be able
to interact with the visualizations based on pre-computed
results of student submissions.

4. RELATED WORK
The theoretical limitations of query equivalences have been

studied extensively. Except for conjunctive queries, which
have a decision procedure to check equivalences [4], most
interesting classes of SQL queries are undecidable [17, 14].
Previous work on applying formal methods to database queries
include [12, 18], which focus on constructing a provably-
correct database implementation [12] or test generation [18].
The data models used in Cosette are inspired by prior

work, including work on provenance [10], test generation [18]
and application query compilation [6]. To our knowledge,
Cosette is the first tool that supports deciding both equiv-
alence and inequivalence of SQL queries.

5. CONCLUSION
In this proposal, we demonstrate the key features of Cosette

and Cosette’s novel applications through three interactive
use cases. Cosette is the first automated prover for SQL
equivalences. Cosette leverages advances in formal meth-
ods and can efficiently prove the equivalences or find counter
examples on two SQL queries. Cosette can be used in
many scenarios, such as improving the correctness and ef-
ficiency of database applications, and auto-grading of SQL
homework assignments.

Acknowledgement. This work is supported in part by
the National Science Foundation through grants IIS-1546083,
IIS-1614738, CCF-1535565 and CNS-1563788; DARPA award
FA8750-16-2-0032; DOE award DE-SC0016260; and gifts
from Adobe, Amazon, and Google.

6. REFERENCES
[1] Cse344: Introduction to data management.

courses.cs.washington.edu/courses/cse344/, 2017.
[2] Sanddance project. https:

//www.microsoft.com/en-us/research/project/sanddance/,
2017.

[3] The Coq Proof Assistant. https://coq.inria.fr/, 2017.
[4] S. Abiteboul et al. Foundations of Databases.

Addison-Wesley, 1995.
[5] P. Buneman et al. Comprehension syntax. SIGMOD

Record, 23(1):87–96, 1994.
[6] A. Cheung et al. Optimizing database-backed applications

with query synthesis. In PLDI, pages 3–14. ACM, 2013.
[7] S. Chu, C. Wang, K. Weitz, and A. Cheung. Cosette: An

automated prover for SQL. In CIDR. www.cidrdb.org, 2017.
[8] S. Chu, K. Weitz, A. Cheung, and D. Suciu. Hottsql:

Proving query rewrites with univalent sql semantics. In
PLDI. ACM, 2017.

[9] R. A. Ganski and H. K. T. Wong. Optimization of nested
SQL queries revisited. In SIGMOD Conference, pages
23–33. ACM Press, 1987.

[10] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance
semirings. In PODS, pages 31–40, 2007.

[11] W. Kim. On optimizing an sql-like nested query. ACM
Trans. Database Syst., 7(3):443–469, 1982.

[12] J. G. Malecha et al. Toward a verified relational database
management system. In POPL, pages 237–248, 2010.

[13] I. S. Mumick, S. J. Finkelstein, H. Pirahesh, and
R. Ramakrishnan. Magic is relevant. In SIGMOD
Conference, pages 247–258, 1990.

[14] Y. Sagiv et al. Equivalences among relational expressions
with the union and difference operators. J. ACM,
27(4):633–655, 1980.

[15] P. Seshadri et al. Cost-based optimization for magic:
Algebra and implementation. In SIGMOD Conference,
pages 435–446, 1996.

[16] E. Torlak and R. Bod́ık. A lightweight symbolic virtual
machine for solver-aided host languages. In PLDI, page 54.
ACM, 2014.

[17] B. Trakhtenbrot. Impossibility of an algorithm for the
decision problem in finite classes. D. Akad. Nauk USSR,
70(1):569–572, 1950.

[18] M. Veanes et al. Qex: Symbolic SQL query explorer. In
LPAR (Dakar), volume 6355, pages 425–446. Springer,
2010.

