
MYSTIQ: A system for finding more answers by using
probabilities

Jihad Boulos∗, Nilesh Dalvi†, Bhushan Mandhani†, Shobhit Mathur†, Chris Re†, Dan Suciu†

†University of Washington, USA. ∗American University of Beirut, Lebanon.

Mystic \Myst”ic\, n. Having an import not apparent to
the senses nor obvious to the intelligence; beyond ordinary
understanding.

– WordNet(R) Dictionary

1. MOTIVATION
MystiQ is a system that uses probabilistic query seman-

tics [4] to find answers in large numbers of data sources of
less than perfect quality. There are many reasons why the
data originating from many different sources may be of poor
quality, and therefore difficult to query: the same data item
may have different representation in different sources; the
schema alignments needed by a query system are imper-
fect and noisy; different sources may contain contradictory
information, and, in particular, their combined data may
violate some global integrity constraints; fuzzy matches be-
tween objects from different sources may return false posi-
tives or negatives. Even in such environment, users some-
times want to ask complex, structurally rich queries, us-
ing query constructs typically found in SQL queries: joins,
subqueries, existential/universal quantifiers, aggregate and
group-by queries: for example scientists may use such queries
to query multiple scientific data sources, or a law enforce-
ment agency may use it in order to find rare associations
from multiple data sources. If standard query semantics
were applied to such queries, all but the most trivial queries
will return an empty answer.

By contrast, MystiQ relies on a probabilistic query se-
mantics, and returns, along with each answer, the probabil-
ity of it being what the user wants. It ranks the answers
by this probability, and returns them to the user. Mys-
tiQ starts by assigning probabilities to all data items in all
sources it queries. These probabilities can either be static
or dynamic. Static probabilities are query-independent and
are precomputed by the system and stored in the relational
database. Constraint violations and fuzzy matches between
objects generate static probabilities. To reach even further,
the system also uses non-traditional ways to answer queries,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2005June 14-16, 2005, Baltimore, Maryland, USA.
Copyright 2005 ACM 1-59593-060-4/05/06$5.00.

such as statistics on the data sources, soft constraints ex-
tracted from the data, or data mining results. This enables
it to return even more tuples, or adjust the probabilities of
the tuples it returns. Each of them results in static probabil-
ities. Dynamic probabilities are query-dependent, and are
computed based on how well tuples in the data match the
approximate predicates in the query. Starting from proba-
bilities associated to the data items, MystiQ uses probabilis-
tic database query plans: these plans are mapped back into
SQL, and can be executed by any relational database engine.
The technique is based on the theory of query evaluation on
probabilistic databases [4].

This demonstration will illustrate the following features
of MystiQ:

• support for complex SQL queries with approximate
match predicates, and their ranked results.

• ability to return best matches when no tuple satisfies
all the predicates

• support for complex SQL queries over inconsistent data,
and how the system lowers the score of answers that
use contradictory data.

• A global constraint definition, which is not enforced
but used for detecting and resolving inconsistencies.

• The definition of a soft view and how it is used in
queries.

2. SYSTEM OVERVIEW
The system has four main components. A data modeling

language (mDML), a data definition language (mDDL), a
preprocessor and a query translation engine.

2.1 mDML
This is the MystiQ data modeling language. It consists of

a fragment of the SQL with two additional constructs. The
first is a new approximate match operator with the following
syntax:

A ∼ B

Here A is any attribute defined in the query and B is either
an attribute or a value. The operator enables probabilistic
match between A and B. For an exact semantics, we refer
the reader to [4].

The second construct enables users to specify their confi-
dence in the various query predicates. The syntax is:

A op B [CONFIDENCE = f ]



Here, op is either a standard SQL comparison operator (=,
<, >, LIKE) or the ∼ operator. This construct says that
with a probability 1 − f , the user will also be interested in
tuples that do not satisfy the predicate.

Note that specifying approximate match is semantically
different from specifying a low confidence value and they
can even be used in conjunction.

2.2 mDDL
This is the MystiQ data definition language and has sev-

eral new constructs over the SQL DDL.
Predicate Functions mDDL specifies the functions to

be used for generating probabilities for approximate predi-
cates. The syntax is as shown in the following examples:

REGISTER ON Movie.actor PREDICATE QGRAM-DIST

REGISTER ON Movie.genre PREDICATE SEM-DIST

This says that an approximate predicate on actor names
should use a q-gram function. This will match, for instance,
‘Coppola’ and ‘Capolla’. On the other hand, film gen-
res should be matched using a function that gives semantic
distance between words. This would match ‘Satire’ with
‘Comedy’, for example. All of these functions are preloaded
in the database engine.

Global Views The system allows the user to define global
views, which represent important concepts present in many
data sources. They are defined in the LAV (Local As View)
data integration paradigm. In LAV, the global views are
never populated. MystiQ, however, populates them with
probabilistic facts.

For example:

CREATE GLOBAL VIEW GActor (

actor_name VARCHAR(50),

dob DATETIME

)

Each source may be related to one or more global views.
For example the following statement tells the system that
the table ActorIMDB is related to the global view GActor
and shows the relationship.

CREATE RELATIONSHIP VIEW

ActorIMDB(name, dateOfBirth) AS

select actor_name, DOB

from GActor

CREATE RELATIONSHIP VIEW

ActorMD(actor_name, birth) AS

select actor_name, DOB

from GActor

The first relationship says that the name and dateOfBirth
in ActorIMDB can be obtained from GActor. Similarly for
the second relationship view.

Global constraints
Global constraints are what the system believes to be true

but are not enforced. An example is a constraint that says
that each actor has a unique DOB (date of birth). The
system may come across two data sources that contain dif-
ferent values of DOB for the same actor. Since global con-
straints are not enforced, both data sources can coexist in
the system. MystiQ incorporates the global constraints in

its probabilistic model and treats the contradictory informa-
tion as less authentic. The exact procedure for doing this
is described in the next section. The syntax for global con-
straints is defined below. Global constraints are specified on
global views.

GLOBAL CONSTRAINT ON GActor actor name → DOB

Soft Constraint Also called statistics, these are constraints
that are believed to be true only in an expected sense. Con-
sider global view GActor(actor id, fname, lname, dob)

and GMovie(movie id, title, director, writer, genre,

year). Then, we have the following soft constraints:

SOFT CONSTRAINT ON GActor

fname, lname ; actor id [RATIO 1.1]

GLOBAL CONSTRAINT ON GFilms

director, writer ; genre [RATIO 1.4]

The first constraint says that on average there are less than
1.1 actors with a given name i.e., (fname,lname) is a soft
key for the actors table. Similarly, the second constraint
says that director and writer almost determine the genre.
MystiQ exploits soft constraints, when they are available.

Soft constraints differ from global constraints because their
violation does not necessarily mean errors in data. MystiQ
does not extract soft functional dependencies; these need to
be extracted using other systems [6], then input manually.

2.3 Preprocessor
The preprocessor generates additional relational tables in

the database with static probabilities given mDDL specifi-
cation. The static probabilities are query-independent and
based on constraint violations, statistics, and outputs of
record linkage algorithms. The details of the technique can
be found in [3].

The preprocessor also creates a set of soft views. A soft
view is a view whose tuples are probabilistic, rather than
deterministic. It can be used by the user for querying, and
by the query processor. Soft views are materialized. We
illustrate them with the following example:

DEFINE SOFT VIEW SportsMovie AS

SELECT *

FROM MovieIMDB

WHERE title ~ ’sport’ or

category ~ ’sport’ or

tagline LIKE ’%football%’

This results in a probabilistic table that the user can query
directly. Soft views are also employed to use the output of
external record linkage algorithms. Consider two databases
IMDB and MD, both containing an Actors table. A record
linkage algorithm can be run to match actors in the two
tables, which outputs pairs of actors along with a match-
ing score. This can be stored as a soft view and used in
answering queries that require information from both the
databases.

2.4 Query Translation Engine
This is the central component that translates the user

queries in mDML into standard SQL queries. It is based



on our techniques for efficient query evaluation on proba-
bilistic databases [4]. The translated query contains all the
probability calculations embedded in the query as standard
aggregates and can be directly executed by any standard
relational engine to return the result tuples along with their
probabilities. A useful feature of the translation engine is
that the new query directly refers the tables that are in the
original query. It does not require creation of intermediate
probabilistic tables and hence, is efficient.

3. THE DEMONSTRATION CONTENT
We will demonstrate MystiQ by jointly querying four in-

dependent data sources: Internet Movie Database (IMDB)
[7], Movie Database[9], KnowItAll [5], and WordNet [11].
IMDB is a clean, rich dataset about movies, actors, produc-
ers, quotes, etc. The Movie Database is noisier and smaller
but has some extra information. The KnowItAll data is the
result of a web information extraction project, which has col-
lected concepts from the Web and populated them with in-
stances. These concepts include scientists, politicians, cities,
hospitals, etc. WordNet is the English language ontology.

The demo will allow the users to formulate complex SQL
queries over these databases, like the examples below:

Example 1 Find an actor named Kevin whose first suc-
cessful movie appeared in the year 1995.

SELECT *

FROM ACTOR A

WHERE A.name ~ ’Kevin’

and 1995 =

SELECT MIN(F.year)

FROM Film F, CASTS C

WHERE C.filmid = F.filmid

and C.actorid = A.actorid

and F.rating ~ "high"

Example 2 Find a film with title like ’Rain man’, directed
by ‘Copolla’ and year around 1975.

SELECT F.title, D.name, F.year

FROM Director D, Films F

WHERE D.did = F.did

and D.name ~ ’Copolla’ [CONFIDENCE 0.9]

and F.title ~ ’rain man’

and F.year ~ 1975 [CONFIDENCE 0.7]

The user has a high confidence in the director name and
a lower confidence in the year. This is reflected in the query
formulation.

Example 3 ‘List the movies based on the life of some sci-
entist, along with the corresponding scientist names’. Note
that the Scientists table here is a probabilistic table, being
a part of the KnowItAll data. This query will use the ’role’
field of the Casts table, which contains the type and/or name
of the character for each (actor,movie) pair, in an approxi-
mate join.

SELECT F.FILMNAME, S.NAME

FROM Films F, Casts C, Scientists S

WHERE C.ROLE ~ S.NAME

and C.filmid = F.filmid

Example 4 (Constraint Violations) We illustrate this us-
ing a simple query: return all films made after 1990 which
cast an actor born before 1940.

We use two different movie databases that have inconsis-
tent dates of birth for some actors. We show that if for
some film, the only actor that was born before 1940 has in-
consistent information in the other database, the movie is
returned but with a lower score.

4. RELATED WORK
Several systems have been proposed in the past that com-

pute ranked answers to queries based on fuzzy matches [8,
1], similarity joins [1], ontology and semantic similarity [10],
etc. However, these systems don’t use probabilities, the
ranking functions are ad hoc and the scores lack any properly
defined meaning. Thus, these scores cannot be combined,
and used in conjunction. Also, its extremely hard to re-
engineer the ranking function if a new source of uncertainty
arises. Current approaches [2] to answering queries in incon-
sistent databases do not assign scores to output tuples and
further suffer from lack of practical evaluation algorithms.

5. CONCLUSIONS
MystiQ significantly enhances the querying capability of

a typical relational DBMS by allowing a variety of approx-
imations to be added to normal SQL queries. It provides
a powerful means to query dirty, inconsistent data across
multiple data sources. Our preliminary evaluation indicates
it successfully returns relevant and properly ranked results
to various kinds of queries. It is a working prototype for an
exciting, new querying paradigm.

6. REFERENCES

[1] S. Agrawal, S. Chaudhuri, G. Das, and A. Gionis.
Automated ranking of database query results. In CIDR,
2003.

[2] L. Bertossi, J. Chomicki, A. Cortes, and C. Gutierrez.
Consistent answers from integrated data sources. In
International Conference on Flexible Query Answering
Systems, 2002.

[3] Nilesh Dalvi, Jihad Boulos, Shobhit Mathur, Chris Re, and
Dan Suciu. A probabilistic approach to inconsistent data,
University of Washington Technical Report 2005.

[4] Nilesh Dalvi and Dan Suciu. Efficient query evaluation on
probabilistic databases. In VLDB, 2004.

[5] Oren Etzioni, Michael Cafarella, Doug Downey, Stanley
Kok, Ana-Maria Popescu, Tal Shaked, Stephen Soderland,
Daniel S. Weld, and Alexander Yates. Web-scale
information extraction in knowitall: (preliminary results).
In WWW, pages 100–110, 2004.

[6] Ihab F. Ilyas, Volker Markl, Peter Haas, Paul Brown, and
Ashraf Aboulnaga. Cords: automatic discovery of
correlations and soft functional dependencies. In SIGMOD,
pages 647–658, 2004.

[7] Internet movie database: http://www.imdb.com/.
[8] Amihai Motro. Vague: a user interface to relational

databases that permits vague queries. ACM Trans. Inf.
Syst., 6(3):187–214, 1988.

[9] Movie database:
http://kdd.ics.uci.edu/database-s/movies/movies.html.

[10] Anja Theobald and Gerhard Weikum. The xxl search
engine: ranked retrieval of xml data using indexes and
ontologies. In SIGMOD, pages 615–615, 2002.

[11] Wordnet 2.0: A lexical database for the english language:
http://www.cogsci.princeton.edu/ wn/, Jul. 2003.


