
The Power of Data Use Management in Action

Prasang Upadhyaya1, Nick Anderson1, Magdalena Balazinska1, Bill Howe1

Raghav Kaushik2, Ravi Ramamurthy2, and Dan Suciu1

1University of Washington and 2Microsoft
prasang@cs.uw.edu, nicka@uw.edu, {magda, billhowe}@cs.uw.edu, {skaushi,

ravirama}@microsoft.com, suciu@cs.uw.edu

ABSTRACT
In this demonstration, we show-case a database management
system extended with a new type of component that we call
a Data Use Manager (DUM). The DUM enables DBAs to at-
tach policies to data loaded into the DBMS. It then monitors
how users query the data, flags potential policy violations,
recommends possible fixes, and supports offline analysis of
user activities related to data policies. The demonstration
uses real healthcare data.

Categories and Subject Descriptors
H.2.4 [Systems]: Relational Databases

Keywords
Data Use Management, Access Control

1. INTRODUCTION
In many situations today, researchers and companies use

data provided to them by a third party rather than gener-
ated internally. Such data may be collected and distributed
directly [2, 3, 5] or through an intermediary such as the
Azure Marketplace [1] or Infochimps [4]. The value of this
data is derived not only from its information content, but
in how it is used. As a result, data providers are interested
in controlling data usage. For example, clinical data [17] is
valuable for research, but must not be used in such a way as
to expose the identity of patients; E-books for the Amazon
Kindle must not be used for more than the contractual rental
period [7]; or, some datasets are intended for use only with
certain devices or may not be joined with other datasets [18].

Today, these restrictions on data are determined through
ad-hoc negotiations and enforced contractually (e.g., [11]),
or perhaps through aggressive use of access control lists
(ACLs). But ACLs only prevent access, not usage. Al-
ternatively, in the context of private data, one may use dif-
ferential privacy mechanisms to enforce privacy restrictions.
Such mechanisms, however, only permit a limited budget of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’13, June 22–27, 2013, New York, New York, USA.
Copyright 2013 ACM 978-1-4503-2037-5/13/06 ...$15.00.

queries [16]. More importantly, ACLs and other security-
oriented technologies tend to be too restrictive in contexts
where the users are not malicious. In these situations, it is
important to explain to the users why the operation they
attempted was disallowed and make alternative suggestions,
as opposed to simply throwing a “permission denied” error.

In recent work [21], we proposed a vision for a Data Use
Manager (DUM). The DUM is a new approach to data man-
agement, which enables database administrators to restrict
the operations performed on the data stored in a DBMS
rather than controlling the access to the data itself. This
model is quite versatile and allows one to easily express many
sophisticated constraints on the use of data.

We demonstrate the first working prototype of a DUM
and illustrate its functionality on the MIMIC-II dataset [17],
which is an anonymized dataset of readings from advanced
Intensive Care Unit patient monitoring systems and clinical
data for over 33000 patients, collected over a period of seven
years. Today, access to this dataset is regulated as follows:
a potential user must register and must take a 3-hour online
course that teaches the restrictions on data use such as the
fact that users may not share the data with anyone or may
not run queries to infer the identity of the patients. The
user is then trusted to follow the restrictions.

In this demonstration, we show how the DUM relieves
users from the burden of checking data use policies before
manipulating the data, while continuing to provide a pow-
erful method to control how the data is used. To achieve
these goals, the DUM imposes no access control restrictions
on the data. Instead, it enables data providers to set declar-
ative data usage policies that spell-out the restrictions on
how various datasets can be processed by data consumers.
A DBA loads these policies into a DBMS together with the
data. The DUM then enforces these policies automatically
either online, as data consumers process the data or offline,
in a post-hoc auditing session as illustrated in Figure 1.

In our technical report [20], we develop a model that sup-
ports data use management in a flexible manner within a
relational DBMS and explore various design alternatives to
efficiently implement DUM as a component of a DBMS. In
this demonstration, we explore the changes to the users’ ex-
perience when working with usage-restricted data:

1. We demonstrate a first DUM prototype implemented
as a middleware over a relational DBMS.

2. Using this prototype and a concrete scenario based on
real healthcare data [17], we compare the benefits and
capabilities of protecting data (1) by relying on users
to watch out for policy violations, (2) using standard

DATA	 Policies	 Ac,vity	
Log	

Relational DBMS

DUM GUI

(1) DBA Loads data
(2) DBA Specifies policies

(3) User submits a query

(4) DUM checks for violations
(5) DUM recommends changes
(6) DUM updates log

(7) Query results
OR error/recommendations

(8) DBA/User audits usage

Policy	 Defini,on	 Data	 Manipula,on	 Audi,ng	

DUM
Engine

Figure 1: Overview of a DUM-enhanced DBMS.

ACLs, and (3) with a DUM. We demonstrate the use
of the DUM both online and offline (i.e., auditing).

3. We develop and present a novel explanation-based in-
terface for data under DUM, where users query the
database without any changes to their workflow. The
system only prompts users when a violation is about
to occur and provides the user with the violated policy,
an explanation for the violation, and recommendations
for adjusting their query to avoid the violation.

2. WHAT THE USER WILL SEE AND DO
We will take visitors to the demonstration through the

following steps:

• Policy specification: We will briefly explain the MIMIC-
II healthcare data management problem and will show
how the data manipulation constraints can be stated
precisely as policies on this dataset. In the DUM, poli-
cies are declaratively specified.

• Policy enforcement: Given these policies, the user will
be asked to execute a series of six queries. Without
the DUM, a user must manually inspect queries to de-
termine if they do or do not violate any of the policies.
With the DUM, the use can simply execute the queries
and see if the system accepts them or not.

• Explanations: For rejected queries, the violated poli-
cies are reported, as well as evidence for the violation.

• Corrective Actions: The system also reports steps that
a user might take to resolve the violation. For example,
if a temporal constraint prevented the query’s execu-
tion, it could be resolved by simply waiting and trying
again later. Other constraints might require modifica-
tions to the query itself by adding clauses or changing
parameters. The system will suggest such alternatives.

• Offline Auditing: Finally, we will show how a DUM
can help audit data use offline, assessing both commonly-
occurring and unusual data-use problems.

In addition to the DUM, we implement two DUM-aware
client applications. The first enables users to execute queries
and understand policy violations; the second enables the
DBA to specify policies and audit any prior policy violations.

In this demonstration, instead of focusing on the efficiency
of policy checking, we show how a DUM changes the experi-
ence of working with data and its benefits over using either
ACLs or requiring that users manually check policies.

We now describe the system, major interfaces, and driving
examples in more detail.

3. A DUM-ENABLED DBMS
We implement our DUM prototype as a middleware over

a relational DBMS as opposed to a standalone client-side
application. Our implementation is in JAVA and can work
with any relational DBMS that provides a JDBC API. The
first reason for this design choice is performance: by interact-
ing closely with the underlying DBMS, the DUM can more
efficiently manage the information necessary to enforce poli-
cies [20]. The second reason is data security. If instead of a
middleware DUM module, the user were in charge of policy
checking, then all queries executed with the goal of checking
policy violations would themselves need to be verified.

Figure 1 shows the resulting high-level software architec-
ture. Our prototype uses PostgreSQL as the underlying
DBMS. To support the DUM, the DBMS is extended to
store not only data but the policies that accompany the
data. Additionally, because data use policies may need to
verify the activity performed by multiple queries over time,
the DBMS must also store an Activity Log (which we de-
scribe in more detail below).

The DUM exposes three sets of capabilities to users, each
exposed as an extension to the SQL query language:

• Policy Definition: The DUM enables users (typically
the DBA on behalf of the data owner) to specify declar-
atively the policies that accompany any new data loaded
into the DBMS.

• Data Manipulation: The DUM must see all SQL queries
submitted by users. For each query, the DUM verifies
all policies for violations before executing the query.
It reports problems and enables the user to ask for
explanations of the problem and recommendations for
avoiding the violation.

• Auditing : The DUM supports capabilities to audit
data use, including examining queries that violated
some policies, the recommendations that the system
made, and the following actions by the users.

We now describe the above three functions in more detail.

3.1 Policy Definition
Users manipulate the data in a DBMS by issuing queries.

Data use management thus puts constraints on the queries
that can be executed over the data.

The DBAs specify the policies declaratively in SQL and
these policies are stored in the database as a relation poli-

cies with schema policies: (owner_id INT, policy TEXT,

valid_until DATE). The policies are specified over a set of
relations that capture various aspects of user activity and
several key query features that together form the Activity
Log. There is a single activity log for all the databases in a
DBMS (instead of a log for each database separately) and
the activity log’s schema is known to all the data owners.

The activity log has the following schema. Each user has a
unique id, uid; each query has a unique id, qid; each existing
and generated tuple has a unique id, tid; each relation has
an id rid; and each existing or generated column has an id
cid. The activity log is composed of the following relations:

Executes(qid, uid, time)

Schema(qid, cid_o, cid_i, rid_i, agg)

Provenance(qid, tid_o, rid_i, tid_i)

Executes stores who executes which query at what time;
Schema stores which column cid_i from relation rid_i con-

tributed to output column cid_o and if cid_o in an aggre-
gate; and, Provenance stores the where-provenance for each
output tuple tid_o by recording the input tuple tid_i from
relation rid_i that contributed to it.

For performance reasons, the DUM does not materialize
the entire Activity Log [20] but only small subsets of that
log as necessary for checking existing policies.

Table 1 shows two concrete examples of declarative poli-
cies, P1 and P2, for the healthcare scenario. In the demon-
stration, we also use the following three policies.

P3: Only select-count queries are allowed and each count
result must be at least 10. This rule is a common us-
age agreement in exchanging clinical data [8]. It pro-
tects against triangulation attacks when a user needs
to compare patient counts at different institutions.

P4: Each query on the dataset must include a certain col-
umn for all queries executed on the dataset. Such a
column might be used to ensure proper attribution of
queried data.

P5: At most 5 distinct users may query the chartevent re-
lation. This policy is inspired from the e-book lending
restrictions from Amazon.

Table 1 also shows three of the six demonstrated queries.
The first five queries are extracted from the SQL handbook
that accompanies the MIMIC-II dataset, while the last one
is a query we made up.

Policy Definition Assistance. Apart from making the ac-
tivity log’s schema public to all data owners and the DBA,
the DUM middleware performs a number of actions when
a new policy is defined: It checks the policy for syntactic
correctness; it evaluates if another pre-defined policy makes
the new policy redundant; it checks if an existing policy is
inconsistent with the current policy (for e.g., if one policy
restricts any query over d_patients to a provenance of less
than 10 input tuples while another policy requires all ag-
gregations over d_patients to be over at least 10 values,
they contradict each other); and it provides the schema of
the policy-specific diagnostic information that would be col-
lected in case of a violation.

3.2 DUM-monitored Data Manipulation
Once policies have been defined, users can submit queries

over the data. Whenever a user (or application) submits
a query, the DUM intercepts the query and verifies that it
does not violate policies. To check if a policy is violated,
the basic idea is for the DUM to (1) start a transaction, (2)
execute the query but do not return the result, (3) populate
the activity log based on the query execution, (4) execute
all policy queries on the updated log, and, (5) if any pol-
icy query returns true, rollback the transaction and flag the
violation; otherwise, commit the transaction and return the
result to the user. We describe more efficient policy-checking
methods in our technical report [20].

The DUM thus supports more expressive policy definitions
and hence permits a larger number of queries as compared
to using ACLs1 as shown in Figure 2. It is also seen that the
DUM enables several powerful capabilities to assist users in

1To map our policies to access control rules, we check if a
policy prohibits any operation on a relation, if so, access
control prevents the access to that data source for our users.

ACL DUM

Q1

Q2

Q3

Q4

Q5

Q6

✔ ✗

✔ ✗

✗ ✗

✔ ✔
✔ ✔

✗ ✗ Policy	 5	 failed	

Joe 10:14
Jane 14:27
Mary 14:32

Jim 15:01
Alice 15:57

Daily	 quota	 of	 users	 exceeded	

Please	 try	 again	 later	

Policy	 3	 failed	

Bucket 2 8

Use:	 having	 >=	 10	 	

Evidence

Recommendations

Figure 2: Cropped screenshot of DUM-aware client
application after the execution of six queries.

fixing their rejected queries. Note that with both DUM and
ACLs, it is only when queries violate a policy that the user
experience changes leading them to investigate the violation.

3.2.1 Evidence and Policy Violations
For each rejected query, the DUM returns one or more

policies that the query violated. Further, the DUM also
generates a subset of the data or a subset of the Activity
Log that provides evidence for the failure. For example, in
Figure 2, the five users who had already queried the database
form the evidence for a new user’s query’s failure due to P5.
To get this evidence, the DUM executes a modified version
of the policy evaluating query that generates a set of tuples
that provide evidence for the violation. Of course, the policy
setter decides if users may see the evidence.

To support the above mentioned feature, the DUM pop-
ulates a special relation, violations, with the disallowed
query, qid, and the policy that was violated. Further, the
evidence relation stores the tuples-ids and relation-ids of
different relations that constitute the evidence for the pol-
icy violation. Both relations can be queried by the client to
know which policy failed and why.

3.2.2 History-based Recommendations
When a query violates a policy, the DUM generates rec-

ommendations for how to resolve the problem. First, the
policy setter may provide a troubleshooting message while
defining the policy. For example, the troubleshooting mes-
sage for policy P5 might inform the user that the daily max-
imum of distinct users might have been achieved.

Second, DUM makes use of queries executed in the past to
speed up the process of inferring if the existing query might
lead to a violation. In case DUM rejects a query, we leverage
the algorithms and data-structures used for this functional-
ity to provide a list of previous queries that are similar to
the existing query and that were deemed legal given our poli-
cies. In addition to showing the correct queries, the DUM
also suggests modifications to the current query that would
make the query policy-compliant. For example, if query Q3

violates policy P3, DUM may recommend a having clause
to rectify the problem. Query similarity is based on query
features, following our earlier work on SnipSuggest [15].

To illustrate the history-based recommender, we begin the
demonstration with a large history of compliant user queries.

3.3 Offline Auditing
The DUM collects the activity data, including violations,

and stores it in the DBMS for auditing. The client applica-

Table 1: Three out of the six queries and two out of the five policies that will be demonstrated.

Query Description SQL

Q1 Patient’s ID, sex, and date of birth SELECT subject_id, sex, dob FROM mimic2v26.d_patients WHERE
dob < ‘2521-12-07’ AND dob > ‘2304-09-13’;

Q2 Count the number of patients in the database SELECT COUNT(*) FROM mimic2v26.d_patients;
Q3 Serum HCO3 Histogram SELECT bucket, COUNT(*)

FROM (SELECT width_bucket(valuenum, 0, 231, 231) AS bucket
FROM mimic2v26.labevents WHERE itemid IN (50022, 50025, 50172))
GROUP BY bucket ORDER BY bucket;

P1 No query over d_patients may return more NOT EXISTS (SELECT p.qid FROM Schema s, Provenance p
than 200 data items. This affects queries Q1 and Q2. WHERE s.rid_i = ‘d_patients’ AND s.qid = p.qid
This policy is inspired from the restriction on Navteq GROUP BY p.qid HAVING COUNT(DISTINCT(tid_o)) > 200)

data regarding display on low resolution devices.
P2 No query may join the relation poe_med with NOT EXISTS (SELECT * FROM Schema l, Schema r WHERE l.qid = r.qid AND

any other relation except poe_order. l.rid_i=‘poe_med’ AND r.rid_i <> ‘poe_med’ AND r.rid_i <> ‘poe_order’)
This policy also comes from the Navteq terms of use.

tion that we demonstrate aggregates that information and
generates reports. We use these reports to show how offline
auditing can help spot problematic policies. For example,
if policy P5 consistently prevents certain queries, perhaps
the user has added a new collaborator but forgot to inform
the data seller. Or if P2 is often violated, it might suggest
that a particular dataset generates value when joined with
a different dataset, and P2 should be re-negotiated.

4. RELATED WORK
The DUM is related to, and generalizes, several existing

data management tools and techniques that restrict or con-
trol the access to data. These systems can be classified along
two axes: type of semantics, and time of action. Access con-
trols [12, 6] are ubiquitous mechanisms in database systems
and simply restrict access to sensitive data; their semantics
is precise (grant/deny), and their action is performed online
(at query time). The limitation of these approaches is that
they do not handle the case when users are allowed to access
individual data items but do not have permission to perform
certain operations, such as joins, on these data items. Pri-
vacy mechanisms such as differential privacy [9] also aim to
restrict access, but are fuzzier since they restrict access to in-
dividual records while allowing access to aggregate queries.
These techniques are also insufficient for a DUM because
they often protect privacy by limiting data access too much,
hence affecting its utility [22]. Finally, auditing systems [6,
14, 13, 10] are designed to detect data misuses after the fact,
which is in contrast to the DUM which works both in an on-
line and offline settings. Triggers [19] are inadequate since
they only apply to DML statements (all our example poli-
cies are non-DML statements) and can not validate policies
across multiple databases. For a more detailed discussion
of related techniques, we refer the readers to our vision pa-
per [21] and technical report [20].

5. CONCLUSION
We demonstrate a database management system extended

with a Data Use Manager (DUM). Attendees interact with a
database storing real, healthcare information, which is sub-
ject to constraints (a.k.a. policies) on how it can be used.
The demonstration contrasts the user experience when (1)
relying on users to ensure no policies are violated, (2) using
access-control lists, and (3) using the DUM.

6. ACKNOWLEDGMENTS

This work is partially supported by the National Science
Foundation and Microsoft through NSF CiC grant CCF-
1047815 and NSF grant IIS-0915054 and additional gifts
from Microsoft Research.

7. REFERENCES
[1] datamarket.azure.com/.

[2] gnip.com.

[3] www.aggdata.com/.
[4] www.infochimps.com/marketplace.

[5] www.patientslikeme.com.
[6] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Hippocratic

databases. In VLDB, pages 143–154, 2002.
[7] http://www.amazon.com/gp/help/customer/display.html?

nodeId=200549320.
[8] N. Anderson et al. Implementation of a deidentified

federated data network for population-based cohort
discovery. Journal of the American Medical Informatics
Association, 2011.

[9] C. Dwork. A firm foundation for private data analysis.
Commun. ACM, 54(1):86–95, 2011.

[10] D. Fabbri and K. LeFevre. Explanation-based auditing.
PVLDB, 5(1):1–12, 2011.

[11] Factual terms of service. http://factual.com/tos.

[12] E. Ferrari. Access Control in Data Management Systems.
Synthesis Lectures on Data Management. Morgan &
Claypool Publishers, 2010.

[13] R. Hasan and M. Winslett. Efficient audit-based
compliance for relational data retention. In ASIACCS,
pages 238–248, 2011.

[14] R. Kaushik and R. Ramamurthy. Efficient auditing for
complex sql queries. In SIGMOD, pages 697–708, 2011.

[15] N. Khoussainova, Y. Kwon, M. Balazinska, and D. Suciu.
SnipSuggest: Context-aware autocompletion for SQL.
PVLDB, 4(1):22–33, 2010.

[16] F. D. McSherry. Privacy integrated queries: an extensible
platform for privacy-preserving data analysis. In SIGMOD,
pages 19–30, 2009.

[17] Mimic-ii dataset. http://physionet.org/mimic2.

[18] http://www.navteq.com.
[19] http://postgresql.org/docs/9.2/static/triggers.html.
[20] P. Upadhyaya et al. An efficient implementation of a data

use manager. Technical report, University of Washington,
2012.

[21] P. Upadhyaya et al. Stop that query! the need for
managing data use. In CIDR, Jan. 2013.

[22] G. Weber et al. The shared health research information
network (shrine): a prototype federated query tool for
clinical data repositories. Journal of the American Medical
Informatics Association, 16(5):624–630, 2009.

datamarket.azure.com/
gnip.com
www.aggdata.com/
www.infochimps.com/marketplace
www.patientslikeme.com
http://www.amazon.com/gp/help/customer/display.html?nodeId=200549320
http://www.amazon.com/gp/help/customer/display.html?nodeId=200549320
http://factual.com/tos
http://physionet.org/mimic2
http://www.navteq.com
http://postgresql.org/docs/9.2/static/triggers.html

	1 Introduction
	2 What the User Will See and Do
	3 A DUM-enabled DBMS
	3.1 Policy Definition
	3.2 DUM-monitored Data Manipulation
	3.2.1 Evidence and Policy Violations
	3.2.2 History-based Recommendations

	3.3 Offline Auditing

	4 Related Work
	5 Conclusion
	6 Acknowledgments
	7 References

