
SilkRoute : A Framework for Publishing Relational
Data in XML

MARY FERNÁNDEZ

AT&T Labs - Research

and

YANA KADIYSKA and DAN SUCIU

University of Washington

and

ATSUYUKI MORISHIMA

Shibaura Institute of Technology

and

WANG-CHIEW TAN

University of California at Santa Cruz

XML is the “lingua franca” for data exchange between inter-enterprise applications. In this

work, we describe SilkRoute, a framework for publishing relational data in XML. In SilkRoute,
relational data is published in three steps. First, the relational tables are presented to the database
administrator in a canonical XML view. Second, the database administrator defines in the XQuery

query language a public, virtual XML view over the canonical XML view. Third, an application
formulates an XQuery query over the public view. SilkRoute composes the application query with
the public-view query, translates the result into SQL, executes this on the relational engine, and

assembles the resulting tuple streams into an XML document.
This work makes two key contributions to XML query processing. First, it describes an al-

gorithm that translates an XQuery expression into SQL. The translation depends on a query
representation that separates the structure of the output XML document from the computation

that produces the document’s content. The second contribution addresses the optimization prob-
lem of how to decompose an XML view over a relational database into an optimal set of SQL
queries. We define formally the optimization problem, describe the search space, and propose a
greedy, cost-based optimization algorithm, which obtains its cost estimates from the relational

engine. Experiments confirm that the algorithm produces queries that are nearly optimal.

Authors’ addresses: M. Fernández, 180 Park Ave., Florham Park, NJ 07932-0971, email:

mff@research.att.com; Y. Kadiyska and D. Suciu, Computer Science Department, Univ. of

Washington, Box 352350 Seattle, WA 98195, email: {yana,suciu}@cs.uwashington.edu; A.
Morishima, Dept. of Info. Sci. and Eng., Shibaura Institute of Technology, 307 Fukasaku,

Saitama-city, Saitama 330-8570, Japan, email: amori@sic.shibaura-it.ac.jp; W. Tan, Computer
Science Department University of California at Santa Cruz Santa Cruz, CA 95064 email:

wctan@saul.cis.upenn.edu.

Dan Suciu was partially supported by the NSF CAREER Grant 0092955, a gift from Microsoft,
and an Alfred P. Sloan Research Fellowship. Wang-Chiew Tan contributed to this work while

a visitor at AT&T Labs - Research and while a Ph.D. candidate at the University of Pennsylvania.

Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0362-5915/20YY/0300-0001 $5.00

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY, Pages 1–55.

2 · Mary Fernández et al

Categories and Subject Descriptors: H.2.3 [Languages]: Query languages; H.2.4 [Systems]:

Query processing; D.3.2 [Language Classifications]: Very high-level languages

General Terms: Languages, Experimentation, Standardization

Additional Key Words and Phrases: XML, XQuery, XML storage systems

1. INTRODUCTION

XML is a Jack of many trades: It is a document mark-up language, an object-
serialization format, a network message format, and most importantly, a universal
data-exchange format. In this work, we focus on the role of XML in data exchange,
in which XML documents are generated from persistent data then sent over a
network to an application. Numerous industry groups, including automotive, health
care, and telecommunications, publish document type definitions (DTDs) and XML
Schemata [World-Wide Web Consortium 2001a], which specify the format of the
XML data to be exchanged between their applications. The aim is to use XML as
a “lingua franca” for inter-enterprise applications, making it possible for data to
be exchanged regardless of the platform on which it is stored or the data model
in which it is represented. Most existing data, however, is stored in non-XML
database systems, so applications typically convert data into XML for exchange
purposes. When received by a target application, XML data can be re-mapped
into the application’s data structures or target database system. Thus, XML often
serves as a language for defining a view of non-XML data.

We are interested in the case when the source data is relational, and the exchange
of XML data is between separate organizations or businesses on the Web. This
scenario is common, because an important use of XML is in business-to-business
applications, and most business-critical data is stored in relational databases. This
scenario is also challenging, because it demands that frameworks for publishing
XML meet three requirements: they must be general, selective, and efficient.

First, a publishing framework must be able to specify general mappings from
relational data to XML. Relational data is flat, normalized (1NF and sometimes
3NF), and its schema is often proprietary. For example, relation and attribute
names may refer to a company’s internal organization, and this information should
not be exposed in the exported XML data. In contrast, XML data is nested,
unnormalized, and its DTD or XML Schema is public. Thus, the mapping from
the relational model to XML is inherently complex. Some commercial systems
fail to be general, because they map each relational database schema into a fixed,
canonical XML schema. This approach is limited, because no public XML schema
will match exactly a proprietary relational schema. In addition, one may want to
map one relational source into multiple XML documents, each of which conforms
to a different XML schema.

A second requirement is that a publishing framework must be selective, i.e., only
the fragment of the XML document needed by the application should be materi-
alized. In database terminology, the XML view must be virtual. An application
typically specifies in a query what data item(s) it needs from the XML document,
and these items are typically a small fraction of the entire database. Some com-
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

SilkRoute : A Framework for Publishing Relational Data in XML · 3

mercial products allow users to export relational data into XML by writing scripts.
According to our definition, these tools are general but not selective, because the
entire document is generated all at once.

A third requirement is that a publishing framework must be efficient. Relational
query engines have sophisticated query optimizers and evaluation engines. A pub-
lishing framework must exploit the relational engine whenever data items in the
XML view are materialized in XML documents.

In this work, we describe SilkRoute, a general, selective, and efficient framework
for publishing relational data in XML. In SilkRoute, relational data is published in
XML in three steps. First, the relational tables are presented to the database ad-
ministrator in a canonical XML view. This step requires only the relational schema
as input and is fully automated. In the second step, the database administrator
specifies the public XML view of the relational database in XQuery [World-Wide
Web Consortium 2002e]. XQuery is a powerful language and this allows SilkRoute
to express XML views with a complex structure and with arbitrary levels of nest-
ing. Since XQuery is defined on XML data, not on relational data, the input to the
public query is a canonical XML view of the relational database. In the third step,
an application formulates an XQuery query over the public view, extracting the
XML data of interest to the application and structuring it in the format required
by the application. The system converts that query into one or more SQL queries,
executes them on the relational engine, and assembles their results into an XML
document. SilkRoute’s implementation is based on Galax [Choi et al. 2002], which
is an XQuery implementation based on the XQuery Formal Semantics.

To implement the SilkRoute framework, this work makes two key technical con-
tributions, which are discussed next.

XQuery to SQL Translation. We describe an algorithm that translates any
XQuery expression into an equivalent set of one or more SQL queries. The set
may contain more than one SQL query, because the XML answer is nested: each
nesting level may be expressed by a different SQL query.

While XQuery was designed with database applications in mind, translating the
full language into SQL is non-obvious. The main difficulty in the translation is that
XQuery is compositional: a subquery can construct an intermediate XML result
that is input to another subquery. This feature is evident even in simple XQuery
queries and common in SilkRoute, in which the public query is composed with the
application query. XQuery composition is hard to translate into SQL because there
is no direct representation of the intermediate XML value in SQL.

Our solution to the translation problem is to represent XQuery expressions by
an abstraction called a view forest. Semantically, a view forest defines a mapping
from a relational database to an XML document. The key idea is to separate
the structure of the output XML document from the computation that produces
the document’s content. The structure is represented by a forest whose nodes
are labeled with XML element names, attribute names, or atomic types. The
computation is represented by SQL queries that are attached to the nodes. No
intermediate XML values are constructed by the view forest; only the final XML
result is constructed. In addition, no data manipulation is performed in SilkRoute
itself; the entire computation is pushed into the SQL queries.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

4 · Mary Fernández et al

We present a view-forest composition algorithm that translates any XQuery ex-
pression into a view forest. In short, the algorithm is a translation from XQuery
to SQL, and therefore is of general interest beyond the scope of SilkRoute. The
algorithm applies to a large, useful subset of the XQuery language. It excludes
recursive functions, features that depend on the document order of values in XML
documents (e.g., the “before” and “after” operators (<</>>) and the is/isnot
operators), and features that enforce an order based on data values (e.g., the sort
expression). An XQuery expression typically specifies the relative order of elements
in the output document and this order is preserved.

The view forest is used at several levels in SilkRoute. The canonical XML view
of the input relational database, the public query defining the public XML view,
and the application query applied to the public XML view are all represented as
view forests. The fact that the same abstraction serves all these roles is an elegant
property of the view forest.

The Optimization Problem for XML Publishing. When relational data is mapped
into XML, there are several ways in which one can compute the XML view as
a combination of SQL queries. Each set of SQL queries that can compute the
XML view is called a plan. Selecting an efficient plan is an optimization problem
that is similar in spirit, although different in details, to the traditional query-plan
optimization problem. We address the optimization problem for XML publishing,
describe the search space, and propose a heuristic based optimization algorithm.

A view forest defines a mapping from relational data to XML. Any partition
of the forest into connected components corresponds to an execution plan: for
each component we derive one SQL query by essentially outer-joining and outer-
unioning the SQL queries on the nodes in that component. Thus, the search space
of the optimization problem consists of all partitions of the view forest. We call
each such partition a view-forest decomposition. There are trade-offs in choosing
a good decomposition. The coarsest decomposition (only one partition) results in
a single SQL query, which needs only one connection to the database system, but
which requires the relational engine to optimize and execute a a very complex SQL
query. The finest decomposition (each node is a separate partition) results in several
multiple select-project-join queries, but requires many connections to the database
system and may produce redundant computations in the set of SQL queries.

In general, there are an exponential number of possible plans for decomposing
a view forest into one or more SQL queries. We propose a greedy algorithm for
selecting a good decomposition plan; the algorithm takes as input estimates of
query and data cost produced by the relational query engine. We evaluated our
algorithm experimentally and concluded that the plan-selection algorithm produces
queries that are nearly optimal.

In the next section, we present an example scenario from electronic commerce.
In Section 2, we describe SilkRoute’s architecture, its various components, and
the subset of XQuery supported by SilkRoute. Section 3 defines the view forest
abstraction and Section 4 gives the complete view-forest composition algorithm.
In Section 5, we present our greedy algorithm for query decomposition and give
experimental results that support the efficacy of the algorithm. Finally, Section 6
describes alternative techniques and systems and discusses the impact of SilkRoute.
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

SilkRoute : A Framework for Publishing Relational Data in XML · 5

element supplier { element product { element company { string }

element company, element name, element name { string }

element product* element category, element category { string }

} element description, element description { string }

element retail, element retail { float }

element sale?, element sale { float }

element report* element report {

} attribute code { string },

string

}

Fig. 1. Schema of XML data exported by suppliers to resellers in XQuery’s type syntax.

CREATE TABLE Clothing(CREATE TABLE Discount(CREATE TABLE Problems(

pid CHAR(10) PRIMARY KEY, pid CHAR(10) PRIMARY KEY, pid CHAR(10),

item VARCHAR(30), item VARCHAR(30), code CHAR(10),

category VARCHAR(20), discount REAL) comments VARCHAR(200))

description VARCHAR(200),

price REAL,

cost REAL)

Fig. 2. Schema of supplier’s relational database.

1.1 An Example

In our example scenario from electronic commerce, product suppliers provide infor-
mation to product resellers. For their mutual benefit, suppliers and resellers have
agreed to exchange data in a format that conforms to a particular XML schema.
The shared schema is depicted Figure 1 in the type notation of XQuery [World-Wide
Web Consortium 2002c]. Every supplier element contains a company element fol-
lowed by a possibly empty sequence of product elements. The sequence operator
(,) combines elements into a sequence; the repetition operator (*) denotes zero or
more instances of an element. A product element, in turn, contains several other
elements and an optional sale element. The optionality operator (?) indicates that
there can be zero or one sale element in product. The company, name, category,
and description elements all contain a single string. A trouble report includes
a code attribute, containing a string that indicates the class of problem; the re-
port’s content is a string, which is the customer’s comments. Most importantly, this
schema is used by suppliers and resellers, and it is a public document. Typically, a
public schema is written in XML Schema notation [World-Wide Web Consortium
2001a; 2001b], which is translated by an XQuery processor into its internal type
system. Because XML Schema syntax is verbose, we describe our example schema
in the more concise notation of XQuery’s internal types. We assume, as usual, that
the XML schema was designed by agreement among many (possibly hundreds) sup-
pliers and resellers, and does not reflect in any way how the data is organized by
particular suppliers or resellers.

Consider now a particular supplier whose business data is organized according
to the relational schema depicted in Figure 2. There are three tables: Clothing
contains tuples corresponding to products; the Discount table contains product
discounts; and the Problems table contains trouble codes of products and their

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

6 · Mary Fernández et al

reports. This is a first-normal form relational schema, designed for the supplier’s
particular business needs. We stress that the XML schema and the relational
schema were designed by different organizations, and with different purposes. As a
result, the supplier needs to convert data from its relational representation into the
XML representation, and make the XML view available to resellers. In our example,
we assume the supplier exports only a subset of its inventory, in particular, its stock
of outer-wear that it wants to sell at a reduced price at the end of the winter season.

Resellers need not be aware of how the supplier provides the XML data conform-
ing to the schema in Figure 1. They formulate their queries over the XML view
assuming that it conforms to the agreed schema. Some examples of queries are:

—Retrieve products whose sale price is less than 50% of retail price.
—Count the number of “defective” reports for a product.
—Compute minimum and maximum cost of outer-wear stock.

As these queries suggest, the reseller is typically interested in a subset of the data
provided by the suppliers. Readers familiar with SQL will recognize that these
queries could be formulated as SQL queries over the supplier’s relational database,
but relational schemas differ across suppliers and are not accessible by the reseller.

2. ARCHITECTURE

The architecture of SilkRoute is depicted in Figure 3. It serves as middle-ware
between a relational database and an application accessing that data over the Web.
First, the relational tables are presented to the database administrator in a virtual,
canonical XML view. The database administrator then writes a public query over
the canonical XML that defines the public XML view. The public query is typically
complex, because it transforms the relational data into deeply nested XML data.
Applications only have access to the public XML view, not the relational database.

To access the data, an application programmer formulates an application query
over the XML view; this query is composed with the public query, resulting in a new
query. This composed query is submitted to the query planner, which translates it
into one or more SQL queries that are executed by the relational engine, producing
one or more tuple streams. The XML generator merges these tuple streams into one
virtual relation and constructs an XML document by nesting and tagging tuples in
the virtual relation. The final XML document is returned to the application. The
only data manipulation performed by SilkRoute is merging of sorted tuple streams.
Any complex data processing is pushed into the relational engine.

Both the public query and the application queries are expressed in XQuery. The
entire XQuery language is supported, except for recursive functions and features
that depend on the XML document order. The precise XQuery fragment supported
by SilkRoute is described in Section 4.

Internally, XQuery expressions are represented by view forests. The relational
database instance is represented as a canonical view forest ; the public view is
represented as the public view forest ; and, finally, the application query is composed
with the public view forest and results in an application view forest. The view
forest is defined formally in Section 3. Except for the canonical view forest, which
is generated directly from the relational schema, all other view forests are obtained
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

SilkRoute : A Framework for Publishing Relational Data in XML · 7

Relational
 Schema

Composer
View Forest

Composer
View Forest XML

Generator

Query Cost
Estimates

SilkRoute

Application

Web / Intranet

RDBMS
Query flow (no data)

Data flow

XML Document

Tuple Streams

XML

Template
Forest

View

Public

Forest

View
Planner

Application Canonical

SQL Queries

Public Query
XQuery

Application Query
XQuery

View
Forest

Fig. 3. SilkRoute’s Architecture.

by composing an existing view forest with an XQuery expression. The view forest
composer module is described in Section 4.

The scenario shown in Figure 3 is probably the most common use of SilkRoute,
but minor changes to this information flow permit other scenarios. For example, the
data administrator may export the entire database as one, large XML document by
materializing the public query. This can be done by passing the public view forest
directly to the planner. Unlike the application query, the public query may export
a large part or possibly all of the relational database, therefore it is imperative that
the planner choose a set of SQL queries that can be evaluated efficiently by the
relational engine. In another scenario, the application view forest could be kept
virtual for later composition with other application queries. This is useful when
one wants to define a new XML view from an existing application view.

In the rest of this section, we describe SilkRoute’s components, illustrating their
functionality on our example in Section 1.1.

2.1 Canonical XML View of Relational Data

The relational database is represented in SilkRoute as a virtual, canonical XML
view: this permits the database administrator to write XQuery expressions over
the relational data. The view is virtual, because it is never materialized, and it is
canonical, because the same rules are applied to convert any relational table to an
XML view.

A relation with schema R(A1,...,An) and containing the tuples (a11,...,a1n),
. . ., (ak1,...,akn) are mapped into a canonical XML view with the following form:

<R>

<Tuple><A1>a11</A1>...<An>a1n</An></Tuple>

...

<Tuple><A1>ak1</A1>...<An>akn</An></Tuple>

</R>

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

8 · Mary Fernández et al

element CanonicalView { element Discount {

element Clothing, element Tuple {

element Discount, element pid { integer },

element Problems element item { string },

} element discount { float }

}*

}

element Clothing { element Problems {

element Tuple { element Tuple {

element pid { integer }, element pid { integer },

element item { string }, element code { string },

element category { string }, element comments { comments }

element description { string }, }*

element price { float }, }

element cost { float }

}*

}

Fig. 4. Canonical XML view of relational schema in Figure 2 using XQuery type notation.

SilkRoute uses the relational schema to generate the canonical XML view, as shown
in Figure 3. For our example, Figure 4 shows the XML types for the canonical XML
view of the relations given in Figure 2.

2.2 The Public XML View and the Public Query

The database administrator defines the public XML view by writing an XQuery
expression over the canonical XML view. XQuery is a functional query language
for XML that is statically typed and compositional. It incorporates all of XPath
2.0 [World-Wide Web Consortium 2002d] as a proper sub-language. XQuery is
currently a W3C working draft [World-Wide Web Consortium 2002b]. The subset
of XQuery supported by SilkRoute is defined formally in Section 4.

The SilkRoute-specific variable $CanonicalView is used to access the canonical
XML view. We illustrate several XQuery features for defining public views, then
describe the public query for the example in Figure 6.

Flat XML Views In the simplest case, the XML view is flat, like relational data.
The public query consists of a for-let-where-return (flwr) expression, which
iterates over tuples in the canonical XML view, applies predicates to the tuples,
and constructs new XML values that occur in the public view. For example, the
following query defines a fragment of the supplier’s public view in Figure 2:

for $c in $CanonicalView/Clothing/Tuple
where data($c/category) = "outerwear"
return <product>

<name>{ data($c/item) }</name>
<category>{ data($c/category) }</category>
<retail>{ data($c/price) }</retail>

</product>

The $CanonicalView variable is bound to the canonical XML view conforming to
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

SilkRoute : A Framework for Publishing Relational Data in XML · 9

the schema given in Figure 4. The expression $CanonicalView/Clothing/Tuple
denotes the set of Tuple elements in the Clothing relation. The for expression
binds the variable $c to each tuple in this collection and for each binding, the where
expression is evaluated. For every true evaluation of where expression, the return
expression is evaluated, and all the return values are concatenated into a sequence
of XML elements. The query produces an XML fragment like the following:

<product>
<name>...</name><category>...</category><retail>...</retail>

</product>
...

in which there is one product element for each tuple that satisfies the predicate in
the where expression.

Nested XML Views When the XML view is nested, then the corresponding
XQuery has nested FLWR expressions. An example is:

<view> {
for $c in $CanonicalView/Clothing/Tuple
return <product>

<name>{ data($c/item) }</name>
{ for $p in $CanonicalView/Problems/Tuple
where $p/pid = $c/cid
return <report>{ $p/comments }</report> }

</product>
} </view>

The outer-most constructor expression constructs the root element view. The first
sub-expression constructs one product element for each tuple in Clothing. Its
inner sub-expression creates zero or more <report> sub-elements, one for each
report associated with that product. Readers familiar with SQL may recognize this
expression as a left-outer join of Clothing with Problems followed by a group-by
on Clothing.

Complex XML Views In some applications, the XML view requires complex re-
structuring of the relational data, e.g., when data from several relations needs to be
fused. Assume that we want to compute a view containing all products in Clothing
that are not discounted, all products in Clothing that are discounted (and include
the discount) and all products that are in Discount, but do not occur in Clothing.
Readers familiar with SQL will recognize this expression as a full outer join on
Clothing and Discount. This view can be expressed in XQuery with parallel let
expressions, UNION, and the distinct-value function. An example is shown in
Figure 5. Here, the product ids from the Clothing relation are merged with the
product ids from Discount, and the XML view contains one <fused-product> el-
ement for each distinct product id. Notice how this is achieved with intermediate
XML values, UNION, and distinct-value.

The first two let expressions construct two collections of XML values indepen-
dently and these collections are subsequently “merged” into one collection. The
first let expression creates elements of the form:

<product id="i "><price>p </price></product>

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

10 · Mary Fernández et al

<view> {

let $items := for $c in $CanonicalView/Clothing/Tuple

return <product id={ data($c/pid) }>

{ $c/price }

</product>,

$discounted-items := for $d in $CanonicalView/Discount/Tuple

return <product id={ data($d/pid) }>

{ $d/discount }

<product>,

$allitems := $items UNION $discounted-items,

$prodids := distinct-value($allitems/product/@id)

for $pid in $prodids

return

<fused-product id="{ $pid }">

{ for $p in $allitems/product

where $pid = data($p/@id)

return $p/*

}

</fused-product>

} </view>

Fig. 5. A public query performing element fusion

for each product id i in Clothing. The second let expression creates elements of
the form:

<product id="i "><discount>d </discount></product>

for each product id i in Discount. The third let expression binds $allitems to
the union of these two collections. The fourth let expression computes the set of
distinct product ids occurring in $allitems. For each such id, a fused-product
element is created, which contains the children elements of each product ($p/*) in
$allitems with the same id. When the same product occurs both in Clothing
and Discount, then the two corresponding product elements are merged into:

<fused-product id="i ">
<price>p </price><discount>d </discount>

</fused-product>

Public XML View in the Running Example. Figure 6 contains the public query
for the example first described in Section 1.1. Lines 1, 2, and 26 create the root
<supplier> element. The constructor expression on line 2 creates its company child
element. The first nested expression (lines 3–25) contains the query fragment de-
scribed above, which constructs one product element for each “outerwear” item.
Within this expression, the nested expression (lines 12–16) expresses an outer join
between the Clothing and Discount tables and constructs a sale element with
the product’s sale price nested within the outer product element. The last nested
expression (lines 17–23) expresses an outer join between the Clothing and Problem
tables and constructs one report element containing the problem code and cus-
tomer’s comments; the report elements are nested in the outer product element.
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

SilkRoute : A Framework for Publishing Relational Data in XML · 11

1. <supplier>

2. <company>Acme Clothing</company>

3. {
4. for $c in $CanonicalView/Clothing/Tuple

5. where data($c/category) = "outerwear"

6. return

7. <product>

8. <name>{ data($c/item) }</name>
9. <category>{ data($c/category) }</category>

10. <description>{ data($c/description) } </description>

11. <retail>{ data($c/price) }</retail>
12. { for $d in $CanonicalView/Discount/Tuple

13. where $d/pid = $c/pid

14. return

15. <sale>{ data($c/price) * data($d/discount) }</sale>
16. }
17. { for $p in $CanonicalView/Problems/Tuple

18. where $p/pid = $c/pid

19. return

20. <report code="{ data($p/code) }">

21. { $p/comments }

22. </report>

23. }
24. </product>

25. }
26. </supplier>

Fig. 6. Public query (QP). The highlighted fragment forms another public query used in Fig. 17.

2.3 Application Query

Applications access the public XML data by formulating a query over the public
view; the relational data cannot be accessed directly. Like the public query, the
application query is written in XQuery, but the former is applied to the canonical
XML view, while the latter is applied to the public XML view.

We illustrate with an application query in which the reseller retrieves all products
with sale price less than half of retail price. The application query is shown in Fig-
ure 7. The variable $PublicView denotes the public view. One supplier element
is created for each supplier element in the exported view. It contains one name
and discounted element, which in turn contains one product for each discounted
product. Note that the answer to the application query includes a small fraction of
the relational database, i.e., only those products that are heavily discounted.

A note on static typing. One of XQuery’s features is that the language is statically
typed. SilkRoute uses typechecking both in the public query and in the application
query. The public query is usually large, and increases with the size of the XML
schema or DTD. In practice, XML schemas often have hundreds of elements or
more [Sahuguet 2000], and specifying an XML public view of such schemas might

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

12 · Mary Fernández et al

1. for $s in $PublicView/supplier,

2. return

3. <supplier> {

4. <name>{ data($PublicView/supplier/company) }</name>

5. <discounted>

6. { for $p in $s/product

7. where data($p/sale) < 0.5 * data($p/retail)

8. return <product>{ data($p/name) }</product>

9. }

10. </discounted>

11. } </supplier>

Fig. 7. Application query (QA).

require hundreds to thousands of lines of XQuery code. The static typechecker is
essential for catching errors in such a query. In our example, the typechecker verifies
that the public query in Figure 6 conforms to the schema in Figure 1. For example,
had we omitted line 11, the typechecker would report that product must contain
a retail subelement. Similarly, a typechecker can catch errors in an application
query. For example, if we mistype line 7 of the application query as:

7. where data($p/price) < 0.5 * data($p/retail)

then, based on the XML schema in Figure 1, the typechecker would report that
price is an invalid subelement of product.

2.4 View-Forest Composer

The application query is composed with the public query before it is evaluated
on the relational data. Because XQuery is compositional and both queries are
XQuery expressions, they can be composed trivially by simply substituting the
variable $PublicView by its definition in XQuery. The composer module, however,
does more than syntactic substitution: It removes unnecessary expressions from the
public view, eliminates any intermediate XML results, and computes the appropri-
ate SQL queries for the relational database. Notice that the composer is used twice
in Figure 3. In general, it can be applied whenever a new XML view is defined in
terms of an existing one.

Before defining view forests and view composition formally, we illustrate com-
position informally using XQuery expressions. The composition module takes the
public query in Figure 6 and the application query in Figure 7 and constructs the
query is shown in Figure 8. We stress that the composition algorithm manipulates
view forests, not XQuery expressions, and this example only illustrates the intu-
ition. The composed query illustrates several important points. First, it combines
fragments of the public query and application query, with the latter highlighted in
Figure 8. Second, the composed query takes as input (the canonical XML view
of) the relational database, and does not refer to the public view. The application
query’s predicate: data($p/sale) < 0.5 * data($p/retail), is re-expressed in
terms of the canonical relational view as:

data($c/price) * data($d/discount) < 0.5 * data($c/price).

Finally, the composed query structures the result as in the application query.
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

SilkRoute : A Framework for Publishing Relational Data in XML · 13

<supplier>

<name> Acme Clothing </name>

<discounted>

{ for $c in $CanonicalView/Clothing/Tuple,

$d in $CanonicalView/Discount/Tuple

where data($c/category) = "outerwear",

data($c/pid) = data($d/pid),

data($c/price) * data($d/discount) < 0.5 * data($c/price)

return

<product> { data($c/item) } </product>

}
</discounted>

</supplier>

Fig. 8. Composed query (QC), obtained by composing QP and QA. The highlighted fragment is

obtained from QA, the rest from QP .

2.5 Planner

The planner takes a view forest and decomposes it into one or more SQL queries
and an XML template. For example, the composed query in Figure 8 is translated
into the SQL query:

SELECT c.pid as pid, c.item as item
FROM Clothing c, Discount d
WHERE c.category = "outerwear",

c.pid = d.pid,
c.price * d.discount < 0.5 * c.price

ORDER BY c.pid

and into the XML template:

<supplier>
<name>Acme Clothing</name>
<discounted>

<product> { $item } </product>
</discounted>

</supplier>

where $item refers to the attribute item in the SQL query’s SELECT clause; we
describe the meaning of an XML template in more detail in Section 3. The SQL
queries are executed by the relational engine, and the results are merged and con-
verted into XML by the XML generator.

In this example, only one SQL query is required. In general, there are many
ways to decompose a complex view forest into one or more SQL queries. Each SQL
query has a sort by clause, making it possible for the XML generator to merge
the tuple streams into an XML document in a single pass. Choosing an efficient
evaluation strategy is important when the view query returns a large result. When
searching for an efficient evaluation plan, the planner consults the relational query
engine, which returns estimates of query cost.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

14 · Mary Fernández et al

3. VIEW FOREST

We introduce here the view forest, our representation of XQuery to SQL translation,
which is used throughout SilkRoute. Semantically, a view forest defines a mapping
from a relational database to an XML document. It separates the structure of the
XML document from the computations that produce the atomic values contained
in the document. The computations are expressed in SQL.

Any XQuery expression over a canonical view of a relational database can be
rewritten as a view forest, and in SilkRoute, both the public query and the ap-
plication query, which is composed with the public query, are represented as view
forests. For example, the public query in Figure 6 is represented internally by the
view forest in Figure 9, which we explain below.

We now define formally the view forest. Given a relational schema S, a view forest
V is a forest1 in which each node is labeled with an XML label and a SQL query
fragment over S. The XML label and the SQL fragment differ slightly for element
or attribute (internal) nodes and for atomic value (leaf) nodes. For an internal
node, the XML label is an element or attribute name, and the SQL fragment
consists of a required from clause and an optional where clause. For a leaf node,
the XML label is an atomic type (as specified in XML Schema [World-Wide Web
Consortium 2001b]) and the SQL fragment consists of a required select clause,
containing a single value of the corresponding atomic type, and optional from and
where clauses. For exposition purposes, we use only the string atomic type and
assume all other values are cast into strings. We require that a tuple variable is
bound to each table occurring in a from clause, and that every tuple variable used
in the SQL fragment of some node n is bound in the from clause of n or in the
from clause of one of n’s ancestors. The nodes, edges, and XML labels of the forest
represent the structure of the XML view, while the SQL query fragments represent
the computation performed by the relational database in order to construct the
view. View forests exist because XQuery supports sequences whose items may be
arbitrary XML elements. In practice, view forests are often trees, and then we refer
to them as view trees.

We illustrate a view forest on our example public query QP in Figure 6; the
corresponding view tree VP is in Figure 9 (a). We associate to each node a unique
identifier based on the Dewey encoding [Online Library]. This encoding allows us
to check the parent-child relationship easily. For example, the nodes with identifiers
N1.2.1 and N1.2.2 are siblings and are children of the node N1.2. The XML label
for internal nodes is an element or an attribute name; examples are <supplier>,
<product>, @code. The SQL fragments are in Figure 9 (b)2. The SQL fragments
of the internal nodes N1.2, N1.2.1, and N1.2.5 contain from and where clauses,
whereas the leaf nodes N1.2.1.1 and N1.2.6.1.1. contain only select clauses. The
from or where clauses may be empty, in which case we omit them (e.g., in the
leaf nodes), or represent them with from () (e.g., N1.2.1). These queries are
fragments: a where or select clause in a fragment may have tuple variables

1Recall that a forest is a graph in which for every two nodes x, y there exists at most one path

from x to y. A forest with a single connected component is a tree.
2To distinguish between XQuery and SQL expressions, we use the text font to denote XQuery

expressions and the small-caps font to denote SQL expressions.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

SilkRoute : A Framework for Publishing Relational Data in XML · 15

<name>
N1.2.1

N1.2.1.1

string

N1.2.3

N1.2.3.1
string

<retail>
N1.2.4

N1.2.4.1
float

N1.2.5
<sale>

N1.2.5.1
float

N1.2.6.1
@code

N1.2.6.1.1
string

N1.2.6.2
string

N1.2.6
<report>

<company>
N1.1

N1.1.1
string

N1
<supplier>

<product>
N1.2

N1.2.2
<category>

N1.2.2.1
string

<description>

(a)

N1(<supplier>) :- FROM ()

N1.1(<company>) :- FROM ()

N1.1.1(string) :- SELECT "Acme Clothing"

N1.2(<product>) :- FROM Clothing c WHERE c.category ="outerwear"

N1.2.1(<name>) :- FROM ()

N1.2.1.1(string) :- SELECT c.item

N1.2.2(<category>) :- FROM ()

N1.2.2.1(string) :- SELECT c.category

N1.2.3(<description>) :- FROM ()

N1.2.3.1(string) :- SELECT c.description

N1.2.4(<retail>) :- FROM ()

N1.2.4.1(float) :- SELECT c.price

N1.2.5(<sale>) :- FROM Discount d WHERE d.pid = c.pid

N1.2.5.1(float) :- SELECT d.discount * c.price

N1.2.6(<report>) :- FROM Problems p WHERE p.pid = c.pid

N1.2.6.1(@code) :- FROM ()

N1.2.6.1.1(string) :- SELECT p.code

N1.2.6.2(string) :- SELECT p.comments

(b)

Fig. 9. View forest VP for public query QP in Figure 6: (a) tree representation (b) internal
representation.

that are not defined in that fragment, however, each such tuple variable must be
defined in the from clause of an ancestor. For example, node N1.2 defines the
tuple variable c, which is used in in the where clauses of N1.2.2.1 and N1.2.6.

To define formally the view-forest mapping from instances of S to XML, we need
a notation. We associate with each node n a complete SQL query, Cn, as follows.
The from clause of Cn is the concatenation of all from clauses of n and all n’s
ancestors; the where clause of Cn is the conjunction of all where clauses of n
and all n’s ancestors; and if n is a leaf, the select clause of Cn is that of n,
otherwise it is select *. Notice that Cn is complete, i.e., all tuple variables used
in Cn are defined in the from clause. Moreover, if n1 is the parent of n2, then
all tuple variables bound in the from clause in Cn1 are also bound in the from

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

16 · Mary Fernández et al

clause of Cn2 . Finally, notice that Cn is of the form select-from-where, not
select-distinct-from-where, thus duplicate values may occur in the answer.

Now we can define formally the mapping defined by a view forest. Given a
database instance I of S, the XML tree V (I) is defined as follows. V (I)’s nodes
consist of the disjoint union of all answers Cn(I), for all nodes n in the view forest.
More precisely, V (I)’s nodes are pairs (n, a), where n is a node in V and a is a row
in the answer of Cn on I: a ∈ Cn(I). The parent-child relationship is defined as
follows: (n2, a2) is the child of (n1, a1) if n2 is the child of n1 in V , and the answers
a1 and a2 correspond to precisely the same values of the tuple variables defined in
Cn1 . Finally, the XML label of a node (n, a) is the label of n in V , when n is an
internal node, and is the string value a, if n is a leaf in V . The XML output tree
is unordered. This completes the definition of V (I). In general, V (I) is an XML
forest, but it is a tree when V is a tree and the SQL fragment of its root is empty.

Using the example in Figure 9, some instances of Cn are shown below:

CN1.2 = CN1.2.1 = SELECT *

FROM Clothing c

WHERE c.category = "outerwear"

CN1.2.1.1 = SELECT c.item

FROM Clothing c

WHERE c.category = "outerwear"

CN1.2.6 = CN1.2.6.1 = SELECT *

FROM Clothing c, Problems p

WHERE c.category = "outerwear" AND p.pid = c.pid

CN1.2.6.1.1 = SELECT p.code

FROM Clothing c, Problems p

WHERE c.category = "outerwear" AND p.pid = c.pid

To compute the XML view, we execute all these SQL queries, and construct a
distinct XML node for each row in each answer. For example, there will be one
XML node for each row in CN1.2.1, and its label is <name>, and there will be one
XML node for each row in CN1.2.1.1, labeled with the string c.item. To illustrate
the parent-child relationship, consider the queries CN1.2 and CN1.2.6: a row in
CN1.2 is a parent of a row in CN1.2.6 if and only if these two rows correspond to
the same binding of the tuple variable c. In particular, a row in CN1.2 may have
multiple children, corresponding to the same binding of the tuple variable c, and
to different bindings of p.

Next, we give examples of several view forests, showing their expressive power,
usage in SilkRoute, and hint at the complexity of constructing them.

View forest for a canonical mapping. The simplest example of a view forest is
the canonical mapping from a relational database to an XML view described in
Section 2.1. Figure 10 gives a fragment of the view forest for the canonical XML
view in Figure 2, corresponding to the Clothing relation. The fragments corre-
sponding to Discount and Problems are similar and omitted. Such canonical view
forests can be constructed automatically from the relational schema and are used
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

SilkRoute : A Framework for Publishing Relational Data in XML · 17

N1.1.6.1 :− SELECT c.cost

N1.1.5.1 :− SELECT c.price

N1.1.3.1 :− SELECT c.category

N1.1.2.1 :− SELECT c.item

N1.1.1.1 :− SELECT c.pid

string

N1.1.1.1

N1.1.1
<pid>

string

N1.1.2
<item>

string

N1.1.3.1

N1.1.3
<category>

string

N1.1.4.1

N1.1.4

float

N1.1.5.1

N1.1.5
<price>

float

N1.1.6.1

N1.1.6
<cost>

N1
<Clothing>

N1.1
<Tuple>

N1.1 :− FROM Clothing c

N1.1.3 :− FROM ()

N1.1.5 :− FROM ()

N1.1.6 :− FROM ()

N1.1.4.1 :− SELECT c.description N1.1.4 :− FROM ()

N1.1.2 :− FROM ()

N1.1.1 :− FROM ()

N1.1.2.1

<description>

Fig. 10. Fragment of the canonical view forest for the Clothing relation in Figure 2.

c.price * d.discount < 0.5 * c.price

FROM Clothing c, Discount d

WHERE c.category = "outerwear"

c.pid = d.pid

<discounted>
N1.2

<product>

N1.2.1.1

N1.2.1

string

N1.1

N1.1.1

string

<name>

<supplier>
N1

N1.2.1 :−

N1.1.1 :− SELECT "Acme Clothing"

N1.2.1.1 :− SELECT c.item

Fig. 11. View forest of composed query in Figure 8.

as starting points to construct more complex view forests, using the composition
algorithm in Section 4.

View forest for the application query. Figure 11 gives the view forest for the
composed query in Figure 8. Note that the SQL fragments for the supplier, name,
and discounted elements are empty, because these nodes are always constructed.
Also note that the child of the name node is the literal string “Acme Clothing”.
The SQL fragment for the product node expresses a join between the Clothing

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

18 · Mary Fernández et al

N1.1.2

<price>

N1.1.2.1

string

N1.1.3

string

<discount>

N1.1.3.1

N1.1.1

N1.1.1.1

string

@id

N1
<view>

N1.1

<fused−product>

N1.1.3.1(string) :− SELECT d.discount

WHERE d.pid = pid.PID
FROM (SELECT * FROM Discount d) d

N1.1.3(<discount>) :−

WHERE p.pid = pid.PID
FROM (SELECT * FROM Clothing c) p

N1.1.2(<price>) :−

N1.1.1.1(string) :− SELECT pid.PID

N1.1.2.1(string) :− SELECT p.price

N1.1(<fused−product>) :−
FROM (SELECT DISTINCT c.pid AS PID

FROM Clothing c) UNION
(SELECT DISTINCT d.pid AS PID
FROM Discount d) pid

Fig. 12. View forest for the public query in Figure 5.

and Discount relations and selects each item in the outerwear category whose
discounted price is less than half its retail price.

View forest for complex XQuery expressions. An important property of the view
forests is that they can represent any XQuery expression in SilkRoute’s subset.
We illustrate with a more complex example, corresponding to the XQuery expres-
sion in Figure 5; the view forest is shown in Figure 12. The XQuery expression
and the view forest differ significantly. In XQuery, an intermediate XML value
is constructed, then the function distinct-values is applied, and the result is
submitted to another XQuery subquery. In the view forest, there is no intermedi-
ate XML value; only the structure of the final XML answer is represented. The
computations applied to the intermediate XML values are pushed into the SQL
queries.

It is significant that every XQuery query can be transformed into a view for-
est representing the constructed XML document, with all the computations corre-
sponding to intermediate results, nested queries, function applications, etc., pushed
into the SQL queries. This property establishes a tight and precise connection be-
tween SQL and XQuery. As this example suggests, it is not obvious how to translate
an arbitrary XQuery expression into a view forest. We show how to do so next.

4. VIEW-FOREST COMPOSITION ALGORITHM

Next, we present the view-forest composition algorithm (vfca), which translates
an XQuery query into a view forest. The algorithm expects the query to be ex-
pressed in a subset of XQuery, called XQueryCore, which is defined below. Because
XQueryCore is compositional, the algorithm can be used to perform composition
of canonical, public, and application queries.

We shall formalize vfca next. Recall that a view forest V defines a mapping
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

SilkRoute : A Framework for Publishing Relational Data in XML · 19

from a relational schema S to XML and V (I) denotes the XML output of this
function applied on an instance I of S. Every public query Q has a single free
variable, $CanonicalView, which is bound to the canonical XML representation of
the relational database. We let CV denote the canonical view forest that describes
the mapping from a relational schema S to its canonical XML representation. The
expression Q(CV (I)) denotes the XML output, which is constructed by first evalu-
ating the expression CV (I), then applying Q to the XML result of CV (I), where I
is an instance of S. Given V and Q, the algorithm vfca constructs the view forest
vfca(V,Q), denoted VQ, such that the results of Q(CV (I)) and VQ(I) are identical
on any instance I of S, i.e., Q(CV (I))) = VQ(I) for any I of S. More generally,
the vfca is defined as:

Algorithm 1 View Forest Composition, vfca.
Input: An XQueryCore expression Q over input variables X1, . . . , Xm and a view
forest Vi corresponding to each input variable Xi.
Output: A view forest VQ =vfca(V1, . . . , Vm, Q) with the property that Q(V1(I),
. . . , Vm(I)) = VQ(I) for any I of S.

There are two applications of the vfca:

—Representation of public XML views. We let Q be the public query with
$CanonicalView its unique variable, and CV the corresponding canonical view
tree for the relational database. The vfca returns PV =vfca(CV,Q), which
satisfies Q(CV (I)) = PV (I).

—Query composition. We let Q be the application query, and V be the view
forest for an XML view (V may be the public view forest or the result another
composition). The vfca returns AV =vfca(Q,V), which satisfies Q(V (I)) =
AV (I).

4.1 XQueryCore

The XQuery language provides many features that make queries simpler to write
and use, but are also redundant. For instance, complex FLWR expressions can be
rewritten as the composition of individual for, let, and if-then-else expres-
sions. The XQuery Formal Semantics [World-Wide Web Consortium 2002c] defines
a proper subset of the XQuery language, called the XQuery Core language, and
gives rules that rewrite or normalize every XQuery expression as a XQuery Core
expression. The static (type) and dynamic (value) semantics of XQuery is defined
on this core language. SilkRoute’s XQueryCore language is a proper subset of the
XQuery Core language and is defined in Figure 13. It excludes recursive func-
tions and operators (e.g., the “before” and “after” operators (<</>>) and the
is/isnot operators) and functions that depend on the XML document order. Any
public or application query that can be normalized as an XQueryCore expression
is supported by SilkRoute.

We assume that XQuery’s normalization rules are applied before the vfca is
applied. Many of XQuery’s expressions (e.g., predicates in path expressions and
comparison operators) have an implicit existential semantics, so many of the nor-
malization rules translate these expressions into equivalent, explicitly quantified

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

20 · Mary Fernández et al

Expr ::= Literal

| element QName { Expr } Element constructor
| attribute QName { Expr } Attribute constructor

| () Empty sequence

| Expr1 , Expr2 Sequence constructor
| Var

| Expr1 BinOp Expr2

| UnaryOp Expr
| if (Expr1) then Expr2 else Expr3

| for Var in Expr2 return Expr2
| let Var := Expr1 return Expr2
| QName(Expr1, ..., ExprN) Function application

| Var / Axis::NodeTest Single-step path expression

Literal ::= String |Integer |Float | . . .
UnaryOp ::= + | - | not
BinOp ::= EqOp | ArithOp | SetOp | LogicalOp
EqOp ::= eq | lt | le | gt | ge | ne
ArithOp ::= + | - | * | div | mod
LogicalOp ::= and | or
SetOp ::= union Node set operator

Axis ::= self | child | descendant-or-self |
parent | ancestor | descendant

NodeTest ::= QName | * | attribute() | node() | text()
Supported functions: Built-in functions data, count, avg, min, max, sum, distinct-values,

empty and non-recursive, user-defined XQuery functions.

Fig. 13. XQueryCore: A subset of XQuery’s normalized core grammar

Core expressions. The normalization rules also include: rewriting literal XML el-
ement and attribute constructors into a simpler, non-XML syntax; rewriting flwr
expressions into nested for, let, and if-then-else expressions in which each for
and let expression binds one variable; and applying the data function to element
or attribute operands of expressions that require atomic values as arguments. The
XQuery Formal Semantics defines in detail all the normalization rules, so we do
not enumerate them here.

SilkRoute applies three more normalization rules to path expressions. A path
expression containing multiple steps is rewritten into nested for expressions, each
of which bind one new variable to a single-step path expression. For example, for
a multi-step path expression of the form:

for Var in Expr/Axis1::NodeTest1/.../AxisN::NodeTestN return Expr

the expression above is rewritten as:

for Var1 in Expr/Axis1::NodeTest1 return
(... for Var in Var(N-1)/AxisN::NodeTestN return Expr)

Disjunctions are eliminated by distributing the | (union) operator. For example,
for the expression:

for Var2 in Var1/(Expr1 | Expr2) return Expr3

the expression above is rewritten into:

(for Var2 in Var1/Expr1) return Expr3) union

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

SilkRoute : A Framework for Publishing Relational Data in XML · 21

1. element supplier {
2. element company { "Acme Clothing" },
3. for $t1 in $CanonicalView/child::Clothing return

4. for $c in $t1/child::Tuple return

5. for $cat in $c/child::category return

6. if (data($cat) eq "outerwear") then

7. element product {
8. element name { for $item in $c/child::item return data($item) },
9. element category { data($cat) },

10. element description { for $desc in $c/child::description

return data($desc) },
11. element retail { for $price in $c/child::price

return data($price) },
12. (for $t2 in $CanonicalView/child::Discount return

13. for $d in $t2/child::Tuple return

14. for $spid in $d/child::pid return

15. for $cpid in $c/child::pid

16. if (data($spid) eq data($cpid)) then

17. element sale {
18. for $discount in $s/child::discount return

19. for $price in $c/child::price return

20. data($discount) * data($price) }
21. else ()),

22. (for $t3 in $CanonicalView/child::Problems return

23. for $p in $t3/child::Tuple return

24. for $ppid in $p/child::pid return

25. for $cpid in $c/child::pid return

26. if (data($ppid) eq data($cpid)) return

27. element report {
29. attribute code { for $code in $p/child::code

return data($pcode) },
29. for $comments in $p/child::comments return $comments }
30. }
31. else ())

32. }
33. else ()

34. }

Fig. 14. NQP : Normalization of public query QP in Figure 6

(for Var2 in Var1/Expr2 return Expr3)

Lastly, we introduce new variables so that every path expression is rooted with a
variable. For example, the expression Expr1/Expr2 is rewritten into: for Var1 in
Expr1 return Var1/Expr2

The normalization of public query QP is given by the query NQP in Figure 14.
Note that all multi-step path expressions are rewritten as single-step path expres-
sions and that all path expressions that do not already occur in a for expression are
replaced with new variables and those variables are bound in a new for expression.

4.2 View-Forest Composition Algorithm vfca

The vfca is defined recursively on the structure of a XQueryCore expression. The
algorithm uses the types and functions in Tables I and II. We note that in the

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

22 · Mary Fernández et al

Expr Abstract syntax tree of an XQueryCore

expression in Figure 13
Node = { QName, Forest, SQL } Node in a view forest (three-part record)

Forest Sequence of view-forest nodes

SQL = { SELECT, FROM, WHERE } SQL fragment (three-part record)
Env = Var → Forest Environment from a XQueryCore variable

to a view forest.

Table I. vfca Types
elementNode : QName × Forest × SQL → Node Construct element view-forest node

attributeNode : QName × Forest × SQL → Node Construct attribute view-forest node
atomicNode : SQL → Node Construct atomic-value node

getBinding : Env × Var → Forest Return binding of variable in environment
addBinding : Env × Var × Forest → Env Extend environment with binding

of variable to view forest

joinSQL : SQL1 × . . .× SQLN → SQL Natural join of N SQL fragments
forestJoin : Forest × SQL → Forest Applies joinSQL to SQL fragment of each

root in forest and returns new forest
unionSQL : SQL1 × . . .× SQLN → SQL Construct SQL UNION of N SQL queries
renameTupleVars : Node → Node Renames new tuple variables in FROM

clauses of Node and its descendants
renameTupleVarsExceptRoot : Node → Node Renames new tuple variables in FROM

clauses of Node’s children and descendants

Table II. vfca Functions

XQuery data model [World-Wide Web Consortium 2002a], elements and attributes
may contain sequences of atomic values. A node’s atomic values are accessed by the
data function. The XPath 1.0 text() accessor returns the lexical representation
of a node’s content. The vfca is concerned only with atomic values.

We present vfca in a functional notation similar to ML [Milner et al. 1990].
The function vfca(env, q, s) takes three arguments: env, an environment that
binds XQueryCore variables to view forests; q, the XQueryCore expression to be
converted into a view forest; and s, a SQL fragment, explained below. The vfca
returns a view forest representing q. The key observation is that all path expressions
that occur in XQueryCore expressions can be evaluated on a view forest directly
and produce bindings of XQueryCore variables to nodes in the view forest. For
example, lines 3–5 of NQP in Figure 14 bind variables $t1, $c, and $cat to the
nodes N1, N1.1 and N1.1.3 of CV in Figure 10, respectively. In general, vfca(env,
q, s) simulates an evaluation of the XQueryCore expressions, but on view forests
instead of XML forests. The main difficulty is computing correctly the new SQL
queries on the returned view forest.

The parameter s to vfca is a SQL fragment and requires some explanation.
It is generated for a for clause, and is immediately consumed at the root of the
corresponding return clause. In all other uses in the algorithm, s is empty3. It
should be interpreted as saying “repeat the entire view forest once for each answer
in s”. To justify the need for s, consider the following view tree:

N1(<product>) :- FROM Clothing c WHERE c.category = "outerwear"

3There is one exception, when translating a conditional.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

SilkRoute : A Framework for Publishing Relational Data in XML · 23

N1.1(<report>) :- FROM Problems p WHERE p.pid = c.pid

and construct the translations of the two XQueryCore expressions, Q and R:

Q: R:
1. for $x in $view/self::product 5. let $y = $view/self::product
2. return <result> 6. return <result>
3. $x 7. $y
4. </result> 8. </result>

When translating Q, vfca binds the variable $x to the view forest:

X1(<product>) :- FROM ()
X1.1(<report>) :- FROM Problems p WHERE p.pid = c.pid

This is the original view forest stripped of its SQL query at the root. vfca also
constructs the following query s:

S = FROM Clothing c WHERE c.category = "outerwear"

and uses it as argument to vfca when processing line 2. After the view forest for
the return clause is computed, s is added to its root. The final view forest that
we obtain for Q creates one result for each product:

Q1(<result>) :- FROM Clothing c WHERE c.category = "outerwear"
Q1.1(<product>) :- FROM ()
Q1.1.1(<report>) :- FROM Problems p WHERE p.pid = c.pid

By contrast, when R is translated, the variable $y is bound to an isomorphic copy
of the original view forest:

Y1(<product>) :- FROM Clothing c WHERE c.category = "outerwear"
Y1.1(<report>) :- FROM Problems p WHERE p.pid = c.pid

and the query s is empty when vfca reaches line 6. As a consequence the view
forest resulting for R creates one result element which contains all the product
elements:

R1(<result>) :- FROM ()
R1.1(<product>) :- FROM Clothing c WHERE c.category = "outerwear"
R1.1.1(<report>) :- FROM Problems p WHERE p.pid = c.pid

The remainder of this section gives the recursive definition of vfca. We begin
with translation of some simple XQueryCore expressions.

Literal expressions. A literal expression is represented by an atomic-value node
whose SQL fragment is a select clause containing the literal value and whose
from and where clauses are those in S.

VFCA(Env, [Literal], S) =
let sqlfrag.SELECT = Literal "AS AtomicValue",

sqlfrag.FROM = S.FROM,
sqlfrag.WHERE = S.WHERE

in atomicNode(sqlfrag)

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

24 · Mary Fernández et al

The SQL attribute AtomicValue always contains an atomic value. For XQuery
literal expressions, this attribute contains a literal constant.

Element and attribute constructors. An element constructor in Q becomes a new
element node in the view forest with the given QName and children nodes computed
by applying vfca recursively to Expr:

VFCA(Env, [element QName { Expr }], S) =
let vf = VFCA(Env, Expr, ()) in elementNode(QName, vf, S)

The new node is labeled with the SQL fragment S. When translating the sub-
expressions in Expr, the new SQL query is the empty SQL fragment (), because all
nodes in a view forest implicitly contain the SQL fragments of their ancestors. To
illustrate, consider the expression:

1. for $p in $view/self::product return
2. <result> <subresult/> </result>

which constructs one <result> element for each <product>. Assume that $view
is bound to the view forest:

N1(<product>) :- FROM Clothing c WHERE c.category = "outerwear"

When the algorithm reaches line 2, the SQL fragment S is the SQL fragment of N1.
The algorithm constructs a new view-forest node with this SQL query:

N1’(<result>) :- FROM Clothing c WHERE c.category = "outerwear"

When the algorithm is called recursively on the expression <subresult/>, the SQL
query is empty:

S = FROM () WHERE ()

Hence, the complete output view forest is:

N1’(<result>) :- FROM Clothing c WHERE c.category = "outerwear"
N1.1’(<subresult>) :- FROM () WHERE ()

The definition of the attribute constructor is similar to that for the element
constructor and is omitted.

Sequence expressions. The empty sequence is translated to the empty view forest:

VFCA(Env, [()], S) = ()

To translate the sequence expression (Expr1, Expr2), we apply vfca to each
sub-expression, which produces the view forests vf1 and vf2, and then construct
the view forest that are the nodes in vf1 followed by the nodes in vf2.

VFCA(Env, [(Expr1, Expr2)], S) =
let vf1 = VFCA(Env, Expr1, S),

vf2 = VFCA(Env, Expr2, S)
in (vf1, vf2)

Now that we have explained the pseudo-code notation, we define the more com-
plex XQueryCore expressions.
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

SilkRoute : A Framework for Publishing Relational Data in XML · 25

Variables. A variable is translated to the view forest vf to which it is bound in
the current environment. Any subsequent use of Var in an XQueryCore expression
must include the SQL fragment S. Therefore, we “join” S with the SQL fragments
associated with vf by applying the forestJoin function:

VFCA(Env, [Var], S) =
let vf = getBinding(Env, Var) in forestJoin(vf, S)

For each root node vn (in vf) with SQL fragment S’, forestJoin(vf, S) com-
putes S’’ = joinSQL(S, S’) and returns a new node vn’ labeled with SQL frag-
ment S’’. The function joinSQL(S, S’) computes a new from-where fragment
by taking the union of the from clauses and the union of the where clauses in S
and S’, i.e., a natural join. To illustrate, consider this query:

1. for $p in $view/self::product return
2. for $r in $p/child::report return
3. $p

and assume that $view is bound to the view forest:

N1(<product>) :- FROM Clothing c WHERE c.category = "outerwear"
N1.1(<report>) :- FROM Problems p WHERE p.pid = c.pid

The result of this query contains one copy of a product element for each report in
the product. After line 1, the SQL fragment S is:

S = FROM Clothing c1 WHERE c1.category = "outerwear"

After line 2, the SQL fragment S is:

S = FROM Clothing c1, Problems p2
WHERE c1.category = "outerwear" AND p2.pid = c1.pid

At line 3, $p is bound to the node N1. Logically, we need to make a copy of the
view forest bound to $p and join the SQL fragments associated with its roots with
S. Assume $p is bound to this view forest:

P1(<product>) :- ()
P1.1(<report>) :- FROM Problems p1 WHERE p1.pid = c1.pid

Note that the tuple variables in P1.1 have been renamed. This renaming is nec-
essary to maintain the correspondence between XQueryCore variables and distinct
nodes in the view forest. We explain this in detail shortly.

The function forestJoin takes the view forest with root P1 and joins its SQL
fragment with S, resulting in the following view forest:

Q1(<product>) :- FROM Clothing c1, Problems p2
WHERE c1.category = "outerwear" and

p2.pid = c1.pid
Q1.1(<report>):- FROM Problems p1 WHERE p1.pid = c1.pid

Note that this view forest exactly captures the semantics of the XQuery expression
above.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

26 · Mary Fernández et al

Binary operators. The XQuery normalization rules rewrite arithmetic expres-
sions such that a binary operator ArithOp is applied to single atomic values, not
sequences. As a consequence, after applying vfca recursively to the two subex-
pressions, Expr1 and Expr2, each resulting view forest will be one atomic-value
node with a select-from-where SQL query. The result view tree is another
atomic-value node whose select clause computes the arithmetic expression:

VFCA(Env, [Expr1 ArithOp Expr2], S) =
let vfnode1 = VFCA(Env, Expr1, ()),

vfnode2 = VFCA(Env, Expr2, ()),
sqlfrag = joinSQL(vfnode1.SQL, vfnode2.SQL),
sqlfrag.SELECT = vfnode1.SQL.SELECT ArithOp

vfnode2.SQL.SELECT "AS AtomicValue"
resultNode = atomicNode(sqlfrag)

in forestJoin(resultNode, S)

Here vfnode1.SQL.SELECT returns the expression in the select field of vfnode1,
stripped of any AS modifiers. Usually the from and where clauses of both vfnode1
and vfnode2 are empty, because these SQL fragments must return a single value, in
their context. However it is possible that they contain one or more joins on foreign
keys. Hence we construct the from-where clauses in the result by taking their
natural join.

For logical operators, we temporarily construct a view forest node with a select-
from-where clause where the select clause contains the logical expression (a
comparison, or a boolean combination of other expressions). Later, in a conditional
expression, we move this expression from the select clause to the where clause.

VFCA(Env, [Expr1 (EqOp|LogicalOp) Expr2], S) =
let vfnode1 = VFCA(Env, Expr1, ()),

vfnode2 = VFCA(Env, Expr2, ()),
sqlfrag = joinSQL(vfnode1.SQL, vfnode2.SQL),
sqlfrag.SELECT = vfnode1.SQL.SELECT (EqOp|LogicalOp)

vfnode2.SQL.SELECT "AS AtomicValue"
resultNode = atomicNode(sqlfrag)

in forestJoin(resultNode, S)

This SQL fragment is incorporated into the SQL fragment of the conditional if
expression in which comparison expressions typically occur. When applying vfca
recursively to the expression in Figure 15 on line 5, we compute the SQL fragment
for expressions data($retail) and for data($wholesale) * 2.0, which are:

SELECT p.retail AS AtomicValue

and

SELECT p.wholesale * 2.0 AS AtomicValue.

We combine these fragments into the fragment:

SELECT (p.retail > p.wholesale * 2.0) AS AtomicValue.

The evaluation of unary operators is similar and is omitted.
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

SilkRoute : A Framework for Publishing Relational Data in XML · 27

1. for $p in $CanonicalView/Prices return

2. for $t in $p/Tuple return

3. for $retail in $t/retail return

4. for $wholesale in $t/wholesale return

5. if (data($retail) > data($wholesale) * 2.0) then

6. <expensive/>

7. else <cheap/>

Fig. 15. Example use of XQueryCore if-then-else expression

Conditional expressions. The boolean expression in an if-then-else expression
is guaranteed to be to an atomic-value node. To translate an if-then-else ex-
pression, we first construct the two SQL fragments, sqlTrue and sqlFalse, which
represent the predicate expression Expr1 and its negation, and combine each frag-
ment with S. The result is a sequence of the view forests vf2 and vf3:

VFCA(Env, [if (Expr1) then Expr2 else Expr3], S)
let vn = VFCA(Env, Expr1, S),

sqlTrue.FROM = vn.SQL.FROM
sqlTrue.WHERE = vn.SQL.WHERE,"AND (",vn.SQL.SELECT,")"
sqlFalse.FROM = vn.SQL.FROM
sqlFalse.WHERE = vn.SQL.WHERE,"AND NOT (",vn.SQL.SELECT,")"
vf2 = VFCA(Env, Expr2, sqlTrue),
vf3 = VFCA(Env, Expr3, sqlFalse)
resultForest = (vf2, vf3)

in forestJoin(resultForest, S)

Recall that vn.SQL.SELECT returns the expression in the select clause of vn,
stripped of any AS modifiers. This expression is a boolean expression, which we add
to the where clause with an and operator. Then we translate the Expr2 and Expr3
expressions making sure they are joined with the sqlTrue and sqlFalse queries
respectively. The result consists of a view forest with several possible roots. When
the if-then-else expression is the result of normalizing an XQuery where expres-
sion, then the else clause is empty, Expr3 is the empty forest, and resultForest
consists only of vf2.

For example, on lines 5 and 7 in Figure 15, the result of the if-then-else is a
view forest containing two nodes and whose simplified SQL fragments are:

N1.1(<expensive/>) :- WHERE t.retail > t.wholesale * 2.0
N1.2(<cheap/>) :- WHERE NOT(t.retail > t.wholesale * 2.0)

The for and let expressions. During normalization, each for expression is
rewritten into:

for Var2 in Var1/Axis::NodeTest return Expr

vfca on for expressions is defined in Figure 16. Lines 3–4 in Figure 16 evaluate
the one-step XPath expression on each node in the view forest vf1 bound to Var1.
Assume for a moment that Var1 is bound to a tree. Let vn1 denote the tree’s root
and let vn2 be a node in the given Axis that satisfies NodeTest. To maintain the
dependency between vn1 and vn2, we bind Var2 to a copy of vn2, rename some of

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

28 · Mary Fernández et al

VFCA(Env, [for Var2 in Var1/Axis::NodeTest return Expr], S) =

1. let resultVF = (), /* The empty forest */

2. vf1 = getBinding(Env, Var1) in

/* Bind vn1 to each root in forest vf1 */

3. (for vn1 in vf1 do

/* Evaluate XPath step on the input view-tree */

4. for vn2 in vn1/Axis::NodeTest do

5. if (vn2 is vn1 or vn2 is proper ancestor of vn1)

6. then let

/* Copy the tree rooted at vn2,

rename tuple variables in vn2’s children */

7. vn2’ = renameTupleVarsExceptRoot(vn2),

8. S’ = joinSQL(S, vn2.SQL),

9. Env’ = addBinding(Env, Var2, vn2’),

10. resultVF := (resultVF, VFCA(Env’, Expr, S’)))

11. else /* here vn2 is proper descendant of vn1 */

12. let [n1, ..., nm] = nodes from vn1 to vn2 (excluding vn1 & vn2),

/* Copy the tree rooted at vn2, rename tuple variables in vn2 */

13. vn2’ = renameTupleVars(vn2),

14. S’ = joinSQL(S, n1.SQL, ..., nm.SQL, vn2’.SQL),

15. vn2’’= elementNode(vn2’.QName,vn2’.Forest,()),

16. Env’ = addBinding(Env, Var2, vn2’’),

17. resultVF := (resultVF, VFCA(Env’, Expr, S’)),

18. in resultVF

Fig. 16. Definition of vfca for for expressions

vn2’s tuple variables, and compute the SQL fragment S’ that depends on the SQL
fragments associated with vn1 and vn2. The details of these two steps depend on
the relationship between vn1 and vn2.

In the first block (lines 5–10), v2 is the same node as vn1 or is an ancestor of vn1.
We make a copy of vn2 in which new tuple variables introduced in the from clauses
of vn2’s children are renamed (line 7). This guarantees that the correspondence
between vn1’s tuple variables and those of its ancestor node vn2 are maintained.
The children’s variables are renamed so this copy of vn2 does not conflict with other
copies (i.e., other variable bindings). The SQL fragment S’ is simply the natural
join of vn2’s SQL fragment with S (line 8). The environment Env’ extends Env by
binding Var2 to the new node vn2’ (line 9), and vfca is called recursively on Expr
(the body of the for expression) with the new arguments.

In the second block (lines 11–17), vn2 is a proper descendant of vn1. We make a
copy of vn2 in which vn2’s new tuple variables are renamed (line 13). In this case,
vn2’s SQL fragment depends on the SQL fragments of all its ancestors up to vn1,
therefore S’ is the natural join of all SQL fragments between nodes vn1 and vn2,
excluding vn1, but including vn2. Because vn2’s SQL fragments are included in
S’, environment Env’ is extended Env by binding Var2 to a copy of vn2’ (line 15)
with the empty SQL fragment. Subsequent uses of Var2 in Expr will inherit vn2’s
SQL fragments from S’.

The result of the entire for expression is a new view forest, which is the sequence
of all view forests computed for each node vn2 by calling vfca recursively on Expr
(lines 10 and 17).
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

SilkRoute : A Framework for Publishing Relational Data in XML · 29

To illustrate, assume $view is bound to the the view tree:

N1(<product>) :- FROM Clothing c WHERE c.category = "outerwear"
N1.1(<report>) :- FROM Problems p WHERE p.pid = c.pid
N1.1.1(<comment>):- FROM Comments x WHERE x.cid = p.cid

and occurs in the expression:

1. for $p in $view/self::product return
2. for $r1 in $p/child::report return
3. for $r2 in $p/child::report return
4. Expr

At line 2 above, the XQuery variable $p is bound to N1, the node variables vn1
and vn2 are bound to N1 and N1.1, respectively, and the sequence [n1, ..., nm]
is empty. Since vn2 is a descendant of vn1, we rename all tuple variables in the
subtree vn2, and bind the variable $r1 to the result. Then at line 14 in vfca, $p
is bound to the node P1:

P1(<product>) :- ()
P1.1(<report>) :- FROM Problems p1 WHERE p1.pid = c.pid
P1.1.1(<comment>) :- FROM Comments x1 WHERE x1.cid = p1.cid

and $r1 is bound to the node R1.1:

R1.1(<report>) :- ()
R1.1.1(<comment>) :- FROM Comments x2 WHERE x2.cid = p2.cid

Notice that the tuple variables p, x have been renamed to p1, x1, but c is not
renamed, because it is not defined in this view tree. At line 3 in the expression
above, $r2 is bound to the following view tree:

T1.1(<report>) :- ()
T1.1.1(<comment>) :- FROM Comments x3 WHERE x3.cid = p3.cid

This example makes clear the purpose of variable renaming. If the XQuery expres-
sion were evaluated on an XML document, then the variables $r1 and $r2 would
be bound independently, possibly to different nodes. If we did not rename the
tuple variable p in the nodes R1.1 and T1.1, the resulting SQL fragments would
correspond to the case when $r1 and $r2 were bound to the same <report> node.
We also rename all new tuple variables in the subtree rooted at R1.1 and T1.1,
because the body of the for expression may further iterate over subtrees of $r1
and $r2. For example, the two instances of x in R1.1.1 and T1.1.1 are renamed
to ensure that they are distinct.

A let expression is much simpler. We simply evaluate the let expression and
bind the variable to the resulting forest.

VFCA(Env, [let Var1 := Expr1 return Expr2] , S)
let vf1 = VFCA(Env, Expr1, ()),

Env1 = addBinding(Env, Var1, vf1) in
VFCA(Env1, Expr2, S)

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

30 · Mary Fernández et al

Note that we apply vfca to Expr1 with an empty SQL fragment. We do this
because Var1 can only occur in the let’s return expression Expr2. Therefore, vf1
will be joined with S when occurrences of Var1 in Expr2 are translated recursively.

Built-in functions and operators. The built-in functions we describe are data,
distinct-values, a generic aggregation function, agg, and empty. Because we rely
on type-correct expressions, the view forest vf argument to data is a single node
that contains exactly one child, which is a atomic-value node; vf/child::* returns
the forest consisting of all these children.

VFCA(Env, [data(Expr)], S) =
let vf = VFCA(Env, Expr, S) in vf/child::*

The evaluation of distinct-values requires a nested SQL query. The argument
to distinct-values is guaranteed to be a forest of atomic-value nodes. For each
node in vf, we compute the select distinct sub-query and take the union of
all these queries. We rename the atomic value of each SQL fragment as attribute
AtomicValue. Recall that a SQL union eliminates duplicates. Finally, we create a
top-level select-from-where query, as a place-holder, because every node in the
view forest must have a query of this form.

VFCA(Env, [distinct-values(Expr)], S) =
/* a forest of atomic value nodes */

let vf = VFCA(Env, Expr, S),
sqlfrag := ()
(for vn in vf do

/* vn is bound to a atomic value node */
let sqlfrag’.SELECT = "DISTINCT" vn.SQL.SELECT

"AS AtomicValue",
sqlfrag’.FROM = vn.SQL.FROM,
sqlfrag’.WHERE = vn.SQL.WHERE,
sqlfrag := unionSQL(sqlfrag, sqlfrag’)),

sqlResult.SELECT = "Expr.AtomicValue",
sqlResult.FROM = sqlfrag "Expr"

in atomicNode(sqlResult)

As with distinct-values, the aggregate functions require a nested SQL query.
We take the union of all SQL fragments of all nodes in vf. For aggregate functions
that take atomic values, we assume that all SQL fragments name their unique
atomic value as attribute AtomicValue:

VFCA(Env, [agg(Expr)], S) =
/* a forest of atomic value nodes */

let vf = VFCA(Env, Expr, S),
(vn1, ..., vnm) = vf, /* all nodes in the forest */
unionSql = unionSQL(vn1.SQL, vn2.SQL, ..., vnm.SQL),
sqlResult.SELECT = agg "(Expr.AtomicValue)",
sqlResult.FROM = unionSql "Expr"

in atomicNode(sqlResult)

For the count aggregate function, the nested sub-query is simply the union of all
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

SilkRoute : A Framework for Publishing Relational Data in XML · 31

SQL fragments:

VFCA(Env, [count(Expr)], S) =
let vf = VFCA(Env, Expr, S) /* a forest of atomic value nodes */

(vn1, ..., vnm) = vf, /* all nodes in the forest */
unionSql = unionSQL(vn1.SQL, vn2.SQL, ..., vnm.SQL),
sqlResult.SELECT = "count (*)"
sqlResult.FROM = unionSql

in atomicNode(sqlResult)

For the empty function, the nested sub-query computes the union of all SQL
fragments associated with Expr. The result is an atomic-value node that computes
true if the union is empty and false, otherwise.

VFCA(Env, [empty (Expr)], S) =
let vf = VFCA(Env, Expr, S)

(vn1, ..., vnm) = vf, /* all nodes in the forest */
unionSql = unionSQL(vn1.SQL, vn2.SQL, ..., vnm.SQL),
sqlTrue.SELECT = "TRUE",
sqlTrue.WHERE = "NOT EXISTS(" unionSql ")",
sqlFalse.SELECT = "FALSE",
sqlFalse.WHERE = "EXISTS(" unionSql ")",
sqlResult.FROM = sqlTrue "union" sqlFalse

in atomicNode(sqlResult)

The XQueryCore node-set operator union is defined on equality of node identity,
i.e., it compares the identity, not the content, of element and attribute nodes in
an XML document. By definition, the nodes in a view forest denote disjoint sets
of XML values in a materialized XML document, therefore, we simply apply the
XQuery distinct-nodes operator to the view forest nodes themselves.

VFCA(Env, [Expr1 union Expr2], S) =
let vf1 = VFCA(Env, Expr1, S),

vf2 = VFCA(Env, Expr2, S),
in distinct-nodes(vf1, vf2)

User-defined functions. The vfca supports non-recursive, user-defined XQuery
functions. The translation of a user-defined function first applies vfca to each
actual function argument, Expr1 . . . ExprN, resulting in the view forests vf1,...,
vfn. The definition of function includes its formal arguments (Var1 . . . VarN) and
function body (Expr). A new environment Env’ binds each formal argument to
its corresponding actual view-forest value, then we apply vfca recursively to the
function body with the new environment and SQL fragment s.

VFCA(Env, [QName (Expr1, ..., ExprN)], S) =
let vf1 = VFCA(Env, Expr1, ())

...
vfn = VFCA(Env, ExprN, ())
/* lookup definition of function QName with

formal arguments Var1...VarN and function body Expr */

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

32 · Mary Fernández et al

Env’ := addbinding((), Var1, vf1)
...
Env’ := addbinding(Env’, VarN, vfn)

in VFCA(Env’, Expr, S)

This translation essentially “inlines” the function. This technique cannot be applied
to external functions (i.e., those not written in XQuery) because their definitions
are not available nor can it be applied to recursive XQuery functions because the
resulting a view forest must be a finite tree and a recursive function cannot be
expressed as a finite tree.

4.3 Discussion

We summarize with a discussion of the vfca’s significance and applicability.
Significance. The vfca is an example of partial evaluation: path expressions,

and the binding of variables in for and let expressions are evaluated at compile
time on the input view forests, and conditional if-then-else expressions and the
element and attribute constructors in return expressions are evaluated at run time
when the result view forest is materialized.

A significant property of vfca is that it gives a unique, canonical representa-
tion of any XQueryCore expression, therefore is applicable to systems other than
SilkRoute. In general, XQueryCore expressions can be complex: they can create
intermediate XML trees, apply aggregate functions and distinct-values(), then
iterate over these results to create new XML trees. The actual XML tree that is
constructed and returned may be buried deep in the XQueryCore expression. The
vfca transforms such a query into a canonical form, such that (1) only the result
XML tree is constructed, (2) all the intermediate XML trees are eliminated, and
(3) all the computations that extract data are expressed with SQL queries, not
XQueryCore expressions.

Applicability. We omitted from our discussion several XQuery features, such as
certain navigation axis and types. Although we described how to translate parent
and ancestor axes in the for expression, we did not explain how to compute the
parent of a new node in a view forest: This should be done according to the XQuery
Data Model [World-Wide Web Consortium 2002a] semantics, and we omit it from
this paper. Support for navigation axes that depend on document order (e.g.,
following/preceding-sibling) and for recursive functions require extensions to
the vfca.

Making vfca type-aware is essential for practical applicability. The algorithm
is sensitive to type errors, and requires that the input XQueryCore expression be
type correct, e.g., it assumes that nodes of type attribute() have a unique child
of atomic type. Typically, type checking is applied to the XQueryCore query before
the composition algorithm. If that is not possible, one can modify the composition
algorithm to deal with type errors, for example, by reporting detected type errors
or by generating an empty document at run-time.

Finally, we note that the problem of simplifying the resulting SQL expressions is
orthogonal to the vfca. The vfca tends to build nested SQL statements such as:

FROM (SELECT * FROM R x WHERE x.a > 4) y
WHERE y.b < 3

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

SilkRoute : A Framework for Publishing Relational Data in XML · 33

N1

N1.1 N1.2

N1.1.1 N1.2.1

<product>

<sale> <report>

string string

N1.1.1 :− SELECT d.discount * c.price

N1.2 :− FROM Problems p WHERE p.pid = c.pid

N1.2.1 :− SELECT p.comments

N1.1 :− FROM Discount d WHERE d.pid = c.pid

N1 :− FROM Clothing c

Fig. 17. View forest for query fragment in Figure 6

which can be simplified to:

FROM R y
WHERE y.b < 3 AND WHERE y.a > 4

While some ad-hoc rules for simplification are obvious, care must be taken for sub-
queries that have the DISTINCT keyword. We refer the reader to material [Pirahesh
et al. 1997] for a discussion SQL rewriting.

5. EFFICIENT EVALUATION OF VIEW FORESTS

To materialize a view forest as an XML document, SilkRoute’s planner takes a view
forest and emits one or more SQL queries, which are sent to the relational engine
for evaluation. There are two common strategies for translating a view forest into a
set of SQL queries. The fully partitioned strategy computes one SQL query for each
node in the forest and sends all these SQL queries to the relational engine, whereas
the unified strategy computes one SQL query for the entire view forest. For view
forests that represent application queries, either strategy is usually feasible, because
the materialized result of an application query is small compared to the relational
database. Choosing an efficient evaluation strategy, however, is important when
the view query materializes a large fragment of the relational database.

Here, we address the problem of publishing large view forests. There are many
possible translations of a view forest into a set of SQL queries. We call such a set
of SQL queries a plan. Choosing a plan is an optimization problem and the search
space consists of all partitions of the view forest. We call each partition a view-
forest decomposition. SilkRoute constructs a set of SQL queries that correspond to
a decomposition and submits the queries to the relational database. We focus here
on the problem of finding good plans.

We illustrate the optimization problem using a fragment of the public query
contained in the boxes in Figure 6. Figure 17 (left) depicts the view forest for
the query fragment. In this case, the view forest is a tree; its structure makes it
clear how to generate queries. An edge between a parent and child node requires a
left-outer join between the parent’s and child’s SQL queries. Unions are required to
combine the SQL queries of sibling nodes and to combine the SQL queries for each
individual view tree in the view forest. We focus on translating single view trees,

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

34 · Mary Fernández et al

SELECT 1 AS L1, c.pid, L2, (c.price * Q.discount) as sale, Q.code, Q.comments

FROM Clothing c

LEFT OUTER JOIN

((SELECT 1 AS L2, d.pid AS pid, d.discount AS discount, null AS code,

null AS comments

FROM Discount d)

UNION

(SELECT 2 AS L2, p.pid AS pid, null AS discount, p.code AS code,

p.comments AS comments

FROM Problems p)

) AS Q

ON c.pid = Q.pid

ORDER BY L1, c.pid, L2, Q.code

Fig. 18. Complete SQL query for view forest in Figure 17.

(b)

<product>

<sale> <report>

(c) (d)

<product>

<sale> <report> <sale> <report>

<product>

(a)

<report><sale>

<product>

Fig. 19. Execution plans for query fragment

but note that the same techniques apply when the view forest contains multiple
view trees.

Figure 18 contains the SQL query that corresponds to the view forest in Figure 17.
The outer join is necessary, because there could be products without discounts or
reports, and they must appear in the XML document. The order-by clause with
the attributes L1, c.pid, L2, and Q.code groups tuples from the same supplier
together in an order that permits the XML generator to construct the <product>
elements in a single pass over the tuples. This query is a unified plan, because it
corresponds to the entire view tree and produces one relation.

The unified plan is not the only choice. We can split the view tree into connected
components, and generate a separate SQL query for each such component. Fig-
ure 19 illustrates these choices: (a) corresponds to the query above, while (b), (c),
and (d) are three alternative ways to partition the view tree into connected compo-
nents. (We omit the atomic-value nodes here because they are trivially contained in
their parents.) Each produces a set of SQL queries. For example, Plan (b) results
in the two SQL queries in Figure 20. Notice that the query on the right has no outer
join, because the query on the left produces all the values for product. The XML
generator merges the two sorted tuple streams to produce the XML elements.

In general, there are 2|E| possible translations of a query into one or more SQL
queries, where |E| is the number of edges in the query’s corresponding view tree.
Given the exponential number of potential plans, SilkRoute uses heuristics to choose
a good plan. In commercial XML middle-ware products, the user typically must
write these SQL queries himself, which effectively “hard wires” the evaluation plan
into the XML view. This requirement may seem reasonable, but in practice, it is
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

SilkRoute : A Framework for Publishing Relational Data in XML · 35

SELECT 1 as L1, c.pid, SELECT 2 as L1, c.pid, p.code, p.comments

(d.discount * c.price)

FROM Clothing c FROM Clothing c, Problems p

LEFT OUTER JOIN WHERE c.pid = p.pid

(SELECT d.pid, d.discount ORDER BY c.pid, p.code

FROM Discount d)

ON c.pid = d.pid

ORDER BY c.pid

Fig. 20. Complete SQL queries for view forest in Figure 19(b).

Queries
with Rewritten

. . .

Identification

Partitioned
SQL Queries

Partitioned

View Forest

View Forest

<product>

<sale><report>

Generation
SQL

RDBMS

R2

R1

Rk

Partioned
Relations

suppkey
name

pname

Relation
Integrated (Virtual)

XML Document

Integrate

Tag

View Forest

Partition

Key

SQL1

SQL2

. . .

SQLk

Planner Generator
XML

Fig. 21. Architecture of query planner and XML generator

difficult to choose a good plan. The simplest choices are to produce one unified
relation as in Figure 19(a) or fully partitioned relations as in Figure 19(d). We show
in Section 5.4 that these two plans may be substantially slower than the optimal
plans.

5.1 View-Forest Evaluation

Figure 21 depicts the architecture of the planner and XML generator. First, the
planner rewrites each SQL fragment by adding a key to each query. Then the
planner partitions the view tree into a spanning forest with one or more sub-trees,
and for each sub-tree, the planner generates one SQL query. The set of all SQL
queries are evaluated by the relational engine, producing a set of tuple streams.
The XML generator consumes these tuple streams and constructs one integrated
(virtual) relation. A tuple in the integrated relation represents a path from the
root element to a leaf value in the result XML document. The XML document
is constructed by re-nesting the tuples in the integrated relation and tagging each
element. We describe each step in more detail.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

36 · Mary Fernández et al

Step 1: Key identification. A key is constructed for each query Q in the view
tree, by taking the union of the attributes that are explicitly specified in Q’s select
clause and a set of key attributes. Let the complete SQL query for a node be select
A from e1 x1, . . . , en xn, where A denotes a set of attributes. We replace A with a
key ∪n

i=1key(ei)∪A. When ei is a relation R, key(ei) is the set of R’s key attributes.
Constructing queries with keys is a necessary and sufficient condition for com-

puting tuple streams that can be merged by the XML generator in constant space.
It is sufficient, because no other attributes are required for XML view construc-
tion, and it is necessary, because without keys, we cannot sort tuples so that the
XML generator can construct the XML document in a top-down, single pass over
the tuple streams. XQuery’s semantics assumes identities of XML elements, so the
relational data that instantiates XML views must have tuple identifiers or keys to
be consistent with XQuery’s semantics.

Step 2: View-tree partitioning. In general, the planner produces one plan for each
spanning forest of the view tree, so it produces 2|E| plans, where |E| is the number
of view-tree edges. In Section 5.5, we present a greedy algorithm that heuristically
chooses a subset of the 2|E| plans.

For each tree in a spanning forest, we define the schema of the relation that
computes the nodes in that tree. Let Ti be one tree in a spanning forest of view
tree T , and let NIDmax(Ti) be the maximum length of the integer sequences of
node identifiers in Ti (e.g., the NIDmax of a tree containing the node identifiers
N1.1 and N1.1.1 is three). Let Ri be the relation that corresponds to Ti. The
schema for Ri is the set of attributes attrs(Ri) = NIDattrsi ∪ Sattrsi where

—NIDattrsi = {Lj |1 ≤ j ≤ NIDmax(Ti)}, and
—Sattrsi = {v|v is an attribute in select clauses in Ti}.
A tuple ti in an instance of Ri represents an instance of a path from the root to
a leaf node n in Ti, i.e., a path from the document node to a atomic value in the
result XML document. The attribute Lj contains the jth integer of n’s identifier,
and the attributes in Sattrsi contain the values necessary to compute an instance of
n, i.e., values for attributes in Cn.SQL.SELECT. Note that tuple ti contains enough
information to generate all XML elements on the path from the root to n. The
tuples are sorted by L1, V(1,1), . . . , V(1,n1), L2, V(2,1), . . . , V(2,n2), etc., where V(i,j)

denotes a select clause attribute in query fragments of view-tree nodes at level
i. This order is consistent with the structural relationship between the elements in
the result XML document. We call the set of Li and v(i,j) the level-i attributes. If a
set of tuples have the same values for all level 1 to level i attributes, then the tuples
correspond to a set of leaf values that have the same ancestor elements from level
1 to level i. The level-i attributes permit SilkRoute to merge partitioned relations
into an integrated relation in a single pass.

Step 3: Query construction. SilkRoute constructs outer-join plans for partitioned
relations. The outer-join plans use SQL’s outer-join and union operators and the
structure of these plans correspond to the structure of trees in a spanning forest. Let
n be a node in a tree and let (n1, . . . , nk) be the k children of n. The outer-join plan
for n is OJP (n) = n.SQL leftjoin (OJP (n1)∪ . . .∪OJP (nk)). The sub-queries for
the sibling nodes n1, . . . , nk (n’s children) are combined with a left-outer union, and
the sub-query for n and the sub-queries of its children are combined with an outer
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

SilkRoute : A Framework for Publishing Relational Data in XML · 37

Relation A partitioned relation

Tuple Tuple in the integrated relation (L1, V(1,1) . . ., V(1,n1),

. . . Lm, V(m,1) . . ., V(m,nm))

Tag Set of tags

NID A node-identifier (l1, . . . , lm)
FV Field values (v(1,1), . . . , v(1,n1), . . . , v(m,1), . . . v(m,nm))

Table III. Types

getTuple: Relation → Tuple Returns next tuple from integrated relation

getTag: NID → QName Returns QName tag of node-identifier index

getNodeIdentifier: Tuple → NID Projects node-identifier index values from tuple
getValues: Tuple → FV Projects V(i,j) values from tuple

getLeaf: Tuple × NID Returns atomic value associated with node identifier,

→ string | integer | . . . | null or null if it has no atomic value

SAXWriter Implementation of SAX Writer
emitXML Emits tags and values for given tuple
generateXML Given partitioned relations, generates XML document

Table IV. Functions and procedures

join. Note that this query computes instances of the paths in the view tree. The
outer union is necessary because sibling nodes have different relational schemas: In
the relation that computes a node ni, the attributes of nj(j 6= i)’s are null values.

Step 4: XML generation. SilkRoute does not materialize the integrated relation.
Instead, the result XML document is constructed directly from the partitioned re-
lations. Figure 22 contains the XML generation algorithm, defined in procedure
generateXML. The algorithm depends on the types and functions defined in Ta-
bles III and IV. Intuitively, it merges multiple tuple streams into one tuple stream,
nests the tuples, and tags their values. The required memory size of the algorithm
depends only on the size of the view forest. It does not depend on the size of the
database instance, therefore the algorithm scales well as the size of the underlying
database and corresponding XML document increases.

5.2 Example

We illustrate the evaluation procedure on the example in Figure 19.
Step 1: Keys are identified and added to select clauses. For example, c.pid

is added to the select clauses of the queries for N1.1.1 and N1.2.1. The complete
queries for N1.1.1 and N1.2.1 are, respectively:

SELECT c.pid, d.pid, SELECT c.pid, p.pid, p.code,
(d.discount * c.price) AS sale p.comments

FROM Clothing c, Discount d FROM Clothing c, Problems p
WHERE c.pid = d.pid WHERE c.pid = p.pid

Step 2: We give the schemas and instances for Figures 19(a) and (b). Given the
database instance on the top in Figure 23, the result relation for Figure 19(a) is in
Figure 24. This relation corresponds to the un-nested version of the result XML
document in Figure 23 (bottom). Figure 19(b) yields the partitioned relations in
Figure 25. The relation on the right corresponds to the tree containing only the
report node, where the (maximum) length of the node identifier N1.2 is two so

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

38 · Mary Fernández et al

procedure generateXML(Relations : {Relation}) {
SAXWriter.startDocument()

// Initialize all node identifiers and field values to null

nid’ = (L1 : null, . . . , Lm : null)
values’ = (V(1,1) : null, . . . , V(m,n) : null)

// Get next tuple from Relations in order

// (L1, V(1,1) . . . , V(1,n1), . . . Lm, V(m,1) . . . , V(m,nm))

while ((tuple = getTuple(Relations)) != EOF) {
nid = getNodeIdentifier(tuple)
values = getValues(tuple)

if (nid’ != nid or values’ != values) {
// Get maximum index where new tuple and old tuple differ

let l1, . . . , l′m = nid’

l1, . . . , lm = nid

n1 = max{i|nid.Li = nid’.Li},
n2 = max{i|values.V(i,j) = values’.V(i,j)},

in emitXML(m′, min(n1, n2)+1, m, tuple)

}
nid’ = nid
values’ = values

}
SAXWriter.endDocument()

}
procedure emitXML(m2, n, m1, tuple) {

nid = getNID(tuple)
// Close all open elements up to new element

for (i = m2; i ≥ n; i = i− 1)

SAXWriter.endElement(getTag(nid.L1 . . .nid.Li))

// Open all containing elements up to new element

for (i = n; i ≤ m1; i = i + 1) {
SAXWriter.startElement(getTag(nid.L1, . . . ,nid.Li))

leafValue = getLeaf(nid.L1, . . . , nid.Li, tuple)

if (leafValue != null) SAXWriter.characters(leafValue)
}

}

Fig. 22. XML Generation Algorithm

NIDattrs1 = {L1, L2} and Sattrs1 = {c.pid, p.pid, p.code, p.comments}.
Step 3: Let n be the root node of the viewtree in Figure 19(a). Then, OJP (n) is

the SQL query in Figure 18. Let n1 be the root node and let n2 be the report node
in the viewtree in Figure 19(b). Then, OJP (n1) is the SQL query in Figure 20
(left) and OJP (n2) is the SQL query in Figure 20(right).

Step 4: The generateXML procedure nests and tags XML values by computing the
difference between two successive tuples in the integrated relation. When applied to
the tuples in Figure 24, the procedure reads in the first tuple and emits the first two
lines in Figure 23. The first and second tuples in the relation have the same values
in all level-1 attributes (i.e., L1 and c.pid(1,1)), but differ in the other attributes,
therefore, the procedure emitXML closes the current level-2 tag(<sale>), opens the
new level-2 tag (<report>) in the same level-1 element(<product>), and emits the
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

SilkRoute : A Framework for Publishing Relational Data in XML · 39

Clothing(pid:c#1, item:"green skirt",.. , price:"50.00", ..)

Clothing(pid:c#2, item:"red kimono",.. , price:"200.00", ..)

Clothing(pid:c#3, item:"yellow T-shirt",.. , price: "30.00", ..)

Clothing(pid:c#4, item:"blue jacket",.. , price:"70.00", ..)

Discount(pid:c#1, item:"green skirt", discount: 0.2)

Discount(pid:c#2, item:"red kimono", discount: 0.6)

Discount(pid:c#4, item:"blue jacket", discount: 0.8)

Problems(pid:c#1, code:0012, comments:"fits poorly")

Problems(pid:c#1, code:0035, comments:"button missing")

Problems(pid:c#4, code:0004, comments:"zipper jams")

<product> <!-- green skirt -->

<sale>10</sale>

<report>fits poorly</report>

<report>button missing</report>

</product>

<product> <!-- red kimono -->

<sale>120</sale>

</product>

<product> <!-- yellow T-shirt -->

</product>

<product> <!-- blue jacket -->

<sale>56</sale>

<report>zipper jams</report>

</product>

Fig. 23. Example fragment of the supplier’s database instance and fragment of result XML

document

L1 L2 c.pid(1,1) sale(2,1) p.code(2,2) p.comment(2,3)

1 1 c#1 10

1 2 c#1 0012 ”fits poorly”
1 2 c#1 0035 ”button missing”

1 1 c#2 120

1 c#3
1 1 c#4 56

1 2 c#4 0004 ”zipper jams”

Fig. 24. Integrated relation for Plan (a)

Plan (b), edge <product>-<sale>:

L1 L2 c.pid sale

1 1 c#1 10

1 1 c#2 120
1 c#3

1 1 c#4 56

Plan (b), node <report>;

L1 L2 c.pid p.code p.comment

1 2 c#1 0012 ”fits poorly”

1 2 c#1 0035 ”button missing”
1 2 c#4 0004 ”zipper jams”

Fig. 25. Relations for Plan (b) in Figure 19

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

40 · Mary Fernández et al

p.comment value. The processing of the third tuple is similar. The third and fourth
tuples differ in the level-1 attribute c.pid(1.1), therefore, emitXML closes the level-1
<product> element, open tags at the level 1 and level 2 elements (<product> and
<sale>), and emits the sale value.

Because the tuples in all relations are sorted in order by L1, V(1,1), . . ., V(1,n1),
. . ., Lm, V(m,1), . . ., V(m,nm), the generateXML procedure can merge tuples from
multiple partitioned relations and construct the integrated relation in a single pass.
For example, in the two partitioned relations in Figure 25, the first tuple read is
the first tuple in the relation for <product>-<sale>, and the second tuple read is
the first tuple in the relation for <report>.

Discussion. The outer-join plan is different from the outer-union plan [Shanmu-
gasundaram et al. 2000]. The outer-join plan corresponds to (R leftjoin (S ∪ T))
whereas the outer-union plan corresponds to ((R leftjoin S) ∪ (R leftjoin T)). The
outer-union plan combines parent and child nodes using inner or outer joins and
combines sub-trees with outer unions. In general, SilkRoute can use either strategy
to generate queries, but it currently implements outer-join plans. For completeness,
we include the outer-union plan in the experiments in Section 5.4 and distinguish
clearly between the unified outer-join and outer-union plans in our results.

Some plans that SilkRoute produces do not require outer union, outer join, or
the with clause. For example, a fully partitioned plan has no edges and requires
none of these constructs. Plans with no branches (i.e., no sibling nodes) do not
require the union operator. This characteristic is especially useful in a middle-ware
system, because all SQL engines do not necessarily support all these constructs. In
those cases, SilkRoute chooses permissible plans based on the source description of
the relational engine.

5.3 View-forest reduction

So far, we have assumed that one SQL query is associated with exactly one node
in the view forest. We now relax this restriction by allowing an SQL query to be
associated with more than one node. We do this by eliminating “reducible” edges
in a view forest. An edge between a parent and child node is reducible if the query
of the child node has functional and inclusion dependencies on the query of its
parent node. When the parent and child queries are equivalent, we can generate
XML elements for both nodes from the same tuple. Eliminating reducible edges
yields a simpler view forest with fewer SQL queries to evaluate.

After generating a partitioned view tree, the planner reduces the view tree in
two steps. First, each edge in the view tree is assigned a label that indicates
the potential number of child elements in the XML document. Second, groups of
nodes connected by ’1’-labeled edges are collapsed into one node by combining their
queries. After reduction, SQL generation proceeds as described in Section 5.1.

We illustrate the labeling step on the partitioned view tree in Figure 26. The
edge labels ’1’, ’?’, ’+’ and ’*’, denote one, zero or one, one or more, and zero
or more child elements, respectively. An XQuery query does not contain sufficient
information to label edges, because the possible number of XML elements depends
on the database constraints. The database constraints can be derived from key
constraints and referential constraints extracted from the schema of the relational
database. Given these inputs, SilkRoute labels the view forest edges as follows. As-
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

SilkRoute : A Framework for Publishing Relational Data in XML · 41

<name>
N1.2.1

<category>
N1.2.2 N1.2.3

<description>
N1.2.4

<retail> <sale>
N1.2.5 N1.2.6

<report>

1

N1.2.6.1
<@code>

<company>
N1.1 N1.2

<product>

<supplier>
N1

<category>
N1.2.2’

 <sale>
N1.2.5’

<report>
<@code>
N1.2.6’

<product>
<name>

<retail>
<description>

<company>

1

1 ?
1

1

*

N1’

?

*

N1.2’

(b) Partioned view tree after reduction

(a) Partitioned view tree of an execution plan

<supplier>

Fig. 26. Example of view forest reduction

sume that p and c are the parent and child nodes of an edge e and that the schema of
their complete SQL queries’ results are Rp(x1, . . . , xm) and Rc(x1, . . . , xm, . . . , xn),
respectively. Then, e is labeled:

C1

true false
C2 true 1 +

false ? *

—C1 is true if and only if there exists a functional dependency Rc : x1, . . . , xm →
xm+1, . . . , xn.

—C2 is true if and only if there exists an inclusion dependency Rp[x1, . . . , xm] ⊆
Rc[x1, . . . , xm].

The inverse of C2, Rc[x1, . . . , xm]⊆Rp[x1, . . . , xm], always holds, because XQuery’s
semantics always define a tree. Therefore, C2 implies πx1,...,xm(Rc) = Rp in this
context. In general, the problem of checking whether a given set of functional and
inclusion dependencies implies another set of dependencies is undecidable [Abite-
boul et al. 1995]. SilkRoute uses heuristics and known algorithms for restricted
problems. In particular, it does not consider inclusion dependencies when it checks
if a functional dependency can be derived, which allows the check to be done in lin-
ear time [Beeri and Bernstein 1979]. From our experience, this solution is adequate
for typical XQuery queries.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

42 · Mary Fernández et al

In the second step, the view tree’s nodes are grouped into equivalence classes
of nodes that are reachable only by ’1’-labeled edges. Figure 26 illustrates this
step. For each such class, the query fragment of the least-common-ancestor node is
replaced by Q whose select clause is the union of all select clauses on the nodes in
the class. Q’s from and where are constructed in the same way. In Figure 26 (a),
the equivalence classes are {N1, N1.1}, {N1.2, N1.2.1, N1.2.3, N1.2.4}, and
{N1.2.6, N1.2.6.1}. They are replaced by N1’, N1.2’, and N1.2.6’, respectively.

View-forest reduction can reduce the number of outer joins4 and can reduce the
total size of the relations and therefore, the total size of data transferred. The actual
impact of view-forest reduction on the data size depends on the characteristics
of submitted queries and database instances. For example, in Figure 26, if the
data size of the <company> element dominates, then in the reduced view forest, its
large data value would occur in every tuple in the relation for N1’, which could
increase data-transfer time. Both query-only time and data-transfer time of a
reduced plan, therefore, may not always be faster than the corresponding non-
reduced plan. To alleviate this problem, we can prohibit the reduction of specific
nodes based on the average data size estimated by the target database. We use
view-forest reduction as a plan-improving heuristic: given a set of arbitrary non-
reduced plans, the corresponding set of reduced plans, in general, are more efficient.
Our experimental results support this heuristic.

5.4 Experiments

A view forest permits us to generate and compare all possible execution plans for
a public query. Here, we present experiments that compare the unified and fully
partitioned plans to the “optimal” plans, i.e., those plans that have the fastest
execution times compared to all others. SilkRoute uses an outer-join strategy to
generate plans, so its unified plans are not equivalent to outer-union plans [Shan-
mugasundaram et al. 2000]. For completeness, we include a unified outer-union
plan in the experiments. We also compare plans generated from non-reduced view
forests with those generated from reduced view forests.

We use the TPC Benchmark ‘H’ database [Council 2001], which contains infor-
mation about parts, the suppliers of those parts, customers, and their part orders.
We generated two public queries, Q1P and Q2P , for the database.5. They both
specify the entire contents of the TPC database, but are differ in structure. In
Q1P , two one-to-many edges (labeled “*”), are nested in a chain, whereas in Q2P ,
the two ‘*’ edges are parallel. A ‘*’ edge corresponds to a outer join in an SQL
query, so each query stresses the relational engine differently: Q1P has nested outer
joins and Q2P has unions of outer joins. Each view tree for Q1P and Q2P has nine
edges (ten nodes). As described in earlier, one plan is generated for each subset of
edges in the view tree, so there are 512 plans for each query. Each plan generates
between one and ten SQL queries, each of which produces one tuple stream.

The experiments were run using the two database configurations in Table V.
Configuration A used the TPC-H Database with 1 MB of data, and Configuration

4The current query generator constructs for each node an outer join with the union of its children,
which disappears when all children are labeled ’1’.
5The queries Q1P and Q2P and their view forests are given in Appendix A

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

SilkRoute : A Framework for Publishing Relational Data in XML · 43

Database Server Client
Config Size Platform Platform

A 1 MB AMD K6-2 SGI

350 MHz Challenge L

256MB mem 4GB mem
1GB swap IRIX64 V6.5

Linux RH 6.1

B 100 MB Intel Celeron Intel

566 MHz Pentium III
256 MB mem 192 MB mem

1GB swap Linux RH 6.2

Linux RH 6.2

Table V. Experimental Configurations

B used a 100 MB database. Exhaustive query plans were generated for Configu-
ration A; Configuration B is used in Section 5.5 to evaluate our plan-generation
algorithm. Due to licensing restrictions, we are not permitted to identify the com-
mercial product used in our experiments. In the experiments, the database client
was a simple Java program that submitted SQL queries to the database server and
read tuples from the tuple streams via JDBC. Both configurations use JDK 1.2 and
JDBC 1.2.2.

Figures 27 and 28 plot the execution times of the 512 plans for Q1P and Q2P ,
respectively. The horizontal axis is the number of tuple streams per plan and the
vertical axis is the execution time in milliseconds, on a log scale. Both total time
and query-only time were measured on the SilkRoute client. Total time includes
query execution time on the database server and data transfer time to the client:
timing began when the first SQL query was submitted to the server and terminated
when the last tuple was read from the last tuple stream. Query-only time includes
the time until the first tuple is read from a tuple stream. The time to first tuple
is comparable to the time to count all tuples in the result on the server only,
so pipelining of output during query execution did not affect our measurements.
If a sub-query did not complete within 5 minutes, no time was reported. For
Q1P , 101 plans timed out; for Q2P , no plans timed out. Each plan was executed
twice successively, and we took the latter result. We believe that the caching
effect is negligible, because independent executions of sample queries showed little
difference.

For non-reduced trees, the outer-union and fully partitioned plans are slightly
slower than the optimal plans. Figures 27(a) and 28(a) plot the query-only time for
non-reduced trees. In Figure 27(a), the unified outer-union plan (diamond) is 16%
slower than optimal and the fully partitioned plan is 24% slower. In Figure 28(a),
the outer-union plan is 21% slower and the fully partitioned plan is 41% slower.

Recall from Section 5.3 that view-forest reduction allows one tuple to generate
multiple XML elements. To determine the effect of view-forest reduction on execu-
tion time, we generated 512 plans for Q1P and Q2P and then applied the view-forest
reduction algorithm to each plan. Figures 27(b) and 28(b) contain the query-only
times of the plans with view-forest reduction. These graphs should be compared to
Figures 27(a) and 28(a), respectively. Note that view-forest reduction significantly

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

44 · Mary Fernández et al

0
�

2 4 6� 8� 10

1000

10000

100000

T
im

e
in

 m
se

c
�

0
�

2 4 6� 8� 10

1000

10000

100000

SQL queries (tuple stream) per plan
(a) Query time (b) Query time - with reduction

0
�

2 4 6� 8� 10

1000

10000

100000

SQL queries (tuple stream) per plan
(c) Total time - with reduction

Fig. 27. Q1P , Configuration A (times in msec)

reduces query-only time. For both Q1P and Q2P , the ten fastest reduced plans are
2.5 times faster than the ten fastest non-reduced plans, and the optimal plans are
2.6 to 4.3 times faster than the outer-union and fully partitioned plans.

The differences for total execution times, which include data-transfer time, are
similar. For Q1P in Figure 27(c), the unified outer-union (triangle) is four times
slower than optimal, and the fully partitioned plan is three times slower. For Q2P

in Figure 28(c), the unified outer-union plan is 4.8 slower than optimal, and the
fully partitioned plan is 3.7 times slower.

We note that for query-only time, the unified outer-union plan is only slightly
slower than the unified outer-join plan, but its total execution time is much faster.
The outer-join plan actually produces fewer, but wider, tuples than the outer-union
plan; the additional width may induce anomalous caching behavior in JDBC. This
suggests that we could further improve the total running time of the best plans if
we rewrite them from outer joins to outer unions.

5.5 Plan-Generation Algorithm

The experiments indicate that choosing a default unified, fully partitioned, or purely
heuristic execution plan is not effective in practice and that devising an algorithm
to generate near-optimal plans is worthwhile. The graphs in Figure 27 and 28 also
suggest that there are many near-optimal queries. The only reliable source of query
costs is the relational engine. If the relational engine can estimate the cost of a
query, we can use the engine to choose “good” edges in a view forest, i.e., those
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

SilkRoute : A Framework for Publishing Relational Data in XML · 45

0
�

2 4 6� 8� 10

1000

10000

100000

T
im

e
in

 m
se

c
�

0
�

2 4 6� 8� 10

1000

10000

100000

SQL queries (tuple stream) per plan
(a) Query time (b) Query time - with reduction

0
�

2 4 6� 8� 10

1000

10000

100000

SQL queries (tuple stream) per plan
(c) Total time - with reduction

Fig. 28. Q2P , Configuration A (times in msec)

0
�

2 4 6� 8� 10

1000000

T
im

e
in

 m
se

c

�

0
�

2 4 6� 8� 10

1000000

Query time
Total time
Outer-union : Query time
Outer-union : Total time

SQL queries (tuple stream) per plan

(a) Q1P (b) Q2P

Fig. 29. Configuration B, with view-forest reduction (times in msec)

edges whose two associated queries are less expensive to evaluate together than
separately.

We present an algorithm that given a view tree, returns an evaluation plan that
contains a set of mandatory view-tree edges and a set of optional view-tree edges.
The algorithm uses the relational engine to estimate the relative cost of an edge in
the view tree. For an edge e = (nid1,nid2), where nid1,nid2 are the node identifier
associated with the edge’s parent and child nodes respectively, we compare the sum
of the costs of evaluating the queries associated with nid1 and nid2 to the cost of

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

46 · Mary Fernández et al

Edge = NID × NID View-tree edge is pair of node identifiers

Node = NID × SQL Node is identifier and complete SQL query
Tree = Edge × Node View tree contains set of edges and nodes

Cost = Int × Edge × SQL Cost of an edge, the edge, and

the query if the edge is collapsed
getQuery : NID × SQL → SQL Returns the complete SQL query

incidentEdge : E : Edge × e : Edge → [Edge] Returns edges in E incident to e

combineQueries : SQL × SQL × Edge → SQL Combines two queries on given edge
into one query

addEdge : E : Edge × plan : Edge Sorts edges in E by costs and adds
qualifying edge to plan

genPlan : Tree × Float × Float × Float × Float

→ Edge × Edge Returns plan containing mandatory and

optional edges

Fig. 30. Types and functions of greedy algorithm

evaluating the two queries combined. We use a simple linear equation to estimate
a query’s cost:

cost(q, a, b) = a ∗ evaluation cost(q) + b ∗ data size(q)

data size = f(|attrs(q)| ∗ cardinality(q))

The coefficients a and b assign weights to the query evaluation cost and query data
size, respectively. The relational engine serves as an oracle, providing the values
for the functions evaluation cost and cardinality. This technique is feasible,
because most commercial databases provide support for estimating these costs.

Figure 31 contains the plan-generation algorithm genPlan. Figure 30 contains the
type signatures for the algorithm’s functions. The function genPlan takes a view
tree ViewTree, the cost coefficients a and b described above, and two thresholds: t1
is the maximum threshold for a mandatory edge and t2 is the maximum threshold
for an optional edge. The recursive function addEdge takes the current set of
edges (Edges), the query fragments associated with those edges (Queries), and
the current sets of mandatory and optional edges. On each recursive invocation,
addEdge computes the relative costs of every edge ei in Edges:

cost = cost(qc)− (cost(q1) + cost(q2))

where q1 and q2 are the queries associated with ei’s parent and child nodes, and
qc is the result of combining q1 and q2. These costs are then sorted and addPlan
considers the edge e with smallest relative cost (i.e., the one with greatest combined
benefit). If the relative cost of e is less than t1, the maximum threshold of a
mandatory edge, then e is added greedily to the mandatory edges of the plan.
Similarly, if e’s relative cost is less than t2, it is added to the optional edges of the
plan. The function addEdge greedily adds edges until no remaining edge is less
than the mandatory or optional threshold.

The function combineQueries determines how to collapse two queries into one
query based on the label of the edge in the view tree. The 1-labeled edges
correspond to inner joins and the *-labeled edges to outer joins. In addition,
combineQueries applies view-forest reduction to eligible edges.
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

SilkRoute : A Framework for Publishing Relational Data in XML · 47

function genPlan(ViewTree, t1, t2, a, b) {
function addEdge(Edges, Queries, mandE, optE) {
// Compute relative cost of each edge in Edges

costE : {Cost} =
⋃

for ei in Edges {
let (nid1, nid2) = ei

q1 = getQuery(nid1, Queries)

q2 = getQuery(nid2, Queries)
qc = combineQueries(q1, q2, ei)

in (cost(qc) - (cost(q1) + cost(q2)), ei, qc)

}
// Sort edges by costs

sortedE = sort costE
// Greedily add "best" edge to plan
(i, e, qc) = head(sortedE)

if (i < t1 || i < t2) {
let (nidq , bodyq) = qc

// Add e to plan

mandE’ = if (i < t1) mandE ∪ {e} else mandE
optE’ = if (i >= t1 && i < t2) optE ∪ {e}

else optE
(nid1, nid2) = e

// Remove edge e from Edges
Edges′ = Edges - {e}
// Remove e’s queries from Queries

Queries′ = (Queries - { getQuery(nid1,Queries) }) -

{ getQuery(nid2, Queries) }
// Add combined query qc to Queries

Queries′′ = Queries′ ∪ {qc}
// Remove edges incident to e from Edges

incidentE = incidentEdge(Edges, e)
Edges′′ = Edges′ - incidentE

// For each edge incident to e, add new edge

// that is incident to combined node defined

// by query qc

Edges′′′ = Edges′′
⋃

for i in incidentE {
let (nidu,nidv) = i in

if (nidu == nid1 || nidu == nid2)

{ (nidq ,nidv) }
else { (nidu,nidq) }

}

in addEdge(Edges′′′, Queries′′, mandE’, optE’)

} else (mandE, optE)

}
let (Edges, Queries) = ViewTree
in addEdge (Edges, Queries, {}, {})

}

Fig. 31. Greedy algorithm for plan generation

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

48 · Mary Fernández et al

The complexity of the function genPlan is O(|Edges|2), because addEdge recom-
putes the costs of every edge in the view tree on each recursive call. To simplify
presentation, this algorithm recomputes all the edge costs on each invocation, but
the algorithm used in SilkRoute recomputes only the costs of those edges incident
to each edge e selected by addEdge, which makes the complexity O(n|Edges|) for n-
ary trees. We expect that, in practice, the algorithm requires fewer computations,
because it halts when no edge is worth collapsing.

5.6 Results

We applied the plan-generation algorithm twice to the view trees for Q1P and
Q2P : in one case, combineQueries did not apply view-forest reduction and in the
second, it did. The generated plans for Q1P appear in Figure 32 (a) and (b), and
in Figure 32 (c) and (d) for Q2P

6.
The most important result is that the generated plans correspond directly to

the fastest plans measured in Section 5.4. For Q1P , the plans generated from the
non-reduced and reduced view trees correspond to the fastest 32 plans. For Q2P ,
the plans generated from the non-reduced view tree correspond to the fastest 32
plans, and the plans generated from the reduced view tree correspond to the first
31 and the 34th fastest plans. In Configuration B, the size of the database was
100 MB, so it was not possible to exhaustively test all 512 plans. Instead, we
ran the greedy algorithm using view-forest reduction and compared the generated
plans with the unified and fully partitioned plans. Sixteen plans were generated
for Q1P ; they appear in Figure 32 (b). (Each subset of the four optional edges
defines a plan.) Eight plans were generated for Q2P ; they appear in Figure 32 (d).
Figure 29 plots the query-only and total-execution times for these plans and for the
unified outer-union and fully partitioned plans.

For Q1P in Figure 29(a), the query-only time of the outer-union was five times
slower than the optimal plan and the fully partitioned plan 2.4 times slower. For
Q2P , the differences were similar; the outer-union plan was 4.7 times slower than
the optimal plan and the fully partitioned plan was 2.6 times slower. These re-
sults indicate that as the size of the XML view increases, generating optimal plans
becomes imperative. Comparing total execution times of Q1P and Q2P , the outer-
union plan was 4.6 times slower and the fully partitioned plan 3.1 times slower.

For all the plans generated, we used the same values for the coefficients a (100)
and b (1) and the thresholds t1 (-60000) and t2 (6000), which indicates that the
linear cost function depends primarily on the characteristics of the database envi-
ronment, and not on the characteristics of the query. Further experiments using a
larger set of test queries are necessary to confirm this hypothesis.

Recall that the complexity of the plan-generation algorithm is O(|Edges|2) and
that on each edge access, the algorithm requests the estimated costs of evaluation
time and data size from the target database’s query optimizer. For Queries 1 and 2,
we found that the actual number of database requests for query-cost estimates were
much smaller than the expected number of requests (92 = 81). Both Queries 1 and 2
required 22 requests for the non-reduced view tree and 25 requests for the reduced
view tree.

6The original view trees are given in Figure 36

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

SilkRoute : A Framework for Publishing Relational Data in XML · 49

N1

N1.1 N1.2 N1.3 N1.4

N1.4.1 N1.4.2

N1.4.2.1 N1.4.2.2 N1.4.2.3

N1

N1.1 N1.2 N1.3 N1.4
N1.5

N1.4.1
N1.5.2.1 N1.5.2.2 N1.5.2.3

Mandatory edge

Mandatory edge − reduced plan

Optional edge

N1

N1.1 N1.2 N1.3 N1.4

N1.4.1 N1.4.2

N1.4.2.1 N1.4.2.2 N1.4.2.3

P

N1

N1.2N1.1 N1.3 N1.4
N1.5

N1.4.1
N1.5.2.1 N1.5.2.2 N1.5.2.3

(d) Q 2 , Config B, 8 plansP(c) Q 2 , Config A, 32 plansP

(a) Q1 , Config A, 32 plans (b) Q 1 , Config B, 16 plansP

Fig. 32. Plans selected by Greedy Algorithm

6. ALTERNATIVE TECHNIQUES AND DISCUSSION

We have described what we believe to be the most general approach for exporting
relational data into XML. Other approaches are possible, and in some cases, may
be more desirable.

The most widely used Web interfaces to relational databases are HTML forms
with CGI scripts. User inputs are translated by a script into SQL queries, and their
answers are rendered in HTML. The answers could be generated just as easily in
XML. Forms interfaces are appropriate for casual users, but inappropriate for data
exchange between applications, because they limit the application to only those
queries provided by the form interface. Aggregate queries, for example, are rarely
offered by form interfaces.

In another alternative, the data provider can either precompute the materialized
view or compute it on demand whenever an application requests it. The rolex sys-
tem[Bohannon et al. 2002] provides a dynamic, virtual DOM interface to relational
data. rolex’s view abstraction (the “schema-tree query”) is based on our view
forest, but their query evaluation strategies and indices are customized for naviga-
tional access. This technique is especially effective for interactive Web services in
which small fragments of the XML view are materialized.

A third alternative is to use a native XML database engine, which can warehouse
XML data and process XQuery queries directly in the native XML engine. XML
engines will not replace relational databases, but a high-performance XML engine

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

50 · Mary Fernández et al

might be appropriate to use in data exchange. For example, one could materialize
an XML view using SilkRoute and store the result in an XML engine that supports
XQuery, thus avoiding the composition cost done in SilkRoute. We do not expect,
however, XML engines to match the performance of commercial SQL engines any-
time soon. In addition, this data-warehouse approach can suffer from data staleness
and incurs a high space overhead because it duplicates all the data in XML.

Three commercial XML publishing systems, Oracle XML SQL Utility [Wait
1999], IBM DB2 XML Extender [Extender 2000], and Microsoft SQL Server 2000 [Rys
2000], support features similar to those provided by SilkRoute. Oracle’s XSQL em-
beds individual SQL queries in XSLT [World-Wide Web Consortium 1999] stylesheets.
The result of the SQL query is emitted in a canonical XML format, and the
stylesheet converts the XML into the desired view. Of these systems, XSQL cou-
ples most tightly the XML view to the corresponding SQL queries. Although not
general, this solution is efficient, because the relational engine evaluates the entire
query and constructs the canonical XML in-engine. The IBM DB2 Data Access
Definition (DAD) language, has a data extraction part and an XML template.
Each element in the XML template may contain arbitrary selection and join con-
ditions on the relational tables, but the criteria for grouping elements is implicit
in the DAD, and DAD specifications cannot be nested arbitrarily, which makes it
considerably less expressive than XQuery. SQL Server 2000 supports XML view
mechanisms like the two described above. In addition, the user may construct the
unified SQL plan by hand. This effectively hard wires the evaluation plan into the
view, but it allows the user to define arbitrarily complex XML views. Hand-written
unified queries are similar to those constructed automatically by SilkRoute’s plan-
generation algorithm. SQL Server’s XML views are selective, because SQL Server
permits querying of the XML view using XPath. As a user-query language, XPath
supports selection and projection of elements, but not restructuring or grouping as
does XQuery. Although no commercial system currently supports the full generality
of XQuery, these three vendors are working actively to provide an XQuery-interface
for application queries.

XQuery can express the transformations provided by the three XML publish-
ing tools described above, and therefore, SilkRoute’s view forest representation of
XML view queries captures the XML mappings in all these systems. Our greedy
optimization algorithm takes a view forest as input, and therefore could be directly
applied to the XML view definitions expressed by these tools.

From a theoretical perspective, query composition is simple for select-project-
join queries [Abiteboul et al. 1995; Ramakrishnan and Gehrke 2000], and for the
relational calculus [Abiteboul et al. 1995]. In the context of semistructured data,
Papakonstantinou et al. first address the problem in the framework of MSL [Pa-
pakonstantinou et al. 1996], a datalog-like language. Their composition algorithm,
called query decomposition and algebraic optimization, uses a unification algorithm
on the view’s head and the query’s body. Deutsch et al. [Deutsch et al. 1999]
and Papakonstantinou and Vassalos [Papakonstantinou and Vassalos 1999] address
query composition in the more complex setting of query rewriting for semistruc-
tured data. Our solution borrows ideas from [Deutsch et al. 1999; Papakonstantinou
et al. 1996].
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

SilkRoute : A Framework for Publishing Relational Data in XML · 51

The research system xperanto [Carey et al. 2000] is very similar in applica-
bility and spirit to SilkRoute. xperanto supports definition of XML views of
relational data using XQuery and supports composition of application queries over
an XML view [Shanmugasundaram et al. 2001]. xperanto uses an “XML Query
Graph Model” (XQGM) as its intermediate representation of a view. The XQGM
is analogous to a physical execution plan produced by a query optimizer. Nodes
in the XQGM represent operations in an algebra (e.g., select, join, unnest, union)
and edges represent the data flow from one operation to the next. Individual op-
erations may invoke “XML-aware” procedures for constructing and deconstructing
XML values. Whereas SilkRoute’s view forest is entirely declarative, the XQGM is
more imperative and procedural, which may make it less amenable to composition
with an arbitrary number of XQuery queries. That is, it may not be possible to
always produce an XQGM that may be composed with another XQuery query. The
XQGM, however, may better capture the relationship between XQuery expressions
and complex SQL expressions than does a view forest. The two representations
may be symbiotic: declarative view forests are appropriate for the “front end”
query composition whereas the procedural XQGM may be better for “back end”
SQL generation.

xperanto has also addressed efficient evaluation of XML views. Shanmugasu-
daram et al. [Shanmugasundaram et al. 2000] describe several methods for comput-
ing XML views with relational engines. They classify the methods along three axis:
early/late structuring, early/late tagging, and in-engine/outside-engine XML gen-
eration. They consider a variety of algorithms and compare them experimentally.
In the unordered outer union strategy, the XML generator uses a main memory
hash table to assemble the XML objects, which requires the XML view fit in main
memory. In CLOB de-correlated queries, the XML result is constructed by the
relational engine, which is also effective when the XML view fits in main memory.
The best overall performance is achieved by the CLOB de-correlated algorithm, the
unsorted outer union, and the sorted outer union. Of these, only the sorted outer
union applies to large XML views that exceed main memory.

Commercial database vendors and database researchers have intense interest
in the problems of publishing, storing, querying, and warehousing XML data.
Although XML is still an immature technology, there is real demand for high-
performance XML storage and query engines. This demand will only increase
as XML becomes an integral part of business-to-business applications. The main
contributions of SilkRoute have been to characterize the fundamental problems of
viewing and querying XML data stored in relational database systems; to present
a framework for publishing relational data in XML; to create an abstraction, the
view forest, that captures the semantics of an XQuery query and that supports
query composition and evaluation; and to develop algorithms for composing and
evaluating XML views.

A. QUERIES FOR EXPERIMENTS

The TPC Benchmark ’H’ database [Council 2001] contains information about parts,
the suppliers of those parts, customers, and their part orders. Figure 33 contains a
fragment of the database’s schema.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

52 · Mary Fernández et al

Supplier(suppkey CHAR(10) PRIMARY KEY, name VARCHAR(20), addr VARCHAR(50),

nationkey CHAR(10))

PartSupp(partkey CHAR(10) PRIMARY KEY, suppkey PRIMARY KEY CHAR(10),

availqty INTEGER)

Part(partkey CHAR(10) PRIMARY KEY, name VARCHAR(20), mfgr VARCHAR(20),

brand VARCHAR(20), size VARCHAR(20), retail REAL)

Customer(custkey CHAR(10) PRIMARY KEY, name VARCHAR(20), addr VARCHAR(50),

nationkey CHAR(10), phone CHAR(10))

LineItem(orderkey CHAR(10) PRIMARY KEY, partkey CHAR(10),

suppkey CHAR(10), ltemno CHAR(10), qty INTEGER, price REAL)

Orders(orderkey CHAR(10) PRIMARY KEY, custkey CHAR(10), status CHAR(10),

price REAL, date DATE)

Nation(nationkey CHAR(10) PRIMARY KEY, name VARCHAR(20), regionkey CHAR(10))

Region(regionkey CHAR(10) PRIMARY KEY, name VARCHAR(20))

Fig. 33. Fragment of TPC-H Schema

element suppliers {
element supplier*

}
element supplier {

element name,

element nation,

element region,

element part*

}
element name { string }
element nation { string }
element region { string }

element part {
element name,

element order*

}
element order {

element orderkey,

element customer,

element cnation

}
element orderkey { string }
element customer { string }
element cnation { string }

Fig. 34. Schema in XQuery type notation of public view Q1P in Figure 35

We first explain the public query Q1P . Figure 34 gives the XML schema for
this view. Each supplier element includes its name, its nation, the geographical
region of the nation, and a list of the supplier’s parts. Each part element includes
a part name and a list of orders pending for the part. Each order element includes
an orderkey, the associated customer, and the customer’s nation. The name, nation,
region, and customer elements all contain strings. Figure 35 contains the public
query corresponding to the schema in Figure 33.

Figure 36 (top) depicts the view tree for the Q1P in Figure 35. In this view
tree, there are nine edges and 29 or 512 subsets of edges, each of which corresponds
to a partition of the tree. Therefore there are 512 possible plans for splitting the
tree into a collection of SQL queries; each plan consists of between 1 and 10 tuple
streams.

Q2P is identical to Q1P except that the block defining the order node is a child
of the supplier node instead of the part node. Figure 36 (bottom) depicts its
view tree. In Q1P , the two one-to-many edges (labeled “*”), are nested in a chain,
whereas in Q2P , the two ‘*’ edges are parallel.
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

SilkRoute : A Framework for Publishing Relational Data in XML · 53

for $s in $CanonicalView/Supplier/Tuple

return

<supplier> <name> { $s/name } </name>

{for $n in $CanonicalView/Nation/Tuple

where $s/nationkey = $n/nationkey

return

<nation>{ data($n/name) } </nation>

{for $r in $CanonicalView/Region/Tuple

where $n/regionkey = $r/regionkey

return <region>{ data($r.name) }</region> } }
{for $ps in $CanonicalView/PartSupp/Tuple, $p in $CanonicalView/Part/Tuple

where $s/suppkey = $ps.suppkey,

$ps/partkey = p/partkey

return

<part> <name> { data($p.name) }</name>
{for $l in $CanonicalView/LineItem/Tuple, $o in $CanonicalView/Orders/Tuple

where $ps/partkey = $l/partkey,

$ps/suppkey = $l/suppkey,

$l/orderkey = $o/orderkey

return

<order>

<orderkey>{ data($o/orderkey) }</orderkey>
{for $c in $CanonicalView/Customer/Tuple

where $o/custkey = $c/custkey

return

<customer>{ data($c/name) }</customer>
{for $n2 in $CanonicalView/Nation/Tuple

where $c/nationkey = $n2/nationkey

return

<cnation>{ data($n2/name) }</cnation>
}

}
</order> }

</part> }
</supplier>

Fig. 35. Public query corresponding to schema in Figure 33 (Q1P)

ACKNOWLEDGMENTS

We thank Jayavel Shanmugasundaram for his insightful remarks on the conference
papers that contributed to this paper, and we thank the reviewers for their detailed
comments and suggestions.

REFERENCES

Abiteboul, S., Hull, R., and Vianu, V. 1995. Foundations of Databases. Addison Wesley

Publishing Co.

Beeri, C. and Bernstein, P. 1979. Computational problems related to the design of normal

form relational schemes. ACM Transactions on Database Systems 4, 1, 30–59.

Bohannon, P., Ganguly, S., Korth, H., et al. 2002. Optimizing view queries in ROLEX to

support navigable result trees. In Proceedings of Very Large Data Bases. VLDB, Hong Kong.

Carey, M. et al. 2000. Xperanto: Middleware for publishing object-relational data as XML

documents. In Proceedings of Very Large Data Bases. VLDB, Cairo, Egypt, 646–648.

Choi, B., Fernandez, M., and Simeon, J. 2002. The xquery formal semantics:

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

54 · Mary Fernández et al

<supplier>

11

<part><region><nation><name>

N1

N1.4

1 *

N1.1 N1.2 N1.3

*1

 <customer> <cnation><orderkey>
N1.4.2.1 N1.4.2.2 N1.4.2.3

<order>

1
1

1

<name>
N1.4.2N1.4.1

 <customer> <cnation><orderkey>

1
1

1

N1.5.1 N1.5.2 N1.5.3

<supplier>

11

<part><region><nation><name>

N1

N1.4

1

N1.1 N1.2 N1.3

*
*

1

<name>
N1.4.1

N1.5
<order>

Fig. 36. Labeled view tree for Q1P (top) and Q2p (bottom)

a foundation for implementation and optimization. Tech. rep., AT&T Labs Research. Submitted

for publication.

Council, T. P. P. 2001. TPC-H (ad-hoc, decision support) benchmark. http://www.tpc.org/.

Deutsch, A., Fernández, M., and Suciu, D. 1999. Storing semistructured data with STORED.
In Proceedings of the ACM SIGMOD International Conference on Management of Data. ACM,
Amsterdam, the Netherlands, 431–442.

Extender, I. D. U. D. X. 2000. XML extender administration and programming.

(http://www-4.ibm.com/software/data/db2/extenders/xmlext/docs/v71wrk/english/index.htm).

Milner, R., Tofte, M., and Harper, R. 1990. The Definition of Standard ML. MIT Press.

Online Library. Introduction to the Dewey Decimal Classification. Online Computer Library

Center. http://www.oclc.org/oclc/fp/about/about the ddc.htm.

Papakonstantinou, Y., Abiteboul, S., , and Garcia-Molina, H. 1996. Object fusion in medi-

ator systems. In Proceedings of Very Large Data Bases. VLDB, Bombay, India, 413–424.

Papakonstantinou, Y. and Vassalos, V. 1999. Query rewriting for semistructured data. In Pro-

ceedings ACM SIGMOD International Conference on Management of Data. ACM, Philadel-
phia, PA, 455–466.

Pirahesh, H., Leung, T. Y., and Hasan, W. 1997. A rule engine for query transformation in

Starburst and IBM DB2 C/S DBMS. In Proceedings of the Thirteenth International Conference
on Data Engineering. Birmingham, UK, 391–400.

Ramakrishnan, R. and Gehrke, J. 2000. Database Management Systems, 2nd ed. McGraw
Hill. Section 14.5, page 401.

Rys, M. 2000. Support webcast: Microsoft sql server 2000: New XML features.
(http://support.microsoft.com/servicedesks/ Webcasts/wc042800/wcblurb042800.asp).

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

SilkRoute : A Framework for Publishing Relational Data in XML · 55

Sahuguet, A. 2000. Everything you ever wanted to know about dtds, but were afraid to ask. In

International Workshop on the Web and Databases (WebDB’2000).

Shanmugasundaram, J., Kiernan, J., Shekita, E., et al. 2001. Querying XML views of rela-
tional data. In Proceedings of Very Large Data Bases. VLDB, Roma, Italy, 261–270.

Shanmugasundaram, J., Shekita, E., Barr, R., Pirahesh, H., and Reinwald, B. 2000. Ef-
ficiently publishing relational data as XML documents. In Proceedings of Very Large Data
Bases. VLDB, Cairo, Egypt, 65–76.

Wait, B. 1999. Using XML in oracle database applications.

(http://technet.oracle.com/tech/xml/info/htdocs/otnwp/about xml.htm) Oracle Cor-

poration.

World-Wide Web Consortium 1999. XSL Transformations (XSLT), Version 1.0, W3C Recom-
mendation. World-Wide Web Consortium. http://www.w3.org/TR/xslt.

World-Wide Web Consortium 2001a. XML Schema Part 1: Structures, W3C Recommendation.

World-Wide Web Consortium. http://www.w3.org/TR/xmlschema-1.

World-Wide Web Consortium 2001b. XML Schema Part 2: Datatypes, W3C Recommendation.
World-Wide Web Consortium. http://www.w3.org/TR/xmlschema-2.

World-Wide Web Consortium 2002a. XQuery 1.0 and XPath 2.0 Data Model, W3C Working
Draft. World-Wide Web Consortium. http://www.w3.org/TR/query-datamodel/.

World-Wide Web Consortium 2002b. XQuery 1.0 and XPath 2.0 Functions and
Operators Version 1.0, W3C Working Draft. World-Wide Web Consortium.
http://www.w3.org/TR/xquery-operators/.

World-Wide Web Consortium 2002c. XQuery 1.0 Formal Semantics, W3C Working Draft. World-

Wide Web Consortium. http://www.w3.org/TR/query-semantics/.

World-Wide Web Consortium 2002d. XPath 2.0, W3C Working Draft.
http://www.w3.org/TR/xpath20/.

World-Wide Web Consortium 2002e. XQuery 1.0: An XML Query Language, W3C Working
Draft. http://www.w3.org/TR/xquery/.

Received December 2001; revised June 2002; accepted August 2002.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

