A Formal Perspective on the View Selection Problem

Rada Chirkova

Dept. of Computer Science
Stanford University
Stanford, CA 94305

USA
rada@cs.stanford.edu

Abstract

The view selection problem is to choose a set of
views to materialize over a database schema, such
that the cost of evaluating a set of workload queries
is minimized and such that the views fit into a pre-
specified storage constraint. The two main applica-
tions of the view selection problem are materializing
views in a database to speed up query processing,
and selecting views to materialize in a data ware-
house to answer decision support queries.

We describe several fundamental results concerning
the view selection problem. We consider the prob-
lem for views and workloads that consist of equality-
selection, project and join queries, and show that the
complexity of the problem depends crucially on the
quality of the estimates that a query optimizer has
on the size of the views it is considering to materi-
alize. When a query optimizer has good estimates
of the sizes of the views, we show that an optimal
choice of views may involve a number of views that is
exponential in the size of the database schema. On
the other hand, when an optimizer uses standard
estimation heuristics, we show that the number of
necessary views and the expression size of each view
are polynomially bounded.

1 Introduction

The problem of view selection has received significant
attention in recent literature [ACN00, CG00, Gup97,
GM99, TS97, YKL97, BPT97, GHRU97, HRU96,
KM99]. Broadly speaking, the problem is the follow-
ing: given a database schema R, storage space B and a
workload of queries Q, choose a set of views V over R
to materialize, whose combined size is at most B. The

Permission to copy without fee all or part of this material is
granted provided that the copies are mot made or distributed for
direct commercial advantage, the VLDB copyright notice and the
title of the publication and its date appear, and notice is given that
copying is by permission of the Very Large Data Base Endowment.
To copy otherwise, or to republish, requires a fee and/or special
permission from the Endowment.

Proceedings of the 27th VLDB Conference,
Roma, Italy, 2001

Alon Y. Halevy

Dept. of Computer Science
University of Washington
Seattle, WA 98195
USA
alon@cs.washington.edu

Dan Suciu

Dept. of Computer Science
University of Washington
Seattle, WA 98195
USA
suciu@cs.washington.edu

set of views V is called a view configuration. The views
can either be materialized within the database, in which
case they are available to supplement normal query pro-
cessing, or they can be materialized in a separate data
warehouse, and in that case the workload queries should
be answered only from the views. The goal of the view
selection process is to find a set of views that minimizes
the expected cost of evaluating the queries in Q in ei-
ther of the above contexts. In addition, the view selec-
tion problem may involve choosing a set of indexes on
the views, and may consider the cost of updates to the
views V.

The original motivation for the view selection prob-
lem comes from data warehouse design, where we need
to decide which views to store in the warehouse to ob-
tain optimal performance [TS97, BPT97, HRU96]. An-
other motivation is provided by recent versions of several
commercial database systems which support incremental
updates of materialized views and now use materialized
views to speed up query evaluation. Therefore, choosing
an appropriate set of views to materialize in the database
is crucial in order to obtain performance benefits from
these new features [ACNOQO].

The view selection problem and its generalizations
will play an even greater role in contexts where data
needs to be placed intelligently over a wide area network.
In these contexts, users are spread over a network, and
each location may have different types of query charac-
teristics and/or performance requirements. A very sim-
ple version of this problem was considered in the context
of data placement in distributed databases(see [Kos00]
and, more recently, has bee identified as a key problem in
peer to peer computing [GHI*01]. For example, consider
the context of ubiquitous computing, where data is both
integrated and accessed from many devices (desktops,
laptops, PDAs, cellphones) [ILM*00]. Each of these de-
vices has a local store but can also retrieve data at dif-
ferent rates from various points on the network. A key
factor in ensuring good performance in such a context is
intelligent placement and replication of data at different
nodes on the network, which is akin to selecting a set of
views at each node. Note that the view selection problem

can be viewed as a special case of this intelligent data
placement problem, in which there are only two nodes
in the network (the database and the warehouse).

This paper considers the fundamental properties of
the view selection problem for workload and view con-
figurations involving conjunctive queries (i.e., queries
allowing join, projection and equality selection). Sev-
eral algorithms have been proposed in the past for
solving the view selection problem for such queries
(e.g., [TS97, ACNOO]), but they all made certain crit-
ical tacit assumptions. The first assumption is that the
only views that need to be considered for an optimal
view configuration are those that are subexpressions of
queries in the workload (i.e., that contain a subset of the
tables with a subset of the join predicates in the query).
The second assumption is that there is some relatively
low upper bound on the number of views in an optimal
view configuration.

The following example, adapted from [CGO00], shows
that the first assumption does not hold. We will show
later in the paper that the second assumption doesn’t
hold either.

Example 1.1 Consider a shipping company that serves
a number of cities, with fixed delivery schedules between
pairs of cities. The company has a centralized database,
with a base table T' (source, d, dest) that stores all pairs
of cities source and dest, such that there is a scheduled
delivery from source to dest on day d of the week (a
number between 1 and 7).

Agents in each city try to contract shipments to inde-
pendent truck drivers, by luring them with tours con-
necting two or more cities. The company predefines
a number of tour types to offer to the truck drivers,
and agents need to query the database and find out
whether the tour requested by the driver exists start-
ing at a given city. Every tour type starts and ends in
the same city. The simplest tour is the “one-city two-
days roundtrip”, for which we give the definitions in both
SQL and datalog. (We are only concerned with set se-
mantics in this paper, hence the distinct in the SQL
statement. The equivalent datalog formulation should
be self-explanatory.)

select distinct T1l.source
from T AS T1, T AS T2
where T1.source = T2.dest
and T1.dest = T2.source
and Tl.day+1 = T2.day;

Q1 (X1) : —
T(X15D5X2)J
T(XQ,D+1,X1).

A more complex tour is the “five cities in five days
with a break” tour below:

Q2(X1) P T(X1,17X2)5T(X2715X3)7T(X3527X4)a

T(X4,2,X5),T(Xs,4,X4),T(X4,5, X1)

Here the break is on Wednesday (day #3).

Assume that the company predefines a few dozen such
tour types, each involving between 2 and 10 cities. For
each tour there will be an associated query, and the set
of all such queries defines our workload: Q@ = @1,Q>,.. ..
Notice that for the purpose of our discussion the queries

only inform the agents if the desired tour is available or
not from a given starting city.

How can one speed up the evaluation of such a work-
load? We may attempt to precompute all the queries,
but their large number makes the total size of their an-
swers too large for us to store.

Obviously the best choice of views depends on the
particular statistics available on the database. For illus-
tration purposes, assume the data is such that the graph
of connections among the cities is sparse, and that only
a small subset of cities are on some cycle. Then, one idea
is to precompute a view with the (small) set of cities that
belong to some cycle. For example, the view

CS(Xl) i T(X13D15X2):T(X2JD2aX3)a
T(Xs, D3, X4),T(X4, Ds, X5),

T(Xs, Ds, X1)

computes the set of cities on a cycle of length 5, but ig-
noring the days of the delivery. The view Cj5 can be used
to speed up query (), since all answers to ()3 must be in
the view Cj (it can be easily verified that @2 is contained
in Cy). But it cannot be used to speed up @1, since there
is no relationship between cycles of length 2 and those of
length 5. For a view to be helpful to the entire workload
we need to have access to the views containing all possi-
ble cycles, up to some length, say C2,Cs,C4,Cs,...,Cho
and we may not have enough space to materialize all of
them independently.

Another idea is to compute a single view with all cities
from which we can follow a long chain of cities, say of
length 10:

‘/10(X1) i T(X13D15X2):T(X2JD2aX3)a

..., T(Xy, Do, X10)

Notice that any city that is on a cycle, of any length, is
included in V39 (i-e., Cy, C Vig, for every m > 2) since a
chain simply “wraps around” a cycle, but the converse
is false. Since Vip is a single view, we most probably
have enough space to materialize it. More interestingly,
all queries in the workload can be sped up by using Vio;
this can be done in several ways, we only illustrate here
one possible rewriting for both)1 and Qa:

Q1(X1) = Vio(X1), T (X1, D, X3), Vio(X2),
T(X2,D —+].7 Xl)
Q2(X1) P VlO(Xl)aT(le1:X2)’T(X2:17X3)1

T(X3,2,X4), V10(X4),T(X4,2, X5),
T(X5a 4: X4)a T(X‘la 5) Xl)

To see why this results in a speedup, consider the plan
(Vio X T) X (Vio X T) for @)1: since the result of the
join Vip X T is much smaller than the table 7', this plan
is more efficient than the original plan, T X T'.

There is nothing special about the number 10 in V3.
We could have used any view V,, defining a chain of
length n. In fact, larger values of n will eliminate more
false positives, and thus speed up the workload even
more.

Our focus in this paper is on the choice of the view(s).
First, the example illustrates that it does not suffice to
consider only views that are defined as subsets of sub-
goals of the queries in the workload. In fact, V¢ is not
a subexpression of any query in the workload. Second,
the example illustrates that it is not clear where to stop:
ever larger values of n seem to produce better and better
views V,. O

As we show later in the paper, it is also unclear how
many views we need to select. Hence, we are faced with
several fundamental questions regarding the view selec-
tion problem: (1) which set of views do we need to con-
sider in an optimal view configuration? (2) what is the
maximal size of an optimal view configuration? and (3)
what is the complexity of the view selection problem?

We show that a key factor affecting the answer to the
aforementioned problems is which statistics we may ex-
pect to have on the database relations. These statistics
are crucial in order to estimate the size of the views we
consider to materialize and the cost of evaluating queries
over the views. We therefore distinguish two versions of
the problem: the Partial Statistics Assumption (PSA)
and the Complete Statistics Assumption (CSA). Under
PSA, we assume that standard statistics are maintained
on the database, and that cost and size estimates are ob-
tained by some estimation function. In contrast, under
CSA we assume that we have an oracle that gives us the
precise size of any view over the database schema. Note
that in practice such an oracle can be based on statis-
tics collected from running queries over the database for
some period of time.

After formally defining the view selection problem
(Section 2), we begin by considering the problem un-
der CSA (Section 3). We first show that the workload
queries provide a double-exponential upper bound on
the size of the view definitions we need to consider in
an optimal configuration, and as a result, the view selec-
tion problem is decidable in quadruple exponential time.
But then we show a rather surprising result: in general,
an optimal view configuration may include a number of
views that is exponential in the size of the query and
database schema. As a result, the view selection problem
has an exponential-time lower bound. In fact, this result
holds even if we further restrict the expressive power of
our query language.

Next, we consider the view selection problem under
PSA (Section 4). We show here that an optimal solution
to the view selection problem always includes a number
of views that is bounded by a polynomial in the size of
the database schema, the workload of queries, and the
binary representations of the relation sizes and the avail-
able space bound. We also prove that the size of the view
definitions in an optimal configuration is bounded lin-
early in the size of the query definitions in the workload.
The two upper bounds place the view selection prob-
lem in the complexity class NP. The results for the PSA
assume certain properties of the size estimation func-
tion that are general enough to capture size estimators
commonly used in practice. While unreasonable choices

of size estimation functions break our results, they also
make the view selection problem rather uninteresting.

Our results also shed light on the problem of answer-
ing queries using views [Hal01]. It is known that given
a query () with n subgoals and a set of views V), there
exists an equivalent rewriting of @) using V only if there
exists a rewriting with n subgoals or less. However, it
has been an open problem whether an optimal rewriting
also satisfies the same bound on its size. Our results on
the size of an optimal view configuration also establish
bounds on the size of an optimal rewriting of a query
using a set of views.

1.1 Related work

There has been relatively little theoretical analysis of
the view selection problem in the literature to date.
In [CGOO], Chirkova and Genesereth considered the
space requirements for the view selection problem for
the context of data warehouse design. They consider
certain restrictions under which they show that one can
limit the search of an optimal configuration to views
that are subexpressions of the queries in the workload.
Gupta [Gup97] considers the view selection problem, but
he does not model the attributes of the relations being
joined. That is, he considers every relation to be a propo-
sition and looks at query plans that are AND-OR graphs
over these propositions. As a consequence, his model
does not capture selections, projections, or different join
predicates. Our work shows that the complexity of the
problem crucially depends on modeling these operations.
In a later paper [GM99], the authors also consider the
cost of view maintenance, but under the same model of
inputs. Finally, in both papers, the set of relations in
the warehouse is given as part of the input, whereas in
our work we’re only given the database schema and the
workload queries.

In [TS97] Theodoratos and Sellis describe an algo-
rithm for searching a space of candidate warehouses.
They do not discuss the complexity of the view selection
problem, and their search space does not include ware-
houses that contain views that are projections on the
database relations. As we show in Section 3, considering
such views has a significant impact on the complexity of
the view selection problem.

Agrawal et al. [ACNOO] describe a system for view
selection that is incorporated into the Microsoft SQL
Server. They present several very effective heuristics for
pruning the space of possible view configurations. An
important aspect of their work is that they consider the
problem of selecting views and indexes simultaneously.
Because of that, they do not consider projection views,
since those can often (but not always!) be simulated by
indexes on other views.

Harinarayan et al. [HRU96] show that the problem
of view selection for data cubes is NP-hard, and de-
scribe greedy algorithms for approximating an optimal
set of views. View-selection for data cubes is fur-
ther elaborated in [KM99]. In [GHRU97] the work
of [HRU96] is extended to include index selection. Other

works that considered algorithms for view selection
are [YKL97, BPT97, LH99, ZY99).

2 Problem definition

We consider the view selection problem for the case in
which both queries and views may contain joins, projec-
tions and equality selections (i.e., conjunctive queries).
Furthermore, we consider queries and views under set
semantics, rather than bag semantics. Throughout
the paper we use the datalog notation for conjunctive
queries. Note that in this notation, joins are expressed
as multiple occurrences of the same variable. In general,
we say that a variable is a join varieble if it appears in
more than one subgoal in the body of the query. Given
a database instance D, the size of a view V over D is
the number of tuples in the answer to V.

Workloads: The appropriate choice of views in a par-
ticular context is highly dependent on the set of queries
we expect to be given. We model our expected queries
by a query workload, which is a set of queries Q =
Q1,--.,Qm, where each query ; has an associated non-
negative weight, w;. The weight describes the relative
frequency of @); within the workload. We require that
the weights sum up to 1 (3°;;<,,, wi = 1).

View configurations: Given a database schema R and
a workload @, our goal is to choose a set of views V to
materialize. We refer to a choice of views as a view con-
figuration (or configuration for short). There are several
contexts in which we may be choosing configurations:

1. Performance of query processing: we may choose to
materialize a set of views over a database, such that
subsequent queries can make use of these views in
query processing. Many commercial database sys-
tems today support the functionality of answering
queries using views.

2. Warehouse design: the goal is to select a set of views
to materialize in a data warehouse, on which we
expect to process OLAP-style queries. In this case,
the query processor of the warehouse must use only
the selected views in order to answer the queries.

3. Data placement in a distributed setting: we may
want to locally cache views on data that is stored
in remote locations. When processing queries, the
views can be used to reduce the amount of commu-
nication between the nodes.

We use the following terminology when referring to
view configurations. The size of the configuration for a
given database instance D is the sum of the sizes of the
views evaluated over D. Given a configuration V, we
evaluate the cost of answering a workload Q on V using
a cost model C. Specifically, C(R,V,Q;) is a function
that estimates the cost of evaluating the query @; given
the workload and the sizes of the views in V. The func-
tion C' uses a set of statistics on the database, which
are assumed to be part of the specification of R. We
elaborate on these statistics below.

In practice, before we actually materialize the chosen
views, we may only be able to approrimate their sizes.
As we see later, the quality of the size estimator function
plays a crucial role in the complexity of the view selection
problem.

We assume that the function E(R,V,X) returns the
estimated size of a view V over a database with schema
‘R and its associated statistics X. Note that the function
C uses the estimates produced by E, hence the accuracy
of the cost depends on the accuracy of both C' and E.
Given the function C' and a configuration V, the cost
of the configuration, denoted by C(R,V, Q), is the sum
Z%-eg C(R,V, Qi) x w;.

inally, our goal is to select a view configuration that
satisfies a given space constraint. We denote by B an
amount of memory allotted for the views, and we assume
that B is given via its binary representation. We are now
ready to formally define the view selection problem.

Definition 2.1 (View selection problem) Let R be
a database schema, B be the available storage space, Q
be a workload on a database described by the schema
R, C be a cost estimation function for query processing,
and E be a function for estimating the sizes of queries
over R. The view selection problem is to find a set of
views V over R whose total size is at most B and that
minimizes C(R,V, Q). O O

A few points are worth noting about the definition before
we proceed:

1. The input to the problem includes the database
schema and the statistics associated with it. Hence,
a solution applies to the set of databases obeying
these statistics, and not only to a single database
instance.

2. The input to the view selection problem does not
include a database instance. Hence, the complexity
results we present later are in terms of the size of
the schema and of the workload, not the size of the
database.

3. We present several complexity results concerning
the view selection problem. While view selection
is an optimization problem, the corresponding de-
cision problem that we refer to in the results is: Is
there a view configuration whose cost is less than
K ?, for a given number K.

4. Tt is important to note that materializing all the
queries in Q is not always a possible solution be-
cause of the space limitation (even if we ignore the
cost of materializing and updating the views). It is,
of course, reasonable to assume that B is at least
big enough to hold the result of any single query in
Q.

2.1 Cost and size estimates

A key difficulty in treating the view selection problem is
that we tread a very fine line with the choice of a cost

model. In previous work, the view selection problem
left the cost model as a parameter (e.g., [TS97]), or,
when actually implemented, relied on the cost estimates
of the optimizer (e.g., [ACNOQ]). Ideally, we would like
to leave the cost model as a parameter to the problem,
and obtain results that hold for eny cost model. On
the other hand, we show some interesting results when
considering certain classes of cost models. This tradeoff
affects the following discussion about the inputs to the
view selection problem.

Cost model: For the purpose of our discussion, the
critical aspect of a cost model is the estimated cost of
a join. In our discussion we consider the product cost
model for joins. In this cost model, the cost of joining
the relations R and S of size M and N respectively is
a X MN 4+ 38 x (M + N). This cost model faithfully
describes most real-world situations:

e For nested-loop joins, the first term is the dominat-
ing factor in the cost, as « is a fraction that depends
on the number of main-memory pages available.

e For hash or sort-merge joins, the I/O costs are as-
sumed to be proportional to the sum of the sizes of
the joined relations, but the main-memory costs are
still proportional to the size of the product of the
joined relations. Hence, here we assume that « is
relatively small.

Finally, we assume that the cost of a selection is that
of a scan on the relation, and the cost of a projection on
a relation of size N is Nlog(N) (though in practice, it
is rarely more than 3NNV).

When a view selection algorithm examines a par-
ticular candidate configuration V, it needs to compute
C(R,V, Q). In our discussion, we assume the cost can
be computed in time polynomial in the size of Q and the
configuration V. In general, query optimization can be
exponential in the size of the query, and hence, calculat-
ing C(R,V, Q) could potentially be exponential in the
size of Q. The reasons for our choice is that we want
to isolate the effect of the view selection problem from
the problem of evaluating a configuration, and that in
practice, query optimizers do not perform an exhaustive
search of the possible plans.

In estimating costs of configurations, we also need to
specify what kinds of query execution plans the opti-
mizer will be considering. We assume standard query
plans, where selections are pushed down to the leaves
and the projection is the last operation; query plans dif-
fer only in the join order. In our discussion we will dis-
tinguish between cases in which the optimizer considers
only left-linear query plans and cases where it considers
all bushy query plans.

Size estimation: A key difficulty in evaluating the cost
of a candidate view configuration is that we also need to
evaluate the sizes of the views in the configuration, which
are, in turn, used as inputs to the cost estimation func-
tion C. Hence, a key aspect in the analysis of the view
selection problem is specifying which statistics about the
database are available as input along with the schema.

The availability of statistics significantly affects the
analysis of the view selection problem. Hence, we study
two versions of the view selection problem, and we show
that they lead to drastically different results. In the first
version, discussed in Section 3, we make the complete
statistics assumption (CSA), in which we assume that
we have an oracle that tells us the size of any view over
the database. In practice, it may often be possible to ob-
tain such an oracle. In some cases, we can approximate
such an oracle by using the results of many runs on the
system during which a large body of statistics have been
gathered. In other cases, we may be able to evaluate the
results of the views and compute their sizes.

In the second version of the problem, we make the
partial statistics assumption (PSA), where we rely on
the size and cost estimators of the query processor, and
assume their functions are parameters to the problem.
In Section 4 we consider the PSA case under some rea-
sonable assumptions on size estimation functions that
are considered in practice.

An important distinction between CSA and PSA is
the monotonicity property of the size estimator. We
say that the size estimation function E is monotone if,
whenever a view V; is contained in V2, V3 C Vb, then
E(R,V1,%) < E(R,V,,X) for every given statistics X.
Under CSA size estimators are always monotone, while
under PSA they usually are not. This has important
consequences on the view selection problem.

3 The complete statistics assumption

In this section we consider the view selection problem un-
der the complete statistics assumption (CSA). That is,
we assume that we have an oracle that can accurately es-
timate the size of any view over the database. The main
result of the section is that there exist a database schema
and a query workload for which the number of views in
an optimal configuration is exponential in the size of the
schema. As a consequence, we obtain an exponential-
time lower bound on the complexity of the view selection
problem for CSA.

The first question that we ask about the view selection
problem is whether it is even decidable. A priori, it is
not even clear which views need to be considered for
optimal configurations, and whether there is even a finite
number of such views. In fact, in Section 4 we show that
in certain cases the number of relevant views could be
infinite.

The following theorem, which is an extension of a re-
sult in [CGOO], shows that view selection is decidable for
CSA.

Theorem 3.1 Let R be a database schema and Q be
a workload. Under CSA there is an optimal configura-
tion V for R, Q in which each view has a number of
subgoals that is at most double-exponential in the total
number of subgoals in all queries in the workload Q. As
a consequence, the view selection problem is decidable in
quadruple exponential time. O

The proof idea is the following. Given a view V with

a very large number of subgoals, which is used in an op-
timal configuration, the proof of the theorem constructs
another view V' with the following properties: the num-
ber of its subgoals is at most double exponential in the
size of the schema, it is contained in V (V' C V), and
it can replace V in all query rewritings of the queries Q.
Here, we use the fact that, under CSA, the size estima-
tion function E is monotone, hence replacing V' with V'
in all queries will result in a smaller estimated cost. We
omit the details of the proof for lack of space, but we
illustrate the construction of V' on the Example 1.1. As
suggested there, any view defining a chain of length n,
V.., is useful in answering all the queries in the workload,
and, apparently, the larger we pick n the better the view
configuration is. The new view V' obtained by applying
the construction in the proof to V,,, for some large n,
returns all cities that are on a cycle of length m, where
m is the least common multiplier of all tour lengths in
all queries in the workload. (V' is C,,, with the nota-
tions in the example.) Notice that picking any smaller
value for m would make V' unusable in some queries of
the workload. Hence, m is bound by an exponential in
Q, namely by the product of the number of variables
occurring in every query. More generally, in the proof
of Theorem 3.1 the new view V' uses at most as many
variables as the product of the number of variables used
in the queries @1, @2, ... in the workload: this gives us
an exponential bound on the number of variables, re-
sulting in a double-exponential bound in the size of the
view definition. The total number of views that have
this bound adds another exponential. Finally, an algo-
rithm for finding an optimal solution has to iterate over
all subsets of such views, hence quadruple exponential
time.

Next, we show that the number of views of an opti-
mal view configuration under CSA can be exponential
in the size of the schema and the workload. This is a
relatively surprising result, and in fact, none of the algo-
rithms proposed for view-selection would consider such
view configurations. Recall that the input to the view
selection problem is a database schema with a set of as-
sociated statistics. Since we are making the complete
statistics assumption, a query processor estimating the
cost of query plans has access to accurate estimates of
sizes of views over the schema. Hence, in order to show
that the number of views of the configuration can be ex-
ponential, we need to show a database schema, a work-
load, and a set of statistics on the database, that will
yield such a configuration.

Consider a database schema R; that includes two re-
lations R and S of arity n. The workload Q; includes
three queries:

q1(X17---7Xn) - R(Xl,,Xn)
QQ(Xl,...,Xn) - S(Xl,,Xn)
Q3(X1,...,Xn) - R(Xl,...,Xn),S(Xl,...,Xn)

The first two queries simply ask for the database re-
lations, while the third query asks for their intersec-
tion. If we are considering views to be materialized
in a database, then the query ¢3 suffices for the proof.

Queries ¢; and g2 are needed if we are creating a data
warehouse.

The view configuration V; includes all the possible
projections of R NS on a subset of size n/2 of its at-
tributes, and one additional view, V,, which is the pro-
jection of RN S on any one of its attributes. Note that

there are N = (n7}2) projections of RN S on n/2

attributes, i.e., the number of views in V; is exponential
in n. We denote the views by V4,..., Vn.

To establish our result, we show that there exists a set
of statistics X; (whose values depend only on the schema
and on the values of @ and 3 in the cost model C) such
that an optimal configuration will include all the views
Vo,...,Vn. To do that, we will show that an optimal
query plan for the query ¢z will be the one that joins R
with Vg, V1, ..., Vv successively, and finally joins the
result with §. We denote this plan by P*.

Recall that in the context of CSA, a set of statis-
tics can be viewed as a function that maps every view
over R; into an integer that specifies its size. We show
the existence of ¥ as follows. We describe a particular
database instance D, and define ¥; to be the statistics
for D. Hence, ¥; represents the set of databases whose
statistics agree with those of D. This particular way
of constructing the statistics also guarantees that they
are consistent, i.e., there exists at least one database in-
stance whose statistics are X1. The details of D are quite
involved, and therefore we describe them in a full ver-
sion of the paper. The database D and the statistics X
provide the basis for the following theorem.

Theorem 3.2 The view selection problem under CSA
considering only left-linear plans has an exponential-time
lower bound. O

The queries in the workload constructed in the proof
of the theorem have a number of head and join variables
that depend on the database schema. This is not needed
for the results to hold. A variation on the schema R;
and the statistics S; enable us to prove the following
result:

Theorem 3.3 Given a database schema R, a workload
Q and a space constraint B, the view selection problem
under CSA and considering only left-linear plans has an
exponential lower bound even if all the queries in Q have
a bounded number of variables in their head or if all the
queries in Q have a bounded number of join variables. O

Remark: Theorems 3.2 and 3.3 hold when we restrict
ourselves to left-linear trees. The question of whether the
exponential-time lower bound holds when we consider
bushy plans remains open. In fact, we can show that
an optimal bushy plan for the queries in the workload
constructed in the proof of the theorems require only a
single view which is a projection of R (or S) on a single
attribute.

However, P* is still an optimal plan if we consider all
bushy plans in which S (or R) is the last relation being

joined (that is, S (or R) is the right child of the root
of the join tree). This is an important observation in a
distributed query processing context. In this context, we
may have R and S stored in different locations, and may
store views on S (or on the intersection of R and S) in
R’s node to perform local filtering before we send data
over the network to evaluate the intersection of R and
S. Hence, our result implies that the number of local
views we may want to store on a remote source may be
exponential in the size of the schema. O

Our last result in this section identifies projections as
being the culprit for the exponential-time lower bound.

Theorem 3.4 Given a database schema R, a workload
Q, and a space constraint B, if an optimal view configu-
ration includes only projection-free views, then the num-
ber of views in the configuration is at most quadratic in
the size of the schema and workload. O

4 The partial statistics assumption

We consider now the view selection problem under the
partial statistics assumptions, PSA, when only limited
statistics over the database are available for estimating
the view sizes. In this case our goal is to find a view
configuration V whose total estimated size is at most B
(the space bound) and that optimizes the estimated cost
C(R,V, Q) of the workload. This scenario is more likely
in practice, and is similar to that of an optimizer in a
relational database system that has to base its cost esti-
mation on limited database statistics. The main results
in this section are that the number of views in an optimal
configuration of a view selection problem is bounded by
a polynomial, and that the number of subgoals in any
view that is part of an optimal solution is bounded lin-
early in the largest number of subgoals occurring in some
query in the workload. The results however hold only
under certain assumptions of the selectivity estimation
function, which we need to discuss first.

Database systems maintain a collection of statistics
on the database to perform size estimates. Statistics
range significantly in complexity, from simple numbers
to complex histograms. Examples include: the cardi-
nality of a base table; the number of distinct values in
a given field; the most frequent values in a given field;
an equiwidth histogram on a certain attribute of some
base table. Size estimators use heuristics to compute the
size of query answers from these statistics. Examples of
well-known simple heuristics are those for joins and se-
lections. Given cardinalities Ng and Ng of the tables R
and S, the size of R X S is estimated to be ¢ X Ng X Ng
where c¢ is the join selectivity factor, and the size of a
selection oy (R) is estimated to be d x Ng, where d is the
selectivity of the boolean condition b.

The database statistics, denoted X, play now a cen-
tral role in the size estimator function, and we denote
by E(R,V,X) the estimated size of a view V over the
database with schema R and statistics ¥. Our goal is
to analyze the complexity of the view selection problem
when the function E is a parameter.

Obviously, artificially chosen functions E could place
the view selection problem anywhere between trivial and
extremely complex. For example, if E estimates the size
of every view with one or more joins to be prohibitively
large, then there exists at most one valid view config-
uration, namely that materializing exactly the base re-
lations (in a warehouse design setting, where we have
access only to the views), or not materializing anything
(in the query optimization setting, where we have access
to the base tables anyway): in this case the problem is
trivial. On the other hand E may estimate the size of
very complex views, with thousands of columns, as being
artificially low, forcing us to inspect an extremely large
search space: here the problem becomes overly complex.

Without restricting too much the choice of the esti-
mator function E, we focus our discussion on functions
that are more likely to be used in practice. Our results in
this section hold even under very generous assumptions
about E.

Modeling Statistics: We model database statistics as
a collection of two kinds of numbers: factors and cardi-
nalities. Factors are real numbers between 0 and 1, e.g.,
join selectivity factors, the frequency of a given value in
a field, etc. Examples of cardinalities are the number of
distinct tuples in a base table, the number of distinct val-
ues in a field, the number of values in a certain interval of
a histogram, etc. We write ¥ = {c1,...,¢p, N1,..., Ny},
where ¢y, ..., cp are factors and Ny, ..., N, are cardinal-
ities. Statistics are always associated with a particular
database schema R. Thus, the numbers p and ¢ in ¥ de-
pend on R. The complexity of the view selection prob-
lem, which is a function on R, @ and B, will implicitly
also be a function of p and ¢. Furthermore, statistics can
be specific to the particular relations involved (e.g., the
join selectivity of R and S), or can be generic and used
whenever more specific statistics are not available.

Example 4.1 Consider the schema R with a binary re-
lation R, a ternary relation S, and the statistics ¥ =
{CR,R15CSy,Cx, Coy Nr, Ng}. Here cg,g, is the join se-
lectivity of R(X,Y) X R(Y, Z); cg, is the selectivity fac-
tor for a selection on the second attribute of S; ¢y is a
generic join selectivity that the function E will use for
all other joins; ¢, is a generic selectivity factor for all
other selections. Ng, Ng are the cardinalities of R and
S respectively. Consider the view:

V(X;Y;Z:U) T R(XaY)aR(YaZ);

S(U, “Smith", Z).

An estimator may compute the size of the view by the
following product:

E(R7V7E) = Cx X CRyRy XCUXNI%XNs.

Thus, the size is a product of the selectivity factors, for
the joins and the selections, and of the cardinalities of
the base tables. |

Example 4.2 The following example involves a projec-
tion. We note that in practice, estimating the size of a

projection (i.e., the select distinct ... SQL state-
ment) is much harder than for selections and joins, and
there are no widely used robust techniques to address
this problem. The following is one of the commonly used
estimators. Consider the view:

V(X7U) P R(X,Y),S(Y,Z),T(Z,U)

the following size estimation may be used:

E(R,V,E) = (C[xl)2 X .ZVR1 X Ng X]\]'T2

where Npg, is the number of distinct values in the first
column of R, Ng is the number of tuples in S, and Nr,
is the number of distinct values in the second column of
T. O

In summary, our discussion considers the class of
multiplicative size estimators, which captures estimators
used in practice:

Definition 4.1 (Multiplicative estimators) A size
estimator E on the statistics ¥ = {e1,...,¢p,
Ny, ..., Nz} is called multiplicative if, for every view V:

E(R,V,E) =c' x...xc)p x N x...xNgq

Here 7i,...,%,61,...,64 are natural numbers that
depend on the view V and satisfy the following con-
ditions, where s is the number of subgoals in V: (1)
1 < 3.6; < s, (2) when V is projection free then
> ;6 = s, and (3) >, v < As, for some fixed integer
A>0. O

Given the results in Section 3 for CSA, one wonders if
for PSA we still need an exponential number of views to
in an optimal view configuration. The answer is “no”, as
we shall prove in a moment, but first we notice that PSA
introduces a new kind of problem: some multiplicative
estimators E may lead to view selection problems that
do not have optimal solutions! This is illustrated by the
following example. Recall that the cost of a join between
two tables of (estimated) sizes M and N is aMN +
B(M + N).

Example 4.3 Consider the schema R with two binary
relations R and S and the queries:

Q:1(X,Y) :— R(X,Y),SY,Y)
@Q:(X)Y) :— R(X)Y)
Q3(X,)Y) :— S(X)Y)

Assume the statistics to be ¥ = {¢,d, Ng, Ng, Ng, },
where Ng, Ng,Ng, are the cardinalities of R, S, and
m1(9) respectively, ¢ is the selectivity for S(Y,Y), i.e.,
E(R,S(Y,Y),X) = ¢ x Ng, and d is explained below.
Assume a space bound B such that we can store R and
S, but not R, S and @1, or R, S and S(Y,Y). In partic-
ular, Ng + Ng < B < Ng+ Ng +c x Ng. Hence, in the
warehouse context, we are forced to choose R and S as
views to materialize, and have some space left for some

additional view(s) to reduce the cost of @);. Consider the
following infinite sequence of views, for n =0,1,2,...:
Vn(X) L S(X,Y(.)),S(}/(.],Yi),s(m,y-g),
- SYao1,Yn)

Suppose E estimates the sizes of the views V,, to be:

E(R,V,,X) = d" x Ng,

Hence d indicates by what factor the cardinality of the
semijoin is reduced by each additional S. Since 0 <
d < 1, for all values of n large enough, the estimator
will conclude that there is enough space to store V,, in
addition to R and S: Ng+Ng+d"xNg, < B. Moreover,
consider the following rewriting of Q1:

Ql(X,Y) . —

and the following plan for it: (R X V,,) X S. As n
goes to infinity and the estimated sizes of both V,, and
R XV, converge to 0, the cost of this plan converges to
B(Ngr+Ng). There is no optimal solution to the problem
in this case, since the cost of any plan for @) is greater
than B(Ng + Ng). m|

R(X,Y),V,(Y),S(Y.,Y)

This example shows that Theorem 3.1 from CSA fails
under PSA, the reason being that the size estimation
function F here is not monotone. Indeed, for every
n > 1, the view V(Y) : —=S(Y,Y) is contained in the view
Vi (V C V,,). However, for n large enough, the estimates
are E(R,V,X) =¢x Ng > d" x Ng, = E(R,V,,X). In
general, as this discussion suggests, it is virtually impos-
sible to find robust estimators that are monotone.

The assumption of large cardinalities: The lack of
an optimal solution in the example above is due to the
fact that E estimates the cardinalities of certain views
Vi, to be excessively small (even less than 1, for large
n). To avoid such anomalies, we will make the following
assumption: all cardinalities are large. Technically, this
translates into two conditions, one on the function E
and the other on the statistics . First, we will assume
that the function E always returns a cardinality that is
at least L, some lower bound. That is, there exists a
multiplicative estimator E' such that:

[E'(R,V,%)]
Oor L

E(R,V,) = { when E'(R,V, %) > L
otherwise

In the gray zone, when the multiplicative formula is less
than L, we let the estimator choose whether to believe
that the view is empty, and return 0, or that it is non-
empty, and return L. For such estimators, we revisit the
view selection problem slightly, but allowing only views
with a non-zero size estimate to be included in any view
configuration’.

The second technical condition for the large cardi-
nalities assumption is that there exist two numbers

1Views with estimated size 0 would, of course, artificially reduce
the cost of any plan in which they participate.

¢ and N such that for every set of statistics ¥ =
{c1,---,¢p, N1,..., Ny} we have ¢ < min(cy,...,c,) and
N < min(Ns,..., Ny, L). Recall that the statistics vary
with the schema R. Our condition implies that, as
the schema increases in complexity, all new cardinalities
and/or factors added to ¥ are larger than the fixed val-
ues N and c. The two theorems below also assume two
technical conditions: ¢x N > 1 and ¢* x N* > 1, respec-
tively, for fixed constants A and u. These conditions are
justified by the same assumption on large cardinalities,
and read: “if we apply one selection, or a succession of
A/p selections respectively, to a table of cardinality N,
we still obtain an answer with at least 1 tuple”.

A polynomial bound on the number of views: We
first prove that, when a solution to the view selection
problem exists under PSA, then there exists one with
a polynomial number of views. This result should be
contrasted to Theorem 3.2, which proves that under CSA
certain problem instances require an exponential number
of views.

For the remainder of this section, given a view se-
lection problem R, Q, B, a view configuration,)V, means
one in which every query in the workload Q is rewritten
only in terms of the views, and whose total size does not
exceed B.

Theorem 4.1 Assume ¢ x N > 1. Consider a view
selection problem given by R, Q, and B, and assume V
is its optimal view configuration, either under the left-
linear plan restriction, or under bushy plans. Then the
number of views in V is bounded by a polynomial in the
size of R, Q, and the binary representations of B, ¢, and
N.

The proof is given in the full version of the paper.

Join-sensitive size estimators: Under our current as-
sumptions for size estimators, some view selection prob-
lems may have view configurations but no optimal ones.
We show here that, with some additional restrictions on
the estimator function, every view selection problem ad-
mits an optimal view configuration, if it admits any at
all, and that finding such a configuration places the prob-
lem in NP.

Referring to the notations in Definition 4.1, we call
a multiplicative estimator join-sensitive if there exists a
positive constant g > 0 such that

(51+...+(5qZﬂ,XS,

where s is the number of subgoals in the view V. Here
the constant p, together with A, ¢, and N, are fixed for
all database schemas and associated statistics.

The size estimator E in Example 4.3 is not join sen-
sitive, since in the estimated size of V,, there is a single
factor that is a cardinality. However, most estimators in
practice are join-sensitive since they compute the esti-
mated size bottom up. For example, for V,,, they would
first consider the expression 7(S X S X ... X S). The es-
timator then computes the number of tuples in the join,

yielding some expression of the form f"~! x NZ, and
finally computes the number of tuples in the projection.
The result has the form gf™ ' x N2, where g and f are
some numbers between 0 and 1. Such an estimator is
join-sensitive.

The view selection problem always has a solution
when the estimator is join-sensitive. Moreover, in search-
ing for a solution, one only needs to consider views whose
size is linearly bounded by the largest number of subgoals
of any query in Q. This is captured precisely by the fol-
lowing theorem, whose proof is given in the full version
of the paper.

Theorem 4.2 Assume E to be a join-sensitive estima-
tor, and assume ¢ x N* > 1. Consider a view selection
problem given by R, Q, and B, and assume it admits at
least one view configuration. Let s be the largest num-
ber of subgoals in any query in Q. Then the following
hold, both under the restriction to left-linear join plans
and under arbitrary bushy plans: (1) the view-selection
problem always has an optimal solution, (2) if a view V
is part of an optimal solution then the number of sub-
goals in 'V is O(s), and (3) the view selection problem is
in NP.

5 Conclusions

View selection is becoming a critical problem in sev-
eral data management applications: query optimization,
data-warehouse design, data placement in distributed
environments, and ubiquitous computing. This paper
answered several fundamental questions about the view
selection problem: which views need to be considered in
an optimal view configuration, what is the cardinality
of an optimal view configuration, and what is the com-
plexity of the view selection problem. Our work lays the
foundation for both further theoretical analysis and the
development of practical algorithms for view selection.

As we have shown, the answer depends critically on
whether we can accurately estimate the size of views over
the given database. When we have accurate size esti-
mates, i.e., under the complete statistics assumption, we
have shown that the cardinality of an optimal view con-
figuration may be exponential in the size of the database
schema and query workload. As a result, we have estab-
lished an exponential-time lower bound on the view se-
lection problem, and a double-exponential upper bound.
Under the partial statistics assumption, when we use
multiplicative size estimators, we have shown that the
cardinality of an optimal view configuration is polyno-
mially bounded, and hence the view selection problem is
in NP. We have also shown that under certain conditions,
the view selection problem may not have an optimal so-
lution.

Index selection: an important issue in the formulation
of the view selection problem is the effect of choosing
indexes on the views in the configuration. While our
results have not considered the selection of indexes, it is
easy to show that the results still hold if we assume that

the number of views in an optimal configuration does
not change if we consider indexes.

The intuitive justification for this assumption is that
indexes cannot increase the number of views needed for
an optimal configuration. That is, if an indexed view
is part of an optimal plan for a query, then there must
be some database instance such that the view is useful
in an optimal plan that does not use indexes. The jus-
tification for using a view (if it’s not needed for correct
query semantics) is that using the view reduces the over-
all cost of the query. This can only happen if the size of
the intermediate result is smaller after the join; in fact,
it must be sufficiently small that it compensates for the
additional cost of performing the join. The presence or
absence of an index does not affect the size of a join
result; hence, the presence or absence of an index is ir-
relevant as to whether joining with a view reduces overall
query execution costs. An index may reduce the cost of
performing the join — hence the cost-benefit threshold
might change, but the join is only beneficial if it reduces
the cardinality in the first place.

Updating costs: another important practical issue is
the cost of maintaining the views that have been materi-
alized (though in some contexts it is sufficient to assume
views are updated in an off-line process done period-
ically). In most of the cases we discussed, it suffices
to model the cost of updates by assuming some of the
queries in Q are update queries. The subtle issue, how-
ever, is that in the presence of updates, the view con-
figuration may contain queries whose sole purpose is to
speed up updates, rather than support any of the queries
in Q [RSS96]. In future work, we will extend our analysis
to cover such cases.

Acknowledgments

We would like to thank Surajit Chaudhuri, Mike Gene-
sereth, Zack Ives, Henry Kautz and Rachel Pottinger for
very stimulating discussions regarding this work.

References

[ACNOO] Sanjay Agrawal, Surajit Chaudhuri, and
Vivek Narasayya. Automated selection of
materialized views and indexes in Microsoft
SQL Server. In Proc. of VLDB, pages 496—

505, Cairo, Egypt, 2000.

[BPT97] Elena Baralis, Stefano Paraboschi, and
Ernest Teniente. Materialized views selection
in a multidimensional database. In Proc. of

VLDB, pages 156-165, 1997.

Rada Chirkova and Michael Genesereth. Lin-
early bounded reformulations of conjunctive
databases. In Proc. of DOOD, pages 987—
1001, 2000.

[CGOO]

[GHI*01] Steven Gribble, Alon Halevy, Zachary Ives,
Maya Rodrig, and Dan Suiu. What can
databases do for peer-to-peer? In ACM SIG-

MOD WebDB Workshop 2001, 2001.

[GHRU97] H. Gupta, V. Harinarayan, A. Rajaraman,
and J. D. Ullman. Index selection for OLAP.
In Proc. of ICDE, pages 208-219, 1997.

[GM99] H. Gupta and I. S. Mumick. Selection of
views to materialize under a maintenance
cost constraint. In Proc. of ICDT, pages 453—

470, 1999.

[Gup97] H. Gupta. Selection of views to materialize
in a data warehouse. In Proc. of ICDT, pages

98112, 1997.

[Hal01] Alon Y. Halevy. Answering queries using
views: A survey. To appear in the VLDB

Journal, 2001.

[HRU96] V. Harinarayan, A. Rajaraman, and J. D.
Ullman. Implementing data cubes efficiently.

In Proc. of SIGMOD, pages 205-216, 1996.

[ILM*00] Z. Ives, A. Levy, J. Madhavan, R. Pottinger,
S. Saroiu, I. Tatarinov, E. Jaslikowska, and
T. Yeung. Self-organizing data sharing com-
munities with SAGRES: System demonstra-

tion. In Proc. of SIGMOD, page 582, 2000.

[KM99] Howard J. Karloff and Milena Mihail. On the
complexity of the view-selection problem. In
Proc. of PODS, pages 167-173, Philadelphia,

Pennsylvania, 1999.

Donald Kossmann. The state of the art in
distributed query processing, 2000. Submit-
ted for publication.

[Kos00]

[LH99] Minsoo Lee and Joachim Hammer. Speeding
up warehouse physical design using a ran-
domized algorithm. In Proc. Int’l Workshop
on Design and Management of Data Ware-

houses (DMDW-99), 1999.

[RSS96] K.A. Ross, D. Srivastava, and S. Sudarshan.
Materialized view maintenance and integrity
constraint checking: trading space for time.

In Proc. of SIGMOD, pages 447-458, 1996.

[TS97] Dimitri Theodoratos and Timos Sellis. Data
warehouse configuration. In Proc. of VLDB,

pages 126-135, Athens, Greece, 1997.

[YKL97] J. Yang, K. Karlapalem, and Q. Li. Al
gorithms for materialized view design in
data warehousing environment. In Proc. of

VLDB, pages 136—145, Athens, Greece, 1997.

[Z2Y99] Chuan Zhang and Jian Yang. Genetic algo-
rithm for materialized view selection in data
warehouse environments. In Proc. Int’l Conf.
on Data Warehousing and Knowledge Dis-

covery (DaWak-99), 1999.

