Oblivious Bounds on the Probability of Boolean Functions

WOLFGANG GATTERBAUER, Carnegie Mellon University
DAN SUCIU, University of Washington

This paper develops upper and lower bounds for the probability of Boolean functions by treating multiple
occurrences of variables as independent and assigning them new individual probabilities. We call this ap-
proach dissociation and give an exact characterization of optimal oblivious bounds, i.e. when the new prob-
abilities are chosen independent of the probabilities of all other variables. Our motivation comes from the
weighted model counting problem (or, equivalently, the problem of computing the probability of a Boolean
function), which is #P-hard in general. By performing several dissociations, one can transform a Boolean
formula whose probability is difficult to compute, into one whose probability is easy to compute, and which
is guaranteed to provide an upper or lower bound, respectively, on the probability of the original formula.
Our new bounds shed light on the connection between previous relaxation-based and model-based approxi-
mations in the literature and unify them as concrete choices in a larger design space. We also show how our
theory allows a standard relational database management systems (DBMS) to both upper and lower bound
hard probabilistic queries.

Categories and Subject Descriptors: G.3 [Probability and Statistics]; H.2.m [Database Management]:
Miscellaneous; I.1.1 [Symbolic and algebraic manipulation]: Expressions and Their Representation

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Probabilistic databases, Weighted model counting, Boolean expressions,
Oblivious approximations, Relaxation

1. INTRODUCTION

Query evaluation on probabilistic databases is based on weighted model counting
for positive Boolean expressions. Since model counting is #P-hard in general, today’s
probabilistic database systems evaluate queries using one of the following three ap-
proaches: (1) incomplete approaches identify tractable cases (e.g., read-once formu-
las) either at the query-level [Dalvi and Suciu 2007; Dalvi et al. 2010]] or the data-
level [Olteanu and Huang 2008; [Sen et al. 2010[; (2) exact approaches apply exact
probabilistic inference, such as repeated application of Shannon expansion [[Olteanul
et al. 2009] or tree-width based decompositions [Jha et al. 2010]; and (3) approxi-
mate approaches either apply general purpose sampling methods [Jampani et al. 2008;
Kennedy and Koch 2010; Re et al. 2007]] or approximate the number of models of the
Boolean lineage expression [[Olteanu et al. 2010; [Fink and Olteanu 2011]].

This paper provides a new algebraic framework for approximating the probability
of positive Boolean expressions. While our method was motivated by query evaluation
on probabilistic databases, it is more general and applies to all problems that rely
on weighted model counting, e.g., general probabilistic inference in graphical mod-

Authors’ addresses: W. Gatterbauer (corresponding author), Tepper School of Business, Carnegie Mellon
University; email: gatt@cmu.edu; D. Suciu, Computer Science and Engineering Department, University of
Washington, Seattle.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© YYYY ACM 0362-5915/YYYY/01-ART1 $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

1:2

Conjunctive dissociation

W. Gatterbauer and D. Suciu

Disjunctive dissociation

AT
¢ =pilat x| Apawy /]

oblivious

upper
bounds

oblivious
lower
bounds

Assignment for p)
S

o

O
P

p=p1Vp2
/! __ !/ !/

@' =[xy [x]Vipa[as /x]

1 o
<~
S oblivious
o upper
s bounds
-
=}
[}
g
&
“ obliviou
< lower

bounds

0 1 0 P 1
Assignment for p) Assignment for pj
m Optimal obli- | Upper| p| -p,=p pl=p ph=p
vious bounds [Lower | p,=p p,=p A—p)-T—py)=1—p
© Model-based |Upper| p/=p p,=1 (optimal) pi=p p4=1 (non-optimal)
bounds Lower| p/=p p,=0 (non-optimal) | p/=p p,=0 (optimal)
X Relaxation & Comp.| pi=p p)=P[z[p|] Py =p py=Plz|~p1]

Fig. 1. Dissociation as framework that allows to determine optimal oblivious upper and lower bounds for
the probabilities p’ = (p/,p)) of dissociated variables. Oblivious here means that we assign new values
after looking at only a limited scope of the expression. Model-based upper conjunctive and lower disjunctive
bounds are obliviously optimal (they fall on the red line of optimal assignments), whereas lower conjunctive
and upper disjunctive are not. Relaxation & Compensation is a form of dissociation which is not oblivious
(p2 is calculated with knowledge of 1) and does not, in general, guarantee to give an upper or lower bound.

els [[Chavira and Darwiche 2008]E|An important aspect of our method is that it is not
model-based in the traditional sense. Instead, it enlarges the original variable space
by treating multiple occurrences of variables as independent and assigning them new
individual probabilities. We call this approach dissociation”| and explain where exist-
ing relaxation-based and model-based approximations fit into this larger space of ap-
proximations. We characterize probability assignments that lead to guaranteed upper
or lower bounds on the original expression and identify the best possible oblivious
bounds, i.e. after looking at only a limited scope of the expression. We prove that for
every model-based bound there is always a dissociation-based bound that is as good or
better. And we illustrate how a standard relational DBMS can both upper and lower
bound hard probabilistic conjunctive queries without self-joins with appropriate SQL
queries that use dissociation in a query-centric way.

We briefly discuss our results: We want to compute the probability P[p] of a Boolean
expression ¢ when each of its Boolean variables x; is set independently to true with
some given probability p; = P[z;]. Computing P[¢] is known to be #P-hard in gen-
eral [Valiant 1979 and remains hard to even approximate [[Roth 1996|. Our approach
is to approximate P[] with P[¢'] that is easier to compute. The new formula ¢’ is
derived from ¢ through a sequence of dissociation steps, where each step replaces d
distinct occurrences of some variable = in ¢ with d fresh variables =/, 5, ... 2),. Thus,

1 Note that weighted model counting is essentially the same problem as computing the probability P[¢] of
a Boolean expression . Each truth assignment of the Boolean variables corresponds to one model whose
weight is the probability of this truth assignment. Weighted model counting then asks for the sum of the
weights of all satisfying assignments.

2Dissociation is the breaking of an existing association between related, but not necessarily identical items.

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

Oblivious Bounds on the Probability of Boolean Functions 1:3

after applying dissociation repeatedly, we transform ¢ into another expression ¢’ and
approximate P[] with P[¢’]. The question that we address in this paper is: how should
we set the probabilities of the dissociated variables z/ in order to ensure that P[]
is a good approximation of P[¢]? In particular, we seek conditions under which ¢’ is
guaranteed to be either an upper bound P[¢'] > P[¢] or a lower bound P[¢’] < P[y].

Our main result can be summarized as follows: Suppose that z occurs positively
in . Dissociate it into two variables x| and z), such that the dissociated formula is
¢ =) A ¢, and z} occurs only in ¢}, while a}, occurs only in ¢}; in other words,
© = oz /x] A phlah /x]. Let p = P[], p} = P[], p) = P[x}] be their probabilities. Then
(1) Pl¢'] > Plg] iff p} - ph > p, and (2) P[¢’] < P[] iff p} < p and p}, < p. In particular,
the best upper bounds are obtained by choosing any p}, p, that satisfy p} - p}, = p, and
the best lower bound is obtained by setting p}; = p, = p. The “only if” direction holds
assuming ¢’ satisfies certain mild conditions (e.g., it should not be redundant), and
under the assumption that p, p} are chosen obliviously, i.e. they are functions only of
p = P[z] and independent of the probabilities of all other variables. This restriction to
oblivious probabilities guarantees the computation of the probabilities p!, p/, to be very
simpleEl Our result extends immediately to the case when the variable x is dissociated
into several variables z),z5,..., 2}, and also extends (with appropriate changes) to
the case when the expressions containing the dissociated variables are separated by Vv
rather than A (see[F1g. 1)).

Example 1.1 (2CNF Dissociation). For a simple illustration of our main result, con-
sider a Positive-Partite-2CNF expression with |E| clauses

o= N @vy) (1)
(i,5)€E
for which calculating its probability is already #P-hard [Provan and Ball 1983|. If we
dissociate all occurrences of all m variables xz;, then the expression becomes:

o= N\ @;Vvy) 2)

(i,7)€EE

which is equivalent to /\; (y; v Ni; x;]) This is a read-once expression whose prob-
ability can always be computed in PTIME [Gurvich 1977]. Our main result im-
plies the following: Let p, = P[z;], ¢ € [m] be the probabilities of the original vari-
ables and denote p; ; = P[z],] the probabilities of the fresh variables. Then (1) if
Vi € [m] : pij, pig, P, = Pio then ¢ is an upper bound (P[¢'] > Ply)); (2) if
Vi€ m]:p;;, =0, =...=0;;, = Dpithen ¢ isalower bound (P[¢’] < Plp]). Fur-
thermore, these are the best possible oblivious bounds, i.e. where p; ; depends only on
p; = P[x;] and is chosen independently of other variables in ¢. |

We now explain how dissociation generalizes two other approximation methods in
the literature gives a high-level summary and the formal details).

Relaxation & Compensation. This is a framework by |Choi and Darwiche| [2009;
2010]] for approximate probabilistic inference in graphical models. The approach per-
forms exact inference in an approximate model that is obtained by relaxing equiv-

3 Our usage of the term oblivious is inspired by the notion of oblivious routing algorithms [[Valiant 1982]
which use only local information and which can therefore be implemented very efficiently. Similarly, our
oblivious framework forces p/ , p/, to be computed only as a function of p, without access to the rest of ¢. One
can always find values p/, p}, for which P[] = P[¢’]. However, to find those value in general, one has to first
compute ¢ = P[g], then find appropriate values p/, p, for which the equality P[¢’] = ¢ holds. This is not
practical, since our goal is to compute g in the first place.

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

1:4 W. Gatterbauer and D. Suciu

alence constraints in the original model, i.e. by removing edges. The framework al-
lows one to improve the resulting approximations by compensating for the relaxed
constraints. In the particular case of a conjunctive Boolean formula ¢ = 1 A @3, re-
laxation refers to substituting any variable = that occurs in both ¢; and ¢, with two
fresh variables =} in ¢; and 2}, in . Compensation refers to then setting their prob-
abilities p} = P[z}] and p, = P[z}] to p) = p and p, = P[z|p;]. This new probability
assignment is justified by the fact that, if = is the only variable shared by ; and ¢,
then compensation ensures that P[¢’] = P[y] (we will show this claim in [Prop. 5.1). In
general, however, ¢1, ¢2 have more than one variable in common, and in this case we
have P[¢'] # P[¢] for the same compensation. Thus in general, compensation is applied
as a heuristics. Furthermore, it is then not known whether compensation provides an
upper or lower bound.

Indeed, let p} = p, p5 = P[x|¢p1] be the probabilities set by the compensation method.
Recall that our condition for P[¢’] to be an upper bound is p] - p§ > p, but we have
Py - ph = p-Plz|p1] < p. Thus, the compensation method does not satisfy our oblivious
upper bound condition. Similarly, because of pj = p and p, > p, these values fail to
satisfy our oblivious lower bound condition. Thus, relaxation is neither a guaranteed
upper bound, nor a guaranteed lower bound. In fact, relaxation is not oblivious at all
(since p), is computed from the probabilities of all variables, not just P[z]). This enables
it to be an exact approximation in the special case of a single shared variable, but fails
to guarantee any bounds in general.

Model-based approximations. Another technique for approximation described
by [Fink and Olteanu [2011]] is to replace ¢ with another expression whose set of mod-
els is either a subset or superset of those of p. Equivalently, the upper bound is a
formula ¢y such that ¢ = ¢y, and the lower bound is ¢, such that ¢, = ¢. We show
in this paper, that if ¢ is a positive Boolean formula, then all upper and lower model-
based bounds can be obtained by repeated dissociation: the model-based upper bound
is obtained by repeatedly setting probabilities of dissociated variables to 1, and the
model-based lower bound by setting the probabilities to 0. While the thus generated
model-based upper bounds for conjunctive expressions correspond to optimal oblivious
dissociation bounds, the model-based lower bounds for conjunctive expressions are not
optimal and can always be improved by dissociation.

Indeed, consider first the upper bound for conjunctions: the implication ¢ = ¢y
holds iff there exists a formula ¢; such that o = 1 A @UElPick a variable z, denote p =
P[z] its probability, dissociate it into =} in ¢; and), in @y, and set their probabilities
as pj = 1 and p), = p. Thus, py remains unchanged (except for the renaming of z to
x4), while in ¢; we have set 21 = 1. By repeating this process, we eventually transform
1 into true (Recall that our formula is monotone). Thus, model-based upper bounds
are obtained by repeated dissociation and setting p} = 1 and p}, = p at each step. Our
results show that this is only one of many oblivious upper bounds as any choices with
P ph > plead to an oblivious upper bound for conjunctive dissociations.

Consider now the lower bound: the implication ¢; = ¢ is equivalent to o, = p A
2. Then there is a sequence of finitely many conjunctive dissociation steps, which
transforms ¢ into ¢ A w2 and thus into . At each step, a variable z is dissociated
into] and x5, and their probabilities are set to p{ = p and p, = 0, respectively.
According to our result, this choice is not optimal: instead one obtains a tighter boun
by also setting p, = p, which no longer corresponds to a model-based lower bound.

4Fink and Olteanu [2011]] describe their approach for approximating DNF expressions only. However, the
idea of model-based bounds applies equally well to arbitrary Boolean expressions, including those in CNF.
5The details here are more involved and are given in detail in

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

Oblivious Bounds on the Probability of Boolean Functions 1:5

Thus, model-based lower bounds for conjunctive expressions are not optimal and can
always be improved by using dissociation.

Our dual result states the following for the case when the two formulas are con-
nected with disjunction V instead of conjunction A: (1) the dissociation is an upper
bound iff p} > p and p}, > p, and (2) it is a lower bound iff (1 — p})(1 —p) > 1 — p. We
can see that model-based approximation gives an optimal lower bound for disjunctions,
because (1 —p})(1—ps) =1-(1 —p) =1—p, however non-optimal upper bounds.
illustrates this asymmetry and the possible improvement through dissociation
with a detailed simulation-based example.

Bounds for hard probabilistic queries. Query evaluation on probabilistic
databases reduces to the problem of computing the probability of its lineage expres-
sion which is a a monotone, k-partite Boolean DNF where £ is fixed by the number of
joins in the query. Computing the probability of the lineage is known to be #P-hard for
some queries [Dalvi and Suciu 2007], hence we are interested in approximating these
probabilities by computing dissociated Boolean expressions for the lineage. We have
previously shown in [[Gatterbauer et al. 2010]] that every query plan for a query corre-
sponds to one possible dissociation for its lineage expression. The results in this paper
show how to best set the probabilities for the dissociated expressions in order to obtain
both upper bounds and lower bounds. We further show that all the computation can be
pushed inside a standard relational database engine with the help of SQL queries that
use User-Defined-Aggregates and views that replace the probabilities of input tuples
with their optimal symmetric lower bound explained in [Sect. 4.4, We illustrate this
approach in [Sect. 6] and validate it on TPC/H data in [Sect.7.5

Main contributions. (1) We introduce an algebraic framework for approximating
the probability of Boolean functions by treating multiple occurrences of variables as
independent and assigning them new individual probabilities. We call this approach
dissociation; (2) we determine the optimal upper and lower bounds for conjunctive and
disjunctive dissociations under the assumption of oblivious value assignments; (3) we
show how existing relaxation-based and model-based approximations fit into the larger
design space of dissociations, and show that for every model-based bound there is at
least one dissociation-based bound which is as good or tighter; (4) we apply our general
framework to both upper and lower bound hard probabilistic self-join free conjunctive
queries in guaranteed PTIME by translating the query into a sequence of standard
SQL queries; and (5) we illustrate and evaluate with several detailed examples the
application of this technique. Note that this paper does not address the algorithmic
complexities in determining alternative dissociations, in general.

Outline. [Section 2] starts with some notational background, and [Sect. 3| formally
defines dissociation. [Section 4| contains our main results on optimal oblivious bounds.
[Section 5|formalizes the connection between relaxation, model-based bounds and disso-
ciation, and shows how both previous approaches can be unified under the framework
of dissociation. applies our framework to derive upper and lower bounds for
hard probabilistic queries with standard relational database management systems.
gives detailed illustrations on the application of dissociation and oblivious
bounds. Finally, relates to previous work before concludes.

2. GENERAL NOTATIONS AND CONVENTIONS

We use [m] as short notation for {1,...,m}, use the bar sign for the complement of an
event or probability (e.g., T = -z, and p = 1 — p), and use a bold notation for sets (e.g.,
s C [m]) or vectors (e.g., x = (z1,...,Z,)) alike. We assume a set x of independent

Boolean random variables, and assign to each variable z; a primitive event which is
true with probability p; = P[z;]. We do not formally distinguish between the variable
x; and the event x; that it is true. By default, all primitive events are assumed to be

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

16 W. Gatterbauer and D. Suciu

ki=2 95/1,1 Y1
1 T Y1 dy=2 I1{ ,
Y2 T12 Y2
ko=2 2 Y3 dy=1 332{ Ty Y3
(a f () f

Fig. 2. (a): Bipartite primal graph for CNF representing f. (b): A dissociation f’ where vari-
able x1 appearing k1 = 2 times in f is dissociated into (replaced by) di; = 2 fresh variables in f’.

independent (e.g., P[z; A x3] = p1ps). We are interested in bounding the probability
P[f] of a Boolean function f, i.e. the probability that the function is true if each of the
variables is independently true or false with given probabilities. When no confusion
arises, we blur the distinction between a Boolean expression ¢ and the Boolean func-
tion f, it represents (cf. [Crama and Hammer 2011, Sect. 1.2]) and write P[p] instead
of P[f,]. We also use the words formula and expression interchangeably. We write f(x)
to indicate that x is the set of primitive events appearing in the function f, and f[x; /x]
to indicate that x; is substituted for x in f. We often omit the operator A and denote
conjunction by mere juxtaposition instead.

3. DISSOCIATION OF BOOLEAN FUNCTIONS AND EXPRESSIONS

We define here dissociation formally. Let f(x,y) and f/(x’,y) be two Boolean functions,
where x, x’, y are three disjoint sets of variables. Denote |x| = m, |x'| = m/, and |y| = n.
We restrict f and f’ to be positive in x and x’, respectively [[Crama and Hammer 2011},
Def. 1.24].

Definition 3.1 (Dissociation). We call a function f’ a dissociation of f if there exists
a substitution 0 : x’ — x s.t. f'[0] = f.

Example 3.2 (CNF Dissociation). Consider two functions f and f’ given by CNF
expressions

f= (@1 Vy)(z1Vya)(z2 Vyr)(r2 Vys)
fr= (211 Vy) (@) o Vya)(ay V) (zy Vys)

Then [’ is a dissociation of f as f/[f/] = f for the substitution ¢ =
{(2) 1, 21), (2] 5, 1), (25, 22)}. shows the CNF expressions’ primal graphs []

In practice, to find a dissociation for a function f(x,y), one proceeds like this: Choose
any expression ¢(x,y) for f and thus f = f,. Replace the k; distinct occurrences of
variables z; in ¢ with d; fresh variables z} |, 2/ ,, ... 795:',@’ with d; < k;. The resulting
expression ¢’ represents a function f’ that is a dissociation of f. Notice that we may
obtain different dissociations by deciding for which occurrences of z; to use distinct
fresh variables, and for which occurrences to use the same variable. We may further
obtain more dissociations by starting with different, equivalent expressions ¢ for the
function f. In fact, we may construct infinitely many dissociations this way. We also
note that every dissociation of f can be obtained through the process outlined here.
Indeed, let f/(x’,y) be a dissociation of f(x,y) according to and let 0 be
the substitution for which f’[f] = f. Then, if ¢/ is any expression representing f’, the
expression ¢ = ¢’[f] represents f. We can thus apply the described dissociation process
to a certain expression ¢ and obtain f’.

6The primal graph of a CNF (DNF) has one node for each variable and one edge for each pair of variables
that co-occur in some clause (conjunct). This concept originates in constraint satisfaction and it is also
varyingly called co-occurrence graph or variable interaction graph [Crama and Hammer 2011]].

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

Oblivious Bounds on the Probability of Boolean Functions 1:7

Example 3.3 (Alternative Dissociations). Consider the two expressions:

o= (xVy)(@eVy)(xVys)(ysVys)
Y= xys V 2ys V Y1923y V Y1Y2Y3Y5

Both are equivalent (¢ = ¢) and thus represent the same Boolean function (f, = fy).
Yet each leads to a quite different dissociation in the variable z:

@ = () Vy) (@ Vy2) (25 V ys)(ya V ys)
V' = 2hya V 2hys V y1y2ysya V y19293Ys

Here, ¢’ and v’ represent different functions (f,» # f;/) and are both dissociations of
f for the substitutions 6; = {(x],z), (2},), (z5,2)} and 02 = {(z},z), (x4,)}, respec-
tively. |

Example 3.4 (More alternative Dissociations). Consider the AND-function
f(z,y) = zy. It can be represented by the expressions zzy, or zzzxy, etc., leading
to the dissociations z)z5y, or zjzhasy, etc. For even more dissociations, represent
f using the expression (z V x)y V zy, which can dissociate to (z}] V x})y V x4y, or
(2} v ah)y Vv 2]y, etc. Note that several occurrences of a variable can be replaced by the
same new variables in the dissociated expression. |

4. OBLIVIOUS BOUNDS FOR DISSOCIATED EVENT EXPRESSIONS

Throughout this section, we fix two Boolean functions f(x,y) and f’(x’,y) such that f’
is a dissociation of f. We are given the probabilities p = P[x] and q = P[y]. Our goal
is to find probabilities p’ = P[x’] of the dissociated variables so that P[f’] is an upper
or lower bound for P[f]. We first define oblivious bounds (Sect.4.1), then characterize
them, in general, through valuations (Sect.4.2) and, in particular, for conjunctive and
disjunctive dissociations (Sect. 4.3), then derive optimal bounds (Sect. 4.4), and end
with illustrated examples for CNF and DNF dissociations (Sect. 4.5).

4.1. Definition of Oblivious Bounds

We use the subscript notation P [f] and Py 4[f'] to emphasize that the proba-
bility space is defined by the probabilities p = (p1,p2,...), @ = {(q1,¢2,...), and
p’ = (p},ph,...), respectively. Given p and q, our goal is thus to find p’ such that
Py qlf'] 2 Ppglf] or Py g[f'] < Pp g[f].

Definition 4.1 (Oblivious Bounds). Let f’ be a dissociation of f and =]P[x]
call p’ an oblivious upper bound for p and dissociation f’ of f iff Vq : Py [1> Ppqlf]
Similarly, p’ is an oblivious lower bound iff Vq : Py o[f'] < Pp qlf]-

In other words, p’ is an oblivious upper bound if the probability of the dissociated
function f’ is bigger than that of f for every choice of q. Put differently, the probabilities
of x’ depend only on the probabilities of x and not on those of y.

An immediate upper bound is given by p’ = 1, since f is monotone and f'[1/x'] =
f]1/x]. Similarly, p = 0 is a naive lower bound. This proves that the set of upper and
lower bounds is never empty. Our goal is to characterize all oblivious bounds and to
then find optimal ones.

4.2. Characterization of Oblivious Bounds through Valuations

We will give a necessary and sufficient characterization of oblivious bounds, but first
we need to introduce some notations. If f(x,y) is a Boolean function, let v : y — {0,1}
be a truth assignment or valuation for y. We use v for the vector (v(y1),...,v(yn)),
and denote with f[v] the Boolean function obtained after applying the substitution v.
Note that f[v] depends on variables x only. Furthermore, let g be n Boolean functions,

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

1:8 W. Gatterbauer and D. Suciu

v={(1,0) 22\/:(1, 1)

v=(0,1)

21

-v={0,0)

z3

(@) g = (g1, 92) (b) g” for different valuations v

Fig. 3. Illustration of the valuation notation with Karnaugh maps. (a): Boolean functions
g1 = 2122 and g2 = z123. (b): Boolean functions g” for all 4 possible valuations v. For example, g¥ = 212223
for v=(0,1).

over variables z. We denote with g” the Boolean function g” = /\; g7, where g; = g; if
v(y;) =0 and 97 = 9j if v(y;) =1.

Example 4.2 (Valuation Notation). Assume g = (g1, g2) with g1 = 2125 and g =
z123,and v = (0, 1). Then g¥ = —(2122) A 2123 = 212223. illustrates our notation
for this simple example with the help of Karnaugh maps. We encourage the reader to
take a moment and study carefully the correspondences between g, v/, and g”. |

Then, any function f(x,y) admits the following expansion by the y-variables:

1) =\ (1 ay”) 3)
Note that any two expressions in the expansion above are logically contradictory, a
property called determinism by [Darwiche and Marquis [2002], and that it can be seen
as the result of applying Shannon’s expansion to all variables of y.

Example 4.3 (Valuation Notation continued). Consider the function f = (zVy;)(zV
2). For the example valuation v = (0, 1), we have f[v] = (zV0)(zV1) = z and y” = §1y2.
gives us an alternative way to write f as disjunction over all 22 valuations
ofy as f = z(4192) V z(y152) V 2(§1y2) V y192. u
The following proposition is a necessary and sufficient condition for oblivious upper
and lower bounds, based on valuations.

PROPOSITION 4.4 (OBLIVIOUS BOUNDS AND VALUATIONS). Fix two Boolean
functions f(x,y), f'(x',y) s.t. f’' is a dissociation of f, and let p and p’ denote the
probabilities of the variables x and x/, respectively. Then p’ is an oblivious upper bound
iff P/ [f'[V]] > Pplf[v]] for every valuation v for y. The proposition holds similarly for
oblivious lower bounds.

PROOF. Remember that any two events in are disjoint. The total probability
theorem thus allows us to sum over the probabilities of all conjuncts:

Ppal/(x,¥)] =Y (Bolf V)] Paly"])
Poralf/ (<, ¥)] =3 (P [f' V] - Paly”])

The “if” direction follows immediately. For the “only if” direction, assume that p’ is an
oblivious upper bound. By definition, Py 4[f'] > Pp q[f] for every q. Fix any valuation
v :y — {0,1}, and define the following probabilities q: ¢; = 0 when v(y;) = 0, and
¢; = 1 when v(y;) = 1. It is easy to see that Py, o[f] = Pp[f[V]], and similarly, Py o[f'] =
Py [f'[v]], which proves Py [f'[v]] = Pp[f[v]]. O

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

Oblivious Bounds on the Probability of Boolean Functions 1:9

A consequence of choosing p’ obliviously is that it remains a bound even if we allow
the variables y to be arbitrarily correlated. More precisely:

COROLLARY 4.5 (OBLIVIOUS BOUNDS AND CORRELATIONS). Let f'(x',y) be a
dissociation of f(x,y), let p’ be an oblivious upper bound for p, and let g =
(g1, ---,9)y|) be Boolean functions in some variables z with probabilities r = P|z]. Then:

Po o[/ (x',8(2))] > Ppr[f (x.&(2))]. The result for oblivious lower bounds is similar.

The intuition is that, by substituting the variables y with functions g in f(x,y), we
make y correlated. The corollary thus says that an oblivious upper bound remains an
upper bound even if the variables y are correlated. This follows from folklore that any
correlation between the variables y can be captured by general Boolean functions g.
For completeness, we include the proof in[Appendix B|

PROOF OF [COROLLARY 4.5l We derive the probabilities of f and f’ from[Eq.3}
Pp.lf(x8)] =3 (Bol/[V]) - Brlg"))

v

Por.elf'(x,8)] = Y (Por[f/[V]] - Prlg”])

The proof follows now immediately from [Prop. 4.4 O

4.3. Oblivious Bounds for Unary Conjunctive and Disjunctive Dissociations

A dissociation f'(x',y) of f(x,y) is called unary if |x| = 1, in which case we write the
function as f(x,y). We next focus on unary dissociations, and establish a necessary
and sufficient condition for probabilities to be oblivious upper or lower bounds for the
important classes of conjunctive and disjunctive dissociations. The criterion also ex-
tends as a sufficient condition to non-unary dissociations, since these can be obtained
as a sequence of unary dissociationsﬂ

Definition 4.6 (Conjunctive and Disjunctive Dissociation). Let f/(x',y) be a
Boolean function in variables x’,y. We say that the variables x’ are conjunctive in f’
if f'(x',y) = /\je[d] fi(@%,y), d = |x'|. We say that a dissociation f'(x’,y) of f(z,y) is
conjunctive if x’ are conjunctive in f’. Similarly, we say that x’ are disjunctive in f’ if
&, y)=V jeld) fi(#};,y), and a dissociation is disjunctive if x’ is disjunctive in f’.

Thus in a conjunctive dissociation, each dissociated variable z; occurs in exactly one
Boolean function f; and these functions are combined by A to obtain f’. In practice,
we start with f written as a conjunction, then replace x with a fresh variable in each
conjunct:

f(fE,}’) :/\fj(x,}’)
P& y) =N\ fi)y)

Disjunctive dissociations are similar.

Note that if x" is conjunctive in f'(x’,y), then for any substitution v : y — {0, 1}, f'[v]
is either 0, 1, or a conjunction of variables in x': f'[v] = A\, 2/, for some set s C [d],
where d = [x'[. Similarly, if x’ is disjunctive, then f'[v]is 0, 1, or \/,, xiﬁ

"Necessity does not always extend to non-unary dissociations. The reason is that an oblivious dissociation
for x may set the probability of a fresh variable by examining all variables x, while a in sequence of oblivious
dissociations each new probability P[ac;’ ﬂ may depend only on the variable z; currently being dissociated.

® Note that for s = 0: f'[v] = ;e 2 = 1and f'[v] = Ve 2 = 0.

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

1:10 W. Gatterbauer and D. Suciu

We need one more definition before we state the main result in our paper.

Definition 4.7 (Cover). Let x’ be conjunctive in f'(x’,y). We say that [’ covers the

set s C [d] if there exists a substitution v s.t. f'[v] = A,z Similarly, if x’ is disjunc-
X

tive, then we say that f’ covers s if there exists v s.t. f'[v] =\, 7}.

THEOREM 4.8 (OBLIVIOUS BOUNDS). Let f/(x',y) be a conjunctive dissociation of
f(z,y), and let p = Plz], p’ = P[X'] be probabilities of x and x', respectively. Then:

(1) If p}; < pforall j, then p' is an oblivious lower bound for p, i.e. Vq : Py o[f'] < P, 4[f]-
Conversely, if p’ is an oblivious lower bound for p and f’ covers all singleton sets {j}
with j € [d], then p; < p for all j.

@) If [1,p; = p, then p' is an oblivious upper bound for p, i.e. Vq : Py g[f'] > Ppq[f]-
Conversely, if p’ is an oblivious upper bound for p and f' covers the set [d], then
I, »; > p.

Similarly, the dual result holds for disjunctive dissociations f'(x',y) of f(z,y):

(1) If p; > p for all j, then p’ is an oblivious upper bound for p. Conversely, if p' is an
oblivious upper bound for p and f' covers all singleton sets {j}, j € [d], then p}; > p.

@) IfI1;(1 —pj) < 1—p, then p' is an oblivious lower bound for p. Conversely, if p' is an
oblivious lower bound for p and f' covers the set [d], then [[;(1 —p;) <1 —p.

PROOF. We make repeated use of We give here the proof for conjunctive
dissociations only; the proof for disjunctive dissociations is dual and similar.

(1) We need to check P/ [f'[v]] < P,[f[v]] for every v. Since the dissociation is unary,
flv] can be only 0, 1, or z, while f'[v]is 0, 1, or A, 2/ for some set s C [d].

Case 1: f[v] = 0. We will show that f'[v] = 0, which implies P/ [f'[v]] = P,[f[v]] = 0.
Recall that, by definition, f'(x’,y) becomes f(z,y) if we substitute x for all
variables z. Therefore, f'[v][z/x},...,x/z,] = 0, which implies f'[v] = 0
because f’ is monotone in the variables x’.

Case 2: f[v] = 1. Then Py [f'[v]] < P,[f[v]] holds trivially.

Case 3: f[v] = x. Then P)[f[v]] = p, while Py [f'[v]] = [],c, P} We prove that s # (:
this implies our claim, because [, p; < pj < p, for any choice of j € s.
Suppose otherwise, that s = (), hence f’[v] = 1. Substituting all variables x’
with z transforms f’ to f, which implies f[v] = 1, contradiction.

For the converse, assume that p’ is an oblivious lower bound. Since f’ covers {j},

there exists a substitution v s.t. f'[v] = 2, and therefore f[v] = z. By we
have p); = Pp/[f'[v]] < Py[f[v]] = p, proving the claim.
(2) Here we need to check P/ [f'[v]] > P,[f[v]] for every v. The cases when f[v] is

either O or 1 are similar to the cases above, so we only consider the case when f[v] = z.
Then f'[v] = /\jes 37; and Py [f'[v]] = Hjesp;‘ > Hj pj = p=Pp[f[V]].

For the converse, assume p’ is an oblivious upper bound, and let v be the substitution
for which f'[v] = A, (which exists since f’ is covers [d]). Then Py [f'[V]] > Pp[f[V]]

implies p < [[,p;. O

4.4. Optimal Oblivious Bounds for Unary Conjunctive and Disjunctive Dissociations

We are naturally interested in the “best possible” oblivious bounds. Call a dissociation
I’ non-degenerate if it covers all singleton sets {j}, j € [d] and the complete set [d].

then implies:

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

Oblivious Bounds on the Probability of Boolean Functions 1:11

COROLLARY 4.9 (OPTIMAL OBLIVIOUS BOUNDS). If f’ is a conjunctive dissocia-
tion of f and f' is non-degenerate, then the optimal oblivious lower bound is p| = p) =
... = p, while the optimal oblivious upper bounds are obtained whenever p\pl--- = p.
Similarly, if f' is a disjunctive dissociation of f and f’ is non-degenerate, then the op-
timal oblivious upper bound is p| = p, = ... = p, while the optimal oblivious lower
bounds are obtained whenever (1 —p)- (1 —p5)---=1—p.

Notice that while optimal lower bounds for conjunctive dissociations and optimal
upper bounds for disjunctive dissociations are uniquely defined with p’; = p, there are
infinitely many optimal bounds for the other directions (see [Fig. I). Let us call bounds
symmetric if all dissociated variable have the same probability. Then optimal symmet-
ric upper bounds for conjunctive dissociations are p; = {/p, and optimal symmetric
lower bounds for disjunctive dissociations p; =1 — /T —p.

We give two examples of degenerate dissociations. First, the dissociation f/ =
(ziy1 V ys) A (zhya V y3) does not cover either {1} nor {2}: no matter how we substi-
tute y1, y2, y3, we can never transform f’ to x}. For example, f'[1/y1,0/y2,0/ys3] = 0 and
f'11/y1,0/y2,1/ys] = 1. But f’ does cover the set {1,2} because f'[1/y1,1/y2,0/ys] =
x19. Second, the dissociation [/ = (z] y1 Vy2) A (2 y2 Vy1) covers both {1} and {2}, but
does not cover the entire set {1, 2}. In these cases the oblivious upper or lower bounds

in [Theorem 4.8 still hold, but are not necessarily optimal.
However, most cases of practical interest result in dissociations that are non-
degenerate, in which case the bounds in are tight. We explain this here.

Consider the original function, pre-dissociation, written in a conjunctive form:

fle,y)=gon N\ @Vg)=gon N\ £ 4)

J€ld] Jj€ld]

where each g, is a Boolean function in the variables y, and where we denoted f; = zVg;.
For example, if f is a CNF expression, then each f; is a clause containing z, and gy is
the conjunction of all clauses that do not contain z. Alternatively, we may start with a
CNF expression, and group the clauses containing z in equivalence classes, such that
each f; represents one equivalence class. For example, starting with four clauses, we
group into two functions f = [(zVy1)(xVy2)| A [(2Vys)(@Vys)] = (@Vyr1y2) Az Vysys) =
f1 A f2. Our only assumption about & is that it is non-redundant, meaning that none
of the expressions gy or f; may be dropped. Then we prove:

PROPOSITION 4.10 (NON-DEGENERATE DISSOCIATION). Suppose the function f
in is non-redundant. Define f' = go A \;(2; V g;). Then f' covers every single-
ton set {j}. Moreover, if the implication go = \/ ;95 does not hold, then ' also covers the

set [d]. Hence f' is non-degenerate. A similar result holds for disjunctive dissociations
if the dual implication gy < N\ ;9 does not hold.

PRrROOF. We give here the proof for conjunctive dissociations only; the proof for dis-
junctive dissociations follows from duality. We first prove that f’ covers any singleton
set {j}, for j € [d]. We claim that the following logical implication does not hold:

go A /\ 9i = 9j (5)

i#]
Indeed, suppose the implication holds for some j. Then the following implication also
holds: go A A\, ;(z V gi) = (z V g;), since for z = 0 it is the implication above, while
for x = 1 it is a tautology. Therefore, the function f; is redundant in [Eq. 4] which
contradicts our assumption. Hence, the implication m does not hold. Let v be any

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

1:12 W. Gatterbauer and D. Suciu

Valuation CNF dissociation DNF dissociation
v felvl [PV Z PV falv] falv]|PLfalv]] = Plfalv]]
1.{0,0,0,0) 0 0] 0 = 0 0 0] 0 > 0
2. (1,0,0,0) 0 0 0o > 0 @} x Py > »p
3. (0,1,0,0) 0 0 0o > 0 xh T py > p
4. (0,0,1,0 0 0 o > 0 ! no>
0000 siaheh o | patet = U U
5. (0,0,0,1)|| zjzhzy = |piphps > p >
6. (1,1,0,0) 0 0 0o > 0 yva x| pph > D
7. (1,0,1,0) 0 0 0o > 0 pvah ﬁ’lpg > P
8. (0,1,1,0) 0 0 0o > 0 xhvVay x| phph > P
9. (1,0,0,1)| xhazh = | phph > p 1 1 1 > 1
10.(0,1,0,1)| zfzh = p'lp’3 > p 1 1 1 > 1
11.(0,0,1,1)|| zizh = | piph > p 1 1 1 > 1
12.(1,1,1,0) 0 0 0o > 0 yvahvalh x | piphps > D
13.(1,1,0,1)|| % x Py > p 1 1 1 > 1
14.(1,0,1,1) xh x phy = p 1 1 1 > 1
15.(0,1,1,1)|| 2} x Py > p 1 1 1 > 1
16.(1,1,1,1| 1 1 1 > 1 1 1 1 > 1

(a) Comparing 2% valuations for determining oblivious bounds.

Upper bounds rhrhah
xhxh xhah THTh AT A AV A VR A
Lower bounds i VahVah
(b) Non—tr1v1a1 valuatlons 1l [z] (¢) Non-trivial valuations f[x]

Fig. 4. (CNF f.) and[Example 4.12(DNF f,). (a): Determining oblivious bounds by ensuring
that bounds hold for all valuatlons (b) (c): Partial order of implication (=) for the non-trivial valuations
fe[v) and f4[v)’, e.g.: from z) af, = 2 it follows that p) p}, > p = p| > p. Note that f. # fq4.

assignment that causes [Eq. 5| to fail: thus, for all j € {0,...,d}, j # i, g;[v] = 1 and
g;[v] = 0. Therefore f'[v] = z;, proving that it covers {;}.

Next, assume that gy = \/ ;95 does not hold. We prove that f’ covers [d]. Let v be any
substitution that causes the implication to fail: go[v] = 1 and g;[v] = 0 for j € [d]. Then

fvl=Njeg o O

4.5. lllustrated Examples for Optimal Oblivious Bounds

We next give two examples that illustrate optimal oblivious bounds for conjunctive and
disjunctive dissociations in some detail.

Example 4.11 (CNF Dissociation). Consider the function f. given by an CNF ex-
pression and its dissociation f!:

fe=(@xVy)(@Vy2)(TVys)ya
fo= (@ V) (@ Vy2)(es Vys)ys

There are 2* = 16 valuations for y = (1,92, 93, y4). Probabilities p’ = (p},ph,p}) are
thus an oblivious upper bound exactly if they satisfy the 16 inequalities given under
“CNF dissociation” in For valuations with v, = 0 (and thus f.[v] = 0) or all

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

Oblivious Bounds on the Probability of Boolean Functions 1:13

v; = 1 (and thus f.[v] = 1) the inequalities trivially hold. For the remaining 7 non-
trivial inequalities, p)psp5 > p implies all others. shows the partial order
between the non-trivial valuations, with «{z,2} implying all others. Since f. and f/
are positive in x and x’, respectively, it follows that optimal oblivious upper bounds
are given by p\p5p5 = p, e.g., by setting p; = {/p for symmetric bounds.

Oblivious lower bounds are given by the 16 inequalities after inverting the inequality
sign. Here we see that the three inequalities p/; < p together imply the others. Hence,

oblivious lower bounds are those that satisfy all three inequalities. The only optimal
oblivious upper bounds are then given by p’; = p.

Example 4.12 (DNF Dissociation). Consider the function f; given by an DNF ex-
pression and its dissociation f:

fa=zy1 Vayas Voys Vys
fo =211V ahye V ahys Vs

An oblivious upper bound p’ = (p}, ph, p;) must thus satisfy the 16 inequalitie{l given
under “DNF dissociation” in For valuations with v, = 1 (and thus f}[v] =
1) or v; = 0 (and thus fs[v] = 0) the inequalities trivially hold. For the remaining
inequalities we see that the elements of set {«/, x}, 25} together imply all others, and
that «} V x4 Vv 2% is implied by all others shows the partial order between the
non-trivial valuations). Thus, an oblivious upper bound must satisfy p; > p, and the
optimal one is given by p; = p. Analogously, an oblivious lower bound must satisfy

p1P5p5 < p. Optimal ones are given for p psps = p, e.g., by setting p; =1 — J/p. |

5. RELAXATION AND MODEL-BASED BOUNDS AS DISSOCIATION

This section formalizes the connection between relaxation, model-based bounds and
dissociation that was outlined in the introduction. In other words, we show how both
previous approaches can be unified under the framework of dissociation.

5.1. Relaxation & Compensation

The following proposition shows relaxation & compensation as conjunctive dissociation
and was brought to our attention by |Choi and Darwiche [2011]].

PROPOSITION 5.1 (COMPENSATION AND CONJUNCTIVE DISSOCIATION). Let fy,
f2 be two monotone Boolean functions which share only one single variable x. Let f
be their conjunction, and [’ be the dissociation of f on z, i.e.

F=hNF
f''=flai/z] A folrs/x]
Then P[f] = P[f'] for Pl}] = Pla] and Pz} = Plz|f1].
PrOOF OF PROP. 5.1l First, note that P[f] = P[f,]P[fz|f1]. On the other hand,

P[f'] = P[f{|P[f5] as f; and f} are independent after dissociating on the only shared
variable x. We also have P[f,] = P[f{] since P[z] = P[z}]. It remains to be shown that

9Remember that the probability of a disjunction of two independent events is Pz} Va}] = 1 — p)ph.

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

1:14 W. Gatterbauer and D. Suciu

]P)[fQ/] =]P)[f2|f1]. Indeed:

which proves the claim. O

Note that compensation is not oblivious, since the probability p, depends on the other
variables occurring in ¢;. Further note that, in general, 1, > have more than one
variable in common, and in this case we have P[¢’] # P[p] for the same compensation.
Thus in general, compensation is applied as a heuristics, and it is then not known
whether it provides an upper or lower bound. ~

The dual result for disjunctions holds by replacing f; with its negation f; in P[z}] =
P[z|f1]. This result is not immediately obvious from the previous one and has, to our
best knowledge, not been stated or applied anywhere before.

PROPOSITION 5.2 (“DISJUNCTIVE COMPENSATION”). Let fi1, f2 be two monotone
Boolean functions which share only one single variable x. Let f be their disjunction,
and f' be the dissociation of f on z, i.e. f = f1V fo, and f' = f1[z}/z] V fo[zh/x]. Then
P[f] = P[f'] for Plz}] = P[z] and P[zy] = Plz|fi].

PROOF OF [PROP. 5.2l Let g = f, g1 = f1,and go = fo. Then f = f, V f» is equivalent
to g = g1 A g2. From [Prop. 5.1 we know that P[g] = P[¢'], and thus P[f] = P[f’], for
Plz1] = Pla] and Pla5] = Pla|gy| = Plz|fi]. O

5.2. Model-based Approximation

The following proposition shows that all model-based bounds can be derived by re-
peated dissociation. However, not all dissociation-bounds can be explained as models
since dissociation is in its essence an algebraic and not a model-based technique (dis-
sociation creates more variables and thus changes the probability space). Therefore,
dissociation can improve any existing model-based approximation approach.
[ple 7.2 will illustrate this with a detailed simulation-based example.

PROPOSITION 5.3 (MODEL-BASED BOUNDS AS DISSOCIATIONS). Let f, fu be two
monotone Boolean functions over the same set of variables, and for which the logical im-
plication f = fy holds. Then: (a) there exists a sequence of optimal conjunctive dissoci-
ations that transform f to fy, and (b) there exists a sequence of non-optimal disjunctive
dissociations that transform f to fy. The dual result holds for the logical implication
fr = f:(c) there exists a sequence of optimal disjunctive dissociations that transform
f to fr, and (d) there exists a sequence of non-optimal conjunctive dissociations that
transform f to fr.

PROOF OF [PROP. 5.3l We focus here on the implication f = fi;. The proposition for
the results fr = f then follows from duality.

(a) The implication f = fy holds iff there exists a positive function f; such that
f = fu A f2. Pick a set of variables x s.t. f3[1/x] = 1, and dissociate f on x into
= fulxi/x] A f2[x5/x]. By setting the probabilities of the dissociated variables to
p; = p and p}, = 1, the bounds become optimal (p}p} = p). Further more, fy remains
unchanged (except for the renaming of x to x)), whereas f; becomes true. Hence, we
get f' = fy. Thus, all model-based upper bounds can be obtained by conjunctive disso-
ciation and choosing optimal oblivious bounds at each dissociation step.

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

Oblivious Bounds on the Probability of Boolean Functions 1:15

(b) The implication f = fy also holds iff there exists a positive function f; such that
fu = fV fq. Let m be the positive minterm or elementary conjunction involving all
variables of f. The function f; can be then written as DNF f; = ¢; Ve V..., with
products ¢; C m. Since f is monotone, we know m = f, and thus also mf; = f. We can
therefore write f = f V mfy or as

f=fVmeciVme V...

Let x; be the set of all variables in m that do not occur in ¢; and denote with m; the
conjunction of x;. Then then each mc; can instead be written as m;c; and thus:

f:f\/m101 Vmaoco V...
WLOG, we now separate one particular conjunct m;c; and dissociate on the set x;
['=fVmici Vmacy V.. X1 /xi] V mici x5 /%]
fi f2

By setting the probabilities of the dissociated variables to the non-optimal upper
bounds p; = p and p), = 1, f; remains unchanged (except for the renaming of x; to
x}), whereas f; becomes c¢;. Hence, we get f/ = fV mic; Vmaca V-V ¢;. We can
now repeat the same process for all conjuncts mc; and receive after a finite number of
dissociation steps

f"=fv(aVeaV...)=fVfi

Hence f” = fy. Thus, all model-based upper bounds can be obtained by disjunctive
dissociation and choosing non-optimal bounds at each dissociation step. D

6. QUERY-CENTRIC DISSOCIATION BOUNDS FOR PROBABILISTIC QUERIES

Our previous work [[Gatterbauer et al. 2010] has shown how to upper bound the prob-
ability of conjunctive queries without self-joins by issuing a sequence of SQL state-
ments over a standard relational DBMS. This section illustrates such dissociation-
based upper bounds and also complements them with new lower bounds. We use the
Boolean query @Q:— R(X),S(X,Y),T(Y), for which the probability computation prob-
lem is known to be #P-hard, over the following database instance D:

R|A S|AB T|B

I 1 z1 11 Y1 1
ZTo 2 z92 21 Y2 2
z3 22
Thus, relation S has three tuples (1,1), (2,1), and (2,2) and both R and T have two
tuples (1) and (2). Each tuple is annotated with a Boolean variable z1,z2, 21, ..., Y2,

which represents the independent event that the corresponding tuple is present in the
database. The lineage expression ¢ is then the propositional formula that states which
input tuples must be present in order for the query ¢ to be true:

Y =x121Y1 V T222Y1 V T223Y2

Calculating P[y] for a general database instance is #P-hard. However, if we treat each
occurrence of a variable z; as different (in other words, we dissociate ¢ eagerly on all
tuple variables z; from table R), then we get a read-once expression

/ ! /
@ =T121Y1 V Ty 122Y1 V Ty 223Y2

! / /
= (2121 V @51 22)Y1 V 5 523Y2

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

1:16 W. Gatterbauer and D. Suciu

select iOR(Q3.P) as P create view VR as
from select R.A,
(select T.B, T.P*Q2.P as P 1-power(1-R.P,1e0/count(*)) as P
from T, fromR, S, T
(select Q1.B, iOR(Q1.P) as P where R.A=S.A
from (select S.A, S.B, S.P*R.P as P and S.B=T.B
from R,S group by R.A, R.P

where R.A = S.A) as Q1
group by Q1.B) as Q2
where T.B = Q2.B) as Q3

(a) SQL query Pr (b) View Vg for lower bounds with Pgr

Fig. 5. (a): SQL query corresponding to plan Py for deriving an upper bound for the hard probabilistic
Boolean query Q :— R(X), S(X,Y),T(Y). Table R needs to be replaced with the view Vg from (b) for deriving
a lower bound. iOR is a user-defined aggregate explained in the text and stated in[Appendix C}

Writing p;, ¢;, r; for the probabilities of variables x;, y;, z;, respectively, we can calculate
Plp'] = (01 -71) @ (Pa1 - 72)) - 1) @ (Pho - 73 - 42)

where “” stands for multiplication and “®” for independent-or[l]

We know from [Theorem 4.8 that P[¢’] gives us an upper bound to P[] by assigning
the original probabilities to the dissociated variables. Furthermore, as we have shown
in [|Gatterbauer et al. 2010], P[¢] can be calculated with a probabilistic query plan

Pr = b W8 [)% [R(X), S(X,Y)], T(Y)]

“ o

where the probabilistic join operator in prefix notation XP [.] multiplies the tuple
probabilities Hie[k] p; for k tuples that are joined, and the probabilistic project oper-
ator with duplicate elimination 7? computes the probability with the independent-or
between tuples, i.e. 1 — [, P; for k tuples with the same projection attributes [Fuhr
and Rolleke 1997|l. This connection is not immediately obvious but explained in detail
in our prior work. We write here Pr to emphasize that this plan dissociates tuples in
table R and give the corresponding SQL statement in assuming that each of
the input tables has one additional attribute P for the probability of a tuple. The query
deploys a user-defined aggregate (UDA) iOR that calculates the independent-or for the
probabilities of the tuples grouped together, i.e. iOR(p1,pa,...,pn) = 1 — p1P2- - Pn-
states the UDA definition for PostgreSQL.

Similarly, we know fromthat P[] gives us a lower bound to P[] by as-
signing new probabilities 1 — /1 — py to x5 ; and 25 , (or more generally, any probabili-
ties p; ; and pj , with p5 ; - ph , = p2). Because of the connection between the read-once
expression ¢’ and the query plan Pg, we can thus calculate the lower bound by using
the same SQL query from but after replacing the table R with a view Vz that
has the probability p; of a tuple x; replaced with 1 — 4/1 — p;, where d; is the number of
times that x; appears in the lineage of query Q. shows the view definition for
Vg in SQL: it joins tables R, S and T, groups the original input tuples z; from R, and
assigns each z; a new probability 1 — 4/1 — p;, calculated as 1-power(1-T.P,1e0/count(*)).

Alternatively to ', if we treat each occurrence of a variable y; in ¢ as different, (in
other words, we dissociate ¢ eagerly on all tuple variables y; from table T'), then we

10The independent-or combines two probabilities as if calculating the disjunction between two independent
events. It is defined as p1 ® p2 := 1 — p1p2.

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

Oblivious Bounds on the Probability of Boolean Functions 1:17

get another read-once expression
/! /! /
Y =x121Y1 1 V X222y o V T223Y2
/ /
=z121Y11 V T2(22Y1 2 V 23Y2)

P[] gives us an upper bound to P[] by assigning the original probabilities to the
dissociated variables. In turn, P[¢”] can be calculated with another probabilistic query
plan that dissociates all tuple variables from table T instead of R:

Pr = b M [R(X), 7% XE[S(X,Y),T(Y)]]

Similarly to before, P[¢”] gives us a lower bound to P[y] by assigning new probabilities
1 —/1—qi toy;; and y; ,. And we can calculate this lower bound with query plan Pr
by replacing 7" with a view V; that has the probability ¢; of a tuple y; replaced with
1 — %/1 — q;, where d; is the number of tuples in S that join with tuple y; in T'.

Note that both query plans will calculate upper and lower bounds to query ¢ over
any database instance D. In fact, all possible query plans give upper bounds to the
true query probability [[Gatterbauer et al. 2010]. And as we have illustrated here, by
replacing the input tables with appropriate views, we can use the same query plans to
derive lower bounds. We refer the reader to [[Gatterbauer et al. 2010] where we develop
the theory of the partial dissociation order among all possible query plans, including a
sound and complete algorithm that returns a set of query plans which are guaranteed
to give the tightest bounds possible in a query-centric way for any conjunctive query
without self-joins. For our example hard query of this section, plans Pr and Pr are the
best possible plans. We further refer to [[Gatterbauer and Suciu 2013] for more details
and an extensive discussion on how to speed up the resulting multi-query evaluation.

Also note that these upper and lower bounds can be derived with the help of any
standard relational database, even cloud-based databases which commonly do not al-
low users to define their own UDASE To our best knowledge, this is the first technique
that allows to upper and lower bound hard probabilistic queries without any modifica-
tions to the database engine nor performing any calculations outside the database.

7. ILLUSTRATIONS OF OBLIVIOUS BOUNDS

In this section, we study the quality of oblivious bounds across varying scenarios:
We study the bounds as function of correlation between non-dissociated variables
(Sect. 7.1), compare dissociation-based with model-based approximations (Sect. 7.2),
illustrate a fundamental asymmetry between optimal upper and lower bounds
(Sect. 7.3), show that increasing the number of simultaneous dissociations does not
necessarily worsen the bounds (Sect.7.4), and apply our framework to approximate
hard probabilistic queries over TPC-H data with a standard relational database man-
agement system (Sect.7.5).

7.1. Oblivious Bounds as Function of Correlation between Variables

Example 7.1 (Oblivious Bounds and Correlations). Here we dissociate the DNF
va = ¢A V 2B and the analogous CNF ¢. = (x V A)(z V B) on z and study the er-
ror of the optimal oblivious bounds as function of the correlation between A and B[
Clearly, the bounds also depend on the probabilities of the variables x, A, and B. Let

11The UDA iOR can be expressed with standard SQL aggregates, e.g., “IOR(Q3.P)” can be evaluated with
“1-exp(sum(log(case Q3.P when 1 then 1E-307 else 1-Q3.P end)))” on Microsoft SQL Azure.

12Note that this simplified example also illustrates the more general case g = zA V 2B V C when C is
independent of A and B, and thus P[y4] = P[¢4](1 — P[C]) 4+ P[C]. As a consequence, the graphs in[Fig.6]for
P[C] # 0 would be vertically compressed and the bounds tighter in absolute terms.

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

1:18 W. Gatterbauer and D. Suciu

0

1 \ ! \ ! x

—q=0.8 —q=0.8 = —

= * = — =

@ H q=V. 4 2} H q=0. 4 »n T il
= [| 1 = [1 1 = |
s | [s | _ 15 |
e | =) I ey |
= 0.5} U g < 0.5 v g <= 0.5 !
=] 1 =] 1 =] |
s 1 s : 1 @ !
3 | 3 : S
& [: a | : a =iy
1 ! q=0.2 !
0 1 0 I 0 |

-1 0 1 -1 0 1 -1 0 1

Correlation p(A, B) Correlation p(A, B) Correlation p(A, B)
(a) CNF for p = 0.2 (b) CNF for p = 0.5 (c) CNF for p = 0.8

1 ‘ 1 ‘ 1 ‘
[—i=0s |] [—a=0s |] [—a=05 |
) —_—g=0.5 —_—=0.5) —_—=0.5
'é-: I q:OAQ\ § i = :] 1: =0 :
=] U] = B | T = |
o d I ! 3 |
° 1 o i 1 1 o |
< 0.5 0.5 0 : < 0.5F !
= = \ =] |
@ s ! s !
~ ' = \ = l
S | S I S |

r : 1 —_—

o ! | :] T I
| | h
! 0 L 0 L

-1 0 1 -1 0 1 -1 0 1

Correlation p(A, B) Correlation p(A, B) Correlation p(A, B)
(d) DNF for p = 0.8 (e) DNF for p = 0.5 (f) DNF for p = 0.2

Fig. 6. Probabilities of CNF ¢, = (z V A)(z V B) and DNF ¢4 = A V =B together with their
symmetric optimal upper and lower oblivious bounds (borders of shaded areas) as function of the correlation
p(A, B) between A and B, and parameters p = P[z] and ¢ = P[A] = P[B]. For every choice of p, there are
some A and B for which the upper or lower bound becomes tight.

p = Plz] and assume A and B have the same probability ¢ = P[A] = P[B]. We set
p’ = P[z}] = P[z}] according to the optimal symmetric bounds from
In a few steps, one can calculate the probabilities as
Plpa] = 2pq — pP[AD]
Pyl = 2p'q — p*PIAB]
Plpc] =p+ (1 —p)P[AB]
Ple,) = 2p'q +p"*(1 - 2q) + (1 — p'*)P[AB)

Results: shows the probabilities of the expressions P[] (full lines) and those
of their dissociations P[¢’] (border of shaded areas) for various values of p, ¢ and as

function of the correlation p(A, B)El For example, shows the answer when P[z]

13The correlation p(A, B) between Boolean events A and B is defined as p(A, B) = % with

covariance cov(A, B) = P[AB] — P[A]P[B] and variance var(A) = P[A] — (P[A])? [Feller 1968]l. Notice that
p(A,B) = % and, hence: P[AB] = p(A, B)-(g—q?)+¢>. Further, PJAB] = 0 (i.e. disjointness between

A and B) is not possible for ¢ > 0.5, and from P[A V B] < 1, one can derive P[AB] > 2p — 1. In turn, p = —1
is not possible for ¢ < 0.5, and it must hold P[AB] > 0. From both together, one can derive the condition

2
Pmin(q) = max(—ﬁ, - %) which gives the minimum possible value for p, and which marks the left
starting point of the graphs in [Fig.6|as function of g.

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

Oblivious Bounds on the Probability of Boolean Functions 1:19

is p = 0.8 and A, B have the same probability ¢ of either 0.8, 0.5, or 0.2. When A, B
are not correlated at all (p = 0), then the upper bounds seem a better approximation,
especially when ¢ is small. On the other hand, if A, B are not correlated, then there is
no need to dissociate the two instances of x. The more interesting case is when A, B are
positively correlated (P[AB] > P[A]P[B], e.g., positive Boolean functions of other inde-
pendent variables z, such as the provenance for probabilistic conjunctive queries). The
right of the vertical dashed line of shows that, in this case, dissociation offers
very good upper and lower bounds, especially when the formula has a low probability.
The graph also shows the effect of dissociation when A, B are negatively correlated
(left of dashed line). Notice that the correlation cannot always be —1 (e.g., two events,
each with probability > 0.5, can never be disjunct). The graphs also illustrate why
these bounds are obliviously optimal, i.e. without knowledge of A, B: for every choice
of p, there are some A, B for which the upper or lower bound becomes tight. |

7.2. Oblivious Bounds versus Model-based Approximations

Example 7.2 (Dissociation and Models). This example compares the approxima-
tion of our dissociation-based approach with the model-based approach by [Fink and
Olteanu [2011]] and illustrates how dissociation-based bounds are tighter, in gen-
eral, than model-based approximations. For this purpose, we consider again the hard
Boolean query Q:— R(X),S%X,Y),T(Y) over the database D from We now
only assume that the table S is deterministic, as indicated by the superscript d in S¢.
The query-equivalent lineage formula is then

Y =x1Y1 V T2y1 V T2Y2

for which [Fig. 7al shows the bipartite primal graph. We use this instance as its primal
graph forms a P,, which is the simplest 2-partite lineage that is not read-onceE In
order to compare the approximation quality, we need to limit ourselves to an example
which is tractable enough so we can generate the whole probability space. In practice,
we allow each variable to have any of 11 discrete probabilities D = {0,0.1,0.2,...,1}
and consider all 11* = 14641 possible probability assignments v : (p1,p2, q1,q2) — D*
with p = P[x] and q = P[y]. For each v, we calculate both the absolute error ¢* = P[p*]—
P[¢] and the relative error * = %;], where P[p*] stands for any of the approximations,
and the exact probability P[y] is calculated by the Shannon expansion on y; as ¢ =
y1(z1 V x2) V ~y1(22y2) and thus Py g[@] = (1 — (1 = p1)(1 — p2))a1 + (1 — q1)p2ge.
Models: We use the model-based approach by [Fink and Olteanu [2011] to approxi-
mate ¢ with lowest upper bound (LUB) formulas ¢y; and greatest lower bound (GLB)
formulas ¢y;, for which ¢r; = ¢ and ¢ = ¢y, and neither of the upper (lower) bounds
implies another upper (lower) bound. Among all models considered, we focus on only
read-once formulas. Given lineage ¢, the 4 LUBs are oy = x1y1 V 22, pys = y1 V T2y2,
wus = (21 V22)y1 V y2, and g = x1 V x2(y1 V y2). The 3 GLBs are @1 = (21 V x2)y1,
vr2 = x1(y1 V y2), and ¢r3 = z1y1 V z2y2. For each v, we choose min;(P[py;]) and
max;(P[pr;]) as the best upper and lower model-based bounds, respectively.
Dissociation: Analogously, we consider the possible dissociations into read-once for-
mulas. For our given ¢, those are ¢} = (v1Vz5 1)y1 Vs oy2 and vy = 21y 1 Vo2 (Y] 2 V),
with [Fig. 7b and [Fig. 7c illustrating the dissociated read-once primal graphs}'®| From
orollary 4.9) we know that Py [¢]] > Pp q[¢] for the only optimal oblivious upper
ounds ph; = p'272 = py and Py 4[¢)] < Ppql¢] for any p5, with 13’2)1]5’2)2 = po. In
particular, we choose 3 alternative optimal oblivious lower bounds p} € {(p2,0), (1 —

14 A path P, is a graph with vertices {x1,...,z,} and edges {122, z2%3,. .., Zn1Tn}.
15Note that we consider here dissociation on both z- and y-variables, thus do not treat them as distinct.

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

1:20 W. Gatterbauer and D. Suciu

o
"4

®d oblivious
upper
bounds

o
=4

!
x Y1 $17O Y1 £ 0———0Yi,
! !
T2 Y1,2 P
1-/ o0—0 oblivious
T2 Y2 2,2 Y2 2 Y2 lower

0 bounds
0 P 1
(a) e (b) ¢! (c) ¢, (d) p’ for DNF
Dissociation ef, e'{
average worst o o
2 Ul 1.54% 15.8% 3 z
5™ 6p —0.98% —105% = 2
— L . . (&) 3]
E 4 00| 035% 37% : 2
8 0| -094% —8.7% = o= 5 o
[} m E?} 455% 2893% é-w% é-w%
B 223% —28.9% L, .
ST 073% 6.7%
8 d [dj —9217% —28.9% 80%, 500 1000 1500 2000 —30%, 2000 2000 6000
€L : o 770 15% of data points sorted by €? 50% of data points sorted by €
(e) Errors H (8

Fig. 7. (a)-(c): Bipartite primal graphs for DNF ¢ and two dissociations. Notice that the primal
graphs of ¢} and ¢, are forests and thus correspond to read-once expressions. (d): For a given disjunctive
dissociation d, there is only one optimal oblivious upper bound but infinitely many optimal lower bounds.
We evaluate P[y’] for three of the latter (two of which coincide with models m) and keep the maximum as
the best oblivious lower bound. (e): In comparison, dissociation gives substantially better upper bounds than
model-based bounds (0.73% vs. 4.55% average and 6.7% vs. 289.3% worst-case relative errors), yet lower
bounds are only slightly better. (f): Relative errors of 4 approximations for individual data points sorted by
the dissociation error for upper bounds and for lower bounds separately; this is why the dissociation errors
show up as smooth curves (red) while the model based errors are unsorted and thus ragged (blue). (g): Here
we sorted the errors for each approximation individually; this is why all curves are smooth.

VT = 2.1 — VT~ 52), (0,p2)} (see [Fig. 7d). Analogously By o [05] > Py ql¢] for ¢f, =
02 = @ and Pp o [05] < Pp q[e] for) € {(q1,0), (1 — vIT—q1,1 = VI —q1),(0,q1)}. For
each v, we choose the minimum among the 2 upper bounds and the maximum among
the 6 lower bounds as the best upper and lower dissociation-based bounds, respectively.

Results:[Figures 7e-glshow that dissociation-based bounds are always better or equal
to model-based bounds. The reason is that all model-based bounds are a special case of
oblivious dissociation bounds. Furthermore, dissociation gives far better upper bounds,
but only slighter better lower bounds. The reason is illustrated in the single
dissociation-based upper bound p’ = (p, p) always dominates the two model-based up-
per bounds, whereas the two model-based lower bounds are special cases of infinitely
many optimal oblivious lower dissociation-based bounds. For our example, we evaluate
three oblivious lower bounds, two of which coincide with models. [|

7.3. Conjunctive versus Disjunctive Dissociation

Example 7.3 (Disjunctive and Conjunctive Dissociation). This example illustrates
an interesting asymmetry: optimal upper bounds for disjunctive dissociations and op-
timal lower bounds for conjunctive dissociations are not only unique but also generally
better than their counterparts (see [Figure 1). We show this by comparing the approxi-
mation of a function by either dissociating a conjunctive or a disjunctive expression.

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

Oblivious Bounds on the Probability of Boolean Functions 1:21

T1 Y1 L1 Y1 1 , yi,z
Y11
obllivious
) Y2 x/Z,l , Y2 To Y2 b[?l‘lx;le(lis
T2,2
(a) ¢ (b) ¥} (c) ¥, (d) p’ for CNF
50% 50%
——DNF dissociation €}, €/ ——DNF dissociation €f;, f
40% CNF dissociation €f, €} 40% | CNF dissociation €f;, €}
average worst w
a @ 30% @ 30%
gE 0| 035% 37% & g
= 20% = 20%
28454 -094% -8.7% = g
=] > 10% %
& oy 001% 87% : RSB ¢
® O 87| —035% —3.7% = o= 5 oo
]
q>) E €dU 0.73% 6.7% M—W%//// é-w%/
= A 6% —2.17% —28.9% -20% -20%
SEey| 260% 545% _mf
o ¢l . 0 500 1000 1500 2000 0 2000 4000 6000
© €L 1.09% 28.2% 15% of data points sorted by € 50% of data points sorted by €
(e) Errors ® (&

Fig. 8. (a)-(c): Bipartite primal graphs for CNF ¢ and two dissociations. (d): For a given con-
junctive dissociation ¢, we use the only optimal oblivious lower bound and three of infinitely many optimal
oblivious upper bounds. (e): In comparison, disjunctive dissociation gives better upper bounds than conjunc-
tive dissociation (0.73% vs. 2.69% average and 6.7% vs. 54.5% worst-case relative errors), and v.v. for lower
bounds. (f): Relative errors of 4 approximations for individual data points sorted by the disjunctive dissoci-
ation error ¢? for upper bounds and for lower bounds separately; this is why the DNF dissociation errors
show up as smooth curves (red) while the CNF dissociation errors are unsorted and thus ragged (gray). (g):
Here we sorted the errors for each approximation individually; this is why all curves are smooth.

We re-use the setup from where we had a function expressed by a dis-
junctive expression . Our DNF ¢ can be written as CNF ¢ = (z1 V 22)(y1 V 22)(y1 V 42)

with f, = fﬂ and two conjunctive dissociations] = (z1 V x5 1)(y1 V 250) (1 V y2)
and ¢, = x1 V x2)(y11 V 12)(y12 V y2) (Figures 8a-c| shows the primal graphs).
Again from [Corollary 4.9, we know thatw Pp.qle] for the only optlmal
oblivious lower bounds p;; = p), = p2 and Py g[p)] > Ppq4lp] for any p; with
Py 1Pho = p2. In partlcular, we choose 3 alternative optimal oblivious lower bounds

Py € {(p2,1), (VP2,/P2), (1,p2)} (see - Analogously Py, q/[p5] < Ppglp] for
qi)l = 93,2 = q1 and Pp o'[p5] > Ppql¢] for q; € {{q1,1), (v/a1,/a1),(1,q1)}. For each
v, we choose the maximum among the 2 lower bounds and the minimum among the 6
upper bounds as the best upper and lower conjunctive dissociation-based bounds, re-
spectively. We then compare with the approximations from the DNF ¢ in[Example 7.2|

Results:[Figures 8e-glshow that optimal disjunctive upper bounds are, in general but
not consistently, better than optimal conjunctive upper bounds for the same function
(=~ 83.5% of those data points with different approximations are better for conjunctive
dissociations). The dual result holds for lower bounds. This duality can be best seen in
the correspondences of absolute errors between upper and lower bounds. |

16Notice that this transformation from DNF to CNF is hard, in general. We not do not focus on algorithmic
aspects in this paper, but rather show the potential of this new approach.

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

1:22 W. Gatterbauer and D. Suciu

!
il Y1 Ti10—oOoUY1

/
Ty 2 ;0:
: : o :
Tp1,2 ;‘:
xn yn I’H/ yn

(a) pn (b) ¢!, (c) p = const (d) Plpn] = const

Fig. 9. (), (b): Primal graphs for path P, DNF ¢,, and its dissociation ¢/,. (c), (d): P[¢n] to-
gether with their symmetric optimal upper and lower oblivious bounds (borders of shaded areas) as function
of n. (c) keeps p = 0.1 constant, whereas (d) varies p so as to keep P[¢] = 0.5 constant for increasing n. The
upper bounds approximate the probability of the DNF very well and even become tight for n — oc.

>
>
g
o
x
o]
s
4
&
w
e
LV

o o o 9
@

Probabilities
=

0.
0.
0.5
0.

@
&
=1
I
o
o
=
a9}

o o o
BN w
© o o
BN w

/

1

o

10° 10" 10 10°

7.4. Multiple Dissociations at Once

Here we investigate the influence of the primal graph and number of dissociations on
the tightness of the bounds. Both examples correspond to the lineage of the standard
unsafe query Q:— R(X), S(X,Y),T(Y) over two different database instances.

Example 7.4 (Path P, as Primal Graph). This example considers a DNF expres-
sion whose primal graph forms a P,, i.e. a path of length n (see [Fig.9a). Note that this
is a generalization of the path P; from and corresponds to the lineage of
the same unsafe query over larger database instance with 2n — 1 tuples:

On =21Y1 VZ1y2 VT2y2 V...V Tp_1Yn V Tnln
P =T Y1 V T oY2 VT Y2 VoV T g oYn V T Yn

Exact: In the following, we assume the probabilities of all variables to be p and use
the notation p, := P[¢,] and p¥ := P[¢*], where ¢! corresponds to the formula ¢,
without the last conjunct z,y,. We can then express p,, as function of p}, p,—1 and
pl_, by recursive application of Shannon’s expansion to z,, and y,,:

P = Play] (]P[yn] + P[gn]Pnfl) + Plz,]p;,
Py, = Plyn] (P[xn—l] + P[jn—l]pZ—l) + P[gn]pn—1
We thus get the linear recurrence system
Pn = A1pn_1+ Bip;,_1 + C1
Py = Aopn_1+ Bap;,_1 +Ca

with A, = p, By = pp?, C1 = p?(2 —p), A2 = p, Bo = pp, and Cy = p?. With a few manip-
ulations, this recurrence system can be transformed into a linear non-homogenous re-
currence relation of second order p,, = Ap,,—1+ Bp,—2+C where A = A;+ By = p(1+p),
B = AyB) — A1By = —p?p®, and C = B1C5 + C1(1 — Ba) = p*(pp* + (2 — p)(1 — pp)).
Thus we can recursively calculate P[y,,] for any probability assignment p starting with
initial values p; = p? and py = 3p? — 2p°>.

Dissociation: shows the primal graph for the dissociation ¢/,. Variables
x1 to x,_ 1 are dissociated into two variables with same probability p’, whereas z,
into one with original probability p. In other words, with increasing n, there are more
variables dissociated into two fresh ones each. The probability P[¢]] is then equal to

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

Oblivious Bounds on the Probability of Boolean Functions 1:23

09 — 7[1?[»0,,]:0.0
, 08
Il,l §0.7
T Y1 , Y1 Zosl\ lim, P [¢!] ~ 0.580
xn,l <05 \\
: : Soat
,' ' 03 \
xl,n 0.2 N
Tn Yn , Yn 01 S
‘Tn,n o -—
10 10" 10 10
n
(@) on (b) o7, (c) p = const (d) P[pn] = const

Fig. 10. (), (b): Primal graphs for complete bipartite DNF ¢,, and its dissociation ¢/,. (c), (d):
P[pn] together with their symmetric optimal upper and lower oblivious bounds (borders of shaded areas) as
function of n. (d) varies p so as to keep P[] = 0.5 constant for increasing size n. The oblivious upper bound
is ultimately bounded despite having n? fresh variables in the dissociated DNF for increasing n.

the probability that at least one variable z; is connected to one variable y;:

Plol] =1 (1—pp')(1—p(1 =)" > (1 —p(1 - pp))

We set p’ = p for upper bounds, and p’ = 1 — /1 — p for lower bounds.

Results: shows the interesting result that the disjunctive upper bounds
become tight for increasing size of the primal graph, and thus increasing number of
dissociations. This can be best seen in[Fig.9d|for which p is chosen as to keep P[¢] = 0.5

constant for varying n and we have lim, ., P[¢]] = P[¢,] = 0.5 for upper bounds.
In contrast, the disjunctive lower bounds become weaker but still have a limit value
limy, 00 P[¢),] &~ 0.2929 (derived numerically). []

Example 7.5 (Complete bipartite graph K, ,, as Primal Graph). This example con-
siders a DNF whose primal graph forms a complete bipartite graph of size n, i.e. each
variable z; is appearing in one clause with each variable y; (see [Fig. 10a). Note that
this example corresponds to lineage for the standard unsafe query over a database
instance with O(n?) tuples:

Pn = \/ TiYj

(3,9) € [n]?

Py = \/ (yj \/ f”/i,j)
j€[n] i€[n]
Exact: We again assume that all variables have the same probability p = Plz;] =
Ply;]. Plg,] is then equal to the probability that there is at least one tuple z; and at
least one tuple y;:

Plon] = (1 - (1—p)")” (6)

Dissociation: shows the primal graph for the dissociation ¢/,. Each vari-
able z; is dissociated into n fresh variables with same probability p’, i.e. there are n?
fresh variables in total. The probability P[p!] is then equal to the probability that at
least one variable y; is connected to one variables z; ;:

Plgr] =1- (1-p(1-(1 —p’)"))n

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

1:24 W. Gatterbauer and D. Suciu

select distinct s_nationkey Supplier(s_suppkey, s_nationkey)
from Supplier, Partsupp, Part PartSupp(ps_suppkey, ps_partkey)
where s_suppkey = ps_suppkey Part(p_partkey, p_name)

and ps_partkey = p_partkey
and s_suppkey <= $1
and p_name like $2

(a) Deterministic SQL (b) TPC-H schema

Fig. 11. [Example 7.6} Parameterized SQL query and relevant portion of the TPC-H schema.

We will again choose p as to keep r = P[p,] constant with increasing n, and then
calculate P[¢!,] as function of r. From|[Eq.6, we get p =1— /1 — /r and then set p’ = p
for upper bounds, and p’ =1 — {/1 — p for lower bounds as each dissociated variable is
replaced by n fresh variables. It can then be shown that P[y/] for the upper bound is
monotonically increasing for n and bounded below 1 with the limit value:

lim Bl =1 (1-)V

n—oo

Results: [Figure 10d| keeps P[] = 0.5 constant (by decreasing p for increasing n) and
shows the interesting result that the optimal upper bound is itself upper bounded and
reaches a limit value, although there are more variables dissociated, and each variable
is dissociated into more fresh ones. This limit value is 0.5803 for » = 0.5. However, lower
bounds are not useful in this case. |

7.5. Dissociation with a Standard Relational Database Management System

Example 7.6 (TPC-H). Here we apply the theory of dissociation to bound hard
probabilistic queries with the help of PostgreSQL 9.2, an open-source relational
database management systemsE] We use the TPC-H DBGEN data generatoﬂ to gen-
erate a 1GB database. We then add a column P to each table, and assign to each tuple
either (i) a random probability p € {0.01,0.02,...,0.5} (“p = rand 0.5”), or (¢) the same
probability p = 0.5, or (ii:) the same probability p = 0.1. Choosing a small tuple prob-
ability p = 0.1 helps avoid floating-point errors for queries with large lineage and the
answer tuple probabilities too close to 1 (see [Fig. 13b|for how close our results come to
1). We then consider the following parameterized query (also see |Fig. 11):

Q(a):— S(s,a), PS(s,u), P(u,n),s < $1,n like $2

Variable a stands for attribute nationkey (“answer tuple”), s for suppkey, u for partkey
(“unit”), and n for name. The probabilistic version of this query asks which nations (as
determined by the attribute nationkey) are most likely to have suppliers with suppkey
< $1 that supply parts with a name like $1 when all records in Supplier, PartSupp, and Part
are uncertain. Parameters $1 and $2 allow us to reduce the number of tuples that can
participate from tables Supplier and Part, respectively, and to thus study the effects of
lineage size on the predicted dissociation bounds and running time. By default, tables
Supplier, Partsupp and Part have 10k, 800k, and 200k tuples, respectively, and there are
25 different numeric attributes for nationkey. For parameter $1, we choose a value €
{500, 1000, . ..,10000}, which corresponds to the number of tuples that can participate
from table Supplier. for parameter $2 we choose values € {'%’, %red%’, '%red%green%’ }
which select 200k, 11k and 251 tuples in table Part, respectively.

-

http://www.postgresql. org/download/l
http://www.tpc. org/tpch/l

-

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

http://www.postgresql.org/download/
http://www.tpc.org/tpch/

Oblivious Bounds on the Probability of Boolean Functions 1:25

create view VP as select s_nationkey, iOR(Q3.P) as P
select p_partkey, s_nationkey, from
(1-POWER(1-P.P,1e0/count(*))) as P (select s_nationkey, S.P*Q2.P as P
from Part P, Partsupp, Supplier from Supplier S,
where p_partkey=ps_partkey (select Q1.ps_suppkey, s_nationkey, iOR(Q1.P) as P
and ps_suppkey = s_suppkey from
and s_suppkey <= $1 (select ps_suppkey, s_nationkey, PS.P*VP.P as P
and p_name like $2 from Partsupp PS, VP
group by p_partkey, s_nationkey, P.P where ps_partkey = p_partkey

and ps_suppkey <= $1) as Q1
group by Q1.ps_suppkey, s_nationkey) as Q2
where s_suppkey = Q2.ps_suppkey) as Q3
group by Q3.s_nationkey

(a) View Vp for lower bounds with P}, (b) SQL query P},

Fig. 12. (a) View definition Vp and (b) adapted subsequent query P}, for deriving the lower
bound by dissociating table P. Note the inclusion of the attribute nationkey in Vp as explained in the text.

Translation into SQL: Note that the lineage for each answer tuple corresponds to the
Boolean query @ from [Sect.6|which is known to be hard. We thus bound the probability
for each answer tuple by evaluating four different queries which correspond to the
query-centric dissociation bounds from [Sect.6} dissociating either table Supplier or table
Part, and calculating either upper and lower bounds. To get the final upper (lower)
bounds, we take the minimum (maximum) of the two upper (lower) bounds for each
answer tuple. The two query plans are as follows:

Ps(a) = mf }E[7P | XP[S(s,a), PS(s,u),s < $1], P(u,n),n like $2]

Pp(a) =78 XP[S(s,a), 7? ME[PS(s,u),s < $1, P(u,n),n like $2]]
Note, one technical detail for determining the lower bound with plan Pp: Any tuple ¢
from table Part may appear a different number of times in the lineage of different query
answersH Thus, for every answer tuple a that has ¢ in its lineage, we need to create a

distinct copy of t in the view V7, with a probability that depends only on the number of
dissociation in the lineage of a@l Thus, the view definition for V; needs to include the

attribute nationkey and Pp needs to be adapted as follows (Fig. 12b):
P;(a’) = ﬂ-g Mf[5(§, a)7 71—5,@ Nﬁ[PS(Sv U)’ s < 81, VP(Mv CL)H

In order to speed up the resulting multi-query evaluation, we first apply a deter-
ministic semi-join reduction on the input tables, and then reuse intermediate query
results across all four subsequent queries. These techniques are not shown in[Fig. 12
but given in detail in [[Gatterbauer and Suciu 2013|]. Also, the exact SQL statements
that allow the interested reader to repeat these experiments over a TCP-H database
imported into PostgreSQL are available on the LaPushDB project pageﬂ

Ground truth: To compare our bounds against the actual true probabilities, we issue
a lineage query to retrieve and construct the DNF for each tuple, then use DeMorgan
to write a lineage DNF as a probabilistic CNF without exponential increase in size.
For example, the lineage DNF ® = x;23 V z122 can be written as CNF ® = (Z; V Z3) A

19The same technical detail does not occur in the dissociation on S because of the key constraint S(s, a).
20Tn fact, we could actually just use the total number of times the tuple appears in all lineages and still get
lower bounds. However, the resulting bounds would not be optimal oblivious bounds.

2Mhttp: //LaPushDB. con/|

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

http://LaPushDB.com/

1:26 W. Gatterbauer and D. Suciu

0.65 [Diss. on Supplier [IDiss. on Supplier [IDiss. on Supplier

[Best of both Diss. [IBest of both Diss. [IBest of both Diss.

[__]Part dissociated [_IPart dissociated 0.999 [_]Part dissociated

m% >< Actual Probability Actual Probability . X Actual Probability
0.6
s

F " 0.998 % m % m

0.55 X m
F 0.997

i

i

6 16152117 1 1120 3 5 1116 921 4 6 8201 0
(a) $1=10000, $2="%red%green%’ (b) $1=10000, $2="%red%’

0.995

1511 0 1716 6 21 3 4 2
(c) $1=10000, $2="%red%green%’

p =rand 0.5 p =rand 0.5 p=05
0.46 0.86 1 e
n [IDiss. on Supplier _ [_IDiss. on Supplier [IDiss. on Supplier
[IBest of both Diss. [Best of both Diss. [Best of both Diss.
0.45 [IPart dissociated 0.85 []Part dissociated [IPart dissociated
X Actual Probability | -) X Actual Probability
0.44 — nmnn -
’< 0.84
0.43 ﬁ X
0.83
0.42
0.41 0.82
0.4 LU L L 0.81 UL LU L L L L
91810 4 2 1 8 7 2014 11417 9 1 0 3 8 2110 1117 0 4 8 1 3 2018 16
(d) $1=3000, $2="%red%’ (e) $1=10000, $2="%red%’ $1=10000, $2="%
p=0.1 p=0.1 p=0.1

Fig. 13. Probability bounds for the top 10 query results for varying query parameters $1, $2,
and tuple probabilities p. The ranking is determined by the upper dissociation bounds (upper end of the red
interval) and is identical to the one determined by the actual probabilities (crosses), except for (¢) in which
tuples 6 and 21 are flipped, and for (f) for which the ground truth is not known. (b): z = 0.999999999999 =
1 — 10712, (D: z = 0.9999999999 = 1 — 10710,

(1 V T2) with P[®] = 1 — P[®]. A probabilistic CNF can further be translated into the
problem of computing the partition function of a propositional Markov random field.
And for this latter problem, there are regular competitions in the Al community which
results in existing tools that have reached a significant level of sophistication. For our
experiments, we use a tool called SampleSearch [[Gogate and Domingos 2010; |(Gogate
and Dechter 2011]]2%

Bound Results: [Figure 13| shows the top 10 query results, as predicted by the up-
per dissociation bounds, with varying parameters $1 and $2, as well as varying input
probabilities p. The crosses show the actual probabilities determined by SampleSearch
if available. The red intervals shows the interval between upper and lower dissocia-
tion bounds. Recall that the final dissociation interval is the intersection between the
interval from dissociation on Supplier (left of the red interval) and on Part (right of the
red interval). We see that the upper dissociation bounds are very close to the actual

22111ttp: //www.hlt.utdallas.edu/~vgogate/SampleSearch. htmll

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

http://www.hlt.utdallas.edu/~vgogate/SampleSearch.html

Oblivious Bounds on the Probability of Boolean Functions 1:27

probabilities, which is reminiscent of having shown that upper bounds for
DNF dissociations are commonly closer to the true probabilities than lower bounds.
For we have no ground truth as the lineage for the top tuple has size 32899
(i.e. the corresponding DNF has 32899 clauses), which the probabilistic solver cannot
handle. The different sizes of the intervals arise from different numbers of dissociated
tuples in the respective lineages However, extrapolating from [Fig. 13d and [Fig. 13€, we
conjecture that dissociation gives reasonable bounds.

The different sizes of the intervals arise from different numbers of dissociated tu-
ples in the respective lineages. For example, the lineage for the top-ranked tuple 6 in
has 42 unique tuples from table Part, out of which 5 (~ 12%) are dissociated
into 2 fresh ones with Pp. In contrast, the lineage has 53 unique tuples from table Sup-
plier, out of which only 4 (< 8%) are dissociated into 2 fresh variables with Ps. Thus,
intuitively, Ps gives tighter bounds. As another example, the lineage for the top-ranked
tuple 11 in [Fig. 13b| and [Fig. 13e has 1830 unique tuples from table Part, out of which
less than 6% are dissociated into 2 or 3 fresh ones with Pp. In contrast, the lineage has
only 434 unique tuples from table Supplier, out of which 95% are dissociated into into 2
to 11 fresh variables. Thus, in this case, Pp gives tighter bounds. As extreme case, the
lineage for the same tuple 11 in[Fig. 13f has 32899 unique tuples from table Part, out of
which around 6.3% are dissociated into 2-4 fresh ones with Pp. In contrast, the lineage
has only 438 unique tuples from table Supplier, out of which all are dissociated into 80
fresh ones with Pg (this is an artifact of the TPC-H random database generator). Thus
Pg is very far off. On the other end, if no input tuple needs to be dissociated in either of
the plans, then both upper and lower bound coincide (e.g., 2 in [Fig. 13d). This scenario
is also called data-safe [Jha et al. 2010]. The following table gives a succinct overview
of the last paragraph:

tuple Fig. |#Part %diss. into|#Supp. %diss. into |tighter bounds

2 [Fig.13 40 8% 2 43 0% - Pg
6 |Fig. 134 42 12% 2 93 8% 2 Pg
11 [F1g.13bj| 1830 6% 2 434 95% 2-11 Pp
11 1g. 131 | 32899 6% 2 438 100% 80 Pp

Importantly, ranking of the answer tuples to a query by upper dissociation bounds
comes very close to the ranking by query reliability. For example, for the case of p = 0.1
and $2="%red%’ (Fig.13d and[Fig.13€), the ranking given by the minimum upper bound
was identical to the ranking given by the ground truth for all parameters choices $1 €
{500, 1000, . ..,10000}. One of the few exceptions is shown in|Fig. 1301f0r parameters p =
0.5, $1=10000, and $2="%red%green%’. Here tuples 6 and 21 are flipped as compared
to their actual probabilities 0.99775 and 0.99777, respectively.

Timing Results: compares the times needed to evaluate the deterministic
query in with those of calculating the dissociation bounds for changing pa-
rameter $1 and averaged over 5 runs for each data point. Since table Supplier contains
exactly 10k tuples with suppkey € {1,...,10000}, any choice of $1>10000 has no ef-
fect on the query. We show separate graphs for the time needed to calculate the upper
bounds only (which our theory and experiments suggest give better absolute approx-
imations and can serve for relevance ranking) and the time for both upper and lower
bounds (the latter of which are more expensive because of required manipulation of the
input tuples). We also show the time for retrieving the lineage with a lineage query.
Any approach that evaluates the probability of an answer tuple outside the database
engine needs to issue this query to construct the DNF. The time needed for the lineage
query thus serves as appropriate minimum base line. We see that, in particular for
small queries, the probabilistic evaluation adds only a small linear overhead on top of
deterministic query evaluation. For increasing lineage, the query times scales exactly

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

1:28 W. Gatterbauer and D. Suciu

400 8 120
—— Upper & lower bounds —— Upper & lower bounds ——Upper & lower bounds
350 —©— Upper bounds only 71 ~©—Upper bounds only —6—Upper bounds only
—— Deterministic SQL ——Lineage query 100(| ——Lineage query
300 sll— Deterministic SQL — Deterministic SQL
— — < 80
g 250 35 3
2 2, £
< 200 v 4 < 60
150 3
= o] = = 40
100 2
20
50 1
0 0 0
5000 10000 5000 10000 5000 10000
$1 $1 $1
(a) $2 = "%red%green%’ (b) $2 = "%red%’ (c) $2 =%

Fig. 14. (a), (b): Top 10 query results for different values for parameter $1. The ranking is
determined by the upper dissociation bounds (upper end of the red interval) and is identical to the one
determined by the actual probabilities (crosses), except for tuple 6 and 21 being flipped in (b). (¢): These
bounds can be calculated in a small multiple of the time needed to evaluate standard deterministic queries.

linearly with the size of the average lineage (Fig.14¢). For our longest query we issued
($1 = 10000, $2 = ’%’), the maximal lineage is 35040 for tuple 11 and the times are as

follows:

Deterministic SQL. Lineage SQL Upper bounds only Upper & lower bounds
2.0 sec 5.7 sec 42.2 sec 118.1 sec

Overall, our experiments suggest that dissociation can allow ranking of input tuples
that is close to the ranking for the actual probabilities in a time that is a small multiple
of the time needed to evaluate standard deterministic queries. |

8. RELATED WORK AND DISCUSSION

Dissociation is related to a number of recent approaches in the graphical model and
constraint satisfaction literature which approximate an intractable problem with a
tractable relaxed version after treating multiple occurrences of variables or nodes
as independent or ignoring some equivalence constraints: (Choi et al. [2007] approx-
imate inference in Bayesian networks by “node splitting,” i.e. removing some depen-
dencies from the original model. Ramirez and Geftner [2007] treat the problem of ob-
taining a minimum cost satisfying assignment of a CNF formula by “variable renam-
ing,” i.e. replacing a variable that appears in many clauses by many fresh new vari-
ables that appear in few. Pipatsrisawat and Darwiche [2007]] provide lower bounds for
MaxSAT by “variable splitting,” i.e. compiling a relaxation of the original CNF. |Ander-
sen et al. [2007] improve the relaxation for constraint satisfaction problems by “refine-
ment through node splitting,” i.e. making explicit some interactions between variables.
Choi and Darwiche [2009] relax a problem by dropping equivalence constraints and
partially compensate for the relaxation. OQur work provides a general framework for
approximating the probability of Boolean functions with both upper and lower bounds.
We thus refer to all the above approaches as dissociation-based approximations.
Another line of work, that is varyingly called discretization, bucketing, or quantiza-
tion, proposes relaxations by merging or partition instead of splitting states or nodes,
and to then perform simplified calculations over those partitions. A famous example
is mini-buckets [Dechter and Rish 2003 that approximates a function with high arity
by a collection of smaller-arity functions. For example, for non-negative functions f
and g, the summation problem }__ (f(x) - g(x)) can be upper bounded by the problem

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

Oblivious Bounds on the Probability of Boolean Functions 1:29

(maxx f(x)) - (>4 9(x)), i.e. x is independently chosen for optimizing f or g, and lower

bounded by (miny f(x)) - (>, g(x)). Similarly, Gogate and Domingos [2011] who com-
press potentials computed during the execution of variable elimination by “quantizing”
them, namely by replacing a number of distinct values in range of the potential by a
single value. Bergman et al. [2011]],[2013]] construct relaxations of Multivalued Deci-
sion Diagrams (MDDs) by merging vertices when the size of the partially constructed
MDD grows too large. One of the earlier works in this space was by |St-Aubin et al.
[2000] who use Algebraic Decision Diagram (ADDs) and reduces the sizes of the inter-
mediate value functions generated by replacing the values at the terminals of the ADD
with ranges of values. We collectively refer to these approaches above as quantization-
based approximations.

Note that dissociation-based and quantization-based approaches are not reverse of
one another. The reverse of dissociation is what we call assimilation] Consider the
Boolean formula ¢ = z1y; Va1y2Vasys. It is not read-once, but a dissociation of the read-
once formula ¢* = z(y; V y2). Hence, we know from dissociation that P[¢] > P[¢*] for
p = min(py,p2) and that Ply] < Pl¢*] for p = p; - p2. Note the difference between quan-
tization and assimilation: In quantization, we can choose either the max or min of two
values to be combined to get an upper or lower bound. In assimilation, we may have to
choose a different value to get a guaranteed bound. Also, even if p; = ps, the resulting
assimilation may still be only approximate, whereas it would be exact in quantization.
Thus, dissociation-based and quantization-based approaches are not reverse to each
other, but are rather two complementary approaches that may be combined to yield
improved methods.

Existing probabilistic query processing approaches that are both general and
tractable use either of two approximation methods: (1) simulation-based approaches
adapt general purpose sampling methods [Jampani et al. 2008; [Kennedy and Koch!
2010; Re et al. 2007]l; and (2) model-based approaches approximate the original num-
ber of models with guaranteed lower or upper bounds [[Olteanu et al. 2010} |[Fink and
Olteanu 2011]]. We show that, for every model-based bound, there exists a dissociation
bound which is at least as good or better.

The idea for dissociation originated in our work on generalizing propagation-based
ranking methods in graphical data [Detwiler et al. 2009] to hypergraphs and conjunc-
tive queries. In [[Gatterbauer et al. 2010], we introduced query dissociation, which ap-
plies dissociation in a query-centric way to upper bound hard probabilistic queries, and
showed the connection to propagation in graphs (Most details are provided in [Gatter-
bauer and Suciu 2013f]). In this paper, we provide the theoretical underpinnings of
these results in a generalized framework with both upper and lower bounds. A previ-
ous version of this paper was made available as [Gatterbauer and Suciu 2011].

9. OUTLOOK

We introduced dissociation as a new algebraic technique for approximating the prob-
ability of Boolean functions. We applied this technique to derive obliviously optimal
upper and lower bounds for conjunctive and disjunctive dissociations and proved that
dissociation always gives equally good or better approximations than models. We did
not address algorithmic complexities of exploring the space of alternative dissociations,
but rather see our technique as a basic building block for new algorithmic approaches.

Such future approaches can apply dissociation at two different levels: (1) at the
query-level, i.e. at query time and before analyzing the data, or (2) at the data-level,

23We chose the word assimilation as reverse of dissociation, instead of the more natural choice of association,
as it correctly implies that two items are not merely associated, but rather really merged.

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

1:30 W. Gatterbauer and D. Suciu

i.e. after analyzing the data. The advantage of the former approaches is that they scale
independent of intricacies of the data (similar to the goals of the lifted inference com-
munity, e.g. [Van den Broeck et al. 2011]]), and that they can work very well in practice,
yet at the cost of no general guarantees for approximation (similar to loopy belief prop-
agation |[[Frey and MacKay 1997[). The advantage of the latter is that exact solutions
can be arbitrarily approximated, yet at the cost of no guaranteed runtime [Roth 1996|.

We envision a range of new approaches that apply dissociation at the data-level,
possibly together with quantization, to compile an existing intractable formula into
a tractable target language, e.g., read-once formulas or formulas with bounded
treewidth. For example, one can imagine an approximation scheme in which an itera-
tive Shannon expansion is enriched with dissociation at times to avoid the otherwise
resulting state explosion.

ACKNOWLEDGMENTS

We would like to thank Arthur Choi and Adnan Darwiche for helpful discussions on Relaxation & Compen-
sation, and for bringing[Prop. 5.1] to our attention [Chot and Darwiche 2011]]. We would also like to thank the
reviewers for their careful reading of this manuscript and for their detailed feedback. This work was par-
tially supported by NSF grants IIS-0915054 and IIS-1115188. More information about this research, includ-
ing SQL statements to reproduce the experiments, can be found on the project page:|attp://LaPushDB. com/}

REFERENCES

ANDERSEN, H. R., HADzIC, T., HOOKER, J. N., AND TIEDEMANN, P. 2007. A constraint store based on
multivalued decision diagrams. In Proceedings of the 13th International Conference on Principles and
Practice of Constraint Programming (CP’07). 118-132.

BERGMAN, D., CIRE, A. A., VAN HOEVE, W.-J., AND HOOKER, J. N. 2013. Optimization bounds from binary
decision diagrams. In INFORMS Journal on Computing. (to appear).

BERGMAN, D., VAN HOEVE, W. J., AND HOOKER, J. N. 2011. Manipulating MDD relaxations for combina-
torial optimization. In CPAIOR. 20-35.

CHAVIRA, M. AND DARWICHE, A. 2008. On probabilistic inference by weighted model counting. Artif. In-
tell. 172, 6-7, 772-799.

CHOI, A., CHAVIRA, M., AND DARWICHE, A. 2007. Node splitting: A scheme for generating upper bounds
in bayesian networks. In Proceedings of the 23rd Conference in Uncertainty in Artificial Intelligence
(UAT07). 57-66.

CHOI, A. AND DARWICHE, A. 2009. Relax then compensate: On max-product belief propagation and more.
In Proceedings of the 23rd Annual Conference on Neural Information Processing Systems (NIPS’09).
351-359. (Alternative title: Approximating MAP by Compensating for Structural Relaxations).

CHOI, A. AND DARWICHE, A. 2010. Relax, compensate and then recover. In Proceedings of New Frontiers in
Artificial Intelligence Workshops (JSAI-isAl). 167-180.

CHOI, A. AND DARWICHE, A. 2011. Personal communication.

CRAMA, Y. AND HAMMER, P. L. 2011. Boolean Functions: Theory, Algorithms, and Applications. Cambridge
University Press.

DALVI, N. N., SCHNAITTER, K., AND SUCIU, D. 2010. Computing query probability with incidence algebras.
In Proceedings of the 29th Symposium on Principles of Database Systems (PODS’10). 203-214.

DALvVI, N. N. AND SucIu, D. 2007. Efficient query evaluation on probabilistic databases. VLDB J. 16, 4,
523-544.

DARWICHE, A. AND MARQUIS, P. 2002. A knowledge compilation map. J. Artif. Int. Res. 17, 1, 229-264.

DECHTER, R. AND RisH, I. 2003. Mini-buckets: A general scheme for bounded inference. J ACM 50, 2,
107-153.

DETWILER, L., GATTERBAUER, W., LOUIE, B., SucIU, D., AND TARCZY-HORNOCH, P. 2009. Integrating
and ranking uncertain scientific data. In Proceedings of the 25th International Conference on Data En-
gineering (ICDE’09). 1235-1238.

FELLER, W. 1968. An introduction to probability theory and its applications 3d ed Ed. Wiley, New York.

FINK, R. AND OLTEANU, D. 2011. On the optimal approximation of queries using tractable propositional
languages. In Proceedings 14th International Conference on Database Theory (ICDT’11). 174-185.

FREY, B. J. AND MACKAY, D. J. C. 1997. A revolution: Belief propagation in graphs with cycles. In NIPS.

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

http://LaPushDB.com/

Oblivious Bounds on the Probability of Boolean Functions 1:31

FUHR, N. AND ROLLEKE, T. 1997. A probabilistic relational algebra for the integration of information re-
trieval and database systems. ACM Trans. Inf. Syst. 15, 1, 32—66.

GATTERBAUER, W., JHA, A. K., AND SucIU, D. 2010. Dissociation and propagation for efficient query eval-
uation over probabilistic databases. In Proceedings of the 4th International VLDB workshop on Man-
agement of Uncertain Data (MUD). 83-97.

GATTERBAUER, W. AND SUCIU, D. 2011. Optimal upper and lower bounds for Boolean expressions by dis-
sociation.

GATTERBAUER, W. AND SUCIU, D. 2013. Dissociation and propagation for efficient query evaluation over
probabilistic databases.[arXiv:1310.6257 lcs.DB}

GOGATE, V. AND DECHTER, R. 2011. SampleSearch: Importance sampling in presence of determinism.
Artificial Intelligence 175, 2, 694-729.

GOGATE, V. AND DOMINGOS, P. 2010. Formula-based probabilistic inference. In Proceedings of the 26th
Conference in Uncertainty in Artificial Intelligence (UAI’10). 210-219.

GOGATE, V. AND DOMINGOS, P. 2011. Approximation by quantization. In UAI. 247-255.

GURVICH, V. 1977. Repetition-free Boolean functions. Uspekhi Mat. Nauk 32, 183—184. (in Russian).

JAMPANI, R., XU, F., Wu, M., PEREZ, L. L., JERMAINE, C. M., AND HAAS, P. J. 2008. MCDB: a Monte
Carlo approach to managing uncertain data. In Proceedings International Conference on Management
of Data (SIGMOD’08). 687-700.

JHA, A., OLTEANU, D., AND SucCIU, D. 2010. Bridging the gap between intensional and extensional query
evaluation in probabilistic databases. In Proceedings of the 13th International Conference on Extending
Database Technology (EDBT’10). 323-334.

KENNEDY, O. AND KocCH, C. 2010. Pip: A database system for great and small expectations. In Proceedings
of the 26th International Conference on Data Engineering (ICDE’10). 157-168.

OLTEANU, D. AND HUANG, J. 2008. Using OBDDs for efficient query evaluation on probabilistic databases.
In Proceedings of the 4th International Conference on Scalable Uncertainty Management (SUM’08). 326—
340.

OLTEANU, D., HUANG, J., AND KOCH, C. 2009. Sprout: Lazy vs. eager query plans for tuple-independent
probabilistic databases. In Proceedings of the 25th International Conference on Data Engineering
(ICDE’09). 640-651.

OLTEANU, D., HUANG, J., AND KocH, C. 2010. Approximate confidence computation in probabilistic
databases. In Proceedings of the 26th International Conference on Data Engineering (ICDE’10). 145—
156.

PIPATSRISAWAT, K. AND DARWICHE, A. 2007. Clone: Solving weighted max-sat in a reduced search space.
In Proceedings of the 20th Australian Joint Conference on Artificial Intelligence (AUS-AI). 223-233.

POOLE, D. 1993. Probabilistic horn abduction and bayesian networks. Artif. Intell. 64, 1, 81-129.

PROVAN, J. S. AND BALL, M. O. 1983. The complexity of counting cuts and of computing the probability
that a graph is connected. SIAM J. Comput. 12, 4, 7T77-788.

RAMIREZ, M. AND GEFFNER, H. 2007. Structural relaxations by variable renaming and their compilation
for solving mincostsat. In Proceedings of the 13th International Conference on Principles and Practice of
Constraint Programming (CP’07). 605-619.

RE, C., DALvVI, N. N., AND Suciu, D. 2007. Efficient top-k query evaluation on probabilistic data. In Pro-
ceedings of the 23rd International Conference on Data Engineering (ICDE’07). 886-895.

RoTH, D. 1996. On the hardness of approximate reasoning. Artif. Intell. 82, 1-2, 273-302.

SEN, P., DESHPANDE, A., AND GETOOR, L. 2010. Read-once functions and query evaluation in probabilistic
databases. Proc. VLDB Endowment 3, 1, 1068-1079.

ST-AUBIN, R., HOEY, J., AND BOUTILIER, C. 2000. APRICODD: Approximate policy construction using
decision diagrams. In NIPS. 1089-1095.

VALIANT, L. 1982. A scheme for fast parallel communication. SIAM Journal on Computing 11, 2, 350-361.

VALIANT, L. G. 1979. The complexity of computing the permanent. Theor. Comput. Sci. 8, 189-201.

VAN DEN BROECK, G., TAGHIPOUR, N., MEERT, W., DAVIS, J., AND RAEDT, L. D. 2011. Lifted probabilistic
inference by first-order knowledge compilation. In IJCAI. 2178-2185.

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

http://arxiv.org/abs/1105.2813
http://arxiv.org/abs/1310.6257

1:32 W. Gatterbauer and D. Suciu

A. NOMENCLATURE

T,Y, 2 independent Boolean random variables

©, P Boolean formulas, probabilistic event expressions

f,9,f, Boolean function, represented by an expression ¢

P[z],P[¢] probability of an event or expression

DPiyq5,Tk probabilities pi = P[zz], q; = P[yj], Ty = P[Zk]

X, g, P sets {z1,...,z,} or vectors (z1,...,xy) of variables, functions or probabilities
Pp.qlf] probability of function f(x,y) for p = P[x], q = Ply]

T, p,p complements -z, —p, 1 —p

Fala dissociation of a function f or expression ¢

0 substitution 0 : x’ — x; defines a dissociation f’ of f if f'[0] = f
flz'/x] substitution of z’ for = in f

mom/sn m = [al, m’ = [2'],n = |yl

d; number of new variables that x; is dissociated into

v valuation or truth assignment v : y — {0,1} with y; = v;

flv], ¢lv] function f or expression ¢ with valuation v substituted for y
g” g” =\, g5, where gf = g; ifv;=0and gj = g; if ;=1

B. REPRESENTING COMPLEX EVENTS

It is known from Poole’s independent choice logic [[Poole 1993|] that arbitrary cor-
relations between events can be composed from disjoint-independent events only. A
disjoint-independent event is represented by a non-Boolean independent random vari-
able y which takes either of k values v. = (vy,...,v;) with respective probabili-
ties g = (q1,...,qx) and > ,q; = 1. Poole writes such a “disjoint declaration” as
y([vr:qe, ..., vk qx))-

In turn, any k disjoint events can be represented starting from & — 1 independent
Boolean variables z = (21,...,2,_1) and probabilities P[z] = (¢, &, -2 . =1)

g1’ 4192 q1---4rk—2

by assigning the disjoint-independent event variable y its value v; whenever event A;
is true, with A; defined as:

(y=v1)=41:— 2
(y =v9) = As =— Z120

(y=vp_1) = A, *— 21 ... Zp—22k—1
(y = ’Uk) =Ap —Z1... Z—0%k_1 -
For example, a primitive disjoint-independent event variable y(vy: £, va: 5, v5: 5,041)
can be represented with three independent Boolean variables z = (21, 22, z3) and IP’[Z]1 =
(l 5 2

It8 fgllows that arbitrary correlations between events can be modeled starting from
independent Boolean random variables alone. For example, two complex events A and
B with P[A] = P[B] = ¢ and varying correlation (see can be represented as
composed events A :— 2125V 23V z4 and B :— Z1zo V 23 V z5 over the primitive events z
with varying probabilities P[z]. Events A and B become identical for P[z] = (0,0, ¢, 0,0),
independent for P[z] = (0,0, 0, q, ¢), and disjoint for P[z] = (0.5, ¢,0,0,0) with ¢ < 0.5.

C. USER-DEFINED AGGREGATE: IOR
Here we show the User-defined Aggregate (UDA) iOR in PostgreSQL:

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

Oblivious Bounds on the Probability of Boolean Functions 1:33

create or replace function ior_sfunc(float, float) returns float as
'select $1 * (1.0 - $2)’
language SQL;

create or replace function ior_finalfunc(float) returns float as
'select 1.0 - $1°
language SQL;

create aggregate ior (float)(
sfunc = ior_sfunc,

stype = float,
finalfunc = ior_finalfunc,
initcond =’1.0’);

ACM Transactions on Database Systems, Vol. V, No. N, Article 1, Publication date: January YYYY.

	Introduction
	General Notations and Conventions
	Dissociation of Boolean Functions and Expressions
	Oblivious bounds for dissociated event expressions
	Definition of Oblivious Bounds
	Characterization of Oblivious Bounds through Valuations
	Oblivious Bounds for Unary Conjunctive and Disjunctive Dissociations
	Optimal Oblivious Bounds for Unary Conjunctive and Disjunctive Dissociations
	Illustrated Examples for Optimal Oblivious Bounds

	Relaxation and Model-based bounds as Dissociation
	Relaxation & Compensation
	Model-based Approximation

	Query-centric Dissociation Bounds for probabilistic queries
	Illustrations of oblivious bounds
	Oblivious Bounds as Function of Correlation between Variables
	Oblivious Bounds versus Model-based Approximations
	Conjunctive versus Disjunctive Dissociation
	Multiple Dissociations at Once
	Dissociation with a Standard Relational Database Management System

	Related work and Discussion
	Outlook
	Nomenclature
	Representing Complex Events
	User-defined Aggregate: iOR

