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ABSTRACT
Increasingly large Knowledge Bases are being created, by
crawling the Web or other corpora of documents, and by
extracting facts and relations using machine learning tech-
niques. To manage the uncertainty in the data, these KBs
rely on probabilistic engines based on Markov Logic Networks
(MLN), for which probabilistic inference remains a major
challenge. Today’s state of the art systems use variants of
MCMC, which have no theoretical error guarantees, and, as
we show, suffer from poor performance in practice.

In this paper we describe SlimShot (Scalable Lifted In-
ference and Monte Carlo Sampling Hybrid Optimization
Technique), a probabilistic inference engine for Web-Scale
knowledge bases. SlimShot converts the MLN to a tuple-
independent probabilistic database, then uses a simple Monte
Carlo-based inference, with three key enhancements: (1) it
combines sampling with safe query evaluation, (2) it esti-
mates a conditional probability by jointly computing the
numerator and denominator, and (3) it adjusts the proposal
distribution based on the sample cardinality. In combina-
tion, these three techniques allow us to give formal error
guarantees, and we demonstrate empirically that SlimShot
outperforms today’s state of the art probabilistic inference
engines used in knowledge bases.

1. INTRODUCTION
Increasingly sophisticated information extraction and AI

techniques have enabled the automatic construction of large
knowledge bases, created by crawling the web and extracting
facts and relations using machine learning techniques [15, 26,
13, 24, 6]. While conventional fact bases such as YAGO [19]
and Freebase [16] contain high-quality, human-curated facts
that are guaranteed (with a very high degree of certainty)
to be correct, the tuples extracted by automatic methods
unavoidably contain noisy and uncertain data. Google’s
KnowledgeVault [13] and Geo DeepDive [37] are examples
of large scale knowbases where automatic methods produce
highly calibrated probabilistic annotations for its extracted

facts. Such systems store probabilistic data, for example,
in KnowledgeVault a fact like BornIn(Obama, Hawaii) may
have probability 0.7.

To control and manage the quality of the data and query
answers, these systems rely critically on background knowl-
edge, which is captured in a formalism like Markov Logic
Networks [12] (reviewed in Section 2). An MLN consists
of a collection of soft and hard constraints, which are quite
similar to constraints in databases, but are annotated with a
weight, representing the degree to which they should hold in
the KB. An MLN introduces complex correlations between
the large collection of facts in the knowledge base. Query
answering requires probabilistic inference, and this is a chal-
lenging task. Answering even the simplest query that returns
a single tuple requires reasoning over a large set of correlated
tuples. Scalable and reliable probabilistic inference remains
a major unsolved challenge for large scale knowledge bases.

All MLN systems today perform inference using some
variant of Monte Carlo Markov Chain (MCMC), to sample
from the space of possible worlds. While MCMC provably
converge, their theoretical convergence rate is too slow for
practical purposes. Instead, systems usually run a fixed num-
ber of simulation steps, e.g. 10,000, and return whatever they
find. However, in practice they perform much worse than
one expects. The problem is that, at their core, they need to
sample uniformly from the set of solutions of a Boolean for-
mula, and precise uniformity is critical for convergence. But
uniform sampling is a challenging task in itself. The state
of the art is SampleSAT [35], which is heuristic-based and
can only approximate the uniform distribution. Together,
the weak theoretical guarantees coupled with the fact that
their main assumption does not hold in practice means that
MCMC-based systems have very poor quality in practice
(more on this in Section 5).

In this paper we propose a new approach to scalable prob-
abilistic inference over large Knowledge Bases. The key new
idea in our approach is to combine sampling with lifted infer-
ence (also called safe query evaluation), thus converting the
standard 0/1 estimation problem, where each sample leads
to either 0 or 1, to the problem of estimating the expected
value of a function in [0, 1]. This allows us to deploy two
powerful optimizations: evaluation of a conditional probabil-
ity, and importance sampling. Finally, we describe a suite
of novel query optimizations to speed up the SQL query
performing the lifted inference. We give now an overview of
our contributions.

We start by translating the MLN into a tuple-independent
probabilistic database: the query probability in the MLN be-
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comes a conditional probability P(Q|Γ) in the tuple indepen-
dent database, where Γ is a constraint. The (unconditional)
probability of a formula P(Φ) can be estimated using Monte
Carlo simulation (sample N worlds, return the fraction that
satisfy the formula), but this requires a number of simulation
steps inversely proportional to the probability. This works
well when Φ is a Union of Conjunctive Queries (UCQ), which
is an ∃∗ formula and usually has a high probability. But it
fails when applied to Γ (the denominator in P(Q|Γ)), which
is a ∀∗ sentence with a tiny probability (say, 10−9). In other
words, even though P(Q|Γ) is relatively large (say 0.1 to 0.9),
we need a huge number of steps to compute it, because P(Γ)
is tiny. This has prevented MLN systems from adopting a
translation into probabilistic databases, relying on MCMC
instead.

Our new idea is to combine Monte Carlo sampling with
lifted inference (also called safe query evaluation), in a tech-
nique we call SafeSample. Fix a subset of the relations such
that, once these relations are made deterministic, the query
can be evaluated in polynomial time. Then run the Monte
Carlo simulation by sampling only over these relations, and
computing the probability of each sample using a safe query
plan; in other words, instead of estimating a 0/1-random vari-
able, we estimate a random variable with values in [0, 1] (also
called discrete integration). Safe query evaluation has been
studied both in probabilistic databases [34] and in AI [11]
where it is called lifted inference; we will use both terms
interchangeably in this paper.

The real power of SafeSample comes from enabling two
additional optimizations. CondSample evaluates the numer-
ator and denominator of P(Q ∧ Γ)/P(Γ) together, by using
each sample to increment estimates for both the numerator
and the denominator. This technique works only in com-
bination with SafeSample. Otherwise, if both numerator
and denominator are 0/1-random variables, CondSample be-
comes equivalent to rejection sampling, which samples worlds,
rejects those that do not satisfy Γ, and returns the fraction
of worlds that satisfy Q∧Γ. Rejection sampling wastes many
samples, leading to poor performance. By using SafeSample
instead, we can compute the exact probability of both Q ∧ Γ
and Γ at each sample, and add it to both sums. In other
words, we no longer waste samples, and instead make every
sample count. Our main theoretical result (Theorem 3.6)
shows that the convergence rate of CondSample is inverse
proportional to the conditional probability of Q given Γ, and
a parameter called output-tilt of Γ (ratio between the largest
and smallest probability over all samples). In other words, we
no longer depend on the tiny probability of Γ, but instead on
the conditional probability P(Q|Γ), and the output-tilt. The
second optimization, ImportanceSample, further decreases
the output-tilt by weighting samples in inverse proportion
to the probability of Γ.

The entire probabilistic inference in SlimShot is done by a
SQL query, representing a safe plan, and thus is pushed inside
the database engine; unlike other MLN systems, SlimShot
does not require a separate grounding step. The safe plan is
evaluated once for every sample, hence optimizations affect
critically the performance of probabilistic inference. We de-
scribe several optimization techniques to achieve high perfor-
mance. We validate SlimShot experimentally by comparing
it with other popular MLN systems, and show that it has dra-
matically better accuracy at similar or better performance,
and that it is the only MLN system that offers relative error

guarantees.
Our approach reduces MLNs to Weighted Model Count-

ing (WMC). Recently, there have been three parallel, very
promising developments for both exact and approximate
WMC. Sentential Decision Diagrams [9] (SDDs) are an exact
model counting approach that compile a Boolean formula
into circuit representations, where WMC can be done in lin-
ear time. SDDs have state-of-the-art performance for many
tasks in exact weighted model counting, but also have some
fundamental theoretical limitations: Beame and Liew prove
exponential lower bounds even for simple UCQ’s whose prob-
abilities are in PTIME. WeightMC [5] is part of a recent and
very promising line of work [14, 5], which reduces approxi-
mate model counting to a polynomial number of oracle calls
to a SAT solver. Adapting this techniques to weighted model
counting is non-trivial: Chakraborty [5] proves that this is
possible if the models of the formula have a small tilt (ratio
between the largest and smallest weight of any model). The
tilt is a more stringent measure than our output-tilt, which
is the ratio of two aggregates and can be further reduced by
using importance sampling. Finally, a third development con-
sists of lifted inference [28, 4, 33, 11, 18], which are PTIME,
exact WMC methods, but only work for a certain class of
formulas: in this paper we combine lifted inference with
sampling, to apply to all formulas.

In summary, our paper makes the following contributions:

• We describe SafeSample, a novel approach to query
evaluation over MLNs that combines sampling with
lifted inference, and two optimizations: CondSample
and ImportanceSample. We prove an upper bound on
the relative error in terms of the output-tilt. Section 3.

• We describe several optimization techniques for eval-
uating safe plans in the database engine, including
techniques for negation, for tables with sparse content
or sparse complement, and for evaluating constraints
(hence CNF formulas). Section 4.

• We conduct a series of experiments comparing SlimShot
to other MLN systems, over several datasets from the
MLN literature, proving significant improvements in
precision at similar, or better, runtime. Section 5

2. BACKGROUND
We fix a relational vocabulary σ = (R1, . . . , Rm), and

denote DB = (RDB
1 , . . . , R

DB
m) a database instance over σ. We

identify DB with the set of all tuples, and write D ⊆ DB

to mean RDi ⊆ RDB
i for all i. A First Order formula with

free variables x = (x1, . . . , xk) in prenex-normal form is an
expression:

Φ(x) = E1y1E2y2 . . . E`y`ϕ(x,y)

where each Ei is either ∀ or ∃ and ϕ is a quantifier-free
formula using the logical variables x1, . . . , xk, y1, . . . , y`. A
sentence is a formula without free variables. In this paper
we consider two kinds of formulas: a query is a formula
with quantifier prefix ∃∗, and a constraint is a formula with
quantifier prefix ∀∗; note that both queries and constraints
may have free variables. A query can be rewritten as Q =
C1 ∨ C2 ∨ · · · where each Ci is a conjunctive query with
negation, while a constraints can be written as ∆1 ∧∆2 ∧ · · ·
where each ∆i is a clause with quantifier prefix ∀∗.
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Equivalence of queries Q ≡ Q′ is NP-complete [31], and, by
duality, equivalence of constraints Γ ≡ Γ′ is coNP-complete.

2.1 Probabilistic Databases
A tuple-independent probabilistic database, or probabilistic

database for short, is a pair (DB, p) where p : DB→ [0, 1] is a
function that associates to each tuple t ∈ DB a probability
p(t). It defines a probability space on the set of possible
worlds, where each tuple t is included independently, with
probability p(t). Formally, for each subset D ⊆ DB, called
a possible world, its probability is PDB,p(D) =

∏
t∈D p(t) ·∏

t∈DB−D(1− p(t)). The probability of a sentence Φ is:

PDB,p(Φ) =
∑

D⊆DB:D|=Φ

PDB,p(D)

If Q(x) is a query, then its output is defined as the set of
pairs (a, p), where a is a tuple of constants of the same arity
as x, and p is the probability of the Boolean query obtained
by substituting the free variables x with the constants a,

p
def
= PDB,p(Q[a/x]). We drop the subscripts from PDB,p when

clear from the context.
A relation R is called deterministic, if for every tuple

t ∈ RDB, p(t) ∈ {0, 1}, otherwise it is called probabilistic. We
sometimes annotate with a subscript Rd the deterministic
relations. We denote A the active domain of the database,
and n = |A|.

Query Evaluation. In general, computing P(Φ) is #P-hard
in the size of the active domain1. The standard approach
is to first compute the grounding of Φ on the database DB,
also called the lineage [1], which is a Boolean formula, then
compute the probability of this Boolean formula; we do not
use lineage in this paper and will not define it formally. If Φ
is an ∃∗ sentence, then the lineage is a DNF formula, which
admits an FPTRAS using Karp and Luby’s sampling-based
algorithm [23]. But the lineage of a ∀∗ sentences is a CNF
formula, and even very restricted classes of CNF formulas
do not admit an FPTRAS unless P=NP [30].

An alternative approach to compute P(Φ) is called lifted
inference in the Statistical Relational Learning literature [11],
or safe query evaluation in probabilistic databases [34]. It al-
ways runs in PTIME in n, but only works for some sentences
Φ. Following [34], lifted inference proceeds recursively on
Φ, by applying the rules in Table 1, until it reaches ground
atoms, whose probabilities are looked up in the database.
Each rule can only be applied after checking a certain syn-
tactic condition on the formula Φ; if no rule can be applied,
lifted inference fails. When the rules succeed we call Φ safe,
or liftable; otherwise we call it unsafe. For a simple illustra-
tion, if Td is a deterministic relation, then Γ1 = ∀x∀y(R(x)∨
S(x, y) ∨ Td(y)) is safe, because x is a separator variable, in
other words P(Γ1) =

∏
a∈A P(R(a)∨S(a, y)∨Td(y)), where

P(R(a) ∨ S(a, y) ∨ Td(y)) = 1 − (1 − P(R(a))) ·
∏
b∈A(1 −

P(S(a, b))) · (1−P(Td(b))). On the other hand, if all three
relations are probabilistic, then ∀x∀y(R(x) ∨ S(x, y) ∨ T (y))
is #P-hard: we call it unsafe, or non-liftable. We refer the
reader to [34] for more details on lifted inference. We note
that in the literature the term lifted inference sometimes
refers to symmetric databases [10]: a relation R is called
symmetric if all ground tuples R(t) over the active domain

1It remains #P-hard in the size of the database, since these
two are polynomially related.

S(x,y) Td(y) 

A(x,y) :- S(x,y) ∨ Td(y) 

B(x) :- ∀y A(x,y) 

R(x) 

C(x) :- R(x) ∨ B(x) 

Γ1:- ∀x C(x) 

positive 
ground 
atom 

independent 
union 

independent 
union 

independent ∀ 

independent ∀ 

Figure 1: Safe plan for Γ1 = ∀x∀y(R(x) ∨ S(x, y) ∨ Td(y)).

have the same probability, and a probabilistic database is
called symmetric if all its relations are symmetric. In this
paper we do not restrict databases to be symmetric, and will
use lifted inference to mean the same thing as safe query
evaluation.

Safe plans. Following other systems [3, 27], SlimShot per-
forms lifted inference by rewriting the query into a safe query
plan, which is then evaluated inside a relational database
engine. The leaves of the plan are relations with a special
attribute called p, representing the probability of the tuple.
There is one operator for each rule in Table 1, which com-
putes the probabilities of the output in terms of the input.
For example the independent join operator multiplies the
probabilities of the left and the right operand, while the
independent ∀ aggregates all probabilities in a group by mul-
tiplying them. We describe more details of the safe plans in
Sec.4. For example, the query Q1 has the safe plan shown
in Figure 1.

2.2 Markov Logic Networks
An MLN is a set of pairs (w,∆(x)), where ∆(x) is a

constraint with free variables x, and w ∈ [0,∞] is a weight.
If w =∞ then we call ∆ a hard constraint, otherwise a soft
constraint. For example:

(3,Smoker(x) ∧ Friend(x, y)⇒ Smoker(y)) (1)

is a soft constraint with weight w = 3 saying that, typically,
friends of smokers are smokers.

For a fixed domain A, a possible world D is a set of ground
tuples over the domain A that satisfies all hard constraints.
Its weight is computed as follows: for each soft constraint
(w,∆(x)) and for each tuple of constants a such that ∆(a)
holds in D, multiply its weight by w:

WMLN (D) =
∏

(w,∆(x))∈MLN,a∈A|x|:w<∞∧D|=∆[a/x]

w (2)

For example, considering an MLN that consists only of
the soft constraint (1), the weight of a possible world is
3N , where N is the number of pairs a, b such that the im-
plication Smoker(a) ∧ Friend(a, b) ⇒ Smoker(b) holds in
D. The probability of a possible world D is defined as
the normalized weight: PMLN (D) = WMLN (D)/Z, where
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Φ P(Φ) Rule name Conditions to check
R(t) p(R(t)) Positive ground atom −
¬R(t) 1− p(R(t)) Negated ground atom −

Φ1 ∧ Φ2 P(Φ1) ·P(Φ2) Independent join no common probabilistic relation symbol in Φ1,Φ2

Φ1 ∨ Φ2 1− (1−P(Φ1)) · (1−P(Φ2)) Independent union no common probabilistic relation symbol in Φ1,Φ2

∀xΦ
∏
a∈A Φ[a/x] Independent ∀ x is a separator variable (see caption)

∃xΦ 1−
∏
a∈A(1− Φ[a/x]) Independent ∃ x is a separator variable (see caption)

Φ1 ∨ Φ2 P(Φ1) + P(Φ2)−P(Φ1 ∧ Φ2) I/E for constraints −
Φ1 ∧ Φ2 P(Φ1) + P(Φ2)−P(Φ1 ∨ Φ2) I/E for queries −

Table 1: Save Query Evaluation Rules for PDB,p(Φ). A separator variable is one that occurs in every probabilistic atom, and, if
two atoms have the same relational symbol, then it occurs in the same position in both.

Z =
∑
DWMLN (D). The probability of a query Q is

PMLN (Q) =
∑
D:D|=Q PMLN (D).

Notice that a tuple-independent probabilistic database is a
special case of an MLN, where each soft constraint consists of
a ground tuple, (w,R(a)), where w = p(R(a))/(1− p(R(a)))
is the odds of that tuple.

State of the art. MLN’s have been used in information ex-
traction, record linkage, large scale text processing, and data
collection from scientific journals [12, 25, 37]. MLN systems
like Tuffy [25] and DeepDive [37] scale up by storing the evi-
dence (hard constraints consisting of a single ground tuple) in
a relational database system, and split query evaluation into
two parts: grounding and probabilistic inference. Grounding
is performed in the database engine [25], probabilistic infer-
ence is done entirely outside the database engine. Inference
remains the major challenge to date: all MLN systems use
MCMC, which, as we show in Section 5, can suffer from poor
accuracy in practice.

Translation to Probabilistic Databases. Somewhat sur-
prisingly, every MLN can be converted into a tuple-independent
probabilistic database. One simple way to do this is to re-
place each soft rule (w,∆(x)) with two new rules:

(w,R(x)) (∞, ∀xR(x)⇔ ∆(x)) (3)

where R(x) is a new relational symbol (a new symbol for
each rule), of the same arity as the free variables of ∆(x).
After this transformation, the new MLN consists of the new
tuple-independent relations R(x), plus hard constraints of
the form (3); denote Γ the conjunction of all hard constraints.
Let PMLN and P be the probability space defined by the
MLN, and by the tuple-independent probabilistic database.
The following can be easily checked, for any query Q:

PMLN (Q) = P(Q|Γ) = P(Q ∧ Γ)/P(Γ) (4)

In other words, we have reduced the problem of computing
probabilities in the MLN to the problem of computing a
conditional probability over a tuple-independent probabilistic
database. Notice that Γ is a ∀∗ sentence, hence PMLN (Q)
no longer admits an FPTRAS, because the grounding of a
∀∗ sentence is a CNF formula.

One disadvantage of the translation (3) is that the hard
rule has two negations: (¬R(x) ∨∆(x)) ∧ (R(x) ∨ ¬∆(x)).
In this paper we use a more effective translation from MLN’s
to probabilistic databases, adapted from [22]: replace each
soft rule (w,∆(x)) by the following two new rules,

(w − 1, R(x)) (∞,∀x¬R(x) ∨∆(x)) (5)

The new hard constraint is simpler: if ∆ is a single clause
(the typical case in MLN), the translation is also a single
clause. Eq.(4) still holds for this translation. To see this,
consider a world D over the vocabulary of the old MLN,
and a tuple of constants, a. If D 6|= ∆(a), then a does not
contribute to the weight of D in Eq.(2): in the new MLN,
the hard constraint (5) requires R(a) to be false, and a also
does not contribute any factor to the weight. If D |= ∆(a),
then in the old MLN the constants a contributed a factor
of w, and in the new world there are two possibilities R(a)
is true or is false, and these two worlds contribute jointly a
weight (w − 1) + 1 = w.

2.3 Chernoff Bound and Monte Carlo Simu-
lation

If X1, . . . , XN ∈ [0, 1] are i.i.d. with mean x, then Cher-
noff’s Bound is [20]:

P(
∑
i=1,N

Xi ≥ (1 + δ)Nx) ≤exp (−N ·D((1 + δ)x||x)) (6)

where D(z||x) = z · ln( z
x

)+(1−z) · ln( 1−z
1−x ) is the binary rela-

tive entropy. By using the inequality D((1+δ)x||x) ≥ x·h(δ),
where h(x) = (1 + x)ln(1 + x)− x, and further using h(δ) ≥
δ2/3 for δ ≤ 1/2, the probability on the right simplifies to
exp(−Nxδ2/3). All variants of Chernoff bounds discussed
in this paper have both upper bounds (P(

∑
Xi ≥ · · · )) and

lower bounds (P(
∑
Xi ≤ · · · )), with slightly different con-

stants, but to simplify the presentation we follow common
practice and discuss only the upper bound.

If f is a real-valued random variable, the Monte Carlo
estimator for x = E[f ] consists of computing N independent
samples of f , denoted X1, . . . , XN , then returning:

x̂ =

∑
i=1,N Xi

N
(7)

If f ∈ [0, 1], then Chernoff’s bound applies, and it follows
that we need N & 1/(xδ2) samples (ignoring a small constant
factor) in order for the estimator x̂ to have relative error δ
with high probability. In practice, of course, x is unknown,
however Dagum [7] describes a dynamic stopping condition
that guarantees the error bound δ, without knowing x. In
summary, the Monte Carlo estimator guarantees an error
bound, requiring 1/(xδ2) simulation steps.

3. SlimShot
SlimShot performs query evaluation on MLNs. The data

(evidence) is stored in a relational database, and the prob-
abilistic inference is pushed inside the relational database
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engine; there is no separate grounding step. The MLN is
translated into a tuple-independent probabilistic database,
using Eq.(5), then PMLN (Q) is computed by the conditional
probability:

P(Q|Γ) =
P(Q ∧ Γ)

P(Γ)
(8)

We denote x = P(Q|Γ) throughout this section.
A naive approach to compute (8) is to estimate the numera-

tor and denominator separately, using Monte Carlo sampling.
Throughout this section we define f as the 0/1-function
f(D) = 1 when D |= Γ, and f(D) = 0 otherwise, where D
is a possible world, and denote y = E[f ] = P(Γ). We could
use a Monte Carlo estimator for E[f ], but this is impractical
because Γ is a ∀∗ sentence, hence y is a tiny quantity, say,
10−9, requiring N & 1011 simulation steps to guarantee a
relative error δ = 0.1. In contrast, x = P(Q|Γ) is relatively
large, say 0.1 to 0.9, but to compute it we need to divide
two tiny quantities.

SlimShot performs three extensions to the naive Monte
Carlo simulation, each with a provable reduction in the re-
quired number of steps: (1) SafeSample: combines sampling
with exact lifted inference, (2) CondSample: guarantees an
error bound for the conditional directly, without relying on
separate error bounds for the numerator and denominator,
and (3) ImportanceSample: deploys importance sampling to
further improve the convergence rate.

3.1 SafeSample
The main idea of our entire approach is to combine sam-

pling with lifted inference; we call this SafeSample. We start
with a definition:

Definition 3.1. Let Φ be a sentence, and T be a set of
relation names. We say that Φ is safe modulo T if it becomes
safe after making all relation names in T deterministic.

Throughout this section we denote g(TD) = P(Γ|T =
TD) = ER[f |T = TD], where TD is a possible world for
the relations T. If Γ is safe modulo T , then the function
g(TD) can be computed in polynomial time. For example
the constraint ∀x∀y(R(x) ∨ S(x, y) ∨ T (y)) is unsafe, but it
is safe modulo T , because once we make T deterministic, the
constraint becomes safe; the function g(TD) is computed by
the safe plan in Figure 1. We will usually denote T a relation
in T, and denote R any other relation2

SafeSample is the naive Monte Carlo algorithm applied to
the [0, 1]-valued function g, instead of the 0/1-function f , to
compute P(Γ). It samples N possible world TDi , i = 1, N ,
then returns the estimate

ŷ =

∑
i=1,N g(TDi)

N
(9)

This is an unbiased estimator, because ET[g] = ET[ER[f |T =
TD]] = E[f ] = y.

Estimating P(Γ) using (9), and similarly P(Q ∧ Γ), then
dividing them, leads to very poor performance. We never
use SafeSample in isolation, but only in combination with
CondSample and ImportanceSample, described in the next
sections. However, we can prove that, theoretically, SafeSample
alone reduces the number of steps over the (even more naive)

2Suggesting deTerministic and Random, although the rela-
tions T are not deterministic.

0/1-Monte Carlo estimator for P(Γ). While this is implied
by Rao-Blackwell’s theorem, we can characterize the speedup
precisely.

Proposition 3.2. Let g ≥ 0 be a random variable s.t. g ≤ c
from some constant c, with mean y = E[g] and variance
σ2 = E[g2]−E2[g]. Let ŷ be the estimator in Eq.(9). Then,
for all δ ≤ σ2/(2cy):

P(ŷ ≥ N(1 + δ)y) ≤2exp(−Nδ
2y2

3σ2
)

Proof. Bennett’s theorem states that, if X1, . . . , XN are iid’s
s.t. |Xi| ≤ c with mean 0 and variance σ2, then P(

∑
iXi ≥

t) ≤ exp(−Nσ
2

c2
h( ct

Nσ2 )). By setting Xi = g(Di) − y, t =

N ·δ ·y we obtain P(ŷ ≥ N(1+δ)y) ≤ exp(−N σ2

c2
h( ct

Nσ2 )) =

exp(−N σ2

c2
h( cδy

σ2 )), and finally we use the fact that h(x) ≥
x2/3 for 0 ≤ x ≤ 1/2.

Thus, the number of steps required by (9) to estimate y
with an error ≤ δ is N & σ2/(y2δ2). SafeSample is faster
than a 0/1-Monte Carlo estimator by a factor equal to the ra-
tio of the variances, σ2(f)/σ2(g). Notice that σ2(f)−σ2(g) =
E[f2]−ET[g2] = ET[ER[f2|T = TD]]−ET[E2

R[f |T = TD]].
In other words, the variance due to the random choices of
R is eliminated (since we don’t sample R but use lifted
inference instead); the only variance that remains is due to
T. This implies that the speedup σ2(f)/σ2(g) is always ≥ 1.
We show two examples: one in which the speedup improves
exponentially with the size of the domain, the other where
it is only a small constant factor.

Example 3.3. Consider Γ = ∀x(R(x) ∨ T (x)), and a sym-
metric probabilistic database over a domain of size n, where,
for all i ∈ [n], the tuple R(i) has probability p(R(i)) = r and
T (i) has probability t. We show that the speedup σ2(f)/σ2(g)
grows exponentially with the domain size. We have P(Γ) =
E[f ] = E[f2] = (r + t− rt)n, hence:

σ2(f) = (r + t− rt)n − (r + t− rt)2n

If TD has size |TD| = n− k, then g(TD) = E[f |T = TD] =
rk, which implies ET [g] =

∑
k

(
n
k

)
tn−k(1− t)krk = (t+ (1−

t)r)n, and similarly ET [g2] = (t+ (1− t)r2)n, or

σ2(g) = (t+ (1− t)r2)n − (t+ (1− t)r)2n

When r = t = 1/2, then the variance decreases from σ2(f) =
(3/4)n − (9/16)n = (12n − 9n)/16n to σ2(g) = (5/8)n −
(3/4)2n = (10n−9n)/16n. Their ratio σ2(f)/σ2(g) = (12n−
9n)/(10n − 9n) ≈ (6/5)n.

Example 3.4. Consider now Γ = ∀x∀y(R(x) ∨ S(x, y) ∨
T (y)). As before, we consider for illustration a symmetric
database, where R = T = [n], S = [n]× [n], and the tuples
in R,S, T have probabilities r, s, t respectively. We show that
here the speedup is only a small constant factor. We sample
T , and let R,S be the random relations. If |TD| = n−k, then
g(TD) = P(Γ|TD) = (r+sk(1−r))n, because for every value
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of the variable x = i, the sentence ∀y ∈ [k](R(i) ∨ S(i, y))
must be true. Thus, we have

P(Γ) = E[f ] = E[f2] =
∑
k=0,N

(
n

k

)
tn−k(1− t)k(r + sk(1− r))n

ET [g2] =
∑
k=0,N

(
n

k

)
tn−k(1− t)k(r + sk(1− r))2n

Here the decrease in variance is only by a constant factor
because, if we group the terms in E[f2]−ET [g2] by k, then for
each k > 0, the difference (r+ sk(1− r))n− (r+ sk(1− r))2n

is ≤ (r + sk(1− r))n(1− r)(1− s). That, is except for the
first term k = 0 (whose contribution to the sum is negligible),
all others decrease by a factor of at most (1− r)(1− s).

As the last example suggest, SafeSample alone is insuffi-
cient, which justifies our second technique.

3.2 CondSample
The main advantage of SafeSample is that it leads to

dramatic speedup when we compute the numerator and de-
nominator of the conditional probability in Eq.(8) together:
we call this technique CondSample. As we will show, the
improvement happens only if we use SafeSample: otherwise,
if the denominator consists of 0/1-random variables, comput-
ing the numerator and denominator together is equivalent
to rejection-sampling, which has very poor performance.

Given a set of relations T such that both Q ∧ Γ and Γ
are safe modulo T, CondSample estimates Eq.(8) by the
following quantity:

x̂ =

∑
i=1,N P(Q ∧ Γ|TDi)∑
i=1,N P(Γ|TDi)

(10)

Notice that, for any fixed N , x̂ is a biased estimator of x;
however, x̂ converges to x when N →∞.

Chakraborty [5] define the tilt of a Boolean formula as the
ratio between the largest and smallest weight of any of its
models. We adapt their terminology to a random variable:

Definition 3.5. The output-tilt of a random variable Y ≥ 0
is T = maxY/minY .

We prove:

Theorem 3.6. Let (X1, Y1), . . . , (XN , YN ) be i.i.d. such
that for all i, Xi ∈ [0, 1] and has mean x = E[Xi], and
Yi ≥ 0. Let T be the output-tilt of Yi. Then:

P

(∑
i=1,N XiYi∑
i=1,N Yi

≥ (1 + δ)x

)
≤ exp(−ND/T ) (11)

where D = D((1 + δ)x||x).

Proof. We use the following lemma:

Lemma 3.7. Let y1, . . . , yN ≥ 0 be N real numbers, and let
M = (

∑
i yi)/(maxi yi); notice that M ≤ N . Let X1, . . . , XN

be i.i.d.’s, where each Xi ∈ [0, 1] and has mean x = E[Xi].
Then, for any δ > 0:

P(
∑
i

Xiyi > (1 + δ)x(
∑
i

yi)) ≤ exp(−M ·D)

(where D = D((1 + δ)x||x)).

Intuitively, the lemma generalizes two extreme cases: when
all weights yi are equal, then M = N and the bound becomes
the Chernoff bound for N items; and when the weights are
as unequal as possible, y1 = y2 = . . . = yM , yM+1 = . . . =
yN = 0, then the bound becomes the Chernoff bound for M
items. The proof is included in [17].

To prove the theorem, we condition on the outcomes of
the variables Yi, then apply the lemma:

P(· · · ) =EY1,...,YN

[
PX1,...,XN

(∑
i=1,N XiYi∑
i=1,N Yi

≥ (1 + δ)x

)]
≤EY1,...,YN [exp(−(

∑
i=1,N

Yi)/( max
j=1,N

Yj) ·D)]

≤EY1,...,YN [exp(−N/T ·D)] = exp(−N/T ·D)

proving the claim.

By setting Xi = P(Q|Γ, TDi) and Yi = P(Γ|TDi), Eq.(10)
becomes

∑
iXiYi/

∑
i Yi, which gives us the error bound (11)

for the estimator x̂. It suffices to run N & T/D ≈ T/(xδ2)
simulation steps, in other words the number of steps depends
on the mean x of Xi and the output-tilt of Yi; it does
not depend on the mean y of Yi. The variables Xi, Yi in
Theorem 3.6 do not have to be independent3, which justifies
using the same sample TDi both in the numerator and the
denominator.

The reader may wonder at this point why we don’t esti-
mate x = P(Q|Γ) directly, as

∑
i P(Q|Γ, TDi)/N : this only

requires N & 1/(xδ2) steps, and in practice x is large enough.
The problem is, however, that we need to sample possi-
ble worlds TD1 , TD2 , . . . from the conditional distribution
P(TD|Γ), and this task is as difficult as estimating P(Γ) [21],
an NP-hard problem.

The speedup given by Theorem 3.6 is only possible in
combination with SafeSample. If Yi is a 0/1-variable, then
the output-tilt is infinite, and the theorem becomes vacuous.
In fact, in that case CondSample becomes rejection sampling
for computing P(Q|Γ): repeatedly sample a world Di, ignore
worlds that do not satisfy Γ, and return the fraction of worlds
that satisfy Q. Rejection sampling is known to require N &
1/P(Γ) steps, because we need as many steps in expectation
to hit Γ once. Rejection sampling wastes simulation steps.
In contrast, when using SafeSample, we make every sample
count: even if our sample gives a very small probability
P(Γ|TD), it is still useful for us, because we can compute it
exactly and add to the sum.

The speedup achieved by CondSample depends on the
output-tilt; in the next section we show how importance
sampling can further reduce the output-tilt. We end this
section showing two examples. In the first the output-tilt is
large, and CondSample is not much better than SafeSample,
the second where the output-tilt is exponentially smaller.

Example 3.8. Consider first Γ = ∀x∀y(R(x) ∨ S(x, y) ∨
T (y)) in Example 3.4. As we have seen, if |TD| = n−k, then
Y = P(Γ|TD) = (r+ sk(1− r))n, (because for every value of
the variable x = i, the sentence ∀y ∈ [k](R(i) ∨ S(i, y)) must
be true). The maximum value of Y is 1 (for k = 0) and the
minimum is (r+sn(1−r))n ≈ rn respectively, thus the output-
tilt is 1/rn, which is much bigger than 1/P(Γ). In general,
when max(Y ) = 1, then the output-tilt is 1/min(Y ) and this
is bigger than 1/E[Y ] because the min(Y ) ≤ E[Y ] ≤ max(Y ).

3But (Xi, Yi) have to be independent of (Xj , Yj).
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Example 3.9. Consider next Γ = ∀x∀y(R1(x) ∨ S1(x, y) ∨
T (y)) ∧ (R2(x) ∨ S2(x, y) ∨ ¬T (y)). This constraint is safe
modulo T , but now we no longer have P(Γ|TD) = 1, for
any value TD, and we show that the output-tilt is much
smaller than 1/E[Y ]. Notice that, one can show (by repeat-
ing the argument in Example 3.4) that SafeSample alone is
insufficient to compute this query much faster than a naive
Monte Carlo simulation, so CondSample is necessary for a
significant speedup. To compute the output-tilt, note that
Y = P(Γ|TD) = (r1 + sk1(1− r1))n(r2 + sn−k2 (1− r2))n and,
assuming r1 = r2 and s1 = s2, the maximum/minimum
values are (r + sn(1 − r))n ≈ rn (for k = 0 or k = n)

and (r + sn/2(1 − r))2n ≈ r2n (for k = n/2) respectively.
The output-tilt is 1/rn and it is much smaller than 1/E[Y ].
To see this, assume for illustration that t = 1/2, then we
claim that E[Y ] ≤ 3r2n. Expand E[Y ] =

∑
k

(
n
k

)
1

2n (r +

sk(1 − r))n(r + sn−k(1 − r))n, and split the sum into two
regions: for k ∈ [n(1 − δ)/2, n(1 + δ)/2] the contribution

of the sum is ≤ (r + sn(1−δ)/2(1 − r))2n ≈ r2n, while for
k 6∈ [n(1− δ)/2, n(1 + δ)/2] the contribution of the sum is4 is

≤ 2rnexp(−nδ2). It suffices to choose δ such that e−δ
2

≤ r
(which is possible when r > 1/e ≈ 0.36) to prove our claim.

The examples suggest that CondSample works best for
complex MLNs, where no setting of the relations T can make
Γ true (and, thus, maxY � 1); still, it is insufficient for
speeding up all queries. Our third technique further improves
the convergence rate by adding importance sampling.

3.3 ImportanceSample
Importance sampling [8] chooses a proposal distribution

for the random variable T, P′(T), then computes the ex-
pected value E′[g′] of a corrected function, g′(TD) = g(TD) ·
P(TD)/P′(TD)’. This is an unbiased estimator: to see this,
we apply directly the definition of E[g] as a sum over all
possible worlds:

E[g] =
∑
TD

g(TD)P(TD) =
∑
TD

g′(TD)P′(TD)

Ideally we would like P′(TD) to be proportional to g(TD) ·
P(TD), because in that case g′ is a constant function, thus
has output-tilt 1, but computing such a proposal distribution
is infeasible, because of the cost of computing the normaliza-
tion factor.

Instead, we define P′(TD) as function of the cardinali-
ties of the relations TD in TD. For presentation purposes
assume T = {T} consists of a single relation, and first de-

scribe a naive ImportanceSample. For every k = 1, narity(T )

(recall: n is the size of the active domain), sample one re-
lation TDk of size k, and compute pk = P(Γ|TDk). Let

q =
∑
k

(
narity(T )

k

)
pk be the normalization factor. Then the

proposal distribution is P′(TD) = pk/q, where k = |TD|. In-
tuitively, this decreases the output-tilt of the correct function
g′, because the spread of probabilities P(Γ|TD) decreases
if we fix the cardinality of TD. We prove that, in a special
case, the output-tilt becomes 1:

4Let Zi be i.i.d. in {0, 1} s.t. P(Zi = 0) = P(Zi =
1) = 1/2. Then the following stronger version of Cher-

noff’s bound holds: P(
∑
Zi ≥ (1 + δ)n/2) ≤ e−nδ

2

. Thus,∑
k=n(1+δ)/2,n

(
n
k

)
1

2n ≤ e−nδ
2

.

Monte Carlo Safe Cond Importance
sample sample sample

1
yδ2

σ2(Y )

y2δ2
T
xδ2

T ′

xδ2

X =P(Q|Γ, TD), x = E[X] Y =P(Γ|TD), y = E[Y ]

T =output-tilt of Y T =output-tilt of corrected Y ′

Table 2: Number of simulation steps N (omitting constant
factors) to compute x = P(Q|Γ) with relative error δ.

Proposition 3.10. If the probabilistic database is symmet-
ric, and Γ is safe modulo a set of unary relations, then the
output-tilt of g′ is 1.

The proof follows from the observation that, if T is a unary
relation, then in a symmetric database P(Γ|TD) depends
only on the cardinality of TD.

To reduce the output-tilt on asymmetric databases, we
optimize ImportanceSample as follows. First, we transform
all non-sampled relations R into symmetric relations, by
setting P(R(a)) to the average probability of all tuples in
R. Then we compute pk = P(Γ||TD| = k): we compute
the latter probability exactly, even if the relations T are not
symmetric, by adapting techniques from lifted inference over
symmetric databases [10]. Notice that, when all relations are
symmetric, then the optimized ImportanceSample coincides
with the naive ImportanceSample.

Example 3.11. Continuing Example 3.8, ImportanceSample
computes pk = P(Γ||TD| = k) = (r + sn−k(1 − r))n, for
each k = 0, n. Define q =

∑
k

(
n
k

)
pk. The proposal distri-

bution is P(TD) = p|TD|/q, and the corrected function is

g′(TD) = (r + sn−k(1− r))ntk(1− t)n−k/pk. It each itera-
tion step i = 1, N , SlimShot samples a value k = 0, n with
probability

(
n
k

)
pk/q, then uses reservoir sampling to sample a

set TDi of cardinality k, and computes XiYi = P(Q∧Γ|TDi)
and Yi = P(Γ|TDi) using lifted inference, adding the quanti-
ties to Eq.(11). The value of Yi is constant (it is always q),
because the relations R,S, T are symmetric; if the query Q
contains any non-symmetric relations, then XiYi is a ran-
dom variable, and Eq.(11) converges to x after N & 1/(xδ2)
steps; if Q uses only symmetric relations, then XiYi is also
a constant, and Eq.(11) converges after 1 step.

We note that ImportanceSample is, again, only possible
in combination with SafeSample. If g were a 0/1-random
variable, then the corrected function g′ is also a 0/1-random
variable, and its output-tilt remains infinity.

3.4 Summary
Table 2 summarizes the number of simulation steps N

needed to estimate P(Q|Γ) with a relative error δ. Notice
that the number of steps depends only on Γ, and not on Q.

4. SYSTEM ARCHITECTURE
SlimShot is written in Python and relies on Postgres 9.3 as

its underlying query processing engine. Any other database
engine could be used, as long as it supports standard query
processing capabilities: inner and outer join, group by, ran-
dom number generation, and mathematical operators such
as sum and logarithm. The Markov Logic Network is given
in text file containing first-order ∀∗ sentences with associated
weights. SlimShot converts these rules into a set of hard
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constraints Γ and a set of new probabilistic tables, using the
translation described in Subsection 2.2 (Eq.(4)). The new
relations are materialized in Postgres, with tuple weights
converted to probabilities (p = w/(1 + w)), stored in an
additional attribute.

SlimShot supports unions of conjunctive queries, but in
typical MLN applications the query Q consists of a single
relation name, e.g. Q(x) = Smokes(x), and the inference
engine returns the per-tuple probabilities of all tuples in
the Smokes relation. SlimShot uses conditional sampling to
compute P(Q|Γ) as the ratio of P(Q ∧ Γ) and P(Γ).

4.1 Choosing the relations T

Upon receiving a query Q, SlimShot chooses a minimal
set of relation names T such that both Q ∧ Γ and Γ are
T-safe. This is done by brute force enumeration: in all our
experiments, the cost of brute force enumeration is negligible.

4.2 Review of Safe Plan Evaluation
Safe plan evaluation consists of first converting a safe query

into a safe query plan. The operators correspond to the
eight rules in Table 1, where the first two (positive/negative
atom) are leaf operations and the others are unary or binary
operators. Next, each node is the plan is converted into a
SQL query. For example, referring to Figure 1, if we assumed
that the relations R and B have the same sets of tuples, then
the independent-union operators R(x) ∨B(x) becomes:

select R.x, 1-(1-R.p)*(1-B.p) as p

from R join B on R.x = B.x

where B is a sub-query. The actual SQL query is more com-
plex because it uses an outer-join instead of a join. Similarly,
an independent join performs an join returning the probabil-
ity p1p2, while the independent ∀ and ∃ are group-by queries
returning probabilities

∏
i pi and 1−

∏
i(1− pi) respectively.

4.3 Enhanced Safe Plan Evaluation
Annoyingly, most popular database engines do not have a

product-aggregate operator. We considered two options for∏
i pi. First is to express it using logarithm and sum, more

presiely as exp(sumi(log pi)). This requires a slightly more
complex logic to correctly account for tuples with probability
zero, or close to zero, or for missing tuples. The second is to
define a user-defined aggregate function, UDA.

Another optimization concerns the independent union op-
erator, which, if implemented as suggested above, requires
a complicated query with outer joins and a long case state-
ment. Instead, we simulate it using a group-by and aggregate,
for example the SQL expression above becomes:

select T.x, 1-prod(1-T.P)

from (R union B) as T group by T.x

The MLN semantics is based on the standard active do-
main semantics; under this semantics, the answer to the
expression S(x, y) ∨ Td(y) in Figure 1 includes all tuples
(a, b) where a is any constant in the domain, and b ∈ Td.
MLN implementations enforce this semantics easily by sim-
ply representing explicitly all tuples over the current domain.
Since our goal is to deploy SlimShot in database applications,
we made a significant implementation effort to represent only
the tuples present in the database, and avoid as much as
possible computing the cartesian product with the active

MLN Constraint w
¬Smokes(x) 1.4

Smokers ¬Cancer(x) 2.3
¬Friends(x, y) 4.6
Smokes(x)⇒ Cancer(x) 1.5
Smokes(x) ∧ Friends(x, y)⇒ Smokes(y) 1.1

Drinkers Drinks(x) ∧ Friends(x, y)⇒ Drinks(y) 1.1

Table 3: The Smokers MLN and the Drinkers MLN.

domain. For example, if both R and B contained all con-
stants in the active domain, with probability 0 for tuples not
present in the relation, then R(x)∨B(x) could be computed
by the simple join query shown earlier (Subsection 4.2); in-
stead our optimizers uses a more complex logic to handle
efficiently sparse relations. We have paid special attention
to handling negation, e.g. R(x) ∨ ¬B(x), which introduce
significant complexity if one wants to avoid materializing
non-existing tuples.

4.4 Further Optimizations
We briefly mention here other optimizations in SlimShot.

Generic Constants: this refers to computing the probability
for all query answers using a single query plan. That is, we
have a single query plan to compute P(Q(x)|Γ), returning
all pairs (a, p), rather than the naive way of iterating over all
constants a in the domain and computing P(Q[a/x]|Γ). We
note that MC-SAT algorithm used by existing MLN systems
already obtains the probabilities of all outputs x at the same
time. QRel refers to an optimization that is possible when
the query relation Q is a member of the sampled relation
set T. In the case we can avoid computing P(Q ∧ Γ|TDi)
(since it is either 0 or 1): instead we only need to compute
P(Γ|TDi) and check if TDi |= Q.

5. EXPERIMENTS
We validated SlimShot through a series of experiments

comparing its performance to other MLN systems on several
datasets reported in the literature. We addressed the follow-
ing questions. How accurate are the probabilities computed
by SlimShot compared to existing systems? How does its
runtime performance compare to that of existing systems?
How does SlimShot handle more complex sets of MLN rules?
How effective are the optimizations in SlimShot? And how
does SlimShot compare to other, general-purpose weighted
model counters?

Datasets We used two datasets from the published litera-
ture, Table 3, and three queries, Table 4. Smokers MLN [33]
models a social network and the influence of friendship on
smoking habits and lung cancer, while the Drinkers MLN [11]
adds a new Drinks relation. SlimShot converts the MLNs
to tuple-independent probabilistic databases by introducing
a new relation name for each rule in Table 3 with two or
more literals. The Smokers MLN is safe modulo Smokes,
while the Drinker MLN is safe modulo Smokes and Drinks.

We considered three variations on these datasets: sym-
metric, asymmetric unary, and asymmetric. In the first, all
probabilities are given by the weights in Table 3. In the
second, the binary relation Friends is symmetric while all
unary relations have distinct, randomly-generated probabili-
ties. Finally, in the asymmetric dataset the Friends relation
is a randomly-generated graph with fixed fan-out 3, and edge
probabilities randomly generated. The database applications

8



MLN Query
Smokers and Q1(x) :− Smokes(x)
Drinkers Q2(x) :− Cancer(x)
Drinkers only Q3(x) :− Drinks(x)

Table 4: Experiment Queries. Answering these queries re-
quires returning the appropriate probabilities for all tuples
in each relation

of interest to us are captured by the third scenario (fully
asymmetric), but we needed the first two in order to compute
the exact probabilities (ground truth) for most experiments.
No system to date can compute the exact probabilities for
the asymmetric data.

MLN Systems We ran SlimShot using either CondSample
only or using ImportanceSample, and report both results; we
use “SlimShot” to refer to ImportanceSample. We compared
to two popular MLN systems: Alchemy version 2.0 [2] and
Tuffy version 0.4 [25]. Both use MC-SAT for probabilistic
inference [29], but they differ in how they perform grounding
and their internal implementations of SampleSAT [35]. In
earlier work, the first author found several flaws in Tuffy’s
implementation of MC-SAT, the foremost being a failure to
perform simulated annealing steps to explore the solution
space before returning a sample within the SampleSAT code,
and developed a modified version of Tuffy, currently avail-
able at the Allen Institute for Artificial Intelligence (AI2): it
incorporates a new implementation of MC-SAT along with
a number of other performance improvements such as elimi-
naton of redundant clauses. We refer to the two versions as
Tuffy-Original and Tuffy-AI2.

All our experiments were conducted on a RHEL 7.1 system
with 2xIntel Xeon E5-2407v2 (2.4GHz) processors and 48GB
of RAM.

5.1 Accuracy
We compared the accuracy of SlimShot to the other MLN

systems on queries 1 and 2 over the Smokers MLN. We used
only symmetric and unary asymmetric data, because we
needed to compute the ground truth; we used a domain of
size n = 100, resulting in 10200 random variables5. Fig-
ure 2 shows the maximum relative error6 for all answers
returned by the query, as a function of the number of iter-
ations N . The probability of the constraint, y = P(Γ) was
around 10−10 while the query probability x = P(Q(a)|Γ)
ranged between 0.04 and 0.9. In all experiments SlimShot
(ImportanceSample) outperformed all others. For SlimShot
we also measured the empirical tilt and report the num-
ber of iterations where the theoretical formula (11) pre-
dicts that the probability of exceeding the relative error
δ = 0.1 is < 0.1: this is the empirical stopping condition
used in SlimShot. In all cases, the stopping condition for
ImportanceSample was around N = 1000 iterations. On
symmetric data CondSample had a larger tilt, leading to
a much worse stopping condition; P(Γ) is less evenly dis-
tributed over possible samples for the lower average tuple

5SlimShot’s translation to a probabilistic database intro-
duced 10000 + 100 additional tuples.
6We also measured the mean Kullback-Leibler (KL) diver-
gence, which is frequently reported in lifted inference liter-
ature. While the overall conclusions remain the same, we
found that the KL to be too forgiving by hiding grossly
inaccurate probabilities for some outputs.

probabilities in the symmetric data, and CondSample ends
up in regions of very small probability for most of its samples.

5.2 Performance and Scalability
Next, we conducted three rounds of experiments to com-

pare SlimShot’s runtime performance to the other systems.
Figure 3 shows the runtime for a fixed number of samples
(N = 10, 000), on queries 1 and 2 over the symmetric and
unary asymmetric Smokers MLN (same as in the previous
section). The fact that all binary relations are complete puts
SlimShot at a disadvantage: like any relational plan, the safe
plans in SlimShot benefit from sparse relations. In contrast,
one simulation step in MC-SAT is rather cheap, favoring
Alchemy and Tuffy. Nevertheless, in our experiments the
runtime per iteration in SlimShot was within the same or-
der of magnitude as the most efficient system (Tuffy-AI2),
sometimes even better.

Second, Figure 4 compares the (much more meaningful)
runtime to achieve a fixed relative error. While for SlimShot
we can derive a stopping condition from Eq.(11), no stopping
condition exists for MC-SAT. Instead, we allowed all systems
to run until they achieve for all tuples a maximum relative
error ≤ 0.1 compared to the ground truth, and to maintain
this for at least ten iterations: as before, we had to restrict
to symmetric, and unary asymmetric, data. For both queries
and both datasets, we can conclude that SlimShot converges
faster than the other systems.

So far, all datasets were symmetric or unary asymmetric
only. Third, we studied performance on asymmetric data,
which is the main application scenario targeted by SlimShot:
since we do not have the ground truth we reverted to re-
porting the runtime for a fixed number of iterations (10,000).
Figure 5 shows that SlimShot is orders of magnitude faster
than Alchemy and Tuffy over this type of sparse data: note
that the scale is logarithmic. The reason for this is that
SlimShot scales linearly with the number of probabilistic
tuples present in the database. In contrast, Alchemy and
Tuffy must include a unique MLN rule for each tuple missing
from the Friends relation, expressing that it’s probability is
zero: the runtime per sample increases quadratically with the
domain size. While Tuffy-AI2 optimizes handling of deter-
ministic variables, there is still significant overhead compared
to SlimShot.

5.3 Richer MLNs
Next, we evaluated SlimShot on a richer MLN: the Drinkers

MLN [11]. SlimShot must now simultaneously sample two
unary relations, Smokes and Drinks, which slows down
the computation of the proposal distribution. The results
for a fixed number of iterations on asymmetric data are
shown in Figure 6. While we do not have ground truth for
asymmetric data, previous experiments strongly suggests
that ImportanceSample is the only system that returns ac-
curate results, so the runtime performance numbers should
be interpreted in that light. The first observation is that
CondSample is significantly faster than ImportanceSample,
because the latter takes time O(n3) to pre-compute the pro-
posal distribution7; the proposal distribution is independent
of the query and could be computed and stored offline, but in
all our experiments we report it as part of the total runtime.

7It needs to compute a probability for each combina-
tion of three cardinalities, |Smokes ∩ Drinks|, |Smokes −
Drinks|, and|Drinks− Smokes|.
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Figure 2: Maximum Relative Error on the Smokers MLN
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Figure 3: Absolute Runtimes for 10,000 samples.
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iterations; these bars are annotated with the final maximum
error achieved after 10,000 samples.
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Figure 6: Runtimes for 100 iterations as function of domain
size on the Smokers-Drinkers MLN using sparse, asymmetric
data. The startup cost of computing the importance distribu-
tion increases for ImportanceSample on this more complex
set of constraints.

Tuffy-AI2 implements certain logical simplifications, keeping
the size of the Smokers-Drinkers network equivalent to that
of the Smokers network, improving its performance relative
to ImportanceSample.

5.4 Impact of Optimizations
As we developed our system we progressively added opti-

mizations, sometimes replacing rather naive first implemen-
tations. We report their effect in Figure 7 on Query 1, over
a domain size 100 and asymmetric, but dense data. Generic
constants: We actually started by computing a non-Boolean
query Q(x) as in theory textbooks: for each constant a in
the domain, compute P(Q[a/x]|Γ): switching to a safe plan
that computes all output probabilities in one query improved
the runtime by more than two orders of magnitude. All
runtimes in the figure use generic constants. DNF: Our first
implementation used standard safe plans for UCQ [34], by
expressing P(Γ) = 1 − P(¬Γ). Since P(¬Γ) is very close
to 1.0, it required Postgres’s numeric data type to achieve
sufficient precision. This first column shows this runtime.
CNF: Implementing specific operators for CNF reduced the
runtime to the second column. Here we used logarithm to
express the product aggregate in terms of sum. Product: Re-
placing the log-sum-exp with a UDA for product reduced the
runtime by 35% (third column). QRel: if the query happens
to be the sampled relation, then we can avoid computing
the second query P(Q ∧ Γ|TDi), but instead simply check
whether TDi |= Q. This reduces the runtime by half. Sparse:
Finally, we show the benefit of adding extra logic to the
SQL query to omit tuples with probability 0. Note that the
dataset used here is dense: the savings comes entirely from
the sampled Smokes relation. Significant additional savings
occur on sparse data.
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Figure 7: The runtime for 1,000 iterations of SlimShot with
progressively more optimizations enabled.

Domain Size Runtime in Seconds
(Number of Variables)
3 (15) 1.3
5 (35) 1.8
8 (80) 11.0
10 (120) 205.5
15 (255) Did not finish

Table 5: Runtimes for Sentential Decision Diagrams on Query
1 over the Smokers MLN with symmetric data

5.5 Other Weighted Model Counters
Since our approach reduces the query evaluation problem

on MLNs to weighted model counting, as a ratio of two
probabilities P(Q ∧ Γ)/P(Γ), we also attempted to compare
SlimShot with state of the art general purpose Weighted
Model Counting (WMC) systems.

A state of the art system for exact weighted model count-
ing uses Sentential Decision Diagrams [9] (SDDs). They
arose from the field of knowledge compilation, and compile
a Boolean formula into circuit representations s.t. WMC
can be done in linear time in the size of the circuit. SDDs
have state-of-the-art performance for many tasks in exact
weighted model counting. We use SDD v1.1 [32] and report
runtime results in Table 5. While SDDs have been reported
in the literature to scale to much larger instances, they fared
worse on the formulas resulting from grounding MLNs.

A state of the art system for approximate weighted model
counting is WeightMC [5], which is part of a recent and very
promising line of work [14, 5]. We downloaded WeightMC
from [36], but unfortunately, we were only able to run it on
a domain size of 3 before experiencing time-out errors.

Technical difficulties aside, general-purpose WMC tools do
not appear well-suited for MLN inference: to approximate
the ratio P(Q[a/x] ∧ Γ)/P(Γ) accurately requires extremely
accurate approximations of each quantity individually, and
one has to repeat this for every possible query answer a.

5.6 Discussion
SlimShot is the only MLN system that can provide guar-

anteed accuracy: we have validated its accuracy on several
symmetric and unary-symmetric datasets (several omitted
for lack of space). The theoretical stopping condition is some-
times overly conservative. SlimShot’s runtime performance
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per sample is comparable to other systems, however SlimShot
converges much faster than the other systems. The main
limitation of SlimShot is its dependency on the structure
of logical formula of the MLN. The runtime suffers if two
relations need to be sampled instead of one (while still being
competitive). At an extreme, one can imagine an MLN where
all relations need to be sampled, in which case SlimShot’s
performance would degenerate.

6. CONCLUSION
We have described SlimShot, a system that computes

queries over large Markov Logic Networks. The main innova-
tion in SlimShot is to combine sampling with lifted inference.
This reduces the sample space, and thus reduces the variance,
and also enables two additional techniques: estimation of
a conditional probability and importance sampling. The
lifted inference is performed entirely in the database engine,
by evaluating safe plans. We have described several opti-
mizations that improve the performance of safe plans. Our
experiments have shown that SlimShot returns significantly
better results than other MLN engines, at comparable or
better speed.

One limitation of SlimShot is that it only works if the
query and constraint can be made safe by determinizing
a small number of relation names. In extreme cases that
use a single relational predicate name, like the transitivity
constraint E(x, y)∧E(y, z)⇒ E(x, z), SlimShot degenerates
to a naive Monte Carlo evalution. Future work includes
studying how SlimShot can be extended to such cases, for
example by partitioning the database.
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