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We study the complexity of computing a query on a probabilistic database. We consider unions of

conjunctive queries, UCQ, which are equivalent to positive, existential First Order Logic sentences,
and also to non-recursive datalog programs. The tuples in the database are independent random
events. We prove the following dichotomy theorem. For every UCQ query, either its probability
can be computed in polynomial time in the size of the database, or is #P-hard. Our result also

has applications to the problem of computing the probability of positive, Boolean expressions,
and establishes a dichotomy for such classes based on their structure. For the tractable case, we
give a very simple algorithm that alternates between two steps: applying the inclusion/exclusion

formula, and removing one existential variable. A key and novel feature of this algorithm is that
it avoids computing terms that cancel out in the inclusion/exclusion formula, in other words it
only computes those terms whose Mobius function in an appropriate lattice is non-zero. We show
that this simple feature is a key ingredient needed to ensure completeness. For the hardness proof,
we give a reduction from the counting problem for positive, partitioned 2CNF, which is known to
be #P-complete. The hardness proof is non-trivial, and combines techniques from logic, classical
algebra, and analysis.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems—Query Process-

ing; F.4.1 [Mathematical Logic and Formal Languages]: Mathematical Logic

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Mobius function, Mobius inversion formula, probabilistic
database

1. INTRODUCTION

We study the complexity of computing a query on a probabilistic database. Our
work is motivated by probabilistic databases [Cavallo and Pittarelli 1987; Dalvi and Suciu 2004;
Sen and Deshpande 2007; Dalvi and Suciu 2007b; Sarma et al. 2008; Olteanu et al. 2009;
Olteanu and Huang 2009; Suciu et al. 2011], the model counting problem, and the
problem of computing the probability of propositional formulas [Creignou and Hermann 1996;
Darwiche 2000; Darwiche and Marquis 2002; Wegener 2004; Golumbic et al. 2006;
Domingos and Lowd 2009].

A probabilistic database is a pair D = (D,P ) where D is a database instance
(i.e. a set of tuples) and P : D → [0, 1] associates a probability with each tuple
t ∈ D. This defines a probability space, where the outcomes are the subsets W of
D, and each tuple t is included in W independently, with probability P (t). Thus,
the probability of a world W is:

1This work was partially supported by NSF IIS-0713576 and IIS-1115188.
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PD(W ) =
∏

t∈W

P (t)×
∏

t∈D−W

(1− P (t)) (1)

A query, Q, is sentence in First Order Logic. GivenQ, PD(Q) denotes itsmarginal
probability, the probability that Q is true on a randomly chosen world W :

PD(Q) =
∑

W⊆D:W |=Q

PD(W ) (2)

The problem is this. For a fixed query Q, what is the complexity of computing
PD(Q) as a function of the size of D? We consider the data complexity, where Q
is fixed and the input consists only of D. The queries that we study are Unions
of Conjunctive Queries, for which we use an alternative, but equivalent syntax,
as positive, existential First Order formulas (sentences with connectives ∧,∨, ∃).
This set of queries has the same expressive power as non-recursive datalog pro-
grams [Abiteboul et al. 1995].
We prove in this paper the following Dichotomy Theorem (Theorem 4.21). For

any query Q, the problem “given D, compute PD(Q)” is either in PTIME or #P
hard. Moreover, one can decide between the two cases through syntactic analysis
on Q.
Using simple transformations, our results also apply to the positive, univer-

sal subset of First Order Logic (sentences with connectives ∧,∨, ∀). Such sen-
tences occur in knowledge representation, like, for example, Markov Logic Net-
works [Richardson and Domingos 2006; Domingos and Lowd 2009]. MLNs have
been demonstrated to be effective at a variety of tasks, such as Information Ex-
traction [Poon and Domingos 2007], Record Linkage [Singla and Domingos 2006],
Natural Language Processing [Poon and Domingos 2010].
Our dichotomy result also implies a dichotomy for probabilistic inference on pos-

itive Boolean formulas. For each query Q, its lineage on a database instance D

is a Boolean formula ΦD
Q that has one Boolean variable Xt for each tuple t in the

database: the lineage is defined such that it is true on an truth assignment θ iff the
query is true on the world W consisting of all tuples t for which θ(Xt) is true. The
lineage formula is derived naturally from the query expression Q and the database
D (reviewed in Sect. 2), and has a DNF representation of polynomial size in the
database. It turns out that the probability of the query Q is equal to the probability
of the Boolean formula ΦD

Q , where each Boolean variable Xt is set independently to
true with a probability P (t). Thus, our dichotomy theorem implies a dichotomy
for the classes of DNF expressions defined by query lineages. In fact, it applies
equally well to their dual CNF expressions, obtained by switching ∧ and ∨. For a
taste of how our results apply to CNF expressions, Table I shows several queries Q,
the corresponding CNF expressions Φ (the duals of their lineages), and indicates
whether computing P (Φ) is in PTIME or #P-hard.
A special case of the probability computation problem is the model counting

problem: given a Boolean expression Φ, count the number of satisfying assignments
#Φ. [Valiant 1979] showed that #SAT, the counting version of the SAT problem,
is #P-complete. [Provan and Ball 1983] have shown that for a very simple class of
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Query Φ = The Dual of the Lineage P (Φ)

qJ = R(x1), S(x1, y1), S(x2, y2), T (x2) Φ =
∧

ijkl(Yi ∨Xij ∨Xkl ∨ Zk) PTIME

qU = R(x1), S(x1, y1) ∨ S(x2, y2), T (x2) Φ =
∧

ij(Yi ∨Xij) ∧
∧

ij(Xij ∨ Zi) PTIME

h1 = R(x1), S(x1, y1) ∨ S(x2, y2), T (y2) Φ =
∧

ij(Yi ∨Xij) ∧
∧

ij(Xij ∨ Zj) #P-hard

qV =R(x1), S(x1, y1) ∨ S(x2, y2), T (y2)

∨R(x3), T (y3)

Φ =
∧

ij

(Yi ∨Xij) ∧
∧

ij

(Xij ∨ Zj)∧

∧

ij

(Yi ∨ Zj)
PTIME

qH =

(R(x1), S1(x1, y1) ∨ S2(x2, y2), S3(x2, y2))

∧(S1(x3, y3), S2(x3, y3) ∨ S3(x4, y4), T (y4))

Φ =
∧

i1j1...i4j4

[

((Yi1 ∨X1
i1j1

) ∧ (X2
i2j2

∨X3
i2j2

))∨

((X1
i3j3

∨X2
i3j3

) ∧ (X3
i4j4

∨ Zj4))

]

#P-hard

qW =

(R(x1), S1(x1, y1) ∨ S2(x2, y2), S3(x2, y2))

∧(R(x3), S1(x3, y3) ∨ S3(x4, y4), T (y4))

∧(S1(x5, y5), S2(x5, y5) ∨ S3(x6, y6), T (y6))

Φ =
∧

i1j1...i6j6

[

((Yi1 ∨X1
i1j1

) ∧ (X2
i2j2

∨X3
i2j2

))∨

((Yi3 ∨X1
i3j3

) ∧ (X3
i4j4

∨ Zj4 ))∨

((X1
i5j5

∨X2
i5j5

) ∧ (X3
i6j6

∨ Zj6))

]

PTIME

Table I. Some simple applications of the dichotomy result. The first column
shows a query: all variables are existentially quantified. The middle column
shows the Boolean expression obtained by taking the dual of their lineage expres-
sion (switching ∧,∨). The Boolean variables Yi, X

k
ij , Zj correspond to the tuples

R(i), Sk(i, j), T (j) respectively. The first four expressions are already in CNF. The
last two expressions are not in CNF, but can be rewritten in CNF with only a
constant factor increase in their size. The last column indicates whether P (Q), or,
equivalently, P (Φ), is tractable or not. Consider the row for h1, where P (Φ) is hard
for #P. Compare it to qU , where Zj becomes Zi, and the complexity of P (Φ) is
PTIME. Also, compare it to qV , where a new set of clauses is added to Φ and the
complexity is also PTIME. A similar comparison can be done for qH and qV .

Boolean expressions, called partitioned, positive, 2CNF (reviewed in Sect. 5), the
counting problem is already #P-complete. Our PTIME algorithm for P (Φ) extends
immediately to the counting problem, since #Φ = 2nP (Φ), where n is the number
of Boolean variables, and the probability P (Φ) is computed by setting each Boolean
variable independently to true with probability 1/2. However, the hardness results
do not extend immediately: for most queries for which computing the probability
is #P-hard, it is open whether the model counting problem is also #P-hard.
[Creignou and Hermann 1996] proved a dichotomy theorem for the generalized

satisfiability counting problem, #GenSAT. They consider Boolean expressions that
are conjunctions of logical relations, also known as generalized clauses, and establish
a dichotomy for the counting problem based on the type of logical relations: they
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show that the counting problem is in PTIME iff every logical relation is affine. Thus,
they restrict the formulas based on the generalized clauses, and allow otherwise
arbitrary structure. We do the opposite: we restrict the structure, and obtain many
interesting tractable cases that are not identified by Creignou and Hermann’s result.
This is illustrated in Table I: all clauses in this table are of the form x∨ y ∨ z ∨ . . .
and therefore fall in the #P-class of Creignou and Hermann. By restricting the
structure, we obtain many interesting classes in PTIME.

We discuss now in some more details the two parts of our dichotomy result:
the PTIME algorithm for the tractable queries, and the hardness proof for the
intractable queries.

The AlgorithmWe have first described the PTIME algorithm in [Dalvi et al. 2010].
The version presented here in Sect. 3 makes several improvements, both in presen-
tation and in performance. The algorithm has two simple steps. First, it uses
inclusion/exclusion: this removes the outer-most ∧ operations in a query. Second,
it removes the outermost ∃x quantifier by substituting it with a constant. The
variable x must satisfy certain properties and is called a separator variable; if no
separator variable exists, the algorithm fails. The algorithm alternates between
these two steps, until it reaches ground atoms, for which it looks up their probabil-
ities in the database.

The inclusion/exclusion is the dual of the popular version: the algorithm com-
putes P (q1∧q2∧ . . .) in terms of P (qi1 ∨qi2 ∨ . . .), rather than the other way around.
For that reason, we express Q in a non-traditional syntax, as a Boolean CNF ex-
pression over connected, conjunctive queries. In particular, even if one starts with a
conjunctive query, the algorithm may eventually introduce ∨ (see Example 3.1). In
other words, the algorithm does not become any simpler if restricted to conjunctive
queries, since it eventually reaches unions of conjunctive queries. The use of CNF
rather than the DNF representation, and of the dual inclusion/exclusion formula
are somewhat surprising features of the algorithm.

Terms of the inclusion/exclusion formula may cancel out, if they correspond to
equivalent queries. In some extreme cases, some of these terms are #P-hard, but
they cancel out and all remaining terms are PTIME (see Example 4.7). Thus,
it is critical for the algorithm to recognize these cancellations, and we do this
by replacing the inclusion/exclusion formula with Mobius’ inversion formula in
a lattice [Stanley 1997]. More precisely, we construct a lattice for the query Q,
called the CNF-lattice because it is based on the CNF representation of the query.
The elements of the lattice represent precisely the terms of the inclusion/exclusion
formula. The algorithm computes recursively only those terms where the Mobius
function is 6= 0. While the inclusion/exclusion formula, or, equivalently, Mobius’
inversion formula, have been used before in probabilistic inference [Knuth 2005], the
strong connection between the zeroes of the Mobius function and the complexity
of probabilistic inference is novel.

The power of our simple algorithm has been highlighted by recent results in [Jha and Suciu 2011].
Several notions of tractability for computing P (Φ) were discussed there: read-
once Boolean expressions [Golumbic et al. 2006], polynomial-size OBDDs and FB-
DDs [Wegener 2000; Wegener 2004], and polynomial-size d-DNNFs [Darwiche 2000;
Darwiche and Marquis 2002]. It was shown that they form a strict hierarchy for
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unions of conjunctive queries: in particular, the queries qJ , qV , qW , q9, shown in
Table I, Fig. 1 and Fig. 2, separate these classes (e.g. qJ is not read-once, but has
a polynomial-size OBDD, etc). It is further conjectured that q9 (Fig. 2), whose
probability can be computed in PTIME using our algorithm, does not have a poly-
nomial size d-DNNF.

The Hardness Proof The hardness proof of our dichotomy theorem is entirely
new, and forms the main technical contribution of this paper. We prove the fol-
lowing. Call a query Q unsafe if our algorithm fails on Q (formally defined in
Def. 4.14). We prove that for any unsafe query Q there exists a PTIME Turing
machine with an oracle for computing PD(Q) that solves the counting problem
for the partitioned-positive-2CNF problem. The latter was shown to be #P-hard
by [Provan and Ball 1983]. This implies that PD(Q) is hard for #P. In our proof,
the oracle for PD(Q) is invoked polynomially many times, on the same database
instance D, but with varying probabilities of the tuples in the database. The reduc-
tion is quite complex, but we have broken it down in several smaller steps, which
we explain next.

The first step, described in Sect. 6, is called leveling. A leveled database gener-
alizes the notion of a k-partite graph. Its active domain is partitioned into subsets,
called levels, and for every relation its attributes belong to different levels. We
prove that every unsafe query Q can be leveled, by constructing a leveled, un-
safe query Q′ such that the evaluation problem for Q′ can be reduced to that for
Q. For example, consider the query Q = ∃x.∃y.∃z.R(x, y) ∧ R(y, z), in our nota-
tion written as Q = R(x, y), R(y, z), which checks whether a graph has a path of
length 2. To show that the query is #P-hard we specialize it to 4-partite graphs,
Q′ = R12(x, y), R23(y, z) ∨ R23(x, y), R34(y, z), and prove that Q′ is #P-hard; we
call Q′ a leveled query. This first step allows us to restrict the hardness proof to
leveled queries.

The second step, described in Sect. 7, applies some simple rewriting rules to
simplify an unsafe, leveled query Q to another unsafe, leveled query Q′ such that the
evaluation problem for Q′ can be reduced to that for Q. We prove that these rewrite
rules can be applied as long as the query has ≥ 3 levels. Thus, every unsafe query
Q can be rewritten to an unsafe query Q′ with two levels: we call these forbidden
queries. For example, the query Q′ above can be rewritten by collapsing levels 1 and
4 to a single constant, a and b respectively: R12(a, y), R23(y, z)∨R23(x, y), R34(y, b),
which, up to renaming of the relational symbols and of variables, is equivalent to
h1 = R(x), S(x, y)∨S(x, y), T (y), which is a forbidden query (also shown in Table I):
to show that Q′ is hard, it suffices to prove that h1 is hard. The difficulty of this
second step is in showing that progress can always be made, as long as there are at
least 3 levels.

The third step proves that every forbidden query Q is hard for #P. This is the
most interesting part of the proof, and we start by describing the main intuition and
introducing the main techniques in Sect. 5, then give the full proof details in Sect. 8.
(Readers interested in the main proof techniques may go directly to Sect. 5, which
is mostly self-contained.) This step is a direct reduction from Provan and Ball’s
partitioned-positive-2CNF counting problem, #Φ. The reason why it is difficult is
that the lineage of the forbidden query is, in general, quite different from a PP2CNF
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formula. There is n direct relationship between PD(Q) and #Φ, instead PD(Q) is a
linear function of polynomially many parameters of Φ (such as, the number of truth
assignments that satisfy exactly k clauses, etc). The reduction consists of running
the oracle for PD(Q) repeatedly, constructing a system of linear equations, then
solving it. The reduction works iff the matrix of the linear system is non-singular,
and this happens iff the Jacobian of a certain set of multi-linear polynomials is
non-zero. The size of the Jacobian depends only the query Q, and is 4 × 4 for
the simplest forbidden query. It is far from obvious why the Jacobian would be
non-zero, and, in fact, it is zero for all queries Q that are not forbidden queries. To
prove that the Jacobian is non-zero, we construct the database D in a special way,

in which the Jacobian turns out to be Cauchy’s double alternant, det
(

1
xi+yj

)
ij
,

which has a simple closed form and is non-zero iff all values x1, . . . , xn are distinct
and all values y1, . . . , yn are distinct. The values x1, . . . , xn represent probabilities
of tuples in the database and we can easily choose them to be distinct. However, the
values y1, . . . , yn depend on the query, and it is not obvious at all why they should be
distinct: in fact, for non-forbidden queries they are not distinct. Here, we prove that
these values are distinct if a certain multilinear polynomial (representing the query’s
probability) is irreducible: the latter happens if and only if the query is forbidden.
We describe these three techniques from classical algebra and from analysis in
Sect. 5; a fourth, quite non-obvious technique that uses Mobius’ inversion formula
to compute PD(Q), is described in Sect. 8, which contains all details of the hardness
proof.

Previous work on Conjunctive Queries In previous work [Dalvi and Suciu 2007a]
we described a PTIME algorithm for conjunctive queries, and claimed that it is
complete, in the sense that every query on which the algorithm fails is #P-hard.
The completeness proof consisted of showing that, if the algorithms gets stuck on
a query Q, then there exists a reduction from hk to Q, where hk is a query for
which we prove hardness directly (defined in Example 4.6). But the proof was
very complex, since it combined all of Sect. 6, Sect. 7, and parts of Sect. 8 in
one single giant step, and was very sensitive to small changes in the algorithm.
While initial proof sketches seemed to work, we were not able to finalize the proof,
and re-started, leading to the current work. In hindsight, the difficulties we en-
countered in [Dalvi and Suciu 2007a] came from working on the standard, DNF
representation of a conjunctive query; that form prevents induction on the query’s
structure, making the algorithm more complex, and making the hardness proof
impossibly difficult. In Appendix A we clarify in detail the status of the algorithm
in [Dalvi and Suciu 2007a]. In a nutshell, the algorithm is sound (after fixing some
minor mistakes, as we explain in Appendix A), in that it computes correctly the
probability whenever it succeeds, and is also complete for queries over vocabularies
of arities ≤ 2; it remains open whether it is complete in general. The plan of relying
only on the hk queries to prove hardness was probably also doomed to fail. While
every non-hierarchical query rewrites to h0 = R(x), S(x, y), T (y) (Prop. 8.8), in
general hierarchical queries do not rewrite to hk, but to the more complex forbid-
den queries, discussed in Sect. 8.

Related work [Grädel et al. 1998] were the first to give an example of a query
Q for which P (Q) is #P-hard; their work was done in the context of query reliability.
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In the following years, several studies [Dalvi and Suciu 2004; Dalvi and Suciu 2007b;
Olteanu et al. 2009; Olteanu and Huang 2009], sought to identify classes of tractable
queries. These works provided conditions for tractability only for conjunctive
queries without self-joins, with the exception of [Dalvi and Suciu 2007a]. We ex-
tend those results to a larger class of queries, and at the same time provide a very
simple algorithm. Some other prior work is complimentary to ours, e.g., the results
that consider the effects of functional dependencies [Olteanu et al. 2009].

2. DEFINITIONS AND BACKGROUND

2.1 Problem Definition

We fix a relational vocabulary R = (R1, . . . , Rk), and denote arity(Ri) the arity
of a relation Ri. A database instance over R is D = (RD

1 , . . . , RD
k ), where each

RD
i is a finite relation. We call the elements of RD

i tuples. With some abuse of
notation we also denote D as the set of all tuples, i.e. D = RD

1 ∪ . . . ∪ RD
k , where

the union is understood to be a disjoint union. The active domain, ADom(D) or
simply ADom when D is understood from the context, is the set of all constants
occurring in D. The size of the database instance D is n = |ADom|. A tuple-
independent probabilistic database is a pair D = (D,P ), where P : D → [0, 1]; its
semantics is the probability space PD defined by Eq. 1, and its size is the size of
D. For complexity results, we assume that the probabilities are given as rational
numbers, and the size of their representation is bounded by a polynomial in n.

In this paper we discuss unions of conjunctive queries (UCQ); we consider only
Boolean queries. We first review their traditional syntax, then introduce alternative
syntactic representations that we will use throughout the paper. A conjunctive
query, CQ, is an expression of the form q = ∃x1 . . . ∃xk.g1 ∧ . . . ∧ gm, where each
gi is some relational atom R(x̄) with variables and/or constants. In the traditional
syntax we drop all existential quantifiers and replace ∧ with comma. A union of
conjunctive queries is an expression of the form Q = q1 ∨ . . . ∨ qp, where each qi is
a conjunctive query. Thus, the traditional syntaxes for CQ and UCQ are:

q =g1, g2, . . . , gm (3)

Q =q1 ∨ . . . ∨ qp (4)

The UCQ examples in Table I follows this traditional syntax.
In this paper we will represent queries as existential, positive FO formulas:

Definition 2.1. A query expression is given by the following grammar:

Q =R(x̄) | ∃x.Q1 | Q1 ∧Q2 | Q1 ∨Q2 (5)

Here R(x̄) is a relational atom with variables and/or constants. Thus, in this
paper, a query expression Q is an existential, positive FO formula (no negation
and no universal quantifiers). Since we only consider Boolean queries, Q must be
a closed formula, i.e. without free variables. Given a database instance D and a
query expression Q, we write D |= Q if the query Q is true on D; we refer the
reader to [Libkin 2004] for an introduction to FO formulas and their interpretation
on first order structures. If D is a probabilistic database, then the semantics of
Q on D is given by the probability PD(Q), see Eq. 2. When D is clear from the
context, then we drop the index and write P (Q).
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Two query expressions Q,Q′ are equivalent if D |= Q iff D |= Q′, for all database
instances D; if Q and Q′ are equivalent, then PD(Q) = PD(Q′).
Every UCQ query given in the traditional syntax Eq. 4 is also an existential,

positive FO formula. The converse is also known to hold: every existential, positive
FO formula (given by Eq. 5) is equivalent to some UCQ query. Therefore, in this
paper we will denote UCQ to be the set of query expressions given by Eq. 5.

V ar(Q) denotes the set of variables in Q. Throughout the paper we make the
standard assumption that each existential quantifier uses a distinct variable. It
can be enforced by renaming existential variables used twice; for example, we do
not write a query like ∃x.R(x) ∨ ∃x.S(x), because it uses ∃x twice, but instead
rewrite it as ∃x.R(x) ∨ ∃y.S(y), or also as ∃x.(R(x) ∨ S(x)). It follows that, if
Q1, Q2 are two Boolean queries occurring in the context Q1 ∨ Q2 or Q1 ∧ Q2,
then V ar(Q1) ∩ V ar(Q2) = ∅. When we apply a Boolean identity that repeats
a subexpression, then assume that variables are renamed: e.g. in the identity
Q1 ∨ (Q2 ∧Q3) = (Q1 ∨Q2)∧ (Q1 ∨Q3) we assume that the two occurrences of Q1

on the right use disjoint sets of variables.

Definition 2.2. A variable z is called a root variable in Q if it occurs in all
atoms of Q.

For example, given the query ∃x.∃y.(R(x)∧ S(x, y)), x is a root variable while y
is not a root variable. The query ∃x.∃y.R(x) ∧ S(x, y) ∧ T (y) has no root variable.
An attribute is a pair (R, i), where R ∈ R is a relation name, and i ∈ [arity(R)].

Let Q be any query expression. The attribute graph of Q is the undirected graph
whose nodes are attributes (R, i), and whose edges are pairs ((R, i), (S, j)) s.t. Q
contains two atoms R(. . .) and S(. . .) that have the same variable x on attributes
i and j respectively.

Definition 2.3. A level of a query expression Q is a connected component of
its attribute graph.

For a simple example the query ∃x.∃y.∃z.R(x, y)∧S(y, z) has three levels, {(R, 1)},
{(R, 2), (S, 1)}, and {(S, 2)}, while the query ∃x.∃y.∃z.R(x, y)∧R(y, z) has a single
level, {(R, 1), (R, 2)}.
If Z is a level and x ∈ V ar(Q) a variable, we say that x occurs on level Z if

the query has some atom R that contains x on attribute i, and (R, i) ∈ Z. Denote
V arZ(Q) the set of variables that occur on level Z.
In general the attribute graph, and the levels, depend on the query expression:

for example the attribute graph for ∃x.R(x) ∨ ∃y.S(y) has two levels, while it has
only one level for the equivalent expression ∃z.(R(z) ∨ S(z)).

The query evaluation problem on probabilistic databases is the following. Given a
UCQ query Q and a probabilistic database D, compute PD(Q). We are interested
in the data complexity: for a fixed query Q, what is the complexity of computing
PD(Q) as a function of the size of D?

Definition 2.4. UCQ(P ) is the class of UCQ queries, Q, s.t. there exists an
algorithm that, given a probabilistic database D, computes the probability PD(Q) in
PTIME in the size of D.

The main result of this paper is a complete syntactic characterization of the class
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UCQ(P ) (assuming FP 6= #P ), and establishes the following dichotomy: for every
query not in UCQ(P ), computing PD(Q) is hard for #P .

2.2 Review: Query Lineage

We annotate each tuple t in a database instance D with a distinct Boolean variable
Xt from a set X. Let Q be a query expression. The lineage of Q on D is the
Boolean expression ΦD

Q , or simply ΦQ if D is understood from the context, defined
inductively as follows.

ΦR(ā) = XR(ā) Φ∃x.Q =
∨

a∈ADom

ΦQ[a/x] (6)

ΦQ1∧Q2
= ΦQ1

∧ ΦQ2
ΦQ1∨Q2

= ΦQ1
∨ ΦQ2

(7)

For a simple example, if Q = ∃x.(R(x) ∧ ∃y.S(x, y)) and D is a database in-
stance consisting of three tuples, D = {R(a), S(a, b1), S(a, b2)}, annotated with the
Boolean variables X,Y1, Y2, then ΦD

Q = X ∧ (Y1 ∨ Y2)

Notice that, for a fixed query expressions Q, the size of the lineage ΦD
Q is poly-

nomial in n (the size of ADom). If Q is a standard UCQ query expression (Eq. 4)
then ΦD

Q is in DNF. In general, if Q is any expression given by Eq. 5, then ΦD
Q can

be converted to a DNF expression in time polynomial in n.
If Di = (RDi

1 , . . . , RDi

k ), i = 1, 2 are two database instances then we write

D1 ⊆ D2 whenever RD1

1 ⊆ RD2

1 , . . ., RD1

k ⊆ RD2

k . A subset W ⊆ D is called
a possible world or a world. Each world W defines the truth assignment θW : X →
{false, true}, given by θW (Xt) = true iff t ∈ W . The following fact is folklore:

Proposition 2.5. Let Q be a query expression, D a database instance, and ΦD
Q

its lineage. Then, for all W ⊆ D, we have W |= Q iff ΦD
Q [θW ] = true.

It follows that, for any two query expressions Q1, Q2, the logical implication
ΦD

Q1
⇒ ΦD

Q2
holds iff for every possible world W ⊆ D, W |= Q1 implies W |= Q2.

In particular, two equivalent query expressions have equivalent lineage expressions.
The lineage expression gives us an alternative way to compute the query proba-

bility PD(Q) on a probabilistic database D = (D,P ). Assign each Boolean variable
Xt independently to true with probability P (t) and let P (ΦD

Q) denote the prob-

ability that the expression ΦD
Q becomes true; then PD(Q) = P (ΦD

Q). Since each

query expression Q defines a family of Boolean expressions, namely the family ΦD
Q

where D ranges over all finite databases, the dichotomy result in this paper is
also a characterization of families of Boolean expressions that are computable in
PTIME, and establish a dichotomy on these families. Such families of formulas oc-
cur in other contexts beyond probabilistic databases, for example in Markov Logic
Networks[Domingos and Lowd 2009] and in Model Counting [Gomes et al. 2009].

2.3 Review: Query Containment and Minimization

We briefly review the classical results on query containment and query minimization
for CQ and for UCQ, and refer the reader to [Abiteboul et al. 1995] for further
detail. These results assume the traditional syntax given by Eq. 3 and Eq. 4. Given
a conjunctive query q, we denote Dq the canonical database: its active domain
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consists of all constants and variables in q, and it has a tuple for each atom in q.
The following is a classic result by Chandra and Merlin [Chandra and Merlin 1977].
Given two conjunctive queries q, q′, the following statements are equivalent: (1) the
logical implication q ⇒ q′ holds; (2) there exists a homomorphism q′ → q; (3)
Dq |= q′. Containment and equivalence are NP complete problems. A conjunctive
query q given by Eq. 3 is minimized if there is no other equivalent expression q′ with
strictly fewer relational atoms. Each conjunctive query q is equivalent to a unique
minimized query (up to isomorphism). The following is a classic result by Sagiv and
Yannakakis [Sagiv and Yannakakis 1980]. Given two unions of conjunctive queries,
Q =

∨
i qi and Q′ =

∨
j q

′
j , the following are equivalent: (1) the logical implication

Q ⇒ Q′ holds; (2) ∀i.∃j such that qi ⇒ qj . A UCQ given by the expression Eq. 4
is minimized if each qi is a minimized conjunctive query, and qi ⇒ qj implies i = j
(in other words no two distinct queries are contained). Each UCQ query Q is
equivalent to a unique minimal UCQ query (up to isomorphism).

2.4 FO Reductions

In several places of the hardness proof we use polynomial time reductions from
some query Q to another query Q′. The reductions we need are very simple: all
are FO mappings, and in most cases they have an even simpler form, which we call
linear FO mappings.
Fix two relational vocabularies R = (R1, . . . , Rk) and R′ = (R′

1, . . . , R
′
m). An

FO mapping from R to R′ is a tuple F = (F1, . . . , Fm), where each Fi is relational
algebra expression of arity arity(R′

i) over the vocabulary R. All FO-mappings in
this paper are combinations of selections, projections, and unions (we don’t need
joins), denoted using the standard symbols σ,Π,∪. We write F(D) for the result
of applying F to an instance D.
We extend an FO mapping to a mapping between probabilistic databases. If

D = (D,P ), then we assume that each tuple in t has an extra attribute whose
value is the probability of the tuple, P (t). The FO mapping is defined over a
schema that includes this attribute, and must return a value for the probability of
each output tuple. In all examples in this paper, the output probability is either
copied from the input, or is defined to be 1.

Definition 2.6. A reduction Q ≤FO
prob Q

′ consists of an FO mapping F from the
vocabulary of Q to that of Q′, and an algorithm with inputs (D, PF(D)(Q

′)) that
computes PD(Q) in time polynomial in the size of D. Equivalence, Q ≡FO

prob Q′, is

defined as Q ≤FO
prob Q

′ and Q′ ≤FO
prob Q.

The intuition is very simple. To compute PD(Q), we first apply the mapping F

and obtain D′ = F(D), use an oracle to compute p = PD′(Q′), then we run the
algorithm on the database D and the value p to compute PD(Q). Obviously, if
Q′ ∈ UCQ(P ) then Q ∈ UCQ(P ); also, if Q is #P-hard, then Q′ is #P-hard.

For example, consider the queries h1 = R(x0), S(x0, y0) ∨ S(x1, y1), T (y1) and
h′
1 = R(x0), S(x0, y0), S(x1, y1), T (y1). Then we claim that h1 ≤FO

prob h′
1. Indeed,

denote h10 = R(x0), S(x0, y0) and h11 = S(x1, y1), T (y1): we will show below
(Example 2.14) that both P (h10) and P (h11) can be computed in PTIME in the
size of the probabilistic databases. Then P (h1) = P (h10∨h11) = P (h10)+P (h11)−
P (h′

1); thus, given an oracle for computing p = P (h′
1), we can compute P (h1) in
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polynomial time, since the expression P (h10)+P (h11) can be computed in PTIME.
This shows h1 ≤FO

prob h′
1. We will prove in Prop. 5.2 that h1 is #P-hard, and this

implies that h′
1 is also #P-hard.

A linear FO mapping is a mapping F satisfying the following three properties:
(1) F(D1) ∪ F(D2) = F(D1 ∪ D2), (2) F(D1) ∩ F(D2) = F(D1 ∩ D2), and (3)
|F(D)| ≤ |D|. If F is linear, then for any single tuple t we have either F({t}) = {t′}
or F({t}) = ∅; furthermore, F(D) =

⋃
t∈D F({t}). A linear mapping F establishes

an injective function f : D′ → D from the tuples in D′ = F(D) to those in D, by
f(t′) = t where t is the unique tuple s.t. F({t}) = {t′}. 2

For an illustration, if R(A,B,C) is a relation of arity 3 and R′(B,C) has arity
2, then R′ = ΠBC(σA=a(R)) defines a linear mapping F from R to R′, where a
is constant. The function t = f(t′) pads the tuple t′ with the constant a, i.e. if
t′ = (b, c), then t = (a, b, c). Thus, given a tuple t = (a1, b1, c1), F({t}) is either
{(b1, c1)} or ∅ (depending on whether a1 = a or a1 6= a). In the other direction,
given t′ = (b1, c1), f(t

′) is always defined as (a, b1, c1).

Definition 2.7. Let Q, and Q′ be two queries. A lineage reduction, Q ≤FO
lin,+

Q′, consists of a pair (F,E) where F is a linear mapping, and E an FO mapping,
such that the following holds. Let D be any database, annotated with Boolean vari-
ables X = {Xt | t ∈ D}, let D′ = F(D) ∪ E(D), and let Y be a set of Boolean
variables disjoint from X. Annotate each tuple t′ ∈ F(D) with Xf(t′), and annotate

tuples in E(D)−F(D) with variables from Y, then3: ΦD
Q ≡ ΦD′

Q′ [Y = true]. When

E = ∅, then the condition becomes ΦD
Q ≡ ΦD′

Q′ , and we say that the reduction is

strict and write Q ≤FO
lin Q′.

Lineage equivalence, Q ≡FO
lin,+ Q′, is defined as Q ≤FO

lin,+ Q′ and Q′ ≤FO
lin,+ Q;

similarly, strict lineage equivalence, Q ≡FO
lin Q′, means Q ≤FO

lin Q′, Q′ ≤FO
lin Q.

The intuition is very simple. Suppose Q ≤FO
lin,+ Q′. To compute the lineage

ΦD
Q , first compute D′ = F(D) ∪ E(D), then compute the lineage ΦD′

Q′ . This is a
Boolean expression that uses the Boolean variables Xt occurring in D, and also
extra variables Yt′ for the extra tuples t′ ∈ E(D): by setting all the latter variables
Yt′ = true, the lineage ΦD′

Q′ becomes ΦD
Q .

The lineage reduction Q ≤FO
lin,+ Q′ is simpler than Q ≤FO

prob Q′, because it gives
us a very simple algorithm for computing P (Q) using an oracle for P (Q′): simply
set the probabilities of all extra tuples to 1, and obtain PD(Q) = PD′(Q′). We
call the extra tuples E(D) deterministic tuples. For a simple example, if h0 =
R(x), S(x, y), T (y) and Q = R(x), S(x, y), T (y), U(x, y, z), then h0 ≤FO

lin,+ Q: the

linear mapping F maps R,S, T to themselves, while E computes U = (ADom)3.
The lineage of Q has extra Boolean variables associated to the tuples in U , but
once we set these to true its lineage becomes that of h0. Thus, to compute P (h0)

2The function f is obtained as follows. If F is a linear mapping, then by property (1), F(D) =
⋃

t∈D F({t}). Let t′ ∈ D′ = F(D). Then there exists t s.t. t′ ∈ F({t}). We prove that t is unique,
and set f(t′) = t. Indeed, if t′ ∈ F({t1}) for t1 6= t then by property (2) t′ ∈ F({t}) ∩ F({t1}) =
F({t} ∩ {t1}) = F(∅), and the latter is ∅ by property (3), which is a contradiction. It also follows
that f is injective.
3By Φ[Y = true] we mean the formula Φ where all variables Y ∈ Y are substituted with true.
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using an oracle for P (Q), simply create fake tuples for U and set their probabilities
to 1. In general, we have:

Proposition 2.8. If Q ≤FO
lin,+ Q′ then Q ≤FO

prob Q
′.

If no deterministic tuples are needed, then we call the reduction strict; in that
case the lineages are equivalent, ΦD

Q ≡ ΦD′

Q′ . Of course, every strict reduction is

also a reduction, i.e. Q ≤FO
lin Q′ implies Q ≤FO

lin,+ Q′. Most lineage reductions in
this paper are strict. For an example of a strict reduction, consider Q = S(x, y)
and Q′ = R(a, x, y) where a is a constant, then Q ≤FO

lin Q′ because, given an
instance S we can construct an instance R by padding all tuples in S with a:
R = {(a, b, c) | (b, c) ∈ S}. The lineage of Q on S is the same as the lineage of Q′

on R, and P (Q) = P (Q′).

2.5 Eliminating Constants through Query Shattering

We describe here a process to eliminate all constants from a query Q, without af-
fecting its evaluation problem. Intuitively, if a is a constant in the query, then we
replace a relational atom R(x) with two atoms, R(x), x = a and R(x), x 6= a; this
process is called shattering [de Salvo Braz et al. 2005; Domingos and Lowd 2009].
We then replace the two predicates with new relation names, Ra() and R∗(x) re-
spectively, thus eliminating the constant a. In general, for any query Q we construct
another query Q′, over a different vocabulary R′, such that Q′ has no constants
and Q ≡FO

lin Q′. We call the transformation from Q to Q′ shattering. We actually
describe a more general shattering, which works only one way, Q′ ≤FO

lin Q, and
which we need in our hardness proof; then we give a sufficient condition under
which Q′ ≡FO

lin Q.
Let A be a set of constants. Fix a regular vocabulary R. A shattered vocabulary,

RA, consists of relational symbols of the form Rτ , where R ∈ R is a relation name,
and τ : [k] → A∪{∗} is called its shatter, where k = arity(R). The set of attributes
is Attr(Rτ ) = {i | τ(i) = ∗}; in other words, the arity of Rτ is equal to the number
of ∗’s in the shatter τ . We make the assumption that relational instances D′ over
RA do not contain any constants in A: ADom(D′) ∩A = ∅.

Let Q be a query over the vocabulary R, let A be any set of constants, and RA

any shattered vocabulary. We define the shattered query, QA as follows. For any
function ρ : V ar(Q) → A ∪ {∗} denote Qρ the query obtained by replacing each
atom R(x̄) = R(x1, . . . , xk) with Rτ ((xi)ρ(xi)=∗); it includes only those variables xi

of R(x̄) whose shattering is ∗. The shattering τ of Rτ is defined as follows: for each
i = 1, k, if xi is a variable then τ(i) = ρ(xi), and if xi is a constant a then τ(i) = a.
If the symbol Rτ is not in the vocabulary RA (for example, if xi is a constant
6∈ A), then we define Rτ ≡ false. Define the shattered query to be QA =

∨
ρ Qρ.

Clearly, QA has no constants.

Proposition 2.9. If QA is the shattered query for Q over some shattered vo-
cabulary RA, then QA ≤FO

lin Q.

Proof. Define the following linear mapping F1 from RA to R. Given an
instance D′, for each shattered relational symbol Rτ and each tuple t′ ∈ RD′

τ

define F1({t
′}) = {t} where the tuple t obtained from t′ by padding with the

constants defined by τ . (For example, if t′ = (u1, u2) and τ = a ∗ ba ∗ a, then
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t = (a, u1, b, a, u2, a).) The function t′ 7→ t is injective, because we assumed that
D′ has no constants from A, and therefore the mapping F1(D

′) =
⋃

t′∈D′ F1({t
′})

is a linear mapping. Clearly, if ADom′ is the active domain of D′, then the active
domain of D is ADom ⊆ ADom′ ∪A.
Next, we prove ΦD

Q ≡ ΦD′

QA
, and for that we show that for every world W ′ ⊆ D′,

W ′ |= QA if and only if W |= Q where W = F1(W
′). Assuming W |= Q, there

exists a valuation θ : V ar(Q) → ADom s.t. W |= Q[θ], where Q[θ] is a Boolean
expression over ground tuples. Define the following variable shatter ρ. For each
x ∈ V ar(Q), if θ(x) = a ∈ A then define ρ(x) = a, otherwise define ρ(x) = ∗. Since
V ar(Qρ) ⊆ V ar(Q), θ is also a valuation for Qρ, and Qρ[θ] is the same Boolean
expression as Q[θ], where each ground tuple t has been replaced with t′ = f1(t).
Therefore, t ∈ W iff t′ ∈ F1(W ), and W |= Q[θ] iff W ′ |= θ[Qρ]. Since we assumed
W |= Q, we have W ′ |= QA. Conversely, if W ′ |= QA, since Q =

∨
ρ Qρ there

exists a variable shattering ρ such that W ′ |= Qρ. Let θ′ : V ar(Qρ) → ADom′

such that W ′ |= Qρ[θ
′]. Define θ : V ar(Q) → ADom as follows. For each x ∈

V ar(Q), if ρ(x) = ∗, then x ∈ V ar(Qρ) and therefore θ′ is defined on x, and we
set θ(x) = θ′(x); if ρ(x) = a ∈ A, then define θ(x) = a. It follows that Q[θ] is the
same Boolean expression as Qρ[θ

′] up to the renaming of tuples t′ to f(t′), therefore
W ′ |= Qρ[θ

′] implies W |= Q[θ]. This completes the proof of Q ≤FO
lin QA.

Notice that the proposition holds for any shattered vocabulary RA. That is, we
can choose RA freely, all that is required is that QA be shattered according to the
procedure we outlined here. We will use this throughout the paper for hardness
proofs: to show that Q is hard, it suffices to find some shattering QA that is
hard. However, for the algorithm, we need the converse of the proposition, and this
holds only if RA is “complete”. For example, consider Q = R(a), S(a)∨R(x), T (x)
and the shattered vocabulary Ra(), R∗(x), Sa(), T∗(x): note that we did not include
Ta(). The shattered query is Qa = Ra(), Sa()∨R∗(x), T∗(x), and by the proposition
we have Qa ≤FO

lin Q, but the converse fails, Q 6≤FO
lin Qa. However, if we include

Ta() in the shattered vocabulary, then the shattered query is Q′
a = Ra(), Sa() ∨

Ra(), Ta() ∨R∗(x), T∗(x) and now Q ≡FO
lin Q′

a. We generalize this observation.
Let Const(Q) denote the set of constants in Q, and ConstZ(Q) the set of con-

stants that occur on level Z: this definition is similar to V arZ(Q) given after
Def. 2.3. For each level Z let A∗

Z be the following set. If V arZ(Q) = ∅ then
A∗

Z = ConstZ(Q); otherwise, A∗
Z = ConstZ(Q) ∪ {∗}. The completely shattered

vocabulary RA is the following. For every relational symbol R, RA contains all
shatterings Rτ , for all τ ∈

∏
i A

∗
Zi
, where Zi is the level of the attribute (R, i).

Thus, in the complete shattering each attribute (R, i) is shattered with all con-
stants in ConstZi

(Q) and, if Zi contains at least one variable, then the attribute is
also shattered with ∗. The completely shattered query, QA, is the shattering of Q
over the vocabulary RA.

Proposition 2.10. If QA is the complete shattering of Q then Q ≡FO
lin QA.

Proof. By Prop. 2.9 we have QA ≤FO
lin Q, so we only need to prove Q ≤FO

lin QA.
Let D be a database instance over the vocabulary R. We denote AZ = A∗

Z−{∗} for
any level Z. Define the mapping F2 as follows: F2(D) = D′, where each relation
RD′

τ is obtained from RD in two steps. (1) Select from RD only those tuples that
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have the constants prescribed by τ . That is, for i = 1, arity(R), if τ(i) = a ∈ AZi

then keep the tuple t only if ti = a, and if τ(i) = ∗ then keep t only if ti 6∈ AZi
,

where Zi is the level of the attribute (R, i). (2) Project the resulting tuples on
the attributes in Attr(Rτ ). Denote the resulting database D′. Going in the other
direction, denote D0 = F1(D

′), where F1 is the mapping defined in the proof of
Prop. 2.9. We have already shown that ΦD′

QA
= ΦD0

Q . We claim that ΦD0

Q = ΦD
Q .

Note that D0 ⊆ D. Let t be an omitted tuple, i.e. t ∈ RD, but t 6∈ RD0 . Then there
exists an attribute i such that ti 6∈ AZi

and no shattering Rτ ∈ RA has τ(i) = ∗.
But that implies ∗ 6∈ A∗

Zi
, which means that V arZi

(Q) = ∅. All atoms in Q that
refer to R have some constant in ConstZi

(Q) on attribute position i, meaning that
the tuples t ∈ D−D0 do not occur in the lineage ΦD

Q , proving that ΦD0

Q = ΦD
Q .

Example 2.11. We show the complete shattering of q = R(x, a), R(a, x) =
∃x.(R(x, a)∧R(a, x)). The shattered vocabulary is: Raa(), R∗a(A), Ra∗(B), R∗∗(A,B).
Given a probabilistic database D = (D,P ), define D′ = (D′, P ′) by splitting
R(A,B) into four relations: RD′

aa = Π∅(σA=a,B=a(R
D)), RD′

∗a = ΠA(σA 6=a,B=a(R
D)),

RD′

a∗ = ΠB(σA=a,B 6=a(R
D)), RD′

∗∗ = ΠAB(σA 6=a,B 6=a(R
D)). Notice that Raa is a re-

lation of arity zero. For the shattered query qa we note that there are two shatters
for x, denoted a and ∗. Thus qa = qa ∨ q∗ = Raa() ∨R∗a(x), Ra∗(x).

2.6 Special Query Expressions

We introduce here five special query expressions.
Consider a conjunctive query in traditional notation q = g1, g2, . . . , gm, and define

the following undirected graph: the nodes are the atoms gi, and the edges are pairs
(gi, gj) s.t. gi, gj share a common variable. The components of the query q are
the connected components of this graph; q is called a component if it is connected,
i.e. if it has a single component. We denote a component with c. For example,
if q = R(x), S(x, y), T (z) then it has two components: c1 = R(x), S(x, y) and
c2 = T (z), and we write q ≡ c1 ∧ c2, or q ≡ c1, c2. Clearly, each conjunctive query
q can be written uniquely as a conjunction of components q = c1, c2, . . . , ck.
A conjunctive-, disjunctive, DNF-, and CNF-query expression is defined as a

Boolean expression of that particular kind, over components. Denote components
with c, conjunctive queries with q, disjunctive queries with d, and both DNF and
CNF expressions with Q. They are defined by the following grammar:

c =connected conjunctive query component

q =c1 ∧ . . . ∧ ck conjunctive query expression

d =c1 ∨ . . . ∨ ck disjunctive query expression

Q =q1 ∨ . . . ∨ qk DNF query expression

Q =d1 ∧ . . . ∧ dk CNF query expression

In addition, we will use comma instead of ∧ inside a conjunctive query, and will
drop existential quantifiers when clear from the context. Note that the existential
quantifiers are always pushed down to the components.
The terms DNF or CNF are justified because these are indeed propositional DNF

or CNF expressions, where the atoms are components. Clearly, every UCQ query is
equivalent to some DNF expression: start from its traditional expression Eq. 4, and
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write each conjunctive query as a conjunction of components. Every UCQ query is
also equivalent to an CNF expression: simply convert the DNF to CNF.

Example 2.12. We illustrate these notations with the following query QV , which
we first show in its traditional UCQ syntax:

QV =R(x1), S(x1, y1) ∨ S(x2, y2), T (y2) ∨R(x3), T (y3)

Note that R(x3), T (y3) is not a component, since it is disconnected: (∃x3.R(x3)) ∧
(∃y3.T (y3)). QV is equivalent to the following DNF expression:

QV ≡∃x1.∃y1.[R(x1) ∧ S(x1, y1)] ∨ ∃x2.∃y2.[S(x2, y2) ∧ T (y2)] ∨ [(∃x3.R(x3)) ∧ (∃y3.T (y3))]

=c1 ∨ c2 ∨ (c3 ∧ c4)

Next, let’s rewrite it as a CNF query expressions:

QV ≡(c1 ∨ c2 ∨ c3) ∧ (c1 ∨ c2 ∨ c4)

=[∃x1.∃y1.(R(x1) ∧ S(x1, y1)) ∨ ∃x2.∃y2.(S(x2, y2) ∧ T (y2)) ∨ ∃x3.R(x3)]

∧[∃x′
1.∃y

′
1.(R(x′

1) ∧ S(x′
1, y

′
1)) ∨ ∃x′

2.∃y
′
2.(S(x

′
2, y

′
2) ∧ T (y′2)) ∨ ∃y′3.T (y

′
3)]

≡[∃x3.R(x3) ∨ ∃x2.∃y2.(S(x2, y2) ∧ T (y2))] ∧ [∃x′
1.∃x

′
2.(R(x′

1) ∧ S(x′
1, y

′
1)) ∨ ∃y′3.T (y3)]

≡(R(x3) ∨ S(x2, y2), T (y2)) ∧ (R(x′
1), S(x

′
1, y

′
1) ∨ T (y′3))

We minimized the two disjunctive queries on lines 2 and 3, then we dropped the
quantifiers and replaced ∧ with comma.

Finally, we consider the containment problem for these five special query expres-
sions. Let Q,Q′ be two query expressions, given as propositional Boolean expres-
sions E,E′ over components c1, c2, . . . If propositional logical implication E ⇒ E′

holds, then query containment Q ⇒ Q′ also holds, but the converse is not true in
general. We give below necessary and sufficient conditions for containment.

Proposition 2.13. Assume all queries are without constants. Then:

Component containment: c ⇒ c′ iff ∃h : c′ → c iff Dc |= c′

Conjunctive query containment: (
∧

i

ci) ⇒ (
∧

j

c′j) iff ∀j.∃i.ci ⇒ c′j

Disjunctive query containment: (
∨

i

ci) ⇒ (
∨

j

c′j) iff ∀i.∃j.ci ⇒ c′j

DNF query containment: (
∨

i

qi) ⇒ (
∨

j

q′j) iff ∀i.∃j.qi ⇒ q′j

CNF query containment: (
∧

i

di) ⇒ (
∧

j

d′j) iff ∀j.∃i.di ⇒ d′j

Proof. A component is a special case of a conjunctive query, hence the first
containment follows from Chandra and Merlin’ result [Chandra and Merlin 1977].
For the remainder four statements, the “if” direction is immediate, so we prove the
“only if” direction. For conjunctive queries, (

∧
i ci) ⇒ (

∧
j c

′
j) implies the existence

of a homomorphism f : (
∧

j c
′
j) → (

∧
i ci). Since f must map each variable to a vari-

able (there are no constants in ci), for each connected component c′j , its image f(c′j)
is connected, hence it must be a subset of some connected component ci, proving
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Algorithm 1 Algorithm from [Dalvi and Suciu 2004; Dalvi and Suciu 2007b] com-
puting P (q) for a conjunctive query without self-joins

1: Write q as a conjunction of components q = c1, . . . , cm.
2:

3: /* q has 2 or more components */
4: if m ≥ 2 then return P (c1) · P (c2) · · ·P (cm) /* independent join */
5:

6: /* q is a single component: denote it c */
7: if c has no variables then return P (t) /* c = a ground tuple t */
8: if c has a root variable z then return 1−

∏
a∈ADom(1− P (c[a/z]))

/* independent project */
9: Otherwise FAIL

ci ⇒ c′j . The claims for disjunctive- and DNF-query expressions follow immediately
from Sagiv and Yannakakis’s criterion for UCQ [Sagiv and Yannakakis 1980]. It re-
mains to prove the claim for CNF query expressions. Suppose the contrary: there
exists an index j such that ∀i, di 6⇒ d′j . Thus, forall i, by Sagiv and Yannakakis’
criterion we obtain that ∃ki s.t ciki

6⇒ d′j , where ciki
is one of the components of the

disjunctive query di. On the other hand, we have ∀i, ciki
⇒ di, which implies that∧

i ciki
⇒ (

∧
i di) ⇒ (

∧
j d

′
j) ⇒ d′j . The left side is a conjunctive query, the right

side a disjunctive query. Applying Sagiv and Yannakakis’ criteria a second time, we
obtain a component c′jl of d

′
j s.t.

∧
i ciki

⇒ c′jl. By the first item of the proposition
(containment of conjunctive queries), there exists i s.t ciki

⇒ c′jl, contradicting the
fact that ciki

6⇒ d′j .

The statements for conjunctive queries and CNF queries fails if the queries have
constants: for example (R(x, a)) ∧ (S(a, z)) ⇒ R(x, y), S(y, z) (where a is a con-
stant), but neither R(x, a) 6⇒ R(x, y), S(y, z) nor S(a, z) 6⇒ R(x, y), S(y, z). This
is one reason why we shatter queries.
Using the proposition, we will minimize a query expression in each of the five

forms. A component is minimized using the standard procedure given by Chandra
and Merlin [Chandra and Merlin 1977]. A conjunctive query

∧
i ci is minimized

by first minimizing each ci, then removing every ci for which there exists j 6= i
s.t. cj ⇒ ci. A disjunctive query

∨
i ci is minimized by first minimizing each ci,

then removing every ci for which there exists j 6= i s.t. ci ⇒ cj . A DNF query
expression

∨
i qi is minimized by first minimizing each conjunctive query qi then

removing every qi for which there exists j 6= i s.t. qi ⇒ qj . Finally, a CNF query
expression

∧
i di is minimized by first minimizing each disjunctive query di then

removing every query di for which there exists j 6= i s.t. dj ⇒ di. In all five cases,
the minimized query expression is unique up to isomorphism. We need minimized
CNF expressions in Sect. 7 (in Lemma 7.9).

2.7 Review: Computing the Probability of a Conjunctive Query With No Self-Joins

A conjunctive query is said to be without self-joins if no two atoms have the
same relational symbol. A simple algorithm for computing the probability of a
conjunctive query without self-joins was first described in [Dalvi and Suciu 2004;
Dalvi and Suciu 2007b]; we review it here briefly as algorithm 1. The algorithm
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proceeds inductively on the structure on the query. If the query is disconnected,
then it multiplies the probabilities of its components: this is correct because the
query has no self-joins, and therefore distinct components use disjoint sets of re-
lational symbols and are independent probabilistic events. If the query is a single
ground tuple t then it looks up and returns the tuple’s probability in the proba-
bilistic database. If the query is connected and has variables, then it chooses a root
variable z and substitutes it successively with all constants in the active domain:
the resulting queries c[a/z], a ∈ ADom are independent, and their probabilities are
combined to compute P (c). Finally, if the query has no root variable, then the
algorithm fails. The two steps are called independent join and independent project
respectively, because they can be implemented as a join, or as a project operator in
Relational Algebra, over independent probabilistic events [Dalvi and Suciu 2004].
The algorithm was proven in [Dalvi and Suciu 2004; Dalvi and Suciu 2007b] to

be complete for conjunctive queries without self-joins, in the following sense. For
any query q, the algorithm either succeeds in computing the probability of q,
or, if it fails, then the query is hard for #P . For example, the query h0 =
R(x), S(x, y), T (y) is connected and has no root variable: therefore it is hard for
#P (we review the proof in Sect. 5). We briefly illustrate the algorithm on an
example.

Example 2.14. Consider q = R(x), S(x, y) = ∃x. (R(x) ∧ ∃y.S(x, y)). algorithm 1
computes its probability as follows:

P (q) = 1−
∏

a∈ADom

(1− P (R(a), ∃y.S(a, y)))

P (R(a), ∃y.S(a, y)) = P (R(a)) · P (∃y.S(a, y))

P (∃y.S(a, y)) = 1−
∏

b∈ADom

(1− P (S(a, b)))

However, the algorithm cannot be applied beyond conjunctive queries without
self-joins, as the following example shows.

Example 2.15. Consider the query qJ = R(x1), S(x1, y1), T (x2), S(x2, y2), which
has two components, and can be written as qJ = c1, c2, where c1 = R(x1), S(x1, y1)
and c2 = T (x2), S(x2, y2). We cannot multiply the probabilities of the two compo-
nents, because they share the common symbol S: in general, P (qJ ) 6= P (c1)P (c2).
For example, if the probabilistic database has three tuples D = {R(a), S(a, b), T (b)}
with probabilities p, s, t respectively, then P (qJ ) = p ·s · t, P (c1) = p ·s, P (c2) = s · t,
and P (q) 6= P (c1)P (c2), unless s = 0 or s = 1.

3. A SIMPLE ALGORITHM

We start by describing a very simple algorithm for computing the probability of a
UCQ query. In Sect. 4, we will make two small revisions that make the algorithm
complete. We motivate the algorithm with an example:

Example 3.1. Continuing Example 2.15, we compute P (qJ) using the inclusion-
exclusion formula:

P (c1, c2) =P (c1) + P (c2)− P (c1 ∨ c2)
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We have seen in Example 2.14 how to compute P (c1), and P (c2) is computed sim-
ilarly. We show here how to compute P (d), where:

d =c1 ∨ c2 = R(x1), S(x1, y1) ∨ T (x2), S(x2, y2)

≡∃z.[(R(z) ∧ ∃y1.S(z, y1)) ∨ (T (z) ∧ ∃y2.S(z, y2))]

≡
∨

a∈ADom

[(R(a) ∧ ∃y1.S(a, y1)) ∨ (T (a) ∧ ∃y2.S(a, y2))]

Rewrite the inner query as R(a), ∃y1.S(a, y1)∨T (a), ∃y2.S(a, y2) ≡ (R(a)∨T (a))∧
(∃y.S(a, y)) and obtain:

P (d) =1−
∏

a∈ADom

(1− P ((R(a) ∨ T (a)) ∧ ∃y.S(a, y)))

We used the fact that the queries (R(a) ∨ T (a)) ∧ ∃y.S(a, y) for a ∈ ADom are
independent. Next, P ((R(a)∨T (a))∧∃y.S(a, y)) = P ((R(a)∨T (a)))×P (∃y.S(a, y)).
Thus, P (d) can be computed in PTIME in the size of the database.

The example illustrates an important point: in order to compute the probability
of a conjunctive query with self-joins, we had to compute the probability of a
disjunctive query c1 ∨ c2 as an intermediate step. In other words, the class of
conjunctive queries is not a “natural” class to study: the natural class is that of
unions of conjunctive queries, UCQ.
To describe the algorithm we need two definitions. First:

Definition 3.2. Let Q be a query expression. A variable z is called a separator
variable if Q starts with ∃z, i.e. Q = ∃z.Q1, for some query expression Q1, and
(a) z is a root variable (i.e. it appears in every atom), (b) for every relation symbol
R, there exists an attribute (R, iR) s.t. every atom with symbol R has z in position
iR.

If Q has a separator variable, then it is equivalent to a disjunctive query d.
Indeed, Q = ∃z.Q1, and after expanding Q1 in DNF we obtain:

Q ≡∃z.(q1 ∨ . . . ∨ qm) ≡ ∃z.q1 ∨ ∃z.q2 ∨ . . . ∨ ∃z.qm

≡∃x1.q1[x1/z] ∨ . . . ∨ ∃xm.qm[xm/z] = d

Each conjunctive query qi is connected, because z is a root variable and therefore∨
qi is a disjunctive query. (The substitution of z with fresh variables xi was needed

to ensure that all existential quantifiers use distinct variables.)
Conversely, with some abuse, we say that a disjunctive query d has a separator

variable if we can revert the process above. If d = ∃x1.c1∨. . .∨∃xm.cm, then we say
that “z = x1 = . . . = xm is a separator variable”, or that “x1, . . . , xm are separator
variables” if z is a separator variable in the expression ∃z.(c1[z/x1]∨. . .∨cm[z/xm]).
For example, consider d = R(x1), S(x1, y1)∨T (x2), S(x2, y2) (Example 3.1): we say
that it has the separator variable z = x1 = x2, by which we mean that we rewrite
it as ∃z.[R(z), ∃y1.S(z, y1) ∨ T (z), ∃y2.S(z, y2)] and now z is formally a separator
variable.
Clearly not every disjunctive query has a separator variable. A trivial example is

R(x), S(x, y), T (y), doesn’t even have a root variable. More subtly, R(x1), S(x1, y1)∨
S(x2, y2), T (y2) does not have a separator variable: rewriting it as ∃z.(R(z), ∃y1.S(z, y1)∨
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T (z), ∃x2.S(x2, z)) does not help because z occurs on the first position in S(z, y1)
and on the second position in S(x2, z).
We have:

Proposition 3.3. Let d be a query expression with a separator variable z. Then
the events d[a/z], for a ∈ ADom are independent probabilistic events. In particular:

P (d) =1−
∏

a∈ADom

(1− P (d[a/z])) (8)

Proof. Let a 6= b be two distinct constants in the active domain. Consider
the lineage expressions of the queries d[a/z] and d[b/z]. We claim that these two
Boolean expressions do not share any common Boolean variables. Indeed, suppose
they share Xt, where t is a ground tuple: t = R(c1, c2, . . .). Since z is a separator
variable, every ground tuple of R occurring in the lineage of d[a/z] has the constant
a in position iR: in other words, ciR = a. Reasoning similarly for d[b/z], we also
conclude that the ground tuple contains b on position iR, i.e. ciR = b. This is a
contradiction because a 6= b.

The second definition is:

Definition 3.4. Let Q = {Q1, Q2, . . . , Qk} be a set of query expressions. The
co-occurrence graph of Q is the following undirected graph: the nodes are 1, 2, . . . , k,
and the edges are pairs (i, j) s.t. there exists a relational symbol that occurs both in
Qi and in Qj. Let K1, . . . ,Km be the connected components (they form a partition
on [k]).

Let Q = d1 ∧ . . . ∧ dk be a UCQ query written in CNF, and K1, . . . ,Km the
connected components for the set of queries {d1, . . . , dk}. The symbol-components
of Q are

Q1 =
∧

i∈K1

di, Q2 =
∧

i∈K2

di . . . Qm =
∧

i∈Km

di

Then we have:

P (Q) =P (Q1) · P (Q2) · · ·P (Qm) (9)

If m = 1, then we say that Q is symbol-connected.
Similarly, if d = c1∨ . . .∨ck is a disjunctive query, and K1, . . . ,Km are connected

components of the set of queries {c1, . . . , ck}, then the symbol-components of d are:

d1 =
∨

i∈K1

ci, d2 =
∨

i∈K2

ci . . . dm =
∨

i∈Km

ci

Then we have:

P (d) =1− (1− P (d1)) · (1− P (d2)) · · · (1− P (dm)) (10)

If m = 1, then we say that d is symbol-connected.
The algorithm for computing the probability of a UCQ query is shown in algorithm 2.

The input query Q is assumed to be without constants (it must be shattered first).
The query is processed inductively. The algorithm goes through three syntactic
expressions: CNF (line 1), disjunctive (line 10), and DNF (in line 17 d[a/z] is a
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Algorithm 2 Algorithm for Computing P (Q)
Input: A ranked UCQ Q; a Probabilistic database with active domain ADom
Output: P (Q)

1: Write Q in CNF and minimize it.
2: Compute the symbol-components: Q = Q1 ∧ . . . ∧Qm

3: if m ≥ 2 then return P (Q1) · P (Q2) · · ·P (Qm) /* independent join */
4:

5: Q is a symbol-connected CNF: Q = d1 ∧ . . . ∧ dk
6: if k ≥ 2 then return −

∑
s⊆[k],s 6=∅(−1)|s|P (

∨
i∈s dk) /*inclusion/exclusion*/

7: /* replaced with Mobius’ inversion formula in Sect. 4.2: */
8: /* return −

∑
v<1̂,µ(v,1̂) 6=0 µL(v, 1̂)P (dv) */

9:

10: Q is a disjunctive query: minimize it and denote it d
11: Compute the symbol-components: d = d1 ∨ . . . ∨ dm
12: if m ≥ 2 then return 1− (1− P (d1)) · · · (1− P (dm)) /* indep. union */
13:

14: d is symbol-connected, disjunctive query d = c1 ∨ . . . ∨ ck
15: if d has no variables then return P (t) /* d = c1 = ground tuple t */
16:

17: if d has a separator variable z then return 1−
∏

a∈ADom(1− P (d[a/z]))
/* independent project */

18: Otherwise FAIL

DNF expression). Each recursive call is on a simpler subexpression, thus eventually
the algorithm reaches ground tuples. There are four main steps: an independent
join, the inclusion/exclusion formula, an independent union, and an independent
project. Independent join and independent project generalize those of algorithm 1.
In fact, if we apply algorithm 2 to a conjunctive queries without self-joins, it pro-
ceeds identically to algorithm 1.
The inclusion/exclusion formula in step 6 is the dual of the more familiar one,

because it is applied to a conjunction, like:

P (d1 ∧ d1 ∧ d3) =

P (d1) + P (d2) + P (d3)− P (d1 ∨ d2)− P (d1 ∨ d3)− P (d2 ∨ d3) + P (d1 ∨ d2 ∨ d3)

This is the dual of the more familiar inclusion/exclusion formula:

P (d1 ∨ d1 ∨ d3) =

P (d1) + P (d2) + P (d3)− P (d1 ∧ d2)− P (d1 ∧ d3)− P (d2 ∧ d3) + P (d1 ∧ d2 ∧ d3)

In step 17 we introduce a constant a: before proceeding, we do a complete
shattering of d[a/z] (Prop. 2.10). The shattered query may be a larger than d[a/z],
for an example, if d = ∃x.[R(x, x) ∨ ∃y.R(x, y), S(x, y)], then d[a/x] = R(a, a) ∨
R(a, y), S(a, y), and the shattered query is Raa() ∨ Raa(), Saa() ∨ Ra∗(y), Sa∗(y).
Progress is still ensured by the fact that the maximum arity of any relational symbol
decreases by 1. However, for practical purposes, shattering during query evaluation
is undesirable. It is much better to first rank the query (as we explain in the next
section), and then run the algorithm.
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Note how the algorithm reaches the end of the recursion. If one of the ci’s in a
disjunctive query d =

∨
i ci is a ground tuple, then it is a symbol-component by

itself because, due to shattering, a “ground tuple” is a relational symbol of arity
zero, R(), and cannot occur in any other component cj , because that would make
cj disconnected. Thus, if ci is a ground tuple R(), then it is a symbol-component.
Since we process each symbol component separately in step 11, it means that when
we reach ci the query consists of exactly one ground tuple. At this point, the
algorithm simply looks up its probability in the database.
Finally, if the algorithm reaches a disjunctive query without separator, then it

fails.

Example 3.5. We illustrate the algorithm on the query described in Example 2.12,
QV = R(x1), S(x1, y1) ∨ S(x2, y2), T (y2) ∨R(x3), T (y3). The algorithm first writes
it in CNF, QV = d1 ∧ d2 = (R(x3) ∨ S(x2, y2), T (y2)) ∧ (R(x′

1), S(x
′
1, y

′
1) ∨ T (y′3)).

Here d1, d2 are disjunctive queries. The set {d1, d2} is symbol-connected, so the
algorithm applies the inclusion-exclusion formula:

P (QV ) =P (d1) + P (d2)− P (d1 ∨ d2)

=P (R(x3) ∨ S(x2, y2), T (y2)) + P (R(x′
1), S(x

′
1, y

′
1) ∨ T (y′3))− P (R(x3) ∨ T (y′3))

We discuss only the first disjunctive query, d1, the other two are similar. It has
two symbol-components, hence P (d1) = 1−(1−P (R(x3)))(1−P (S(x2, y2), T (y2)));
the last expression, P (S(x2, y2), T (y2)) has separator variable y2, and is actually
similar to the query in Example 2.14.

Proposition 3.6. Fix a query expression Q and let k be the largest arity of any
relational symbol used by the vocabulary of Q. Then, on any input database D,
algorithm 2 runs in time O(nk), where n is the size of the active domain of D.
Furthermore, if the algorithm succeeds, then it computes correctly PD(Q).

Proof. For the running time note that the only step that depends on the
database is the independent-project (step 17) where P (d[a/z]) is computed n times,
once for each a in the active domain. The running time O(nk) follows by induc-
tion on k, since each recursive call to d[a/z] reduces k by one, because z occurs in
all relational atoms. The independent join (step 3) is correct by Eq. 9; the inclu-
sion/exclusion formula (step 6) is obviously correct; independent union (step 12) is
correct by Eq. 10, and independent project (step 17) is correct by Eq. 8.

4. THE MAIN RESULT

In this section we state the main result of the paper. Let’s call a query Q safe
if algorithm 2 succeeds in computing P (Q); otherwise call it unsafe; for now this
is an informal definition, since we have not yet finished describing the algorithm.
Clearly, if Q is safe then Q is in PTIME: our result is that, if Q is unsafe, then
it is #P-hard. This proves a dichotomy for UCQ queries, they are either safe and
in PTIME, or unsafe and #P-hard. It also says that the algorithm is complete, in
that it succeeds on all queries in UCQ(P ) (assuming FP 6= #P ).
Let’s consider an unsafe query. Call it immediately unsafe if algorithm 2 fails

immediately. In general, if a query is unsafe, then the algorithm performs a few
steps, then gets stuck by reaching an immediately unsafe query.
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algorithm 2 is not yet complete, for two reasons, each requiring a different fix.
First, it may fail immediately on some query that is in PTIME: we fix this by ranking
the query. Second it may start with a PTIME query, apply some steps, then reach
a #P-hard query and get stuck: we fix this by replacing inclusion/exclusion with
Mobius’ inversion formula.

4.1 Ranking

Ranking is the process that splits an atomic predicate containing two variables x, y
into three predicates, x < y, x = y, x > y. It is analogous to shattering, Sect. 2.5.
Consider this query q = R(x, y), R(y, x); x is not a separator variable because

it occurs on the first position in R(x, y) and on the second position in R(y, x).
If we do an independent project on x we obtain an incorrect result, because the
events q[a/x], a ∈ ADom are not independent (the lineages of R(ai, y), R(y, ai) and
R(aj , y), R(y, aj) share in common the tuples R(ai, aj) and R(aj , ai)). Similarly,
y is not a separator variable. Thus, algorithm 2 fails immediately on q. But q ∈
UCQ(P ) by the following simple argument. Let Xij denote the Boolean variable
representing the R(ai, aj). Then the lineage of Q is:

Φq =
∨

i,j

(Xij ∧Xji) ≡
∨

i<j

(Xij ∧Xji) ∨
∨

Xii

The last expression is a read-once Boolean expression[Gurvich 1977], meaning that
each Boolean variable occurs only once, and its probability can be computed in
linear time. Notice that here we have used an order on the underlying active
domain, a1, a2, . . . , an. We will assume from now on that the domain is ordered.

Definition 4.1. Let Q be a query expression. We say that Q is ranked if Q
has no constants and there exists a partial order on its variables, (V ar(Q),�),
such that, for every atom R(x̄) of arity k ≥ 2 in Q, and for any two positions
1 ≤ i < j ≤ k if x, y are the variables occurring on positions i and j, then x ≺ y.

For example, if Q is ranked and has an atom of the form R(. . . x, . . . y, . . .) where
x occurs before y, then it cannot have an atom S(. . . y, . . . , x, . . .). Our earlier query
R(x, y), R(y, x) is not ranked. Notice that in a ranked query no variable is repeated
in the same atom (as in R(. . . x, . . . x, . . .)).
We state some simple properties of ranked queries. If Q1 and Q2 are ranked, then

so are Q1 ∨ Q2 and Q1 ∧ Q2, because of our assumption that existential variables
are distinct. Conversely if Q1 ∨Q2 or Q1 ∧Q2 is ranked, then both Q1 and Q2 are
ranked. Ranked queries are preserved under Boolean equivalences. For example,
consider Q1 ∨ (Q2 ∧Q3) ≡ (Q1 ∨Q2)∧ (Q1 ∨Q3): if the first query is ranked, then
so is the second, and vice versa. Finally, ranked queries are also preserved by the
following logical equivalence: ∃x1.Q1 ∨ ∃x2.Q2 ≡ ∃z.(Q1[z/x1] ∨Q2[z/x2]).
By definition a ranked query is also shattered (has no constants). If d is ranked

and z is a separator variable, then the complete shatter of d[a/z] (see line 17 of
the algorithm) is isomorphic to d[a/z] and is obtained as follows. Let iR be the
unique position on which the separator variable occurs in atoms with relation sym-
bol R. Then the shattered vocabulary contains a single shattered symbol for R,
where attribute iR shatters to a and all other attributes shatter to ∗. For an
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example, referring to Example 3.1, d[a/z] = R(a), S(a, y1) ∨ T (a), S(a, y2) shat-
ters to Ra(), Sa∗(y1) ∨ Ta(), Sa∗(y2). In general, the complete shattering of d[a/z]
is a query that is isomorphic to d[a/z], where each relation symbol has an arity
decreased by one. In this paper we will blur the distinction between the query
d[a/z] and its shattering. In practice, one need not do any runtime shattering in
step 17 of the algorithm, instead this step can be implemented using a selection
operator [Suciu et al. 2011].
We will show that each query Q can be ranked. When running algorithm 2, if

we rank the query first, then all subqueries processed recursively by the algorithms
are already ranked. In other words, ranking must be done only once. Ranking is
somewhat similar to shattering Prop. 2.10.

Proposition 4.2. Let Q be a query expression over a vocabulary R. Then there
exists a ranked query expression Q′ over some vocabulary R′ such that Q ≡FO

lin Q′.

Thus, by Prop. 2.8, Q ≡FO
prob Q′ and the queries Q, Q′ have the same complexity.

Proof. First, shatter the query (Prop. 2.10) to eliminate constants, so we as-
sume Q has no constants. Let Ri be a relational symbol, and let its arity be k. For
each m ≤ k, a ranking of arity m for Ri is a surjective function τ : [k] → [m]. For
each Ri ∈ R, the new vocabulary R′ has a symbol Ri,τ of arity m for every ranking
τ of arity m for Ri, and for every m = 1, k.
We assume an ordered domain. A k-tuples ā = (a1, . . . , ak) is a function ā :

[k] → A. We say that ā is strictly ordered if a1 < a2 < . . . < ak. Each tuple ā can
be uniquely written as ā = ā< ◦ τ [ā], where τ [ā] : [k] → [m] and ā< : [m] → A is
strictly ordered: namely, m is the number of distinct values in ā, ā< lists all distinct
values in increasing order,, and τ [ā] returns the rank of each value. If f : A → B is
a strictly monotone function, then (f ◦ ā)< = f ◦ ā< and τ [f ◦ ā] = τ [ā]
We define now the query Q′. Assume w.l.o.g. that Q is in prenex normal form,

i.e. Q has the form ∃x1 . . . ∃xn.E, where E is a quantifier-free expression and
X = {x1, . . . , xn} is the set of variables. Fix a total order on X, x1 < . . . < xn,
and denote Xp = {x1, . . . , xp} for p ≤ n. A variable ranking is a surjective function
ρ : X → Xp, for some p ≤ n. Given ρ, we define the following ranked query:
Qρ = ∃x1 . . . ∃xp.Eρ, where the expression Eρ is obtained from E by replacing each
atom Ri(x̄) with Ri,τ [ȳ](ȳ

<), where ȳ = ρ ◦ x; notice that the variables in the new
atom are strictly ordered, hence the query Qρ is ranked. Define Q′ =

∨
ρ Qρ.

We define now the linear mapping D′ = F(D), which maps a database D over the
vocabularyR into a database over the ranked vocabularyR′. For each relation sym-
bol Ri ∈ R, and each ranking τ of arity m, define RD′

i,τ = {ā< | ā ∈ RD : τ [ā] = τ};

it consists of all tuples whose ranking is τ . Since each tuple ā ∈ RD
i has a unique

ranking τ = τ [ā], it will be mapped to a unique output relation RD′

i,τ , hence F is
both linear and invertible (i.e. we can compute D from D′).
We prove that ΦD

Q ≡ ΦD′

Q′ , which completes the proof of the proposition. Let
W ⊆ D and letW ′ = F(W ). Any valuation θ : X → ADom can be uniquely written
as θ = θ′ ◦ ρ, where ρ : X → Xp and θ′ : Xp → ADom is strictly monotone. For
any atom g = R(x̄) in Q, denote t its image under θ; further, let its corresponding
ranked atom be g′ = Ri,τ ((ρ ◦ x)

<) where τ = τ [ρ ◦ x̄] and let t′ be its image under
θ′. We claim that t ∈ W iff t′ ∈ W ′. First, we show that the claim proves: W |= Q
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iff W ′ |= Q′. Indeed, if W |= Q then there exists a valuation θ : X → ADom s.t.
W |= Q[θ], and therefore W ′ |= Qρ[θ

′] because Qρ[θ
′] is a Boolean expression over

ground tuples that is essentially the same as Q[θ], and, conversely, if W ′ |= Qρ for
some ρ, then there exists a valuation θ′ : Xp → ADom s.t. W ′ |= Qρ[θ

′], which
implies W |= Q[θ′ ◦ρ] by the same argument. We now prove the claim. Notice that
the image of R(x̄) under θ is θ ◦ x̄. If it belongs to RW

i , then by definition of F,

(θ ◦ x̄)< ∈ RW ′

i,τ , (same τ because τ [ρ ◦ x̄] = τ [θ′ ◦ ρ ◦ x̄] = τ [θ ◦ x̄]), and the claim
follows from the fact that this is the same as the image of Ri,τ ((ρ ◦ x)<) under θ′

because (θ ◦ x̄)< = θ′ ◦ (ρ ◦ x)<.

Example 4.3. We illustrate with the query q = R(x, y), R(y, x). There are three
possible rankings for the relation R(A,B), denoted τ1, τ2, τ3, which represent the
following predicates: A < B; A > B; and A = B. We show now the transformed
database. Given an instance RD, we create three relations, RD′

1 = σA<B(R
D);

RD′

2 = ΠBA(σA>B(R
D); and RD′

3 = ΠA(σA=B(R
D)). To construct the new query

q′, we note that there are three variable rankings: ρ1(x, y) = (x, y), ρ2(x, y) =
(x, x), ρ3(y, x) = (x, y), leading to three queries, q1 = R1(x, y), R2(x, y), q2 =
R3(x), R3(x), and q3 = R2(x, y), R1(x, y). After taking their union and minimizing,
we obtain the following ranked query: Q′ ≡ [R1(x, y), R2(x, y)] ∨ R3(z). When
evaluated by algorithm 2, the query will be processed as an independent union (since
there are two symbol-components), and each subquery is safe.

Thus, we update algorithm 2 to first rank the query. Ranking needs to be done
only on the input query: all sub-queries processed recursively are already ranked.

Assuming the query is ranked, we can now prove that if it is immediately unsafe,
then it is #P-hard. To define formally “immediately unsafe”, let’s see how the
algorithm can get stuck immediately. Of course, the query is ranked. It must also
be a disjunctive query: otherwise, it has the form Q1 ∧ Q2 and we can apply the
inclusion-exclusion formula. It must be symbol-connected, otherwise we apply an
independent union. It must have variables, otherwise it is a ground tuple. It must
have no separator variable. And, finally, it must be minimized4.

Definition 4.4. An immediately unsafe query is a ranked, disjunctive, symbol-
connected query that has variables, but no separator variable.

Theorem 4.5 Main Hardness Theorem. If d is immediately unsafe then com-
puting P (d) is #P-hard.

This is the most difficult step of the dichotomy result, and we will present the
proof starting with Sect. 5. Here we illustrate it with several queries that will be
important further in the paper:

4The only step in the algorithm where minimizing the query is necessary is right before checking

for a the existence of a separator, line 17. If we fail to minimize d then may not have a separator,
although its minimized expression does. For example R(x), S(x, y), T (y)∨R(z), which minimizes
to R(z). Interestingly, minimization is not required before the Mobius step (line 7): one can
prove that, for any two equivalent CNF expressions Q ≡ Q′, the set of lattice elements that have

µ(u, 1̂) 6= 0 is the same in L(Q) and in L(Q′).
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Example 4.6. The following queries are immediately unsafe, and, thus, #P-
hard.

h0 =R(x0), S1(x0, y0), T (y0)

h1 =R(x0), S1(x0, y0) ∨ S1(x1, y1), T (y1)

h2 =R(x0), S1(x0, y0) ∨ S1(x1, y1), S2(x1, y1) ∨ S2(x2, y2), T (y2)

h3 =R(x0), S1(x0, y0) ∨ S1(x1, y1), S2(x1, y1) ∨ S2(x2, y2), S3(x2, y2) ∨ S3(x3, y3), T (y3)

. . .

hk =R(x0), S1(x0, y0) ∨ S1(x1, y1), S2(x1, y1) ∨ . . . ∨ Sk(xk, yk), T (yk)

Note that these examples are tight. If we remove any one component from hk, then
the resulting query becomes symbol-disconnected, and it is safe.

4.2 Mobius Inversion Formula

The second problem in algorithm 2 is that we may start with a query in UCQ(P ),
but after some steps the algorithm reaches a #P-hard query and gets stuck. We
illustrate this with an example.

Example 4.7. Consider the CNF query expression QW = d1 ∧ d2 ∧ d3 where:

d1 =R(x1), S1(x1, y1) ∨ S2(x2, y2), S3(x2, y2)

d2 =R(x3), S1(x3, y3) ∨ S3(x4, y4), T (y4)

d3 =S1(x5, y5), S2(x5, y5) ∨ S3(x6, y6), T (y6)

(We have taken the components of h3 in Example 4.6 and arranged them in some
way.) The inclusion/exclusion formula applied to QW has seven terms. Denote:

d12 =d1 ∨ d2 = R(x1), S1(x1, y1) ∨ S2(x2, y2), S3(x2, y2) ∨ S3(x4, y4), T (y4)

d23 =d2 ∨ d3 = R(x3), S1(x3, y3) ∨ S1(x5, y5), S2(x5, y5) ∨ S3(x4, y4), T (y4)

d123 =d1 ∨ d3 = d1 ∨ d2 ∨ d3 ≡ h3

Then:

P (QW ) =

=P (d1) + P (d2) + P (d3)− P (d1 ∨ d2)− P (d1 ∨ d3)− P (d2 ∨ d3) + P (d1 ∨ d2 ∨ d3)

=P (d1) + P (d2) + P (d3)− P (d12)− P (d23)

On the first line we have P (h3) occurring twice, because both d1∨d3 and d1∨d2∨d3
are equivalent to h3. Therefore, if we allow the algorithm to proceed recursively
then it will eventually fail on h3. But the two occurrences of h3 cancel out, and the
expression simplifies to the second line. All five remaining queries are safe. For
example, d12 has two symbol-components, RS1 and S2S3 ∨ S3T , and each is safe.
This proves that QW is in UCQ(P ).

We fix algorithm 2 by replacing the inclusion-exclusion formula with Mobius’
inversion formula in a lattice. We review here the basic definitions, following Stan-
ley [Stanley 1997]. A finite lattice is a finite ordered set (L,≤) where every two
elements u, v ∈ L have a greatest lower bound u△v and a least upper bound u▽v,
called meet and join. (The standard notations are ∧ and ∨, but we reserve these
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for logical OR and AND operations on queries.) Since the lattice is finite, it has a
minimum and a maximum element, denoted 0̂, 1̂. We say that v covers u if u < v
and there is no w such that u < w < v. The atoms are all elements that cover
0̂; the co-atoms are all elements covered by 1̂; u is called atomic if it is the join of
atoms; u is called co-atomic if it is the meet of co-atoms; the entire lattice is atomic
(co-atomic) if all elements are atomic (co-atomic).
The Mobius function5 is the function µL : L× L → Z defined by:

µL(u, u) =1

µL(u, v) =−
∑

w:u<w≤v

µL(w, v)

We drop the subscript and write µ when L is clear from the context. Note that,
whenever u 6≤ v, µ(u, v) = 0.
The Mobius function has the following property. Let f : L → R be any real

function defined on the lattice. Define a new function g as g(v) =
∑

u≤v f(u).
Then, one can recover f from g by:

f(v) =
∑

u≤v

µ(u, v)g(u) (11)

Let Q = d1 ∧ . . . ∧ dk be a query in CNF, where k ≥ 1. For any set s ⊆ [k],
define s̄ = {i | di ⇒

∨
j∈s dj}. The following three properties follow immediately:

s ⊆ s′ ⇒ s̄ ⊆ s̄′; s ⊆ s̄; s̄ = s̄. Hence, s 7→ s̄ is a closure operator. A set s is closed
if s̄ = s. Denote L(Q) the set of closed sets.

Definition 4.8. Given a UCQ query Q, its CNF lattice is (L(Q),≤), where
L(Q) consists of all closed subsets of [k], and u ≤ v if u ⊇ v.

The CNF lattice has the following properties:

—Each element u ∈ L(Q), u 6= 1̂, represents a disjunctive query du =
∨

i∈u di.

—For all u, v ∈ L, u ≤ v iff du ⇐ dv; in other words, the lattice order corresponds
to reverse implication (reverse query containment). Hence, du ≡ dv iff u = v.

—For all u, v ∈ L(Q), du△v = du ∨ dv. In other words, lattice-meet (denoted △
and traditionally written ∧) corresponds to query-or (∨).

—Q ≡
∧

u∈L,u6=1̂ du. Notice that ∧ is query-and (not the lattice meet!).

—If the CNF query expression Q = d1 ∧ . . . ∧ dk is minimized (see the discussion
at the end of Sect. 2.6), then each singleton set {1}, . . . , {k} is closed, and is a
co-atom in L(Q). Indeed, if j ∈ {i} then dj ⇒ di: since Q is minimized, it follows
that j = i, hence {i} is closed. To see that it is a co-atom, suppose {i} ≤ u: then
du ⇒ di, and by Prop. 2.13 ∀j ∈ u, dj ⇒ di, which implies u = {i}.

—If Q is minimized, then the lattice is co-atomic. Indeed, for any u ∈ L we have
u = △i∈u{i}.

5The standard definition of the Mobius function is on a poset, i.e. one does not need it to be a

lattice. But in this paper we are only interested in the Mobius function on lattices.
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Proposition 4.9 Mobius inversion formula for queries in CNF. Let Q
be a UCQ, with CNF lattice (L(Q),≤). Then:

P (Q) =−
∑

v<1̂

µL(v, 1̂)P (dv) (12)

Proof. Denote R = ¬Q, and, for every v ∈ L, denote ev = ¬dv. The following
three properties hold: (a) R ≡ e1̂ ≡

∨
v∈L(Q),v 6=1̂ ev; (b) u ≤ v iff eu ⇒ ev; (c) for

all u, v ∈ L(Q), eu△v = eu ∧ ev. We first prove:

P (R) =−
∑

v<1̂

µL(v, 1̂)P (ev) (13)

Here we follow [Stanley 1997]. For all u ∈ L(Q), denote f(u) = P (eu∧¬(
∨

v<u ev)).
Then:

P (eu) =
∑

v≤u

f(v) ⇒ f(u) =
∑

v≤u

µL(v, u)P (ev)

The claim Eq. 13 follows by setting u = 1̂ and noting f(1̂) = 0. From here, Eq. 12
follows from the following three observations: P (Q) = 1− P (R); for all v ∈ L(Q),
P (dv) = 1− P (ev); and

∑
v∈L µ(v, 1̂) = 0.

The second update to algorithm 2 is to replace the inclusion-exclusion formula
(line 6) with Mobius’ inversion formula (line 7). Notice that in the Mobius’ inversion
formula we have explicitly avoided the lattice where µ(v, 1̂) = 0: this minor detail
is crucial for the algorithm to be complete.

Example 4.10. Consider QW from Example 4.7. Write it as QW = (h30 ∨
h32) ∧ (h30 ∨ h33) ∧ (h31 ∨ h33), where:

h30 = R(x0), S1(x0, y0) h31 = S1(x1, y1), S2(x1, y1)

h32 = S2(x2, y2), S3(x2, y2) h33 = S3(x3, y3), T (y3)

Figure 1 shows the CNF lattice for QW . The least element is the #P-hard query
h3 ≡ h30 ∨ h31 ∨ h32 ∨ h33 ≡ h3 from Example 4.6; the other five queries are safe.
The figure shows the Mobius function µ(v, 1̂) at each lattice element v: it is 0 for the
least element, and +1 or −1 for all other elements. That means that the modified
algorithm will make recursive calls only for the five save queries, and not for the
unsafe query h3.

This completes our two updates to the algorithms. One question is whether Mo-
bius inversion formula, or even the inclusion-exclusion formula is an overkill for com-
puting query probabilities. Established algorithms in probabilistic inference do not
use the inclusion-exclusion formula, but instead use independence, conditional inde-
pendence, Shannon’s expansion formula, and disjoint-OR [Darwiche and Marquis 2002;
Darwiche 2009]. Could one perhaps design a complete algorithm for UCQ’s by us-
ing only those primitives? The following theorem highlights the difficulties.

Theorem 4.11 Representation theorem. Let L be any finite lattice. Then
there exists a UCQ query Q such that (a) its CNF lattice L(Q) is isomorphic to
L, (b) the query d0̂ is #P-hard, and (c) for all u ∈ L(Q), u 6= 0̂, 6= 1̂, du is in
UCQ(P ).
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QW =(h30 ∨ h32) ∧ (h30 ∨ h33) ∧ (h31 ∨ h33)

Fig. 1. The CNF Lattice for QW ; see Example 4.10.

It follows that Q is in UCQ(P ) iff µL(0̂, 1̂) = 0; if an algorithm determines
whether Q is in PTIME, it also determines whether µL(0̂, 1̂) = 0. In other words,
any complete algorithm must distinguish between the cases µ = 0 and µ 6= 0 for
an arbitrary lattice, and this seems difficult to achieve with probabilistic inference
primitives other than inclusion/exclusion. The theorem also offers a recipe for
constructing difficult benchmarks for PTIME algorithms: choose a complex lattice
with µ(0̂, 1̂) = 0, associate the query Q and see if the algorithm can compute P (Q)
in PTIME.

Proof. Call an element r ∈ L join irreducible if r 6= 0̂ and whenever v1▽v2 = r,
then either v1 = r or v2 = r. (Recall that▽ is join: traditionally written ∨ in lattice
theory.) All atoms are join irreducible, but a join irreducible is not necessarily an
atom. Let R = {r0, r1, . . . , rk} be all join irreducible elements in L; then ∀u ∈ L,
u = ▽{r | r ∈ R, r ≤ u}. For every u ∈ L denote Ru = {r | r ∈ R, r 6≤ u}. We
start by proving that the mapping u 7→ Ru from L to subsets of R is strictly
anti-monotone. Obviously, if u ≤ v then Ru ⊇ Rv. For the converse, assume
Ru ⊇ Rv. By taking the complements of these two sets w.r.t. R we obtain {r |
r ∈ R, r ≤ u} ⊆ {r | r ∈ R, r ≤ v}, which implies u = ▽{r | r ∈ R, r ≤ u} ≤ ▽{r |
r ∈ R, r ≤ v} = v. It follows that the mapping u 7→ Ru is strictly antimonotone,
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Q9 =(h30 ∨ h33) ∧ (h31 ∨ h33) ∧ (h32 ∨ h33) ∧ (h30 ∨ h31 ∨ h32)

Fig. 2. The CNF Lattice for Q9; see Example 4.10.

and, hence, injective. In particular Ru = R iff u = 0̂.
Next, we prove that Ru△v = Ru ∪ Rv (recall that △ means meet). By anti-

monotonicity we have Ru△v ⊇ Ru, and Ru△v ⊇ Rv. Suppose that r ∈ Ru△v, we
show that r ∈ Ru or r ∈ Rv by contradiction: if r 6∈ Ru then r ≤ u, and similarly
r ≤ v, which implies r ≤ u △ v, contradicting the fact that r ∈ Ru△v. Therefore
Ru△v = Ru ∪Rv.
Define the following k + 1 components:

hk0 = R(x0), S1(x0, y0)

hki = Si(xi, yi), Si+1(xi, yi) i = 1, k − 1

hkk = Sk(xk, yk), T (yk)

Fix an order r0, r1, . . . , rk of the elements in R. For every u ∈ L denote du =∨
ri∈Ru

hki and define Q =
∧

u<1̂ du. We claim that the CNF lattice of Q, L(Q), is
isomorphic to L. Indeed, by definition L(Q) consists of all queries ds =

∨
u∈s du,

for all sets s ⊆ L − {1̂}, up to logical equivalence. We show that the mapping
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u 7→ d{u}(= du) is an isomorphism L → L(Q). First, it is injective, because different
elements u 6= v correspond to inequivalent queries du 6≡ dv (since Ru 6= Rv). Second
it is surjective. Indeed, let s = {u1, . . . , um} be a set, s.t. ui ∈ L−{1̂}, for i = 1,m,
and denote v = u1 △ . . .△ um. Then:

ds = du1
∨ . . . ∨ duk

=
∨

ri∈Ru1

hki ∨ . . . ∨
∨

ri∈Rum

hki =
∨

ri∈Ru1
∪...∪Rum

hki =
∨

ri∈Rv

hki = dv

Hence ds is the image of v under the mapping u 7→ du. Thus, L is isomorphic to
L(Q).
Finally, the query d0̂ =

∨
i=0,k hki = hk is #P-hard, as explained in Example 4.6.

This completes the proof.

Example 4.12. We illustrate first with the lattice L = {1̂, u1, u2, u3, u12, u23, u123}
in Figure 1. There are four join-irreducible elements, R = {u1, u12, u23, u3}, thus:

Ru1
= {u23, u3} Ru2

= {u1, u3} Ru3
= {u1, u12}

Ru12
= {u1, u23, u3} Ru23

= {u1, u12, u3} Ru123
= {u1, u12, u23, u3}

Let us associate to the four elements in R the components h33, h31, h32, h30 in this
order, respectively. Then we obtain the following query:

Q =(h32 ∨ h30) ∧ (h33 ∨ h30) ∧ (h33 ∨ h31)∧

(h33 ∨ h32 ∨ h30) ∧ (h33 ∨ h31 ∨ h30) ∧ (h33 ∨ h31 ∨ h32 ∨ h30)

which, after minimization, becomes QW . Notice that if we chose a different mapping
from R to the four components of h3, then we obtain a different query. For example,
if we map them to h30, h31, h32, h33 then, after minimizing we obtain Q = (h32 ∨
h33) ∧ (h30 ∨ h33) ∧ (h30 ∨ h31).

As a final example, we show a more complex lattice in Figure 2, which, through
the same process, generates a query called Q9. This query too is in UCQ(P ),
because the only #P-hard query is at the bottom of the lattice, where µ(0̂, 1̂) =
0. These are illustrations of how the theorem can be used to generate difficult
benchmark queries, for computing P (Q) in PTIME. To the best of our knowledge,
algorithm 2 is the only algorithm known to date that can compute P (Q9) in poly-
nomial time in the size of the input database, see [Jha and Suciu 2011].

4.3 The Dichotomy Theorem

We now state and prove our main result, that every unsafe query is #P-hard, which
implies the dichotomy. The proof is based on Theorem 4.5, which we prove in the
rest of the paper. We first define formally what it means for a query to be unsafe.
We define a set of rewrite rules between UCQ queries, Q → Q′, and say that Q is
unsafe if there exists a rewriting Q

∗
→ Q′ where Q′ is immediately unsafe.

IfQ is a query and R a relational symbol, denoteQ[R = false] (andQ[R = true]
respectively) the result of replacing in Q every atom that refers to R with false

(or with true respectively).

Definition 4.13. Let Q and Q′ be two ranked queries, not necessarily over the
same vocabulary. We define the following three rewrite rules, in notation Q → Q′,
and say that Q rewrites to Q′, if one of the following conditions hold:
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—Q′ ≡ Q[R = false], or Q′ ≡ Q[R = true]. We call this a deterministic rewrite
rule. Thus, Q → Q[R = false] and Q → Q[R = true].

—Q is a CNF expression, and Q′ ≡ dv, where v is some element in lattice L(Q)
s.t. µ(v, 1̂) 6= 0. We call this a subquery rewrite rule. Thus, Q → dv.

—There exists a set of constants A s.t. |A| ≤ |V ar(Q)| and a shattered vocabulary
RA such that Q′ = QA, the shattered query on RA. We call this a shatter rewrite
rule. Thus, Q → QA.

Denote
∗
→ the reflexive and transitive closure of →.

Definition 4.14. Let Q be a ranked query. Q is called unsafe if there exists a
rewriting Q

∗
→ Q′, s.t. Q′ is immediately unsafe (Def. 4.4). Otherwise, Q is called

safe.

Example 4.15. For a simple illustration, the following query is unsafe:

d =R(z0, x0), S(z0, x0, y0) ∨ S(z1, x1, y1), T (z1, y1)

To show this, we give a rewriting to h1, shown in Example 4.6, which is immediately
unsafe. In the third line we assimilate d[a/z] with its complete shatter.

d = ∃z.(R(z, x0), S(z, x0, y0) ∨ S(z, x1, y1), T (z, y1))

→ R(a, x0), S(a, x0, y0) ∨ S(a, x1, y1), T (a, y1) = d[a/z]

= Ra∗(x0), Sa∗∗(x0, y0) ∨ Sa∗∗(x1, y1), Ta∗(y1)

= h1

If algorithm 2 starts with a query Q and reaches recursively another query Q′,
then we claim that Q

∗
→ Q′. We check this by examining each line where the

algorithm makes a recursive call. In line 3, the input query has several symbol
components Q = Q1 ∧ . . . ∧ Qm, and the recursive call is on each Qi. Fix i, and
set R = true for all relation symbols that do not occur in Qi: then Qj

∗
→ true

for j 6= i, and we have Q = Q1 ∧ . . . ∧ Qk
∗
→ Qi. In line 7 the input is a CNF

query Q = d1 ∧ . . . ∧ dk and the recursive call is on dv, for v ∈ L(Q), µ(v, 1̂) 6= 0:
clearly Q → dv. In line 12 the recursive call is for a symbol-component di: here
we set R = false for all relation symbols that do not occur in di and obtain
d = d1 ∨ . . . ∨ dk

∗
→ di. Finally, in line 17 we have immediately d → d[a/z].

Therefore, if Q is safe, by Def. 4.14, then the algorithm will succeed, and Q is in
UCQ(P ). The converse is not obvious: if Q is unsafe, then it is not immediately

clear that the algorithm will fail, because if Q
∗
→ Q′ then, in general, the algorithm

does not have to reach Q′. But if Q
∗
→ Q′ and Q′ immediately unsafe then Q′ is

#P hard, and we will prove (using the lemmas below) that Q is also #P-hard; thus,
unless FP = #P , the algorithm must fail, perhaps by reaching another immediately
unsafe query Q′′.

Lemma 4.16. Q[R = false] ≤FO
lin Q and Q[R = true] ≤FO

lin,+ Q.

Proof. We need to define a linear mapping F from D (on which we want to
evaluate Q[R = false]) to D′ (on which we evaluate Q). The mapping simply
copies the entire database, except for the relation R, which it leaves empty: RD′

=
∅, SD′

= SD for any other symbol S. Obviously, ΦD
Q[R=false] = ΦD′

Q . For the other
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reduction, we add a second mapping, E, which defines RD′

= (ADom)k, where k
is the arity of R: since the Boolean variables Y of these tuples are set to true, we
have ΦD

Q[R=true] = ΦD′

Q [Y = true].

Call a subquery rewrite rule Q → dv (where µ(v, 1̂) 6= 0) a maximal rewrite rule
if: for all u > v, if µ(u, 1̂) 6= 0, then du is safe.

Lemma 4.17. If Q → dv is a maximal rewrite rule, then dv ≤FO
prob Q.

Proof. Recall that the query Q is logically equivalent to
∧

u∈L(Q) du. Define

Z = {z | v 6≤ z < 1̂} and V = {u | v ≤ u < 1̂}. Thus, Z and V form a partition
of L(Q) − {1̂}, Z ∪ V = L(Q). Let Qv =

∧
u∈V du. We prove two claims: (1)

Qv ≤FO
lin,+ Q and (2) dv ≡FO

prob Qv. These two claims prove the lemma.
We prove claim (1). Let D′ be a database instance (on which we want to

compute the lineage for Qv). We map it to a database consisting of two parts,
D = F(D) ∪ E(D). The first part is a linear mapping, F(D), and its tuples are
in 1-to-1 correspondence with tuples in D′; for the second part we will set their
Boolean variables Y = true; then we prove that ΦD

Q [Y = true] = ΦD′

Qv
. Take F

to be the identity, F(D′) = D′. Define E as follows: E(D) =
⋃

z∈Z Dz = DZ ,
where the databases Dz have disjoint active domains, and satisfy Dz |= dz, and
Dz 6|= dv (which also implies that Dz 6|= du for any u ∈ V ). We describe now how
to construct Dz. By the definition of the CNF lattice, v 6≤ z implies dz 6⇒ dv.
Consider the components of the disjunctive query dz = c1 ∨ c2 ∨ . . . By Prop. 2.13,
there exists i such that ci 6⇒ dv. Define Dz to be the canonical database of ci
(if there are several such i, choose one arbitrarily). Since the component ci is a
conjunctive query without constants, its canonical database is invariant under iso-
morphisms of the domain, and we can choose Dz such that its active domain is
disjoint from the active domain of D′, and from that of any other database Dz′ ,
for z′ 6= z. Define E(D) = DZ =

⋃
z∈Z Dz. Notice that DZ depends only on

the query expression, and not on the database D′. Finally, the output database
(on which we compute Q) is D = D′ ∪ DZ . Let X denote a set of Boolean vari-
ables for the tuples in D′ and let Y denote Boolean variables for the tuples in DZ .
We need to prove ΦD′

Qv
= ΦD

Q [Y = true]. We have: ΦD
Q = ΦD∧

u du
=

∧
u<1̂ Φ

D
du
.

If z ∈ Z then ΦD
dz
[Y = true] = true, because dz is true on the database Dz,

and all Boolean variables corresponding to tuples in Dz are set to true. Thus,∧
u<1̂ Φ

D
du
[Y = true] =

∧
u∈V ΦD

du
[Y = true]. Next, notice that ΦD

du
= ΦD′

du
, be-

cause, by construction of Dz, du cannot use any of the tuples in Dz. This proves
ΦD

Q [Y = true] =
∨

u∈V ΦD′

du
= ΦD′

Qv
, completing the proof of claim (1).

Claim (2) follows immediately from the fact that, on any probabilistic database
D, PD(Qv) = −

∑
u∈V µ(u, 1̂)PD(du). Denote S = −

∑
u∈V−{v} µ(u, 1̂)PD(du):

this quantity is computable in PTIME, since all queries du are either safe, or
µ(u, 1̂) = 0. Thus, PD(Qv) = S − µ(v, 1̂)PD(dv), and the claim follows from
the fact that µ(v, 1̂) 6= 0.

Lemma 4.18. If Q → QA is a shattering rewrite rule, then QA ≤FO
lin Q.

Proof. Follows immediately from Prop. 2.9.

Call a sequence of rewritings Q
∗
→ Q′ maximal if every subquery rewriting rule
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Q → dv is maximal (no restrictions on the other two rewrite rules). The three
lemmas imply:

Corollary 4.19. If Q
∗
→ Q′ is a maximal rewriting, then Q′ ≤FO

prob Q.

Finally, the last step in proving the dichotomy result is:

Lemma 4.20. If Q is unsafe, then there exists a maximal rewriting Q
∗
→ Q′ s.t.

Q′ is immediately unsafe.

Proof. By induction on the size of Q. If Q is unsafe then there exists a rewriting
Q → Q′′ s.t. Q′′ is unsafe. If this reduction is a non-maximal rule, meaning Q′′ = dv
and v is not maximal with properties (a) and (b), then choose a maximal u: then
Q → du is a maximal reduction rule, and by induction we have a maximal rewriting
du

∗
→ Q′ for some immediately unsafe query Q′.

We can now state and prove the main result of the paper. Its proof is based on
Theorem 4.5, which we haven’t proven yet, but will prove in the remainder of this
paper.

Theorem 4.21 Dichotomy. Consider an arbitrary UCQ query Q and let Q′

be any ranked query that is lineage-equivalent to Q (Prop. 4.2). Then one of the
following holds:

—If Q′ is safe, then Q ∈ UCQ(P ).

—If Q′ is unsafe, then computing P (Q) is #P-hard.

Proof. Since Q ≡FO
lin Q′ we have both Q ≤FO

lin Q′ and Q′ ≤FO
lin Q, which implies

that we have both Q ≤FO
prob Q′ and Q′ ≤FO

prob Q.
For the first item, we note that if Q′ is safe then algorithm 2 never fails, hence

it computes P (Q′) in PTIME; since Q ≤FO
prob Q′, we can compute P (Q) in PTIME

given P (Q′).
We prove the second item. By Lemma 4.20 there exists a maximal rewriting

Q′ ∗
→ Q′′ to an immediately unsafe Q′′. By Corollary 4.19, we have Q′′ ≤FO

prob Q′,

and we already established Q′ ≤FO
prob Q. By Theorem 4.5 Q′′ is #P-hard, hence so

is Q.

5. THE MAIN PROOF TECHNIQUES

In the rest of the paper we will prove the main technical result of this paper,
Theorem 4.5: every immediately unsafe query is #P-hard. The complexity class
#P was introduced by [Valiant 1979] and consists of all function problems of the fol-
lowing type: given a polynomial-time, non-deterministic Turing machine, compute
the number of accepting computations. For a Boolean expression Φ, let #Φ denote
the number of satisfying assignments (valuations). The model counting problem,
“given Φ, compute #Φ”, is denoted #SAT, and is obviously in #P. Our proof of
Theorem 4.5 relies on the following theorem by [Provan and Ball 1983]:

Theorem 5.1. Let X1, . . . , Xn1
and Y1, . . . , Yn2

be two disjoint sets of Boolean
variables, and let E ⊆ [n1] × [n2] be a bipartite graph. The Positive, Partitioned

Journal of the ACM, Vol. V, No. N, Month 20YY.



34 · Dalvi and Suciu

2-CNF propositional formula defined by E is:

Φ =
∧

(i,j)∈E

(Xi ∨ Yj)

Denote #PP2CNF the problem “given a PP2CNF formula Φ, compute #Φ”. Then,
#PP2CNF is hard for #P.

It follows immediately that the dual problem, #PP2DNF, where the formula is∨
(i,j)∈E XiYj is also #P-hard.
The proof of Theorem 4.5 consists of three major steps: Theorem 6.3, Theorem 7.3,

and Theorem 8.1. The first step takes an immediately unsafe query d and constructs
a leveled query dL s.t. dL ≤FO

prob d. The second, applies repeatedly maximal rewrite

rules dL
∗
→ d′ as long as d′ is still unsafe; we call the last query in the rewrit-

ing, d′, a forbidden query. Thus, d′ ≤FO
prob dL, and d′ is forbidden. Finally, the

third step proves that every forbidden query is #P-hard, by direct reduction from
#PP2CNF. These three steps imply our main result, because d′ ≤FO

prob d and d′ is
#P-hard implies that d is #P-hard. The last step, showing that every forbidden
query is #P-hard, is the most interesting one. It makes novel use of some techniques
from algebra and analysis, which we consider to be the most interesting aspect of
the entire proof. In this section we present these techniques and illustrate them
by showing #P-hardness for four forbidden queries: h0, h1, h4 and h2 (defined in
Example 4.6). The complete proof of the third step is in Sect. 8.

5.1 Warmup: h0 and h1 are #P-Hard

As a gentle warmup, we review here the #P-hardness proofs for h0 and h1 from [Dalvi and Suciu 2004;
Dalvi and Suciu 2006]:

Proposition 5.2. The queries h0 = R(x), S(x, y), T (y) and h1 = R(x0), S(x0, y0)∨
S(x1, y1), T (y1) are #P-hard.

Proof. Let E ⊆ [n1]× [n2] and denote Φ =
∨

(i,j)∈E XiYj . Define the instance:

RD = [n1], SD = E, TD = [n2], and the probabilities are P (RD(i)) = 1/2,
P (SD(i, j)) = 1, P (TD(j)) = 1/2. Then #Φ = 2nP (h0) where n = n1 + n2 is
the total number of variables in Φ. Thus, given an oracle for computing the query
probability P (h0), we can compute #Φ; since the latter is #P-hard, so is the former.
The proof for h1 is more involved. Start with a PP2CNF, Φ =

∧
(i,j)∈E(Xi∨Yj),

and let m = |E| be the number of clauses. We show how to compute #Φ using an
oracle for computing P (h1). As before we set RD = [n1], S

D = E, TD = [n2], and
P (RD(i)) = P (TD(j)) = 1/2. Now we set P (SD(i, j)) = 1 − z, where z ∈ (0, 1)
will be chosen below. We will compute P (¬h1). If W ⊆ D, W = (RW , SW , TW )
is a possible world, its probability, given by Eq. 1, is P (W ) = 1/2nP (SW ) =
1/2nzm−c(1 − z)c where c = |SW | (because the contribution of a tuple in RD or
in TD is 1/2 regardless of whether it is in the world W or not). By definition
P (¬h1) =

∑
W :¬(W |=h1)

P (W ).
For any valuation θ of the Boolean variables in Φ, denote Eθ the following event

(i.e predicate on the world W = (RW , SW , TW )):

Eθ ≡ ∀i.(i ∈ RW iff θ(Xi) = true) ∧ ∀j.(j ∈ TW iff θ(Yj) = true) (14)
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In other words, the event Eθ fixes the relations RW and TW according to θ, and
leaves SW totally unspecified. Its probability is P (Eθ) = P (θ) = 1/2n.

The events Eθ are disjoint, so we can write P (¬h1) as:

P (¬h1) =
∑

θ

P (¬h1|Eθ) · P (Eθ) =
1

2n

∑

θ

P (¬h1|Eθ) (15)

We will compute now the conditional probability, P (¬h1|Eθ). LetK(θ) = {(i, j) ∈ E |
θ(Xi ∨ Yj) = true} be the set of clauses in Φ that are satisfied by θ. Its cardinality
|K(θ)| is a number between 0 and m. Then, we claim that:

P (¬h1|Eθ) =z|K(θ)| (16)

Eθ fixes the relations RW and TW , so we need to compute the probability of the
event (RW , SW , TW ) 6|= h1 over the random choices of SW . Fix an edge (i, j) ∈
E = SD. If a world W contains either both tuples {R(i), S(i, j)} or both tuples
{S(i, j), T (j)}, then the query h1 is true. We consider two cases. (1) θ satisfies
Xi ∨ Yj , in other words (i, j) ∈ K(θ). Then, W contains either R(i) or T (j), so
in order for h1 to be false it must not contain S(i, j), and the probability of this
event is z. (2) θ does not satisfy Xi ∨ Yj , in other words (i, j) 6∈ K(θ). In that case
h1 is false on {R(i), S(i, j), T (j)} ∩W , and we have no restriction on S(i, j). This
proves Eq. 16.
Now we can compute P (¬h1) by combining Eq. 15 and Eq. 16. For any k, 0 ≤

k ≤ m, let #k be the number of valuations θ that satisfy exactly k clauses, i.e.
#k = |{θ | k = |K(θ)|}|. Then, Eq. 15 and Eq. 16 become:

P (¬h1) =
1

2n

∑

k=0,m

#k · zk (17)

This is a polynomial in z of degree m, with coefficients #0,#1, . . . ,#m. In other
words, an oracle for P (¬h1) allows us to compute the polynomial at an arbitrary
value z. Its coefficients #0,#1, . . . ,#m are unknown, and, in particular, #Φ =
#m, because #Φ represents the number of valuations that satisfy all m clauses.
We will use the oracle to compute all coefficients, then return #m. Choose any
m+1 distinct values z0, z1, . . . , zm ∈ (0, 1), and construct m+1 different database
instances R,S, T as described above: they are identical except for the probability
of tuples in S, which is 1 − zi for the i’th instance. The oracle gives us the value,
say pi, of the polynomial on zi. Form a linear system of m+1 equations with m+1
unknowns #0, . . . ,#m. Its matrix is a Vandermonde matrix V (z0, z1, . . . , zm), and
is non-singular, since zi 6= zj , for i 6= j. Thus, we can solve the system in PTIME,
and return the last unknown, #m.

5.2 Proof Technique 1: The Jacobian

Our next step is to prove that h4 is #P-hard, and we will use it to motivate the
first technique from analysis, the Jacobian. The proof starts with the same simple
reduction from #PP2CNF as for h1, but, as we shall see, gets more involved. Recall:

h4 =R(x0), S1(x0, y0) ∨ S1(x1, y1), S2(x1, y1)∨

S2(x2, y2), S3(x2, y2) ∨ S3(x3, y3), S4(x3, y3) ∨ S4(x4, y4), T (y4)
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Define the following database instance D:

RD = [n1], SD
1 = SD

2 = SD
3 = SD

4 = E, TD = [n2]

and define the probabilities as follows, for all i ∈ [n1], j ∈ [n2] and (i, j) ∈ E:

P (RD(i)) = P (TD(j)) = 1/2

P (SD
1 (i, j)) = 1− z1, P (SD

2 (i, j)) = 1− z2, P (SD
3 (i, j)) = 1− z3, P (SD

4 (i, j)) = 1− z4

The values z1, z2, z3, z4 ∈ (0, 1) will be chosen later. As before, given a valuation
θ of the Boolean variables in Φ, denote Eθ the event Eq. 14: thus, Eθ consists of
the worlds W where RW and TW are set according to θ and SW

1 , SW
2 , SW

3 , SW
4 are

arbitrary. As before, P (¬h4) = 1/2n ·
∑

θ P (¬h4|Eθ). We compute the conditional
probability. Call the set of tuples D(i, j) = {R(i), S1(i, j), . . . , S4(i, j), T (j)} a
block. We claim that h4 is false in a world iff it is false in each block: indeed, h4 is
false iff each of its components R(x0), S1(x0, y0), and S1(x1, y1), S2(x1, y2), etc, is
false, and this happens iff each component is false in each block. For example, if the
component R(x0), S1(x0, y0) is true in a world W , then W must contain two tuples
of the form R(i), S1(i, j), hence the component is true in the block D(i, j) ∩ W .
We use the Boolean variables U, V, Z1, . . . , Z4 to denote the following events in the
block D(i, j):

U ≡ i 6∈ RW V ≡ j 6∈ TW

Z1 ≡ (i, j) 6∈ SW
1 Z2 ≡ (i, j) 6∈ SW

2 Z3 ≡ (i, j) 6∈ SW
3 Z4 ≡ (i, j) 6∈ SW

4

The event that h4 is false on the block D(i, j) is given by the following Boolean
expression, which is exactly the dual Boolean function of the lineage of h4 onD(i, j):

Y (U, V ) =(U ∨ Z1) ∧ (Z1 ∨ Z2) ∧ (Z2 ∨ Z3) ∧ (Z3 ∨ Z4) ∧ (Z4 ∨ V ) (18)

The variables U and V are set by θ, in one of four possible ways. Let Y11 ≡ Y [U =
false, V = false], Y12 ≡ Y [U = false, V = true], etc, then:

Y11 =Z1 ∧ (Z2 ∨ Z3) ∧ Z4

Y12 =Z1 ∧ (Z2 ∨ Z3) ∧ (Z3 ∨ Z4)

Y11 =(Z1 ∨ Z2) ∧ (Z2 ∨ Z3) ∧ Z4

Y12 =(Z1 ∨ Z2) ∧ (Z2 ∨ Z3) ∧ (Z3 ∨ Z4) (19)

Notice that P (Zk) = P (¬SD
k (i, j)) = zk, k = 1, 4. Thus, the probabilities yuv =

P (Yuv) are given as follows (the details of these complicated expressions are not
important, since we will replace them later with better behaved expressions):

y11 =P (Y11) = z1 · (z2 + z3 − z2 · z3) · z4

y12 =P (Y12) = z1 · (z2 · (1− z3) · z4 + z3)

y21 =P (Y11) = (z1 · (1− z2) · z3 + z2) · z4

y22 =P (Y12) = z1 · z3 + z2 · z3 + z2 · z4 − z1 · z2 · z3 − z2 · z3 · z4 (20)

For an example, suppose θ(Xi) = true and θ(Yj) = false; then, conditioned on
Eθ, we have i ∈ RW and j 6∈ TW , thus U = false, V = true, and the event
“h4 is false on the block D(i, j)” is given by Y12; the probability of ¬h4 on the
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block D(i, j) is y12. In general, the probability P (¬h4|Eθ) is the product of the
probabilities that h4 is false on each block, because Eθ ensures that different blocks
are independent. Denoting 1 ≡ true, 2 ≡ false, we define for each u, v ∈ {1, 2}
the set:

Kuv(θ) ={(i, j) | (i, j) ∈ E, θ(Xi) = u, θ(Yj) = v} (21)

For example, K12 = {(i, j) | (i, j) ∈ E, θ(Xi) = true, θ(Yj) = false}. Then:

P (¬h4|Eθ) =y
|K11(θ)|
11 · y

|K12(θ)|
12 · y

|K21(θ)|
21 · y

|K12(θ)|
22 (22)

Notices how this formula generalizes Eq. 16. For any tuple k = (k11, k12, k21, k22) ∈
({0, . . . ,m})4 let #k be the number of valuations θ with the property that |Kuv(θ)| =
kuv for all u, v ∈ {1, 2}. Note that #Φ =

∑
k22=0 #k. Then:

P (¬h4) =1/2n
∑

k

#k · yk11

11 · yk12

12 · yk21

21 · yk22

22 (23)

The corresponding formula for h1 was Eq. 17; it was simpler, because in the case
of h1 it happens that Y11 ≡ Y12 ≡ Y21, and this lead to the simpler expression.
We will attempt now to extend the argument in the proof of h1: use an oracle for

P (¬h4) to compute the polynomial above at several points, then solve for the (m+
1)4 unknowns #k; then return #Φ =

∑
k22=0 #k. Suppose we could set each of the

four variables yuv independently to m+1 distinct values in yuv,0, . . . , yuv,m ∈ (0, 1).
Therefore, there are (m+1)4 possible combinations for ȳ = (y11, . . . , y22). For each
of them, construct the databaseD, use the oracle to compute P (¬h4), and this gives
the value of the polynomial Eq. 23. We obtain a system of (m+1)4 linear equations,
with as many unknowns. The matrix of this system is a Kronecker product of four
Vandermonde matrices, V (y11,0, . . . , y11,m)⊗· · ·⊗V (y22,0, . . . , y22,m), and therefore
is non-singular6. But we cannot set the yuv variables independently. Instead, we can
only construct the database D, by setting the probabilities z1, . . . , z4 independently.
Here, we use the fact that the Jacobian of the function z̄ 7→ ȳ is non-zero.

Definition 5.3. Let F̄ = (F1, . . . , Fk) be k functions in variables z̄ = (z1, . . . , zk).
The Jacobian the following matrix:

∂F̄

∂z̄
=




∂F1

∂z1
. . . ∂F1

∂zk
. . .

∂Fk

∂z1
. . . ∂Fk

∂zk




The Jacobian determinant, or simply Jacobian, is det(∂F̄∂z̄ ).

The inverse function theorem states that if det(∂F̄∂z̄ ) 6= 0 at some point in z̄ ∈ Rk,
then it is invertible in some neighborhood of z̄. We apply this to complete the
hardness proof for h4. One can check through direct calculations7 that det(∂ȳ∂z̄ ) 6= 0,
where ȳ = (y11, . . . , y22) are the four functions in Eq. 20. This leads to the following
naive algorithm for computing #Φ. Choose m + 1 distinct values for yuv in (0, 1)

6Recall that det(A⊗B) = det(A) · det(B).
7The Jacobian is a multivariate polynomial in z1, . . . , z4 where each variable has degree ≤ 3. Its

structure is quite interesting, for example it appears to be divisible by (z2−z3), but a full analysis
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such that all (m + 1)4 four dimensional points ȳ ∈ (0, 1)4 are in a neighborhood
where the Jacobian determinant is non-zero. For each point, compute the inverse
function, obtaining z̄ ∈ (0, 1)4. Each corresponds to a probabilistic database D,
on which we compute P (h4). Repeating this (m + 1)4 times guarantees that the
resulting system of (m + 1)4 equations has a non-singular matrix, so we can solve
for #k, and compute #Φ. This algorithm is naive because inverting the mapping
z̄ → ȳ creates some rounding issues. In Sect. 8.5 we show an improved algorithm,
that avoids the need to invert the mapping, and can be run entirely with rational
numbers.
However, this construction works only for h4. It is unclear how to extend it to

more complex queries. One difficulty is proving in general that the Jacobian is non-
zero. Another difficulty is choosing the four independent variables z1, . . . , z4. For
example, in h2 there are only two relations S1, S2, giving us only two variables z1, z2:
were do we get the other two? It also turns out that for some queries we need more
than 4 variables. For these reasons, our proof relies on a different reduction that
allows us to introduce arbitrarily many variables zi, and also simplifies significantly
the multilinear polynomials yuv. We illustrate it next.

5.3 Proof Technique 2: The Cauchy Double Alternant

We illustrate our second technique by proving that h2 is #P-hard. We construct
a different database D, whose Jacobian is Cauchy’s Double Alternant, which has a
closed form and is easier to check when it is non-zero. While we illustrate this on
h2, the construction generalizes, as we show in Sect. 8. Recall:

h2 =R(x0), S1(x0, y0) ∨ S1(x1, y1), S2(x1, y1) ∨ S2(x2, y2), T (y2)

Given E ⊆ [n1]× [n2], define the following sets of constants:

A = {ai | i ∈ [n1]} B = {bj | i ∈ [n2]}

Ăk = {ăij,k | (i, j) ∈ E} B̆k = {b̆ij,k | (i, j) ∈ E} k = 1, 4

Ă =
⋃

k=1,4

Ăk B̆ =
⋃

k=1,4

B̆k (24)

We call the index k the slice number; thus, there are four slices. In each slice, the
constant ăij,k is unique for i, j: the accent is meant to indicate that it depends
on both indices, i, j unlike the other constants ai that depend only on one index.

is beyond our scope here. Instead, we compute its value at z1 = z3 = 2/3, z2 = z4 = 1/3.

J =









(z2 + z3 − z2z3)z4 z1(1− z3)z4 z1(1− z2)z4 z1(z2 + z3 − z2z3)

z2(1− z3)z4 + z3 z1(1− z3)z4 z1(1− z2z4) z1z2(1− z3)
(1− z2)z3z4 (1− z1z3)z4 z1(1− z2)z4 z1(1− z2)z3 + z2
z3 − z2z3 z3 + z4 − z1z3 − z3z4 z1 + z2 − z1z2 − z2z4 z2 − z2z3









=
1

27









7 2 4 14
19 2 16 2

4 5 4 17
12 9 18 3









Using an online determinant calculator we obtain the determinant of the integer matrix above as

−432, thus det(J) = −432/274 = − 24

39
. It follows that det(J) is not identically zero.
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Next, we define:

RD = A ∪ Ă, TD = B ∪ B̆,

SD
1 = SD

2 =
⋃

k=1,4

{(ai, b̆ij,k), (ăij,k, b̆ij,k), (ăij,k, bj) | (i, j) ∈ E} (25)

We set the probabilities P (RD(ai)) = P (TD(bj)) = 1/2. The other probabilities,

for P (RD(ăij,k)) and P (TD(b̆ij,k)) and for all tuples in SD
1 , SD

2 are set as follows.
In each slice k fix a distinguished tuple, and set its probability to 1 − zk, where
zk ∈ (0, 1); for all non-distinguished tuples, set their probability to some constant.
We will describe below how to choose the distinguished tuple and the constants.
For now, to make the discussion concrete, let’s assume the distinguished tuple is
the second S1 tuple, hence P (SD

1 (ăij,k, b̆ij,k)) = 1 − zk for k = 1, 4; and assume

that all the other probabilities8 are = 1/3: P (SD
1 (ai, b̆ij,k)) = P (SD

2 (ai, b̆ij,k)) =

P (TD(b̆ij,k)) = . . . = 1/3. But we will revisit this choice later.
To compute P (¬h2) we notice that the databaseD is “partitioned”, we say that it

is leveled. More precisely, referring to the schema R(x), S1(x, y), S2(x, y), T (y), the
domain of the attribute x is partitioned intoA and Ă, call them levels 0 and 1 respec-
tively. Similarly, the attribute y is partitioned into B and B̆, we also call them levels
0,1. Define the leveled vocabulary to be R0, R1, S01

1 , S01
2 , S11

1 , S11
2 , S10

1 , S10
2 , T 0, T 1

and denote DL the same database instance, viewed in this new vocabulary. For
example, in DL, R0 = A, R1 = Ă, S01

1 ⊆ A × B̆, S11
1 ⊆ Ă ∪ B̆, etc, and

T 0 = B, T 1 = B̆. Note that by construction there are no tuples from A×B, hence
we do not have symbols S00

1 or S00
2 . The database instance DL has a zig-zag-zig

shape. We specialize h2 to the leveled database, and obtain:

hL
2 =R0(x0

0), S
01
1 (x0

0, y̆
1
0) ∨ S01

1 (x0
1, y̆

1
1), S

01
2 (x0

1, y̆
1
1) ∨ S01

2 (x0
2, y̆

1
2), T

1(y̆12)

∨R1(x̆1
0), S

11
1 (x̆1

0, y̆
1
0) ∨ S11

1 (x̆1
1, y̆

1
1), S

11
2 (x̆1

1, y̆
1
1) ∨ S11

2 (x̆1
2, y̆

1
2), T

1(y̆12)

∨R1(x̆1
0), S

10
1 (x̆1

0, y
0
0) ∨ S10

1 (x̆1
1, y

0
1), S

10
2 (x̆1

1, y
0
1) ∨ S10

2 (x̆1
2, y

0
2), T

0(y02)

Intuitively, the query h2 on D is “the same” as hL
2 on DL. For example, assume

h2 is true in a world W ⊆ D; for the sake of the discussion, assume that its first
component R(x0), S1(x0, y0) is true in W . Then W contains either two tuples

of the form R(ai), S1(ai, b̆ij,k), or two tuples of the form R(ăij,k), S1(ăij,k, b̆ij,k),
or two tuples of the form R(ăij,k), S1(ăij,k, bj); this implies that one of the three
components R0(x0

0), S
01
1 (x0

0, y̆
1
0) or R

1(x̆1
0), S

11
1 (x̆1

0, y̆
1
0) or R

1(x̆1
0), S

10
1 (x̆1

0, y
0
0) of h

L
2

is true. In fact, we will prove formally in Prop. 6.9 that the two queries have the

same lineage expressions, ΦDL

hL
2

≡ ΦD
h2
, and therefore their probabilities are equal,

PD(h2) = PDL(hL
2 ). To recap, the probabilities in DL are as follows: all tuples in

R0 and T 0 have probability 1/2, those in S11
1 have probability 1− zk, for k = 1, 4

and all others have probability 1/3 (including the tuples in R1 and T 1).
For technical purposes, it is important to note that hL

2 is symbol-connected: read-
ing its expression from left to right to left to right, the components are connected
by the symbols S01

1 , S01
2 , T 1, S11

2 , S11
1 , R1, S10

1 , S10
2 .

8Our choice of 1/3 is arbitrary, just to make it look different from RD(ai) and TD(bj), which

must be set to 1/2.
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Let us now compute P (¬hL
2 ) on the database DL. As before, to each truth

assignment θ we associate the event Eθ that fixes the tuples in R0 and T 0; as before,
we have P (¬hL

2 ) = 1/2n
∑

θ P (¬hL
2 |Eθ), so we need to compute P (¬hL

2 |Eθ). Fix
an edge (i, j) ∈ E. There are four slices connecting ai and bj , and ¬hL

2 must be
false in each of them. Fix a slice k; it consists of the following ten tuples:

R0(ai), S01
1 (ai, b̆ij,k), S

01
2 (ai, b̆ij,k), T 1(b̆ij,k)

S11
1 (ăij,k, b̆ij,k), S

11
2 (ăij,k, b̆ij,k),

R1(ăij,k), S10
1 (ăij,k, bj), S

10
2 (ăij,k, bj), T 0(bj)

As before, denote U, V the events ai 6∈ R0, bi 6∈ T 0, and Z1, . . . , Z8 the events
(ai, ăij) 6∈ S01

1 , (ai, b̆ij) 6∈ S01
2 , b̆ij 6∈ T 1, (ăij,k, b̆ij,k) 6∈ S11

2 , . . . , (ăij,k, bj) 6∈ S10
2

(reading the slice in left to right to left to right order). Then, the event that hL
2 is

false in slice i, j, k is given by the following Boolean expressions:

YUV =(U ∨ Z1) ∧ (Z1 ∨ Z2) ∧ . . . ∧ (Z7 ∨ Z8) ∧ (Z8 ∨ V ) (26)

By instantiating U, V in all possible ways to true, false, we obtain four Boolean
expressions, Y11, Y12, Y21, Y22 (similar to Eq. 19). The probability of each Zi is some
constants (say, P (Zi) = 1/3), except for the distinguished tuple, which is Z5; here

P (Z5) = P (¬S1(ăij,k, b̆ij,k)) = zk, where k is the slice number. Therefore, for each
u, v ∈ [2], the probability of Yuv is a simple linear function in zk:

P (Yuv) =auv · zk + buv u, v ∈ {1, 2}

where auv, buv ∈ R are eight constants. The probability that hL
2 is false in all four

slices is yuv:

yuv =(auv · z1 + buv) · (auv · z2 + buv) · (auv · z3 + buv) · (auv · z4 + buv) (27)

because the four events YUV are independent, since any two slices share only the
endpoint tuples R0(ai) and T 0(bj) that are fixed for the given values of U, V . There-
fore, P (¬h2|Eθ) is given by Eq. 22, and P (¬h2) is given by Eq. 23, with the only
difference that the four functions y11, . . . , y22 in Eq. 20 are replaced with the four
functions in Eq. 27. As before, we use an Oracle to compute P (¬h2) repeatedly,
form a system of (m+ 1)4 linear equations, and compute all coefficients #k, then
compute #Φ.
Next, we examine the Jacobian of the function z̄ 7→ ȳ, which turns out to be

Cauchy’s double alternant. We need a few definitions. Throughout this paper, if
F , G are two multivariate polynomials, we write F = G to mean that they are
identical, i.e. have the same coefficients.

Definition 5.4. (1) Let F be a multivariate polynomial and x a variable. We
say that F depends on x if x occurs in F . (2) Two multivariate polynomials F , G
are equivalent if there exists a constant c 6= 0 s.t. F = c ·G.

A linear polynomial f(z) = a·x+b depends on x iff a 6= 0. Two linear polynomials
a1 · x+ b1 and a2 · x+ b2 are equivalent if either none depends on x or if they have
the same root: −b1/a1 = −b2/a2.

Definition 5.5. We call a set of linear polynomials f1(x), . . . , fm(x) non-degenerate
if each depends on x and no two are equivalent.
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Proposition 5.6. Let f1(x), . . . , fm(x) be a set of non-degenerate linear poly-
nomials. Define the following m multivariate polynomials, where x1, . . . , xm are m
distinct variables:

Fi(x1, . . . , xm) = fi(x1) · fi(x2) · · · fi(xn)

Then, for all v̄ = (v1, . . . , vm) ∈ Rm such that vi 6= vj for i 6= j, the Jacobian is
non-zero at v̄:

det(
∂F̄

∂x̄
(v̄)) 6=0

Proof. We can assume w.l.o.g. that a1 = . . . = am = 1. Then the polynomials
can be written as fi(x) = x+ yi, where y1, . . . , yn are distinct values (because the
polynomials are inequivalent), and the Jacobian matrix is:

∂F̄

∂x̄
=


∏

k 6=j

(xk + yi)




ij

Recall that the Cauchy’s double alternant [Krattenthaler 1999] is the determinant

of the matrix
(

1
xi+yj

)
ij
, and its value is

∏
i<j(xi−xj)(yi−yj)/

∏
i,j(xi+yj). Thus,

we obtain:

det

(
∂F̄

∂x̄

)
=

∏

i<j

(xi − xj)(yi − yj)

Thus, in order to complete the hardness proof for h2, it suffices to prove that the
four linear polynomials occurring in Eq. 27 are non-degenerate linear polynomials.
To prove that, we need a third technique from algebra, irreducible polynomials.

5.4 Proof Technique 3: Irreducible Multivariate Polynomials

Let’s revert our decision of setting P (Z1), . . . , P (Z8) to be constants, and setting
P (Z5) = zk. Instead, we define each to be a distinct variable, P (Zi) = xi, i = 1, 8.
Then, for each u, v ∈ [2], P (Yuv) = Fuv(x1, . . . , x8) is a multilinear polynomial
in x1, . . . , x8. If we substitute 7 of the variables with constants and keep only the
variable xi, then Fuv becomes a linear polynomial P (Yuv) = fuv(xi) = auv ·xi+buv.
We will prove that it is possible to choose a variable xi and constants for the other
variables such that the four linear polynomials fuv are non-degenerate.

Let F,G denote multilinear polynomials with k variables x1, . . . , xk. Recall that
equality F = G means that two polynomials have exactly the same coefficients and
should not be confused with equality at a particular point ū ∈ Rk, which we write
F [ū] = G[ū]. F is called irreducible if whenever F = G ·H, then either G or H is a
constant. A classical theorem in algebra is that every multi-variate polynomial over
the reals (in fact, over any field) admits a unique (up to equivalence) factorization
as a product of irreducible polynomials. If xi is a variable and ū ∈ Rk−1, then we
denote F [ū](xi) the linear polynomial in xi obtained by substituting the other k−1
variables with ū. Clearly, F [ū](xi) = a · xi + b, for some a, b ∈ R.
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Definition 5.7. Let F1, . . . , Fm be multilinear polynomials with real coefficients
over variables x1, . . . , xk. Call a variable xi distinguished if there exists ū ∈ Rk−1

such that the set of linear polynomials F1[ū](xi), . . . , Fm[ū](xi) is non-degenerate
(Def. 5.5). We call ū the distinguishing values.

For example, in F1 = x1 ·x2 and F2 = x1 ·x2+x1, the variable x2 is distinguished:
F1[1](x2) = x2 and F2[1](x2) = x2+1, which are non-equivalent (they have different
roots). The variable x1 is not distinguished: set x2 = c for any value c ∈ R, and
F1[c](x1) = c · x1 and F2[c](x1) = (c+ 1) · x1, which are equivalent.

Proposition 5.8. Let F1, . . . , Fm be irreducible, multi-linear polynomials, over
the same k variables. Let x be any variable, s.t. every Fi depends on x, for i = 1,m.
Then x is a distinguished variable iff F1, . . . , Fm are inequivalent; moreover, there
exists distinguishing values in (0, 1)k−1.

Proof. The only if direction is obvious: if Fi, Fj are equivalent, then for any
variable x and for any values ū ∈ Rk−1 of the other variables, Fi[ū](x), Fj [ū](x),
are also equivalent. We prove the if direction. Fix x any variable, and let ȳ denote
the other k − 1 variables, different from x. Write Fi(x) = Ai · x − Bi where Ai,
Bi are multilinear polynomials in ȳ. Ai is not identically 0, because Fi depends on
x. We prove that for any distinct i, j, the polynomials Ai · Bj and Aj · Bi are not
identical. Suppose otherwise, i.e. Ai · Bj = Aj · Bi. Consider their decomposition
into prime factors. We can write each polynomial as:

Ai = U · V Bj = W · Z Aj = U · Z Bi = V ·W

where U consists of the irreducible factors occurring in both Ai and Aj , V consists
of the irreducible factors occurring in both Ai and Bi, etc. Then Fi(x) = U · V ·
x − V · W = V · (U · x − W ) and similarly Fj(x) = Z · (U · x − W ). We know
that U 6= 0, because Ai 6= 0 (and Aj 6= 0). Since both Fi and Fj are irreducible,
both V and Z must be constants. But then Fi and Fj are equivalent, which is a
contradiction. This proves the claim that Ai ·Bj 6= Aj ·Bi, i.e. the two polynomials
are not identical.
Define the following polynomial:

H(ȳ) =(
∏

i

Ai)× (
∏

i<j

(Ai ·Bj −Aj ·Bi))

Here H(ȳ) is a multivariate polynomial in ȳ, which is not identically zero, since we
have shown that none of its factors is zero. Hence there are values ȳ = v̄ ∈ (0, 1)k−1

s.t. H[v] 6= 0. (Otherwise, if H is zero on an open set, then it is identically zero).
We check now that the set of linear polynomials F1[v̄](x), . . . , Fm[v̄](x) is non-
degenerate. First, Ai[v̄] 6= 0 implies that Fi[v̄](x) = Ai[v̄] · x − Bi[v̄] depends on
x. Next, forall i 6= j, Ai[v̄] · Bj [v̄] 6= Ai[v̄] · Bi[v̄], which means that the two linear
polynomials Fi[v̄](x) and Fj [v̄](x) are inequivalent.

If F is a multilinear polynomial that depends on a variable x, then there exists
a unique (up to equivalence) irreducible factor G of F that depends on x. Indeed,
writing F = G1 · G2 · · ·Gn, only one factor Gi may depend on x since the degree
of x in F is 1.
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Corollary 5.9. Let F1, . . . , Fm be multi-linear polynomials, and let x be a vari-
able, s.t. every Fi depends on x, for i = 1,m. Denote Gi the irreducible factor of
Fi that depends on x. Then x is distinguished iff G1, . . . , Gm are inequivalent.

The proof is immediate. To see an example, consider the two polynomials F1, F2

above; their factorizations are x1 · x2 and x1 · (x2 + 1). The factors depending on
x1 are identical and therefore x1 is not distinguished. The factors that depend on
x2 differ, and therefore x2 is distinguished.

Using Corollary 5.9 we can complete the proof of the hardness of h2. The last
step is to establish the connection between the irreducible factors of F = P (Y ) and
the structure of the Boolean expression Y . We will prove in Corollary 8.14 that
F = F1 ·F2 · · ·Fm has m factors iff Y can be written as Y ≡ Y1∧Y2∧ . . .∧Ym such
that for all i 6= j, Yi, Yj do not share common Boolean variables. Let’s examine the
four Boolean expressions defined in Eq. 26:

Y11 =Z1 ∧ [(Z2 ∨ Z3) ∧ . . . ∧ (Z6 ∨ Z7)] ∧ Z8

Y12 =Z1 ∧ [(Z2 ∨ Z3) ∧ . . . ∧ (Z6 ∨ Z7) ∧ (Z7 ∨ Z8)]

Y21 =[(Z1 ∨ Z2) ∧ (Z2 ∨ Z3) ∧ . . . ∧ (Z6 ∨ Z7)] ∧ Z8

Y22 =[(Z1 ∨ Z2) ∧ (Z2 ∨ Z3) ∧ . . . ∧ (Z6 ∨ Z7) ∧ (Z7 ∨ Z8)]

The corresponding multilinear polynomials Fuv = P (Yuv), for u, v ∈ {1, 2} have
variables x1, . . . , x8. Their irreducible factors are easily read from the four equations
above. F11 = x1 ·G11 ·x8 has three irreducible factors. F12 = x1 ·G12 has two factors
and so does F21 = G21 ·x8. Finally, F22 = G22 is irreducible. The irreducible factors
G11, G12, G21, G22 are also inequivalent, because they correspond to inequivalent
Boolean expressions. It follows that all their common variables, x2, . . . , x7, are
distinguished. On the other hand, x1 is not distinguished, because it belongs to
the same factor in F11 and in F12, and similarly x8 is not distinguished. Choose
(arbitrarily) x5 as the distinguished variable, rename it to z, and let v̄ ∈ (0, 1)7 be
distinguishing values of the other variables, given by Prop. 5.8. The four resulting
linear polynomials fuv(z) = auv ·z+buv are inequivalent, proving that the Jacobian
of the mapping (z1, . . . , z4) 7→ (y11, . . . , y22) given in Eq. 27 is non-zero. This
completes the proof that h2 is #P-hard.
It is interesting to note that our proof is tight, in the following sense. Let h−

4 be
obtained from hk by removing a middle component:

h−
4 =R(x0), S1(x0, y0) ∨ S1(x1, y1), S2(x1, y1) ∨ S3(x3, y3), S4(x3, y3) ∨ S4(x4, y4), T (y4)

Repeating the same construction leads to a Boolean formula Y (U, V ) where U and
V are disconnected. More precisely, Y (U, V ) = Y L(U) ∧ Y R(V ). Then each Yuv

is the conjunction of two independent Boolean formulas, and leads to the following
factorization of the polynomials:

Y11 = Y L
1 ∧ Y R

1 Y12 = Y L
1 ∧ Y R

2 Y21 = Y L
2 ∧ Y R

1 Y22 = Y L
2 ∧ Y R

2

F11 = FL
1 · FR

1 F12 = FL
1 · FR

2 F21 = FL
2 · FR

1 F22 = FL
2 · FR

2

No variable zi is a distinguishing variable, because each occurs in two identical
factors. Thus, the hardness proof fails for h−

4 , and this is to be expected because
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h−
4 is in PTIME, since algorithm 2 succeeds on h−

4 .

6. QUERY LEVELING

Recall from Def. 2.3 that, for a query expression Q, a level Z is a set of attributes
that are joined, directly or indirectly, by the query.

Definition 6.1. A disjunctive query is called leveled if every level Z contains
at most one attribute from every relational symbol R.

Example 6.2. All queries hk in Example 4.6 are leveled. For example, the query
h1 = R(x0), S(x0, y0) ∨ S(x1, y1), T (y1) has two levels, X = {(R, 1), (S, 1)} and
Y = {(S, 2), (T, 1)}, and the two attributes of S are on distinct levels. Similarly,
queries qW , q9 in Fig. 1, Fig. 2 are leveled. The following two queries are not
leveled:

d1 =R(x, y), R(y, z)

d2 =R(x, y), S(y, z) ∨R(x′, y′), S(x′, y′)

Indeed, both d1 and d2 have a single level.

The main result in this section is:

Theorem 6.3 Leveling. Let d be an immediately unsafe query. Then there ex-
ists a leveled query dL, which is also immediately unsafe, s.t. dL ≤FO

prob d. The query

dL is over a new vocabulary, whose maximum arity is the same as the maximum
arity of the vocabulary for d.

In general, if an unsafe query is not leveled, then it may not be possible to further
simplify it using the rules in Def. 4.13. For example, consider d1: if we attempt a
shattering rewrite rule, d → d1,a, by shattering the relation R into R∗a, then the
shattered query is d1,a = R(x, a), R(a, a), which is safe. The purpose of leveling
is to allow us to simplify the query, as we will show in the next section. The idea
is to specialize d to a leveled structure, which generalizes the notion of a k-partite
graph. We illustrate this on an example.

Example 6.4. We will prove that the query d1 = R(x, y), R(y, z) is #P-hard,
by showing that h1 ≤FO

lin d1. The input to d1 is a graph R(A,B). Our idea is to
restrict the input graph to be a k-partite graph; the question is how large should k
be. If k = 2 then the graph is bipartite, and d1 ≡ false (there are no paths of
length 2). If k = 3 then the 3-partite graph has three sets of nodes A,B,C, and
two kinds of edges R12(A,B), R23(B,C) (we assume there are no edges from A
to C): the query specializes to dL1 = R12(x, y), R23(y, z), which is a safe query,
so this still does not help us prove hardness. Consider k = 4; there are three
kinds of edges, R12(A,B), R23(B,C), R34(C,D), and the query specializes to dL1 =
R12(x0, y0), R

23(y0, z0) ∨ R23(y1, z1), R
34(z1, u1). If we shatter levels x0 and u1

to constants a, b respectively, then dL1 → dL1 [a/x0, b/u1] = R12(a, y0), R
23(y0, z0) ∨

R23(y1, z1), R
34(z1, b), which is essentially h1 (see Example 4.6), up to the renaming

of the relation names. Thus, h1 ≤FO
lin d, proving that d is #P-hard.
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6.1 Connection Between a Level and a Separator

We first need to introduce a technical result.

Proposition 6.5. Let d be a ranked, disjunctive query that is symbol-connected.
Then d has a separator iff there exists a level Z that contains only root variables.
Moreover, in this case the set of variables in level Z forms a separator.

Proof. We start with the “only if” direction. Write d as d = ∃z.(c1 ∨ . . . ∨ cm)
where z is a separator variable. Let Z be the set of attributes where z occurs.
Write d equivalently as d′ = ∃x1.c1[x1/z] ∨ . . . ∨ ∃xm.cm[xm/z]; we show that Z
is a level in d′. Suppose (R, i), (S, j) is an edge in the attribute graph; then there
is a join predicate in d, R(. . .), S(. . .), which joins positions i and j. If (R, i) is in
Z, then the atom R(. . .) contains z on that position, and, therefore, so must the
atom S(. . .); correspondingly, in d′ both contain a common variable xk, proving
that (S, j) ∈ Z. It also follows that Z has only root variables, namely x1, . . . , xk,
which form the separator.
To prove the “if” direction, assume Z is a level that contains only root variables.

Then Z contains at least one variable from each component ci, because the query
is symbol-connected; also, Z contains at least one attribute from each relational
symbol R. We prove that it contains exactly one attribute from each symbol R.
For each R, let iR be the smallest attribute in Z: that is, (R, iR) ∈ Z, and, if
(R, j) ∈ Z then iR ≤ j. Call (R, iR) the minimal Z-attribute in R. We claim
that if a minimal Z-attribute (R, iR) is connected to some other attribute (S, j)
in the attribute graph, then (S, j) is also a minimal Z-attribute. Indeed, consider
a component containing R(. . .), S(. . .) and a common variable x on position iR in
R and on position j in S. By assumption, x is a root variable. Suppose iS < j:
then the variable y on position iS in S is also a root variable, and must also occur
in R, on some position i, and obviously (R, i) ∈ Z. Because the query is ranked
(Def. 4.1), we must have i < iR, contradicting the fact that iR was minimal. Thus,
Z contains exactly one attribute in each relation, and exactly one root variable in
each component. We prove now that it is a separator. Let xi be the root variable
in ci on level Z. Write d as ∃z.(c1[z/x1] ∨ c2[z/x2] ∨ . . .). Now z is a separator
variable: it is clearly a root variable, and in every atom with relation symbol R,
the variable z occurs precisely on the attribute that is at the level Z.

In the rest of the paper we will use the criteria in Prop. 6.5 as the definition of
a separator in a leveled query, instead of the official Def. 3.2.

The condition that the query is ranked is essential. To see a counterexample,
consider R(x, y), R(y, x). This query is not ranked, and there is a single single
level containing both attributes (R, 1) and (R, 2). Therefore this level contains
the variables x, y, and thus contains only root variables; yet, they do not form a
separator.

6.2 Leveled Database Instances

Let R be a relational vocabulary. Fix a set L, and call its elements types, or level
types. We assume |L| ≥ arity(R) for every R ∈ R. A leveling of a relation R
of arity k is an injective function τ̄ : [k] → L. We denote with Rτ̄ the leveled
relational symbol, of the same arity as R. A leveled vocabulary, RL, is a set of
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leveled relational symbols Rτ . We say that RL is complete if it contains all leveled
relational symbols Rτ̄ , where R ∈ R and τ̄ is a leveling for R.

Let DL be a database instance over RL. Given τ ∈ L, denote ADomτ (D
L),

or simply ADomτ when DL is clear from the context, the active domain of all
attributes having level type τ . We say that DL is a leveled database instance if for
all τ1 6= τ2, ADomτ1 ∩ ADomτ2 = ∅. We will assume throughout the paper that
any database instance over a leveled vocabulary is leveled.
For example, a bipartite graph R(A,B) is a leveled structure, because we may

assume that the active domains of A and B are disjoint. A 3-partite graph may
have several vocabularies: one example is R12(A,B), R23(B,C), where edges go
only from A to B and from B to C; another example is R12(A,B), R23(B,C),
R31(C,A), with three kinds of edges, from A to B, from B to C, and from C to
A. In both cases, the 3-partite graph is leveled: the active domains of A, B, and
C are disjoint.

Definition 6.6. The level-forgetting mapping maps an instance DL over a
leveled vocabulary RL to the instance D = F(DL) over R defined as: RD =⋃

τ̄ (R
τ̄ )D

L

, for all R ∈ R.

That is, the mapping simply takes the union of all different levelings Rτ̄ of R.
Notice that the union is disjoint, any two distinct levelings Rτ̄1 , Rτ̄2 have at least
one attribute on different levels, and these have disjoint active domains.

Definition 6.7. Let dL be a query on the leveled vocabulary RL. The level-
forgetting query, d, is the query over R obtained from dL by forgetting all levelings
of all relational symbols.

Lemma 6.8. Let d be the level-forgetting query for dL and D be the level-forgetting

instance for DL. Then ΦDL

dL ⇒ ΦD
d .

Proof. Suppose WL |= dL for a world WL ⊆ DL. Then there exists a com-
ponent cLi of dL and a valuation θ : cLi → WL. This is also a valuation ci → W ,
proving that W |= ci.

Note that the converse, ΦD
d ⇒ ΦDL

dL , does not hold in general. For example,
consider the 3-partite graph R12(A,B), R23(B,C) and the leveled query dL =
R12(x, y), which simply checks that R12 6= ∅. The level-forgetting query is d =
R(x, y) which checks that the entire graph is non-empty: the former implies the
latter but not conversely.

6.3 General Query Leveling

Leveling takes a query d, and a leveled vocabulary, and transforms d into a leveled
query dL over that vocabulary, such that d is equivalent to the level-forgetting

query for dL, and the converse of Lemma 6.8 holds, i.e. ΦDL

dL ≡ ΦD
d . In particular,

dL ≤FO
lin d.

We start by showing how to level a component, c. Let R be the vocabulary
used by the query c, and let RL be any leveled vocabulary. Let ρ̄ : V ar(c) → L
be a function from variables to level types. For each atom R(x1, . . . , xk), define
τ̄ to be the following function [k] → L: τ̄(i) = ρ̄(xi) for i = 1, . . . , k. We say
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that ρ̄ is a leveling of c if for all atoms R(. . .), the function τ̄ is injective9, and
the vocabulary RL contains the symbol Rτ̄ . Denote cρ̄ the component over the
vocabulary RL obtained by replacing each atom R(. . .) with Rτ̄ (. . .). The leveling
of c is cL =

∧
ρ c

ρ̄, where ρ̄ ranges over all levelings of c. Notice that, if we forget

the leveling of cρ̄ we obtain back the query c: this implies that if we forget the
leveling in cL we obtain c ∨ c ∨ . . . ≡ c. If d = c1 ∨ . . . ∨ cm is a disjunctive query,
then its leveling is dL = cL1 ∨ . . . ∨ cLm.
We prove that if dL is the leveling of d, then the converse of Lemma 6.8 holds.

We illustrate with a brief example, on the 3-partite graph R12(A,B), R23(B,C);
the leveling of the query d = R(x, y) is dL = R12(x1, y1)∨R23(x2, y2); both queries
check whether the entire graph is non-empty, and, thus, are equivalent (up to the
level-forgetting mapping DL 7→ D).

Proposition 6.9. Let dL be the leveling of d over the leveled vocabulary RL.
Let DL be a leveled instance, and D be obtained from DL through the level-forgetting

mapping. Then ΦDL

dL ≡ ΦD
d . It follows that dL ≤FO

lin d.

Proof. By Lemma 6.8, ΦDL

dL ⇒ ΦD
d . For the converse, let W ⊆ D be s.t.

W |= d. Then there exists i s.t. W |= ci. Let θ : V ar(ci) → ADom be the
valuation that maps the variables in ci to the active domain, such that for every
atom g in ci, θ(g) is a tuple in W . For each variable xi, define ρ̄(xi) to be the
unique level l s.t. θ(xi) ∈ ADoml. Denoting W ′ = F−1(W ) (this separates the
tuples in W ′ by their level annotation) we have W ′ |= cρ̄i .

We will use Prop. 6.9 in several places in this paper. It holds for any leveled
vocabulary RL, the only requirement is that the query dL be leveled according
to our procedure. We have already used leveling in Sect. 5.3, where we leveled
the query h2 and obtained hL

2 . The leveled vocabulary was incomplete, in that it
included relations S14

1 , S34
1 , S32

1 but did not include, e.g, S12
1 ; but the query hL

2 was
leveled according to the procedure described in this section.
We now prove that dL has several nice properties: it is minimized, and it is

leveled (as per Def. 6.1).

Lemma 6.10. Let d =
∨

i ci. Then for any ci and any ρ̄ : V ar(ci) → L, cρ̄i is a
minimized, non-redundant component of dL.

Proof. If cρ̄i is not minimized then there exists a homomorphism from cρ̄i into a
strict subset of its atoms: this extends to a homomorphism from ci into the same
subset, by simply forgetting the leveling, contradicting the fact that ci is minimized.
Similarly, any homomorphism cρ̄1

1 → cρ̄2

2 extends to a homomorphism c1 → c2 by
simply forgetting the leveling, showing that each component is non-redundant.

Lemma 6.11. Let dL be the leveling of a disjunctive query d. Then for every
level Z, all attributes in Z have the same level type.

Proof. Let (Rτ̄ , i) and (Sσ̄, j) be two attributes that are connected in the at-
tribute graph of dL. By definition of the attribute graph, there exists a component
cρ̄ that contains two atoms Rτ̄ (. . .) and Sσ̄(. . .) that have the same variable x on

9This is always the case if c is ranked (Def. 4.1).
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positions i and j respectively. By construction, τ̄(i) = ρ̄(x) = σ̄(j), proving that
(Rτ̄ , i) and (Sσ̄, j) have the same level type.

Corollary 6.12. Let dL be the leveling of d. Then dL is leveled.

Proof. Let (Rτ̄ , i) and (Rτ̄ , j) be two attributes of the same relation symbol
Rτ̄ that belong to a common level Z. By the previous lemma, they have the same
level type, τ̄(i) = τ̄(j). It follows that i = j.

Example 6.13. We briefly illustrate leveling on d1, d2 in Example 6.2. Choose
L = 4 and the leveled vocabulary R12, R23, S23, S34. Their levelings are:

dL1 =R12(x1, y2), R23(y2, z3) ∨R23(x2, y3), R34(y3, z4)

dL2 =R23(x2, y3), S34(y3, u4) ∨R12(x1, y2), S23(y2, z3) ∨R23(x2, y3), S23(x2, y3)

Each expression is minimized, leveled, and we have dL1 ≤FO
lin d1 and dL2 ≤FO

lin d2.
Therefore, if dL1 , d

L
2 are #P-hard, then so are d1, d2.

So far we did not require d to be ranked: these results hold even for unranked
queries. For example, suppose d = R(x, y), R(y, x), and L = 2. Then dL =
R12(x, y), R21(y, x) ∨ R21(x, y), R12(y, x) ≡ R12(x, y), R21(y, x). The new query
is leveled (there are two levels: {(R12, 1), (R21, 2)} and {(R12, 2), (R21, 1)}), and
dL ≤FO

lin d. In fact, it is even ranked, if one switches the order of the attributes in
R21. More generally, one can prove that every leveled query is ranked. However,
leveling is not a substitute for Prop. 4.2, because the reduction in Prop. 6.9 is only
in one direction: in general, it is not the case that d 6≤FO

prob dL. For an extreme
example, consider the unranked query d = R(x, x). It has no leveling at all, hence
RL = ∅, and the leveling is dL =

∨
∅() = false. It still holds that dL ≤FO

lin d,
because the only database instance DL over the empty vocabulary is the empty

tuple, leading to F(DL) = D = ∅, and Φ
()
false

= Φ∅
d. But d 6≤FO

lin dL.

6.4 Leveling Immediately Unsafe Queries

The next proposition proves Theorem 6.3. Recall that, by definition, an immedi-
ately unsafe query is by definition ranked.

Proposition 6.14. Let d = c1 ∨ . . . ∨ cm be an immediately unsafe query over
vocabulary R. Let L be such that |L| ≥ |V ar(ci)| for all i = 1,m, and let RL

be the complete leveling vocabulary for R. Then any symbol-component of dL is
immediately unsafe.

Proof. While d is symbol-connected by definition, dL might not be10. Let d′

be any symbol component of dL. Assume it has a separator; by Prop. 6.5 there
exists a level Z ′ that contains only root variables. The level Z ′ is a set of attributes
in RL, (Rτ̄ , i); let’s denote Z to be the set of attributes from the R vocabulary
obtained by dropping the leveling: Z = {(R, i) | (Rτ̄ , i) ∈ Z ′}. We prove that (a)
Z is a level, and (b) it contains only root variables. By Prop. 6.5 it is a separator
for d (here we need d to be ranked), which is a contradiction, proving that d′ has
no separator.

10For a trivial example, the 2-leveling of d = R(x) is d′ = R1(x1) ∨ R2(x2) and is not symbol-

connected.

Journal of the ACM, Vol. V, No. N, Month 20YY.



Dichotomy of Unions of Conjunctive Queries · 49

To prove (a), let (R, i) ∈ Z and suppose there exists a component ck that joins
attribute (R, i) with (S, j). Denote g1 = R(. . .) and g2 = S(. . .) the two atoms
that have a common variable x on positions i and j respectively. By definition of
Z, there exists an attribute (Rτ̄ , i) ∈ Z ′. Consider the leveling ρ : V ar(ck) → L of
the component ck defined as follows: ρ maps the variables in g1 = R(. . .) according
to τ̄ , and maps all other variables in ck to distinct level-types. That is, we choose
ρ to be injective and this is possible by |L| ≥ |V ar(ck)|. Consider the component
cρk: it must appear in dL (because the vocabulary RL is complete); it belongs to
d′ (because it contains the symbol Rτ̄ hence it is symbol-connected to d′); and it
contains the two atoms Rτ̄ (. . .) and Sσ̄(. . .) that join the attributes (Rτ̄ , i) and
(Sσ̄, j). (Here σ̄ is the leveling imposed by ρ̄ on the atom g2.) This proves that
(Sσ̄, j) ∈ Z ′, and therefore (S, j) ∈ Z.
To prove (b), suppose (R, i) ∈ Z and there exists a component ck that has an

atom g = R(. . .) where the variable x on position i is not a root variable. As before,
there exists (Rτ̄ , i) ∈ Z ′, and we can extend τ̄ to a leveling of the entire component
ck, ρ : V ar(ck) → L. Then x is not a root variable in cρk either, and it occurs on
position i of an atom Rτ̄ (. . .), contradicting the assumption that Z ′ contains only
root variables.

It is interesting to notice that the proof in the proposition leads to a different
leveling those shown in Example 6.13. For example, it levels R(x, y), R(y, z) by
using only three levels, leading to the following:

R12(x1, y2), R23(y2, z3) ∨R23(x2, y3), R31(y3, z1) ∨R31(x3, y1), R12(y1, z2)

∨R13(x1, y3), R32(y3, z2) ∨R32(x3, y2), R21(y2, z1) ∨R21(x2, y1), R13(y1, z3)

∨R12(x1, y2), R21(y2, z1) ∨R13(x1, y3), R31(y3, z1) ∨R21(x2, y1), R12(y1, z2)

∨R13(x1, y3), R31(y3, z1) ∨R31(x3, y1), R13(y1, z3) ∨R32(x3, y2), R23(y2, z3)

This query has no separator, as can be seen immediately from the first two com-
ponents of the first line: their root variables are y2 and y3 respectively, but they
occur on different positions in R23.

7. REWRITING TO A FORBIDDEN QUERY

The rewrite rules→ in Def. 4.13 never get stuck: one can always apply another step,
e.g. choose any relational symbol R, and shatter it into Ra∗···∗ and R∗···∗. While we
could have defined the rewrite rules in a more restricted fashion, to always guarantee
termination, our more general rules ensure that queries can be simplified to some
quite elegant forms. For example in Sect. 8.2 we show that every non-hierarchical
query can be rewritten to h0 = R(x), S(x, y), T (y) (in other words h0 is the only
forbidden query!), while in Section 8.4.7 we make critical use of the full power of
the rewrite rules, in order to prove hardness of the most difficult forbidden queries.
In this section, however, our goal is prove that a query can be simplified, and for
that we need to define a measure of progress. Intuitively, Q1 is simpler than Q2, in
notation Q1 < Q2, if it either is over a vocabulary with smaller arities, or is over
the same vocabulary but has fewer atoms.
Given a query Q, define its sequence to be seq(Q) = a = (a0, a1, a2, . . .) ∈ NN

where ak denotes the number of relation symbols of arity k occurring in Q. The
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sequence has finite support, i.e. ai = 0 for all but finitely many values of i. Consider
the lexicographic order a < b if ∃i s.t. ai < bi and ∀j > i, aj = bj . It is known
that this is a well ordering, meaning that there is no infinitely decreasing sequence
a1 > a2 > . . . Let at(Q) denote the set of atoms in the minimized CNF expressions
of Q (Sect. 2.6).

Definition 7.1. Let Q1, Q2 be two queries, possibly over different vocabularies.
We define the partial order11 Q1 < Q2 if seq(Q1) < seq(Q2) or seq(Q1) = seq(Q2)
and |at(Q1)| < |at(Q2)|.

Then Q1 < Q2 is a well ordering. Indeed, the lexicographic order on sequences
of natural numbers is a well ordering and, furthermore, the lexicographic ordering
of two well orderings is also a well ordering.

Definition 7.2. A forbidden query is a leveled, unsafe query Q such that for
any maximal rewriting Q

∗
→ Q′ where Q > Q′, the query Q′ is safe.

Thus, by definition, if Q is unsafe and not forbidden, then Q
∗
→ Q′ to some other

unsafe query Q′ < Q. By repeating this argument for Q′, we eventually reach a
forbidden query, because < is a well ordering. Thus, every unsafe query Q rewrites
to a forbidden query.
A forbidden query Q is not only unsafe, but it is even immediately unsafe: oth-

erwise, we apply one step of algorithm 2 and obtain a maximal rewriting Q → Q′

where Q′ is also unsafe and Q > Q′ (since at each step the algorithm either re-
duces the number of atoms in the query, or shatters d to d[a/z] thus reducing the
query’s sequence). Thus, a forbidden query is a disjunctive query, and we will
denote it d. The converse fails in general because, if d is immediately unsafe, it
only means that the algorithm is stuck, but we may still make progress by ap-
plying the rewriting rules. For example, d = R(x0, z0), S(x0, y0) ∨ S(x1, y1), T (y1)
is immediately unsafe, but it is not a forbidden, because we can shatter it d →
R∗a(x0), S∗∗(x0, y0) ∨ S∗∗(x1, y1), T∗(y1), which still unsafe.
How simple is a forbidden query? We prove in this section:

Theorem 7.3. A forbidden query has exactly two levels.

In the next section we prove that any forbidden query d is #P-hard. This implies
that every unsafe query is hard, because any unsafe query Q has some maximal
rewriting to some forbidden query Q

∗
→ d, and, by Corollary 4.19, d ≤FO

prob Q,
thus Q is #P-hard. Notice that we do not need to worry about the length of the
reduction Q

∗
→ d, and not even whether it is decidable to find a forbidden query d

from Q. To prove that Q is #P-hard it suffices to show that such a d exists, because
the complexity of the reduction is measured in terms of the size of the database.
Thus, for the purpose of the hardness proof for Q, computing the forbidden query
d from Q can be done in time O(1) in the size of the database.
In the rest of this section we prove Theorem 7.3.

11We do not define ≤, and only use <; if seq(Q1) = seq(Q2) and |at(Q1)| = |at(Q2)| then, in
general, there is no relationship between Q1 and Q2.
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7.1 Shattering of a Level Z

To prove Theorem 7.3, we will show that if Q has ≥ 3 levels, then there exists a
shattering rewriting Q → QA such that Q′ < Q. It turns out that for that we
only need a restricted kind o shattering, which shatters an entire level Z with the
constants A.

Definition 7.4. Let Q be a query. The shattering of a level Z with the con-
stants A, denoted QA/Z , is the query obtained by shattering Q w.r.t. the following
vocabulary. Every attribute in Z shatters to a1, a2, . . . , ak (but not to ∗), and every
attribute not in Z shatters only to ∗.

We give an alternative definition, and describe it only for a disjunctive query,
d =

∨
i ci, since we only need to apply shattering to disjunctive queries in this

section. Fix a level Z, and let V arZ(ci) is the set of variables in ci that are in level
Z. Let A = {a1, a2, . . .} be a set of constants; we will always take |A| ≤ 2 · V ar(d).

ΘZ(ci, A) ={θ | θ : V arZ(ci) → A}

d[A/Z] =
∨

i

∨

θ∈ΘZ(ci,A)

ci[θ] (28)

Thus, ΘZ(ci, A) is the set of substitutions of Z-variables, and d[A/Z] is obtained
by substituting the Z-variables in all possible ways with constants from A. By
construction, the complete shattering of d[A/Z] is precisely dA/Z (see the definition
of the complete shattering right before Prop. 2.10). Thus, throughout this section,
we will blur the distinction between shattering of a level Z, dA/Z , and substituting
level Z with constants, d[A/Z]. To prove Theorem 7.3 we show:

Proposition 7.5. If d is leveled and immediately unsafe, with ≥ 3 levels, then
there exists a level Z s.t. for any set of constants A, if |A| ≤ 2 · |V arZ(d)| then
d[A/Z] is unsafe.

This implies Theorem 7.3. Indeed, consider a forbidden query d: it is also imme-
diately unsafe, hence, if it has ≥ 3 levels, then by the proposition above d → d[A/Z].
We claim that seq(d[A/Z]) < seq(d), contradicting the fact that d is forbidden: in-
deed, if k is the largest arity of a relation that contains an attribute on level Z,
then the vocabulary of d[A/Z] has at least one fewer relation or arity k, and the
same number of relations of arity > k. Before proving the proposition, we illustrate
it with two examples.

Example 7.6. Consider d = R(x0), S(x0, y0) ∨ S(x1, y1), T (y1, z). It has three
levels, containing the variables {x0, x1}, {y0, y1}, {z}. Apply the rewrite rule d →
d[a/z] = R(x0), S(x0, y0)∨S(x1, y1), T (y1, a). After shattering, d[a/z] is isomorphic
to h1, and by Lemma 4.18 h1 ≤FO

prob d. Therefore d is #P-hard.
For a more difficult example, consider proving that d = R(x1, y1), S(x1, z1) ∨

R(x2, y2), T (y2, z2) ∨ S(x3, z3), T (y3, z3) is #P-hard. Let Z = {z1, z2, z3} be the
level that contains the variables z1, z2, z3. Suppose we rewrite d → d[a/Z] =
R(x1, y1), S(x1, a) ∨ R(x2, y2), T (y2, a) ∨ S(x3, a), T (y3, a). After shattering, the
query becomes d = R(x1, y1), S∗a(x1) ∨ R(x2, y2), T∗a(y2) ∨ S∗a(x3), T∗a(y3). But
this query is essentially QV (Example 3.5), up to renaming of relation symbols,

Journal of the ACM, Vol. V, No. N, Month 20YY.



52 · Dalvi and Suciu

and is safe. So substitution with one constant was insufficient for proving hard-
ness. However, the idea works if we substitute with two constants. The shattered
query is:

d[{a, b}/Z] =R(x1, y1), S∗a(x1) ∨R(x′
1, y

′
1), S∗b(x

′
1)

∨R(x2, y2), T∗a(y2) ∨R(x′
2, y

′
2), T∗b(y

′
2)

∨S∗a(x3), T∗a(y3) ∨ S∗b(x
′
3), T∗b(y

′
3)

Let’s see why the query on the right is unsafe. Consider its CNF expression, which
is a conjunction of four disjunctive queries. It suffices to show that one of them is
unsafe, and we do this for:

d′ =R(x1, y1), S∗a(x1) ∨R(x′
1, y

′
1), S∗b(x

′
1)

∨R(x2, y2), T∗a(y2) ∨R(x′
2, y

′
2), T∗b(y

′
2)

∨S∗a(x3) ∨ T∗b(y
′
3)

≡R(x′
1, y

′
1), S∗b(x

′
1) ∨R(x2, y2), T∗a(y2) ∨ S∗a(x3) ∨ T∗b(y

′
3) (29)

We can get rid of the last two components by rewriting d′ → d′[S∗b = false, T∗b =
false], and the resulting query is isomorphic to h1. Thus, we have the following
rewriting rules: d → d[{a, b}/Z] → d′ → h1, which is a maximal rewriting, hence
h1 ≤FO

prob d by Corollary 4.19, and d is #P-hard. We will return to this query in
Example 7.13.

7.2 The CNF Expression for d[A/Z]

Fix d = c1∨ . . .∨cm. In general, d[A/Z] (Eq. 28) is not a disjunctive query, because
a query ci[θ] may be disconnected. To prove that d[A/Z] is unsafe, we must convert
it to CNF first.
A Z-subcomponent of ci is a connected component of the following graph: the

nodes are the atoms in ci, and edges are pairs of atoms that share at least one
variable that is not in Z. Denote scZ(ci) = {s1, . . . , sm} the Z-subcomponents
of ci. In other words, if we apply one of the substitutions θ in Eq. 28, then ci
decomposes into the components s1, . . . , sm:

ci[θ] =
∧

s∈scZ(ci)

s[θ] (30)

The DNF expression for d[A/Z] is:

d[A/Z] =
∨

i,θ∈ΘZ(ci,A)

∧

s∈scZ(ci)

s[θ] (31)

Next, we apply the standard conversion from DNF to CNF. Let k be a function
k :

∏
i ΘZ(ci, A) →

⋃
i scZ(ci) such that ∀i, θ ∈ ΘZ(ci, A), k(i, θ) ∈ scZ(ci). Let K

be the set of all such functions. Then the CNF expression is given by:

d[A/Z] =
∧

k∈K

d′k (32)

where: d′k =
∨

i=1,m


 ∨

θ∈ΘZ(ci,A);s:=k(i,θ)

s[θ]


 for all k ∈ K (33)
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The CNF expression given above is, in general, not minimized, as we saw in
Example 7.6, Eq. 29.
Let θ ∈ ΘZ(ci, A) be an injective function. Then s[θ] is already minimized; in

other words, s[θ] is isomorphic to s. To see this, suppose otherwise, that there
exists a homomorphism from s[θ] → s[θ] that is not surjective; since θ is injective,
we can extend it to a homomorphism s → s by defining it to be the identity on the
variables in V arZ(ci). Extend this to a homomorphism ci → ci by defining it to be
the identity on all other subcomponents. Since it is not injective, it means that ci
is not minimized, contradiction. Thus, if θ is injective, then s[θ] is minimized; we
call it an injective subcomponent.
We say that the subcomponent s[θ] occurs syntactically in d′k, if ∃i = 1,m and

∃θ ∈ ΘZ(ci, A) s.t. s = k(i, θ); this does not prevent s[θ] from disappearing during
minimization. Let S be a set of subcomponents s[θ]. We say that S occurs in
the minimized CNF of d[A/Z] if after minimizing Eq. 32, one of the conjuncts d′k
contains every s[θ] ∈ S. We will prove Prop. 7.5 by showing that there exists a set
S of injective subcomponents that occurs in the minimized CNF, and

∨
S has no

separator. The following lemma is an immediate consequence of Prop. 2.13 and the
subsequent discussion on query minimization.

Lemma 7.7. A set S occurs in the minimized CNF of d[A/Z] if the following
conditions are satisfied:

(1 ) Every s[θ] ∈ S is minimized.

(2 ) There exists k ∈ K, such that for all s[θ] ∈ S (a) s[θ] occurs syntactically in
d′k, and (b) s[θ] is not redundant: for every other s′[θ′] in d′k, s[θ] 6⇒ s′[θ′].

(3 ) The disjunctive query d′k from the previous point is not redundant, meaning
that there is no other disjunctive query d′l s.t. d′l ⇒ d′k.

In the rest of this section we will prove the following proposition, which implies
Prop. 7.5.

Proposition 7.8. Let d = c1 ∨ . . . ∨ cm be a leveled, immediately unsafe query,
with ≥ 3 levels. Then there exists a level Z with the following property. For any
set of constants A s.t. |A| ≥ 2 · maxi |V arZ(ci)|, then there exists a set S of
subcomponents such that: (a) S occurs in the minimized d[A/Z], and (b)

∨
S has

no separator.

The proposition implies Prop. 7.5. Indeed, if d has ≥ 3 levels, let d′k be the
disjunctive query in the minimized CNF expression for d[A/Z] that contains the
set S. Then d[A/Z] → d′k is a maximal subquery rewriting rule (since d′k is a
coatom in the CNF lattice, and µ = −1). Furthermore, let d′′ be the symbol-

component of d′k that contains
∨
S: obviously, we have d′k

∗
→ d′′, (simply remove

the disconnected components by setting their relational symbols R = false). Since∨
S has no separator, neither does d′′, hence d′′ is immediately unsafe, proving that

d[A/Z] is unsafe.

7.3 Base Case: No Root Variable

In this section we prove Prop. 7.8 for the case when there exists a component ci that
has no root variable; such query is called non-hierarchical in [Dalvi and Suciu 2004;
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Dalvi and Suciu 2007b]. No disjunctive query that contains ci can have a separator,
since by definition the separator must include a root variable from each component.
Thus, our proof consists of showing that a non-hierarchical subcomponent of ci[θ]
occurs in the minimized d[A/Z].
For x ∈ V ar(ci), denote at(x) the set of atoms that contain x. Let x be such that

at(x) is a maximal set; at(x) does not contain all atoms in ci, because x is not a
root variable. Since ci is connected, there exists some other variable y s.t. all three
sets at(x) ∩ at(y), at(x) − at(y) and at(y) − at(x) are nonempty. Choose Z to be
any level distinct from the two levels containing x and y: such a level exists since
d has ≥ 3 levels12. Since x, y occur together in some atom, there exists s ∈ scZ(ci)
s.t. x, y ∈ V ar(s). Let θ ∈ ΘZ(ci, A) be any injective substitution. Then s[θ] is
non-hierarchical, because at(x)∩at(y), at(x)−at(y) and at(y)−at(x) still holds in
s[θ], and there is no set at(u) strictly larger than at(x). Thus, s[θ] is immediately
unsafe. We show that s[θ] occurs in the minimized CNF expression for d[A/Z],
which proves Prop. 7.8 for this case. We prove a more general statement.

Lemma 7.9. Suppose d =
∨

i ci is a minimized disjunctive query, and Z a level.
Then, for any component ci, for any injective function θ ∈ ΘZ(ci, A), and any sub-
component s ∈ scZ(ci), the expression s[θ] occurs in the minimized CNF expression
d[A/Z].

Proof. We verify the three conditions of Lemma 7.7. (1) is immediate, since θ
is injective.
To prove (2), define the following function k ∈ K. On the input i, θ, k(i, θ) = s.

On any other input j, θ′, we define k(j, θ′) to be a subcomponent s′ ∈ scZ(cj) chosen
s.t. ci[θ] 6⇒ s′[θ′]: this further implies that s[θ] 6⇒ s′[θ′] (because ci[θ] ⇒ s′[θ′]),
proving (2). It remains to show that such an s′ exists. Assume the contrary, i.e. for
all s′ ∈ scZ(cj), the logical implication ci[θ] ⇒ s′[θ′] holds. Then ci[θ] ⇒ cj [θ

′](≡∨
s′∈scZ(cj)

s′[θ′]). This means that there exists a homomorphism cj [θ
′] → ci[θ],

which implies that there exists a homomorphism cj → ci (because θ is injective).
But the original query d was minimized, hence i = j, and furthermore ci is also
minimized, hence every endomorphism is an automorphism, implying that θ = θ′,
which contradicts the assumption that (j, θ′) is different from (i, θ). This completes
the proof of (2).
To prove (3), let d′k, k ∈ K be defined as above. Let L ⊆ K denote the indices of

the non-redundant disjunctive queries d′l, and assume each d′l is minimized. Thus
d[A/Z] =

∧
l∈L d′l. Assuming d′k is redundant, there exists l ∈ L, s.t. d′l ⇒ d′k.

We claim that d′l also contains s[θ], which proves (3). To see this, notice that
ci[θ] ⇒ d[A/Z] ⇒ d′l (because ci ⇒ d), therefore:

ci[θ] ⇒d′l ⇒ d′k

Now we apply Sagiv and Yannakakis’ disjunctive query containment criterion (see
Prop. 2.13) twice. First, since ci[θ] is a component, there exists a component s′′[θ′′]
in d′l s.t. ci[θ] ⇒ s′′[θ′′]; second, we obtain component s′[θ′] in d′k s.t. s′′[θ′′] ⇒ s′[θ′].

12It is entirely possible that Z has no attributes in ci. For example ci may be R(x), S(x, y), T (y),

while Z contains attributes from other relations. We still make progress simplifying d to d[A/Z].
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In summary:

ci[θ] ⇒s′′[θ′′] ⇒ s′[θ′]

Because of the way we constructed d′k, the only component s′[θ′] that can be logi-
cally implied by ci[θ] is s[θ], hence the implications become:

ci[θ] ⇒s′′[θ′′] ⇒ s[θ]

Since ci[θ] =
∧

s1∈scZ(ci)
s1[θ], by the criterion for conjunctive query containment

in Prop. 2.13 there exists s1 such that:

s1[θ] ⇒s′′[θ′′] ⇒ s[θ]

But the only subcomponent s1 s.t. s1[θ] ⇒ s[θ] is s1 = s: otherwise, if such an s1
exists, then the query ci could be further minimized (by removing the subcomponent
s), contradicting the fact that ci was minimized. Thus, s′′[θ′′] is equivalent to s[θ],
which proves the claim that d′l contains s[θ].

7.4 Case 1: Non-splitting Level

From now on we assume that every component ci has a root variable. If there is
only one root variable in ci, and the level Z contains that variable, then ci[θ] is
disconnected, for all θ ∈ ΘZ(ci, A). In this case we say that Z is splitting ci. In all
other cases, ci[θ] is connected, and we say that Z is non-splitting for ci.

Case 1 is when there exists a level, Z that is non-splitting for all ci. We prove that
Prop. 7.8 holds for this level. In this case, every ci[θ] is connected, and d[A/Z] =∨

ci[θ] is a disjunctive query. The minimized CNF for d[A/Z] has a single conjunct,
which is the disjunction of all non-redundant ci[θ]. By Lemma 7.9, if θ ∈ ΘZ(ci, A)
is injective, then ci[θ] is non-redundant in d[A/Z]. Intuitively, d[A/Z] contains an
entire copy of d =

∨
i ci, and since d has no separator, neither can d[A/Z] have one.

We prove this formally.

Lemma 7.10 Case 1. Let d = c1 ∨ . . .∨ cm be an L-leveled, immediately unsafe
query, Z a non-splitting level, and A be a set of constants s.t. |A| ≥ maxi |V arZ(ci)|.
Let S be a maximal set S ⊆ {ci[θ] | θ ∈ ΘZ(ci, A), θ injective} s.t. S is symbol-
connected. Then S occurs in the minimized d[A/Z] and is has no separator.

Proof. By Lemma 7.9, every ci[θ] occurs in d[A/Z]. We show that d′ =
∨
S

has no separator. Note that d′ is a disjunctive query over the shattered vocabulary
for d[A/Z]. We denote R and R′ the vocabularies for d and d′ respectively. If
the relation symbol R ∈ R contains an attribute in Z, then it has |A| shatterings,
denoted Ra, one for every a ∈ A; we denote the attributes in R and Ra with the
same letter, thus, if (R, i) is an attribute then so is (Ra, i), unless (R, i) belongs to
the level Z (in which case i is no longer an attribute in Ra). If R does not contain
an attribute in Z, then the only shattering is itself.
Suppose d′ has a separator: then there exists a level V ′ of d′ that contains only

root variables. Define the following set of attributes V from the vocabulary R. V
contains all attributes (R, i) s.t. either R is not shattered and (R, i) ∈ V , or R is
shattered and there exists a ∈ A s.t. (Ra, i) ∈ V . Notice that V ∩Z = ∅. We prove
that (a) V is a level and (b) it contains only root variables. This means that d has
a separator, contradicting the assumption that it is immediately unsafe.
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To prove (a), we need to show that V is closed under edges of the attribute graph.
Let (R, i) ∈ V and suppose there exists an edge (R, i), (S, j) in the attribute graph.
Assume that both R and S are shattered: the other cases are similar (and simpler)
and omitted. By the definition of V , there exists (Ra, i) ∈ V ′. We claim that (S, j)
is also in V . Let ck be some component in d where two atoms R(. . .), S(. . .) join
attributes (R, i) and (S, j); let x be the join variable. Let z be the variable on level
Z in the atom R(. . .): z 6= x since the attribute (R, i) 6∈ Z. Choose any injective
function θ : V arZ(ck) → A that maps z to a. Then ck[θ] contains two atoms
Ra(. . .), Sb(. . .) with a common variable on attributes (Ra, i) and (Sb, j); here b
is either a, if the atom S(. . .) has the same variable z on level Z, or a different
constant b 6= a, if the atom S(. . .) has a different variable z′ on level Z. It follows
that (Sb, j) ∈ V ′, which implies (S, j) ∈ V .
To prove (b), let R(. . .) be an atom in some ck that contains an attribute (R, i) ∈

V . Let x be the variable in this position. We assume R is shattered (the other case
is similar), and let z be the variable on level Z: it must be different from x since
(R, i) cannot be in Z. Choose any injective function θ ∈ ΘZ(ck) that maps z to a.
Then ck[θ] belongs to S (because it is symbol-connected via Ra), hence x is a root
variable in ck[θ], and it must also be a root variable in ck (because ck[θ] and ck are
isomorphic, since we choose θ to be injective).

Example 7.11. We illustrate Case 1. Consider:

d =c1 ∨ c2 = R(x), S(x, y, z) ∨ S(x′, y′, z′), T (y′)

Level Z1 = {x, x′} splits c1 into two subcomponents R(x) and S(x, y, z), while level
Z2 = {y, y′} splits c2 into two subcomponents S(x′, y′, z′) and T (y′). Therefore
Z3 = {z, z′} is the only non-splitting level. We choose level Z3 and rewrite13

d[a/Z3] =R(x), S(x, y, a) ∨ S(x′, y′, a), T (y′)

and this query is still without separator.
Note that it would have been a mistake to choose Z1:

d[a/Z1] =R(a), S(a, y, z) ∨ S(a, y′, z′), T (y′)

=(R(a) ∨ S(a, y′, z′), T (y′)) ∧ (S(a, y, z) ∨ S(a, y′, z′), T (y′))

=(R(a) ∨ S(a, y′, z′), T (y′)) ∧ S(a, y, z)

and d[a/Z1] is a safe query (because all three elements of its V -shaped CNF lattice
have separators). Thus, Case 1 is necessary.

From now on we will assume that Case 1 does not apply, i.e. every level Z splits
some component.

7.5 Case 2: Two Related Levels

We assume that every component ci has a root variable, and every level Z splits
some component. Fix three levels, call them Z1, Z2, Z3. For each i = 1, 2, 3, let Ci

be the set of components ck that are split by the level Zi; by assumption, Ci 6= ∅,

13In this example it suffices to choose A = {a}; choosing a larger set A = {a, b} leads to a longer

but similar query.
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for i = 1, 2, 3. Notice that a level Zi does not split any component ck ∈ Cj for
j 6= i. This is because ck is split by level Zj , hence it has a single root variable,
which is on level Zj ; therefore, it is not split by level Zi. In particular, the three
sets C1, C2, C3 are disjoint.
To prove Prop. 7.8 in this case, we use the following idea. Let c1 ∈ C1 and

c2 ∈ C2, and assume they have a common symbol. Then we choose the third level,
Z = Z3, and consider the query d[A/Z3]. Both c1[θ1] and c2[θ2] are connected,
because Z3 does not split c1 and c2; also assume c1[θ1] and c2[θ2] have a common
relational symbol (for that we will choose θ1, θ2 to be compatible). We claim that
c1[θ1] ∨ c2[θ2] has no separator. This is because the only root variable in c1[θ1]
is on level Z1 and the only root variable in c2[θ2] is on level Z2, hence no level
contains both root variables. Thus, we prove Prop. 7.8 by showing that the set
S = {c1[θ1], c2[θ2]} occurs in the minimized d[A/Z].
More precisely, in case Case 2 we make the following assumption. We assume

that there exists c1 ∈ C1 and c2 ∈ C2 and there exists s1 ∈ scZ1
(c1) such that

c2 ⇒ s1. We say that c1 and c2 are related. In particular, c1 and c2 have a common
symbol, because there exists a homomorphism s1 → c2.

Lemma 7.12 Case 2. Let c1 ∈ C1 and c2 ∈ C2. Assume that there exists s1 ∈
scZ1

(c1) such that c2 ⇒ s1, and that |A| ≥ |V arZ3
(c1)|+ |V arZ3

(c2)|. Then, there
exists two injective functions θi ∈ ΘZ3

(ci, A), for i = 1, 2 the set S = {c1[θ1], c2[θ2]}
occurs in the minimized CNF expression for d[A/Z3], and the query c1[θ1] ∨ c2[θ2]
is symbol-connected and has no separator.

Proof. We have already seen that c1[θ1] ∨ c2[θ2] has no separator, so we will
prove the other conditions, by extending the proof idea from Lemma 7.9. To sim-
plify the notation, we assume w.l.o.g. that the two components c1, c2 referred by
the lemma are the first two in the disjunctive query d =

∨
i=1,m ci.

We need to establish the three conditions of Lemma 7.7. To satisfy (1), we
need to choose θ1, θ2 injective. Let θ2 ∈ ΘZ3

(c2, A) be any injective function,
and denote A2 = Im(θ2). Let h denote the homomorphism h : s1 → c2. We
define θ1 ∈ ΘZ3

(c1, A) as follows. For every x ∈ V arZ3
(c1), if x ∈ V arZ3

(s1)
then θ1(x) = θ2(h(x)), otherwise define h(x) to be a fresh constant in A−A2. Let
A1 = Im(θ1)−A2. Because of the way we defined θ1, the homomorphism h extends
to a homomorphism h′ : s1[θ1] → c2[θ2], which also implies that c1[θ1] and c2[θ2]
share some common relational symbol.
We now prove (2). Define the following function k such that k(c1, θ1) = c1,

k(c2, θ2) = c2, and for (cj , θ
′) different from both (c1, θ1) and (c2, θ2); k(cj , θ

′) =
s′ ∈ scZ3

(cj , A) where s′ satisfies two properties:

c1[θ1] 6⇒ s′[θ′] and c2[θ2] 6⇒ s′[θ′] (34)

We need to prove that such an s′ exists. From the proof of Lemma 7.9 we know that
there exists s′1 ∈ scZ3

(cj) such that c1[θ1] 6⇒ s′1[θ
′], and there exists s′2 ∈ scZ3

(cj)
such that c2[θ2] 6⇒ s′1[θ

′]. If Z3 does not split cj , then both components s′1 and
s′2 are equal to cj , and we define k(cj , θ

′) = cj . So assume that Z3 splits cj : then
cj has a root variable z, on level Z. Denote a = θ′(z); the constant a occurs in
every atom of cj [θ

′]. We consider three cases. Case 1: a 6∈ A1 ∪ A2. Here we
define k(cj , θ

′) = s′1 (arbitrarily): Eq. 34 holds because neither c1[θ1] nor c2[θ2]
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contain the constant a. Case 2: a ∈ A2. Then we define k(cj , θ) = s′2. The the
second condition in Eq. 34 holds, we need to check the first condition. Suppose
otherwise; then there exists a homomorphism g : s′[θ′] → c1[θ1]. On one hand all
atoms in s′[θ′] have the constant a ∈ A2, on the other hand the only atoms in c1[θ1]
that could contain a are those in s1[θ1] (by the construction of θ1), hence g is a
homomorphism g : s′[θ′] → s1[θ1]. Compose it with h′ : s1[θ1] → c2[θ2], to obtain a
homomorphism s′[θ′] → c2[θ2], contradicting the second condition in Eq. 34. Case
3: a ∈ A1. Then we define k(cj , θ

′) = s′1. The first condition in Eq. 34 is now
automatic, while the second condition follows from the fact that no atom in c2[θ2]
has a constant from A1.
Finally, the proof of (3) is similar to the proof in Lemma 7.9, and is omitted.

Example 7.13. We illustrate Case 2 with:

d = c1 ∨ c2 ∨ c3 =R(x1, y1), S(x1, z1) ∨R(x2, y2), T (y2, z2) ∨ S(x3, z3), T (y3, z3)

Level Z1 = {x1, x2, x3} splits c1 into R(x1, y1) and S(x1, z1); similarly level Z2 =
{y1, y2, y3} splits c2, and level Z3 = {z1, z2, z3} splits c3. Thus, every level is
splitting, and Case 1 does not apply. Case 2 applies here. For example there is a
homomorphism from the subcomponent R(x1, y1) to c2, showing that c1 and c2 are
related. We therefore choose level Z3, and choose two constants A = {a, b} and
rewrite to:

d[A/Z3] =c1[A/Z3] ∨ c2[A/Z3] ∨ S(x3, a), T (y3, a) ∨ S(x3, b), T (y3, b)

=(c1[A/Z3] ∨ c2[A/Z3] ∨ S(x3, a) ∨ S(x3, b))∧

(c1[A/Z3] ∨ c2[A/Z3] ∨ S(x3, a) ∨ T (y3, b))∧

(c1[A/Z3] ∨ c2[A/Z3] ∨ T (y3, a) ∨ S(x3, b))∧

(c1[A/Z3] ∨ c2[A/Z3] ∨ T (y3, a) ∨ T (y3, b))

The CNF expression is given in the last four rows, and is the conjunction of four
disjunctive queries. Consider the second:

d′2 =c1[A/Z3] ∨ c2[A/Z3] ∨ S(x3, a) ∨ T (y3, b)

Expanding the first two expressions results in 4 components. Two of these are
redundant, because one contains S(x1, a) and the other contains T (y2, b). However,
the following two components are not redundant:

d′2 = . . . ∨R(x1, y1), S(x1, b) ∨R(x2, y2), T (y2, a) ∨ . . .

Obviously, d′2 has no separator.
In the next example we show why it is important to pick the level according to

our rule (as the third level, if two levels are related). Consider:

d = c1 ∨ c2 ∨ c3 =

U(x, y′, z′), V (x, y′′, z′′) ∨R(y), S(x′′, y, z′′), U(x′′, y, z′′) ∨ V (x′, y′, z), S(x′, y′, z), T (z)

Here Z1 = {x, x′, x′′} splits c1 into two subcomponents: U(x, y′, z′) and V (x, y′′, z′′),
and there is a homomorphism from the first to c2: here we must pick level Z3 =
{z, z′, z′′}. There is also a homomorphism from the second component to c3; here
we should pick level Z2 = {y, y′, y′′}. Either choice is fine, but it would be a mistake
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to pick Z1 = {x, x′, x′′}, since Z2, Z3 are unrelated. To see that, consider expanding
it with a set of constants A = {a, b, c, . . .}:

d[A/Z1] =
∨

v∈A

U(v, y′, z′)V (v, y′′, z′′) ∨ c2[A/Z1] ∨ c3[A/Z1] =
∧

k

d′k

Each d′k contains c2[A/Z1]∨ c3[A/Z1] and, for each constant v ∈ A, it contains ei-
ther U(v, y′, z′) or V (v, y′′, z′′) (for a total of 2|A| disjunctive queries dk). However,
each d′k has a separator. Indeed:

c2[A/Z1] ∨ c3[A/Z1] =
∨

a∈A

(R(y), S(a, y, z′′), U(a, y, z′′) ∨ V (a, y′, z), S(a, y′, z), T (z))

For any fixed constant a the disjunction of the two components above has no separa-
tor: in particular the entire expression above has no separator. However, for every
constant a we must include in d′k either U(a, y′, z′) or V (a, y′′, z′′), and either the
first or the second component above becomes redundant. If A had a single constant
a, then it is obvious that d′k has a separator; one can check that d′k continues to
have a separator for an arbitrary A (just choose separately, a separator for each
constant a ∈ A). This shows that we cannot expand on Z1. On the other hand,
expanding on level Z3 with a single constant a we obtain:

d[a/Z3] = U(x, y′, a), V (x, y′′, a) ∨R(y), S(x′′, y, a), U(x′′, y, a) ∨ V (x′, y′, a), S(x′, y′, a), T (a)

= (U(x, y′, a), V (x, y′′, a) ∨R(y), S(x′′, y, a), U(x′′, y, a) ∨ V (x′, y′, a), S(x′, y′, a)) ∧

(U(x, y′, a), V (x, y′′, a) ∨R(y), S(x′′, y, a), U(x′′, y, a) ∨ T (a))

Neither conjunct has a separator.

7.6 Case 3: Three Unrelated Levels

We continue to assume that every component has a root variable, and every level
is splitting. We use the same notations Z1, Z2, Z3, for three arbitrary, but fixed
levels, and C1, C2, C3 for the non-empty sets of components split by each of these
three levels. The last case we need to consider is when there are no related pairs
of components. The query d is symbol-connected (by definition of an immediately
unsafe query), therefore, for each i 6= j there exists a path in the co-occurrence
graph from a query in Ci to a query in Cj . Let nij be the length of the shortest
such path. Assume n12 is the minimum of n12, n13, n23 (break ties arbitrarily).
Then we pick level Z3.
Let a shortest path from some c1 ∈ C1 to some c2 ∈ C2 be:

c0(∈ C1), c
1, c2, . . . , cn(∈ C2)

Notice that, except for the first and last component, no other component on this
path belongs to C1 ∪ C2 ∪ C3, otherwise we would have a shorter path. By defini-
tion, any two consecutive components share a common relational symbol; therefore,
assuming |A| ≥ maxi |V arZ3

(ci)|, we can choose substitutions θi ∈ ΘZ3
(ci, A) such

that any two consecutive components in the path:

c0[θ0], c
1[θ1], c

2[θ2], . . . , c
n[θn]

share a common relational symbol. Each ci[θi] is connected, because none of the
ci’s belongs to C3. Define S = {ci[θi] | i = 0, n}. This set is symbol-connected, and
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∨
S has no separator, because the only root variable in c0 is on level Z1, and the

only root variable in cn is on level Z2. Thus, Prop. 7.8 follows in Case 3 from the
following lemma:

Lemma 7.14 Case 3. Let A be a set of constants such that |A| ≥ maxi(|V arZ3
(ci)|).

Then the set S defined above occurs in the minimized CNF expression of d[A/Z3],
and

∨
S has no separator.

Proof. We need to prove three items of Lemma 7.7; item (1) is satisfied since
all θi’ are injective.
We prove item (2). Define the following function k. For each i = 0, n, define

k(ci, θi) = ci; for every cj , θ
′ distinct from all (ci, θi) define k(cj , θ

′) = s′ ∈ scZ3
(cj)

such that the following condition holds:

ci[θi] 6⇒ s′[θ′] for all i = 0, n (35)

We need to prove that such an s′ exists. If level Z3 does not split cj , in other
words if cj 6∈ C3, then we take s′ = cj : there cannot be a homomorphism cj [θ

′] →
ci[θi] because that would imply a homomorphism cj → ci (since θi is injective),
contradicting the fact that d =

∨
cj is minimized. So assume that the level Z3

splits cj . Notice that, for every s′ ∈ scZ3
(cj), we have c0[θ0] 6⇒ s′ because c0 ∈ C1

and cj ∈ C3 are not related (we have treated related components in Case 2).
Similarly, cn[θn] 6⇒ s′. So we only need to check Eq. 35 for i = 1, n − 1. If n = 0
then it holds vacuously. If n > 1 then it is satisfied by any choice of s′, by the
following argument: if there exists a homomorphism s[θ′] → ci[θi], then cj and
ci have a common symbol, and there is a shorter path from cj to either c0 or cn

(depending on whether i is in the first half or the second half) contradicting the
assumption that n is the length of the shortest path. Finally, if n = 1, then we use
the argument in the proof of Lemma 7.9 to argue that there exists s′ ∈ scZ3

(cj)
s.t. c1[θ1] 6⇒ s′[θ′]. This completes the proof of claim (2).
We now prove item (3), using the same idea as in Lemma 7.9. Let d′k be the

disjunctive query that contains syntactically all ci[θi], and let L ⊆ K be the set of
indices of the non-redundant disjunctive queries d′l; assume each d′l is minimized.
Assume that there exists l ∈ L such that d′l ⇒ d′k. As before, we have:

∨

i=0,n

ci[θi] ⇒ d′l ⇒ d′k

For each i = 0, n, by Sagiv and Yannakakis’ criterion there exists s′′i [θ
′′] in d′l, and

by the same criterion again there exists s′i[θ
′
i] in d′k such that:

ci[θi] ⇒ s′′i [θ
′′] ⇒ s′i[θ

′
i]

By our construction, then only s′i[θ
′
i] that can be implied by ci[θi] is itself, hence

all three expression above are logically equivalent, proving that d′l contains ci[θi].
Since this holds for every i = 0, n, it follows that d′l contains the entire set S. (We
have skipped a step from Lemma 7.9, because now ci[θi] is connected.)

Example 7.15. We illustrate with an example:

d =A(x1), R(x1, y1, z1) ∨B(y2), S(x2, y2, z2) ∨ C(z3), T (x3, y3, z3)

∨R(x, y, z), S(x, y, z), T (x, y, z)

Journal of the ACM, Vol. V, No. N, Month 20YY.



Dichotomy of Unions of Conjunctive Queries · 61

Denote the four components above c1, c2, c3, c4, There are three levels, Z1, Z2, Z3,
(Z1 contains x1, x2, x3, x etc) and each level Zi splits ci, hence Ci = {ci}, i = 1, 2, 3.
The path connecting c1 to c2 is c1, c4, c2, and is of minimal length. Choose the level
Z3, and a single constant a. Then that path continues to have no separator in
d[a/Z3]. Indeed, d[a/Z3] is:

A(x1), R(x1, y1, a) ∨B(y2), S(x2, y2, a)∨

C(a), T (x3, y3, a) ∨R(x, y, a), S(x, y, a), T (x, y, a)

And its CNF expression is:

d[a/Z3] =

(A(x1), R(x1, y1, a) ∨B(y2), S(x2, y2, a) ∨ C(a) ∨R(x, y, a), S(x, y, a), T (x, y, a))∧

(A(x1), R(x1, y1, a) ∨B(y2), S(x2, y2, a) ∨ T (x3, y3, a) ∨R(x, y, a), S(x, y, a), T (x, y, a))

Both disjunctive queries are non-redundant. The first is already minimized, and the
path AR,RST,BS has no separator. The second minimizes and becomes safe.

8. FORBIDDEN QUERIES ARE HARD

In this section we prove that forbidden queries (Def. 7.2) are hard:

Theorem 8.1. If d is a forbidden query, then computing P (d) is #P-hard.

This completes the proof of the DichotomyTheorem 4.21.
By Theorem 7.3 we know that d has exactly two levels, which we denote X and

Y respectively. Variables that occur in these two levels are denoted x0, x1, x2, . . .
and y0, y1, y2, . . . respectively. Every symbol must have arity ≤ 2, and therefore
there are three kinds of symbols: binary symbols, S(x, y); unary symbols R(x) on
level X, called left unary symbols, and unary symbols T (y) on level Y , called right
unary symbols.
For illustration, all queries hk are forbidden queries. We show more complex

forbidden queries in Sect. 8.1 and elsewhere in this section.
Throughout this section we fix an instance of the #PP2CNF problem:

Φ =
∧

(i,j)∈E

(Xi ∨ Yj) where E ⊆ [n1]× [n2] (36)

Denote |E| = m, and denote n = n1 + n2.

8.1 Classification of Forbidden Queries

Let d =
∨

i ci be a forbidden query. By definition, it also means that each ci is
minimized, and none is redundant. Let X and Y denote its two levels. We say X
is a root in ci if ci has a root variable that is on level X.

Definition 8.2. A component ci is a left component if Y is not a root; it is a
right component if X is not a root.

If ci has no root variable then it is both a left and a right component; in that
case it is called non-hierarchical (Sect. 7.3).

Definition 8.3. The query d is called non-hierarchical, if it has a component
ci that is not hierarchical.

Journal of the ACM, Vol. V, No. N, Month 20YY.



62 · Dalvi and Suciu

Definition 8.4. Let d be hierarchical, and ci be a left component. If ci has
exactly two variables x and y then we say that it is of Type 1. Otherwise we say
that it is of Type 2. Similarly for right components.

For example, in hk the left component R(x0), S1(x0, y0) is of type 1 and the
right component Sk(xk, yk), T (yk) is also of type 1. In d⋄ = S1(x, y1), S2(x, y2) ∨
S1(x1, y), S2(x2, y) both the left component and the right components are of type
2. We now show that, in a hierarchical forbidden query, all left components must
have the same type, either 1 or 2; thus, there are four types, 1-1, 1-2, 2-1, 2-2,
where type 1-1 means that all left and all right components are of type 1, type 1-2
means that all left components are of type 1 and all right components are of type
2, etc.
Recall the co-occurrence graph of d (Def. 3.4): nodes are the components ci, and

edges are pairs of components (ci, cj) that share a common relational symbol. A
left-right path is a path c0, c1, . . . , ck s.t. c0 is a left component and ck is a right
component. A strict path is a left-right path of minimal length.

Proposition 8.5. Every strict path c0, c1, . . . , ck contains all relational symbols
in d.

Proof. Let S be a symbol that does not occur on the strict path, and consider
the rewrite rule d → d[S = false]; denote the latter d′. In other words, d′ is
obtained from d by simply removing all components that contain S: all remaining
components are non-redundant. In particular, all components c0, c1, . . . , ck are kept
in d′. Then d′ is unsafe, because this set of components does not have a separator:
in c0 the only root variable is on level X, and in ck the only root variable is on
level Y , hence no level contains only root variables. It follows that d′ is unsafe,
contradicting the fact that d is a forbidden query.

Consider a left component of Type 1, R1(x), R2(x), . . . , S1(x, y), S2(x, y), . . . It
must have at least one unary symbol, else y would be a root variable. We show
that there is only one unary symbol. In fact, we prove something more general:

Proposition 8.6. Every hierarchical, forbidden query d has at most one left
unary symbol R(x). In particular, if it has any left component of Type 1, then it
has exactly one left unary symbol. Similarly on the right.

Proof. Suppose d has two left unary symbols R and R1, and let c0, c1, . . . , ck
be strict left-right path. Here c0 is a left component, ck is a right component, while
the others are neither left nor right (otherwise we could find a shorter left-right
path), hence they do not contain either R or R1. Define d′ = d[R1 = true]. After
minimization, d′ contains those components ci[R1 = true] that are non-redundant.
We prove that the entire path is non-redundant. This proves the proposition, since
it shows that the symbol-component of d′ containing the path has no separator,
hence d′ is unsafe, contradicting the fact that d is forbidden. To prove that the path
is non-redundant, denote c′i = ci[R1 = true]; we prove that c′i is not redundant in
d′. If i > 0 then c′i = ci, and if there exists a homomorphism c[R1 = true] → ci,
then we have another strict path c, ci, ci+1, . . . , ck (because c contains R1 hence is
a left component, and c, ci have common symbols, because of the homomorphism).
This path contains all symbols, including R, hence c must contain R, making the
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homomorphism c[R1 = true] → ci impossible. If i = 0, then any homomorphism
c[R1 = true] → c0[R1 = true] extends to a homomorphism c → c0, by mapping
every atom R1(x1) in c to the unique atom R1(x) in c0. (Here we use the fact that
c0 is hierarchical, which guarantees that the atom R1(x) is unique.)

Consider now a left component of Type 2. It has one of these two forms:
S1(x, yi1), S2(x, yi2), . . . or R(x), S1(x, yi1), S2(x, yi2), . . . We prove that the latter
is impossible.

Proposition 8.7. Let d be a hierarchical, forbidden query. If it has any left
component of Type 2, then it has no left unary symbols.

Proof. Suppose the contrary: d contains a the left unary symbol R. Then we
prove that any left component c is of Type 1. Assume the contrary, that c has two
or more variables y1, y2, . . . We consider two cases.

—There exists a strict path starting at c: c0 = c, c1, . . . , ck. We consider two
sub-cases. First, when c1 contains all binary symbols occurring in all left com-
ponents. We choose such a binary symbol S, as follows. If c0 does not contain
the unary symbol R, then we choose S such that it does not occur in c0: such an
S exists, otherwise, by our assumption, there exists a homomorphism c0 → c1;
if c0 contains the unary symbol R, then we choose S arbitrarily. In either case,
c0[S = true] is a left component. We claim that d[S = true] rewrites to an
unsafe query, contradicting the fact that d is forbidden. Indeed, all components
c0[S = true], c1[S = true], c2, . . . , ck are non-redundant in d[S = true] (the
proof is identical to that of Prop. 8.6 and omitted), and this is indeed a path,
because there exists at least one binary symbol other than S in c0 (since c0
has two or more y-variables), and that symbol is common to c0[S = true] and
c1[S = true]. The second sub-case is when c1 does not contain all binary symbols
from all left components, then we claim that d[R = true] rewrites to a forbid-
den query. First we note that c0[R = true] is a left component, because it has
two or more y-variables. (Note that c0 does not need to contain R.) Next we
show that the path c0[R = true], c1, . . . , ck is non-redundant, by adapting the
same argument from the proof of Prop. 8.6. The proof for the non-redundancy
of c0[R = true] is the same, so consider some i ≥ 1, and assume there is a
homomorphism c[R = true] → ci. This implies that c contains R, hence it is
a left component, hence c, ci, . . . , ck is a strict path, hence i = 1. Let S be the
left binary symbol missing from c1. Since the path starting at c is strict, S must
occur in either c or c1, implying that it occurs in c. But this contradicts the
existence of the homomorphism c[R = true] → c1. Thus, if there exists a strict
path starting at c, then c must be of Type 1.

—There is no strict path starting at c. We prove that this is impossible. Consider
any strict path, and let c0 be its first component. The path contains all relational
symbols, hence c0 contains R, and we have proved in the first case that c0 is of
type 1. All symbols in c must also occur on the path, and they can only occur in
c0, otherwise we could construct a strict path starting at c. But this means that
there exist a homomorphism c → c0 (here we use the fact that c0 has a single
y-variable), contradicting the fact that d was minimized.

Journal of the ACM, Vol. V, No. N, Month 20YY.



64 · Dalvi and Suciu

In the remainder of this section we will give three hardness proofs, one for each
of the following three types of forbidden queries.

Non-hierarchical. We will prove the only non-hierarchical, forbidden query is
h0 = R(x), S(x, y), T (y), introduced in Example 4.6.

Type 1-1. All left and right components are of type 1. These include all queries
hk, and others, e.g.:

d = R(x0), S1(x0, y0), S2(x0, y0)∨S1(x1, y1), S3(x1, y1)

∨S2(x2, y2), S4(x2, y2) ∨ S3(x3, y3), S4(x3, y3), T (y3)

Type 2-2. All left and right components are of type 2, for example:

ddiamond =S1(x, y1), S2(x, y1), S3(x, y1), S1(x, y2), S2(x, y2), S4(x, y2) (37)

∨ S3(x1, y), S4(x1, y), S1(x1, y), S3(x2, y), S4(x2, y), S2(x2, y)

df =S(x, y1), S1(x, y1), S(x, y2), S2(x, y2) ∨ S1(x, y), S2(x, y), S3(x, y), S4(x, y)

S′(x1, y), S3(x1, y), S
′(x2, y), S4(x2, y)

In general, a left component of type 2 may have arbitrarily many variables yi, and
similarly a right component may have arbitrarily many xi’s, but we will not show
examples with more than 2 variables (except for one in Example 8.40) because they
are very verbose: the simplest type 2-2 query is ddiamond. We will illustrate during
most of our discussion with d⋄ = S1(x, y1), S2(x, y2) ∨ S1(x1, y), S2(x2, y), which is
actually not a forbidden query (see Example 8.37), but we will use it as a surrogate
for ddiamond. It is actually quite difficult to check if a query of type 2-2 is forbidden:
for example, in order to prove that ddiamond is forbidden one has to prove that for
all maximal rewritings ddiamond

∗
→ d, where ddiamond > d (Def. 7.1), the query d is

safe. A decision procedure for checking whether a query is forbidden is beyond the
scope of this paper.

We omit the hardness proofs for queries of types 1-2 and 2-1. These are queries
where the left components are of type 1, and the right components of type 2, or
vice versa. Their hardness proofs are straightforward adaptations of the proof for
1-1 and 2-2 respectively.

8.2 Hardness Proof for Non-hierarchical Forbidden Query

Proposition 8.8. The only non-hierarchical forbidden query is h0 = R(x), S(x, y), T (y).
Therefore, it is #P-hard, by Prop. 5.2.

Proof. Let d =
∨

i ci be a leveled, immediately unsafe query, with 2 levels, and

let c be a non-hierarchical component of d. We will prove that (A) d
∗
→ h0, and

(B) either d > h0 (Def. 7.1) or d is h0 up to renaming or relational symbols. This
proves that h0 is the only non-hierarchical forbidden query.
We start with (A), and prove it in two steps. First we shatter d → dA s.t. cA

has only two variables, then we do some deterministic rewritings s.t. dA
∗
→ h0.

Let S(x, y) be any binary atom in c. Since neither x nor y are root variables,
there exists atoms g1 = P (x, y1) and g2 = Q(x1, y) that contain one but not the
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other. P1 may be unary, P (x), or binary, P (x, y1), and similarly Q may be unary,
Q(y), or binary, Q(x2, y). Let A be a set consisting of a distinct constant cz for any
variable z ∈ V ar(ci), other than x, y. We will define a shattered vocabulary RA

such that the shattered query dA is still forbidden. We define directly the shattering
cρ of the component c, Sect. 2.5, as the following function ρ : V ar(c) → A ∪ {∗}:
ρ(x) = ρ(y) = ∗ and for every variable z other than x, y, ρ(z) = cz. We define RA

to consists of all shattered relational symbols that occur in cρ. We claim: (1) cρ
is not redundant in the shattered query dA; (2) cρ has only two variables x, y, and
(3) cρ is non-hierarchical, and, thus, dA is still unsafe (Sect. 7.3).
We prove (1) Suppose there exists a homomorphism c′ρ′ → cρ. Since in cρ every

variable shattered to a different constant, this implies that there exists a homo-
morphism c′ → c, thus c is redundant in d, contradicting the fact that d has no
redundant components. Claim (2) follows directly from the definition of ρ.
We prove claim (3), by noting that cρ contains the following three atoms: S∗∗(x, y),

P∗(x) (or P∗cy1
(x)), and Q∗(y) (or Qcx2

∗(y)).
Therefore, cA ≡ R1(x), R2(x), . . . , S1(x, y), S2(x, y), . . . , T1(y), T2(y), . . . We ap-

ply a sequence of deterministic rewrite rules until there is a single R, a single S,
and a single T . Suppose otherwise, e.g. there are two S-symbols, S1, S2 (and
possibly others). Consider the rewrite rule d → d[S1 = true]. We claim that
(1) c[S1 = true] is not redundant in d[S1 = true], and (2) c[S1 = true] is non-
hierarchical. The two claims imply that d[S1 = true] is unsafe, contradicting the
fact that d is final.
To prove (1), assume that there exists a homomorphism f : c′[S1 = true] →

c[S1 = true]. Since c has only two variables x, y and c′ is leveled, the homomor-
phisms maps the variables x1, x2, . . . in c′ to x and the variables y1, y2, . . . in c′ to
y. We claim that it is also a homomorphism c′ → c: indeed, any atom S1(xi, yj) is
mapped to S1(x, y) which is indeed present in c. The arguments for the case when
c contains two R’s or two T ’s are similar and omitted.

This completes the proof of (A): d
∗
→ h0 ≡ R(x), S(x, y), T (y). Next, we prove

(B), that d > h0 or d is h0. Here we do a case analysis. If d 6> h0 then seq(d) ≤
seq(h0) = (2, 1, 0, 0, . . .) (because h0 has 2 unary, and 1 binary relation). We first
rule out the case seq(d) < seq(h0): indeed, if seq(d) = (1, 1, 0, 0, . . .) then d has two
symbols R and S, or S and T . But any 2-leveled component consisting of atoms
R(xi) and S(xi, yj) minimizes to R(x), S(x, y), which is safe. Thus, seq(d) =
seq(h0), and the symbols in d are either R,S, T , or R1, R2, S, or S, T1, T2. If
|at(d)| > 3 then by definition we have d > h0 proving our claim, so we may assume
that d has 3 atoms (it cannot have fewer than 3 because it has 3 distinct relational
symbols). Also, d must have a single component c, otherwise it is a disjunction
c1∨c2 which is symbol-disconnected (since c1, c2 together have only three atoms, and
they must have use different symbols). Now we examine each possible vocabulary
for d. If it is R,S, T , then the only non-hierarchical component with 3 atoms is
R(x), S(x, y), T (y); if it is R1, R2, S then there is no non-hierarchical component
with 3 atoms: the smallest is R1(x1), S(x1, y), R2(x2), S(x2, y) which has 4 atoms.
Similarly for S, T1, T2.

For a simple illustration, consider d = R(x1), S(x1, y1), S(x2, y1), S(x2, y2), T (y2).
We prove that it is not a forbidden query. The proof of the proposition allows us to
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keep any of the three binary symbols, and shatter all other variables to constants. If
we decide to keep S(x1, y1), then the query shatters toR∗(x1), S∗∗(x1, y1), Sa∗(y2), Sab(), Tb():
it is disconnected, by unsafe, because of the subquery rewrite rule→ R∗(x1), S∗∗(x1, y1), Sa∗(y2)
If we decide to keep S(x2, y1), then the query shatters toRa(), Sa∗(y1), S(x2, y1), S∗b(x2), Tb(),
which also rewrites to R(x), S(x, y), T (y), up to symbol renaming.

8.3 Hardness proof for Forbidden Queries of Type 1-1

Let d be a forbidden query where both left and right components are of Type 1.
We prove here that it is #P-hard, by a reduction from the #PP2CNF problem.
Recall that Φ denotes the PP2CNF, Eq. 36.

8.3.1 The Leveled Query and Database. We proceed similarly to the hardness
proof for h2 in Sect. 5.3. We first construct a leveled query dL, then prove that dL.

We assume d is minimized, and denote R its vocabulary: it has exactly two unary
relations, R(x), T (y) (the left and right unary relation), and several binary relations
S(x, y). There are two levels, X and Y . We consider a new leveling, where both
X and Y split into two new levels. With some abuse, we denote the two X-levels
0 and 1, and denote the two Y -levels also 0 and 1. Thus, there are four unary
relations, R0, R1, T 0, T 1, and each binary relation S is leveled into S01, S11, S10

(notice there is no S00). This is an incompletely leveled vocabulary (there are no
symbols S00), which we denote RL. Let m be the number of symbols in RL, other
than R0 and T 0; we will also refer to these symbols as P1, . . . , Pm, in other words
RL = {R0, P1, . . . , Pq, T

0}. Note that Pq may denote either some S01, or T 1, or
some S11, or R1, or some S10, where S ∈ R is a binary symbol. Denote dL the
leveled query d for this vocabulary (see Sect. 6.3); by Lemma 6.10, dL is minimized.
We will prove that dL is #P-hard; by Prop. 6.9, it follows that d is #P-hard.

Given the PP2CNF expression Φ (Eq. 36), define the sets of constantsA,B, Ăk, B̆k

as in Eq. 24, and let DL be following leveled database instance DL:

R0 = A; R1 = Ă; T 0 = B; T 1 = B̆

S01 = {(ai, b̆ij,k) | (i, j) ∈ E, k ∈ [4]}; ∀S ∈ R

S11 = {(ăij,k, b̆ij,k) | (i, j) ∈ E, k ∈ [4]}; ∀S ∈ R

S10 = {(ăij,k, bi) | (i, j) ∈ E, k ∈ [4]} ∀S ∈ R

Denote Dk(ai, bj) the set of tuples consisting only of the constants ai, ăij,k, b̆ij,k, bj .
Let its probabilities be as follows. First, P (R0(ai)) = P (T 0(bj)) = 1/2. To each
other symbol Pq ∈ RL, associate a distinct real variable, xq. For each pair of
constants ai ∈ A, bj ∈ B, there are four tuples in the relation instance Pq, corre-
sponding to the four slices k = 1, 4; for example, an instance of a binary symbol
S01 has the four tuples (ai, b̆ij,k), k = 1, 4, while the unary symbol T 1 has the four

tuples (b̆ij,k), k = 1, 4. Set the probabilities of all four tuples to be 1 − uq (same
for all i, j, k), where uq is a distinguishing value, to be determined below. There is
one exception. Choose any binary symbol S ∈ R: it is arbitrary, but fixed. Let Pq0

denote be its symbol with leveling 11, that is Pq0 is the same as S11. In all four
slices k = 1, 4, set the probability of the tuples in Pq0 to 1− zk, for k = 1, 4 (same
for all i, j, but distinct for k); we will show below that, for any choice of S, this is
a distinguished variable. This completes the description of DL. We will relate now
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PDL(¬dL) and #Φ.
We establish now a technical property of the leveled query that we need later.

Fix any strict left-right path in the forbidden query d: c0, c1, . . . , ck. Recall that c0
contains R, ck contains T , and no other components contain R or T . Consider the
following path in dL:

c010 , c011 , . . . , c01k , c11k , c11k−1, . . . , c
11
0 , c100 , . . . , c10k

Notice that c01k and c11k are connected by the symbol T 1, and similarly c110 , c100
are connected by the symbol R1 (see for example hL

2 in Sect. 5.3). All relational
symbols in RL occur on this path. R0 and T 0 occur only in the first, and last
component respectively. This implies:

Lemma 8.9. dL is symbol-connected. Moreover, the symbols R0 and Pq0 are
connected in dL[T 0 = false] and in dL[T 0 = true], and similarly Pq0 and T 0 are
connected in dL[R0 = false] and in dL[R0 = true].

Proof. Connectedness is immediate. The query dL[T 0 = false] knocks off
the last component only, c10k , so R0 and Pq0 are still connected (since it is in the
11-leveling portion of the path. In the query dL[T 0 = true] the last component
is replaced by c10k [T 0 = true]. As a consequence, some other components c10i
may become redundant. However, no component with leveling 11 or 01 becomes
redundant, so R0 and Pq0 continue to be connected.

8.3.2 The Dual Lineage Expressions for Queries of Type 1-1. We define formally
dual lineages and blocks.

Definition 8.10. Let Q be a query and D be a database, where each tuple ti is
annotated with a Boolean variable Xi. Let ΦD

Q(X1, . . . , Xn) be the lineage of Q on
D. The dual lineage is defined as:

Y (Z1, . . . , Zn) =¬ΦD
Q(¬Z1, . . . ,¬Zn)

That is, while the lineage Φ is a positive DNF formula saying when the query
is true, the dual lineage Y is a positive CNF formula saying when the query is
false. The Boolean variables Zi represent the event ti 6∈ W , and the dual lineage
Y represents the event W |= ¬Q. We have illustrated dual lineage expressions in
Table I.

Definition 8.11. Let d =
∨

i ci be a disjunctive query. A database block for d
is an instance D such that (a) every relation symbol has exactly one tuple in D,
and (b) every component ci is true in D.

If D is a block for d, then the dual lineage is a CNF expression where (a) the
Boolean variables Z are in one-to-one correspondence with relational symbols S ∈
R, (b) the clauses in Y are in one-to-one correspondence with the components ci
in d.
Returning to our query dL, we will proceed as in Sect. 5.3. By construction, for

each ai ∈ A, bj ∈ B, and slice number k ∈ [4], Dk(ai, bj) is a block for dL. Let Zq

denote a Boolean variable denoting the event “the tuple Pq is false” (for the given
i, j, k), and define its probability as P (Zq) = xq. Similarly, let U , V be boolean
variables denoting the event “ai 6∈ R0 and “ bj 6∈ T 0”. Let Y (U, V ) the dual lineage
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expression of dL on the block Dk(ai, bj); thus, Y (U, V ) says “dL is false on the block
Dk(ai, bj)”. Note that no clause is Y (U, V ) is redundant: if the set of variables in
one clause where included in the set of variables of another clause, then we have a
homomorphism between the corresponding components, contradicting the fact that
dL is minimized.

8.3.3 The Expansion Formula. Two blocks Dk1
(ai, bj1) and Dk2

(ai, bj2) share
the common tuple R0(ai), thus the two events “dL is false on the first block” and
“dL is false on the second block” are not independent. To make them independent,
we follow exactly the method in Sect. 5.3. Fix an assignment θ of the Boolean
variables in PP2CNF Φ, and let Eθ denote the event defined by Eq. 14: thus, Eθ

fixes the tuples in R0 and T 0, and imposes no restrictions on the other tuples. We
will compute PDL(¬dL|Eθ). For any block Dk(ai, bj), d

L must be false on that
block. For each u, v ∈ [2], let Yuv = Y [U = u, V = v] (where 1 denotes false and
2 denotes true), and let:

fuv =P (Yuv) u, v ∈ [2]

Thus, fuv is the probability that dL is false on the block Dk(ai, bj), given that
ai ∈ R0 (when u = 1) or ai 6∈ R0 (when u = 2) and similarly for bj ∈ T 0 or
bj 6∈ T 0, depending on v. Recall that fuv is a multilinear polynomial in x1 =
P (Z1), . . . , xm = P (Zm), and we will write it as fuv(x1, . . . , xm). However, we
have chosen one distinguished variable xq0 , which will be substituted with zk, and
all other variables are substituted with distinguished constants ū ∈ Rm−1, and
therefore fuv[ū](zk) = auv · zk + buv is a linear function in zk.
For any ai, bj , the query dL must be false in all four blocks, Dk(ai, bj), k = 1, 4,

and this probability is:

yuv =fuv[ū](z1) · fuv[ū](z2) · fuv[ū](z3) · fuv[ū](z4) (38)

This is a multilinear polynomial in z1, . . . , z4. Therefore, P (¬dL|Eθ) is given by
Eq. 22, which we don’t repeat here. The probability P (¬dL) is therefore given by
the following expansion formula:

PDL(¬dL) =1/2n
∑

k

#k · yk11

11 · yk12

12 · yk21

21 · yk22

22 (39)

Notice that this is the same as Eq. 23 (see there the definitions of #k.
Thus, given an oracle for P (dL) we can compute expression Eq. 39. We repeat

(m + 1)4 times the following process: choose values for z̄ = (z1, . . . , z4), construct
the probabilistic database DL, and compute P (dL). This results in a system of
(m + 1)4 linear equations, with unknowns #k. We must prove that its matrix is
non-singular. Its matrix is the Kronecker product of four Vandermonde matrices:
we argued informally in Sect. 5.2 (and will prove formally in Sect. 8.5) that, if
the 4-dimensional function z̄ → ȳ has a non-zero Jacobian, then we can choose in
PTIME the values z̄ such that the matrix is indeed non-singular, and thus solve
the system, find all coefficients #k and compute #Φ =

∑
k22=0 #k. To complete

the hardness proof for queries of type 1-1, we will prove that xq0 is a distinguished
variable for the four multilinear polynomials f11, . . . , f22, Def. 5.7: by Prop. 5.6.
We do this in the remainder of this section.
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8.3.4 Irreducible Boolean Functions

Definition 8.12. Let Y be a Boolean function. If Y ≡ Y1 ∧ Y2 and Y1, Y2 do
not share any Boolean variables, then we call Y1, Y2 independent factors of Y . Call
Y irreducible, if it has no independent factors other than true and Y .

LetXi, i = 1, n be the Boolean variables in Y . Denote xi = P (Xi) the probability
that Xi is true, and let FY (x̄) = P (Y ) be the probability of Y . FY is also known
as the arithmetization of Y . Clearly FY is a multilinear polynomial. We prove that
any Boolean function Y admits a unique decomposition into independent irreducible
factors Y = Y1 ∧ · · · ∧ Ym, which, in turn, correspond to the irreducible factors of
FY = F1 · F2 · · ·Fm.

Lemma 8.13. (1) If Y ≡ Y1 ∧ Y2 is a decomposition into two independent fac-
tors, then FY = FY1

· FY2
. (2) Conversely, if FY = F1 · F2 then there exists a

decomposition into two independent factors Y ≡ Y1 ∧ Y2 such that F1, FY1
are

equivalent, and F2, FY2
are equivalent.

Proof. (1) Follows immediately from independence P (Y ) = P (Y1) · P (Y2). (2)
Conversely, suppose FY = F1 ·F2; then we will define Y1, Y2 such that Y ≡ Y1 ∧ Y2

where Y1, Y2 do not share common variables. We define Y1 to be a function on only
those variables Xi for which xi occurs in F1, and similarly for Y2: since the product
F1 ·F2 is multilinear, F1, F2 do not share any common variables, and therefore Y1, Y2

will not share any common variables either. Y1 is defined as follows. Consider a
truth assignment θ1 on its variables; consider the corresponding assignment to the
real variables, i.e. xi = 0 if θ1(Xi) = false and xi = 1 if θ1(Xi) = true. Set
Y1[θ1] = false iff F1 = 0. Define Y2 similarly from F2. We prove that Y ≡ Y1∧Y2.
Consider any truth assignment θ, and let θ1, θ2 be its restriction to the variables
in Y1 and Y2 respectively. We will prove that Y [θ] = false iff Y1[θ1] = false or
Y2[θ2] = false. Indeed, if Y [θ] = false then we have F = 0 for the corresponding
values of the real variables xi; hence F1 · F2 = 0, so either F1 = 0 or F2 = 0,
implying either Y1[θ1] = false or Y2[θ2] = false. The converse is similar.

Let Y be a positive, CNF expression. Each clause is a disjunction of variables
Xi1∨Xi2∨. . ., and we assume no clause is redundant. The primal graph of Y , or the
co-occurrence graph, G(Y ), has a node for each variable Xi, and an edge (Xi, Xj)
whenever the two variables co-occur in a clause. It follows that Y is irreducible iff
G is connected. Indeed, if G is disconnected we can write Y ≡ Y1∧Y2 where Y1 and
Y2 are sets of clauses that do not share variables; conversely if Y ≡ Y1 ∧ Y2 then,
by uniqueness of the CNF representation for positive formulas, the graph G(Y ) is
the disjoint union of G(Y1) and G(Y2). This implies:

Corollary 8.14. Let FY be the arithmetization of a positive, CNF formula Y .
(1) FY is irreducible iff G(Y ) is connected. (2) If Y has m connected components
then FY has m irreducible factors, FY = F1 · F2 · · ·Fm, which are the arithmetiza-
tions of the formulas corresponding to these components.

We carry over the notion of distinguished variable for multilinear polynomials
(Def. 5.7) to Boolean functions.
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Definition 8.15. Let Y1, . . . , Ym be Boolean functions. Call a Boolean variable
Z distinguished if each function Yi depends on Z and, denoting Y 0

i the indepen-
dent, irreducible factor of Yi that depends on Z, all m functions Y 0

1 , . . . , Y
0
m are

inequivalent.

By Corollary 5.9 Z is distinguished iff its corresponding real variable z is distin-
guished for the arithmetizations of the Boolean functions.

Lemma 8.16. Let Y (U) be an irreducible positive, Boolean formula, where U is
one of its Boolean variables. Denote Y1 = Y [U = false] and Y2 = Y [U = true].
Then Y1, Y2 have no common independent factors.

Proof. Suppose otherwise, and denote Y 0 a common factor. Then we have
Y1 = Y 0 ∧ Y ′

1 and Y2 = Y 0 ∧ Y ′
2 where Y ′

1 and Y ′
2 have no Boolean variables in

common with Y 0. Since Y is positive, Y ≡ Y1∨(U∧Y2) ≡ (Y 0∧Y ′
1)∨(Y

0∧U∧Y ′
2) ≡

Y 0 ∧ (Y ′
1 ∨ U ∧ Y ′

2), contradicting the fact that Y is irreducible

We say that two variables X1, X2 are disconnected in Y if there exists a factor-
ization Y = Y1 ∧ Y2 into independent factors such that X1 occurs in Y1 and X2

occurs in Y2. Equivalently, X1, X2 are disconnected in the primal graph G(Y ).

Corollary 8.17. Let Y (U, V ) be an irreducible Boolean formula, where U, V
are two of its variables. Let Z be another variable, and assume that U,Z are
connected in both Y [V = false] and Y [V = true], and that Z, V are connected in
both Y [U = false] and Y [U = true]. Denote Yuv = Y [U = u, V = v], u, v ∈ [2]
(where 1 stands for false and 2 for true). Then Z is distinguished in the four
functions Yuv, u, v ∈ [2].

Proof. Denote Y 0
uv the irreducible independent factor of Yuv that contains Z.

We apply the previous lemma four times. First, we apply it to the irreducible
independent factor of Y [V = v] that contains U and Z, for each v ∈ [2], then we
apply it to the irreducible independent factor of Y [U = u] for each u ∈ [2]. We
obtain:

Y 0
12 6≡ Y 0

22 Y 0
21 6≡ Y 0

22

Y 0
12 6≡ Y 0

22 Y 0
21 6≡ Y 0

22

To prove Y 0
12 6≡ Y 0

21 it suffices to notice that Y11 ≡ Y12∧Y21: if Y
0
12 ≡ Y 0

21 then both
would be equivalent to Y 0

11, which we already showed is not the case.

8.3.5 The Distinguished Variables. Now we complete the hardness proof of dL.
Consider the dual lineage of dL on a block Dk(ai, bj), which we denoted Y (U, V ).
We verify that the variables U, V and Z = Zq0 meet the conditions of Corollary 8.17:
this follows from Lemma 8.9, since U,Zq0 , V correspond to the relational symbols
R0, Pq0 , T

0. Thus, Zq0 is a distinguished Boolean variable, and therefore xq0 is a
distinguished variable for the polynomials f11, . . . , f22. By definition, there are dis-
tinguishing values ū such that f11[ū](z), . . . , f22[ū](z) are non-degenerate. Finally,
by Prop. 5.6 the Jacobian (z1, . . . , z4) 7→ (y11, . . . , y22) is nonzero, where yuv is given
by Eq. 38. It follows that we can choose values of the variables z̄ s.t. linear equa-
tions given by Eq. 39 has a non-singular matrix, proving that we can use the oracle
for P (¬dL) to compute all coefficients #k, and finally obtain #Φ =

∑
k:k22=0 #k.

This proves that dL is #P-hard.

Journal of the ACM, Vol. V, No. N, Month 20YY.



Dichotomy of Unions of Conjunctive Queries · 71

8.4 Hardness proof for Forbidden Queries of Type 2-2

By definition, a forbidden query of type 2-2 has no unary symbols, preventing us
for using the conditional probability P (¬d|Eθ) as for the type 1-1 queries. Because
of that, we need a new idea, which replaces the conditional probability with Mobius
inversion formula. We give the proof in more details than for queries of Type 1-1,
because it is more subtle. As a running example, we will use the following query:

d⋄ =S1(x, y1), S2(x, y2) ∨ S1(x1, y), S2(x2, y)

While d⋄ is unsafe, symbol-connected, and has two levels, it is actually not a for-
bidden query, as we show in Example 8.37: we use it as a surrogate for the more
verbose ddiamond shown at the end of Sect. 8.1.

8.4.1 The Leveled Query and Database. Let d =
∨

i=1,k ci be a forbidden query
of type 2-2; the vocabulary, R, consists only of binary relations. Let nX =
maxi |V arX(ci)| and nY = maxi |V arY (ci)|. Consider the following leveled vo-
cabulary RL. Level X is split into levels 0, 1, . . . , nX , and level Y is split into levels
0, 1, . . . , nY . For each relation S ∈ R there are the following levelings:

S0τ2 , Sτ1τ2 , Sτ10 ∀τ1 ∈ [nX ], ∀τ2 ∈ [nY ]

There is no leveling S00. Let dL denote the leveling of d according to RL. As
we discussed in Sect. 6, a leveling of a component ci is given by a function ρ from
its variables to levels; in our case the function has two parts, ρ = (ρX , ρY ), where
ρX : V arX(ci) → {0} ∪ [nX ] and ρY : V arY (ci) → {0} ∪ [nY ]; the corresponding
leveling is denoted cρi , or cρXρY

i . If the image of ρX is 0, i.e. ρX(xj) = 0 for all

variables xj ∈ V arX(ci), then we write the leveling as c0ρY

i ; similarly for cρX0
i .

There are no levelings c00i because there are no symbols S00. Accordingly, we
classify the components of dL into three sets:

C0∗ ={c0ρY

i | i = 1, k; Im(ρY ) 6= {0}}

C∗∗ ={cρXρY

i | i = 1, k; Im(ρX) 6= {0}, Im(ρY ) 6= {0}}

C∗0 ={cρX0
i | i = 1, k; Im(ρX) 6= {0}}

Therefore, we can write the leveled query as:

dL =d0∗ ∨ d∗∗ ∨ d∗0

where d0∗ is the disjunction of all components in C0∗, etc.
Next, we describe the database instance DL, associated to a PP2CNF expression

Φ given by Eq. 36 at the beginning of this section. Let s, s1, s2 be three numbers,
which depend only on the query d; they represent slice numbers, and will be defined
later. Then:

DL =
⋃

(i,j)∈E,k=1,s

Dk(ai, bj) ∪
⋃

i∈[n1],k=1,s1

Dk(ai, ·) ∪
⋃

j∈[n2],k=1,s2

Dk(·, bj)

where for each edge (i, j) ∈ E and for each slice numbers k ∈ [s], k ∈ [s1], and
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k ∈ [s2], the three sets mentioned above are:

Dk(ai, bj) =
⋃

S,τ1,τ2

{S0τ2(ai, b̆ij,k), S
τ1τ2(ăij,k, b̆ij,k), S

τ10(ăij,k, bj)}, k ∈ [s]

Dk(ai, ·) =
⋃

S,τ1,τ2

{S0τ2(ai, b̆i·,k), S
τ1τ2(ăi·,k, b̆i·,k), S

τ10(ăi·,k, ḃi,k)}, k ∈ [s1]

Dk(·, bj) =
⋃

S,τ1,τ2

{S0τ2(ȧj,k, b̆·j,k), S
τ1τ2(ă·j,k, b̆·j,k), S

τ10(ă·j,k, bj)}, k ∈ [s2]

In each case, the union is taken over S ∈ R, τ1 ∈ [nX ] and τ2 ∈ [nY ]. All sets of the
form Dk(ai, bj), Dk(ai, ·), or Dk(·, bj) are isomorphic, and each is a block for dL

(Def. 8.11). The first block Dk(ai, bj) is similar to that used for type 1-1 queries,
but now we use more than 4 slices, because we need more than 4 distinguished
variables. There is a block Dk(ai, bj) for each edge (i, j) ∈ E, and each slice

number k = 1, s. It contains three kinds of tuples: from A to B̆, from Ă to B̆
and from Ă to B, (see Eq. 24 for the definition of A,B, Ă, B̆). The three kinds
of tuples correspond to levelings 0τ2, τ1τ2, and τ10, where τ1 ∈ [nX ], τ2 ∈ [nY ],
thus the block Dk(ai, bj) has a zig-zag-zig shape. The other two blocks Dk(ai, ·)
and Dk(·, bj) are isomorphic to Dk(ai, bj), and we call them “dangling” blocks: one
can think of Dk(ai, ·) as corresponding to an edge (i, ·) that starts at i and ends
no-where, and similarly fro Dk(·, bj). The blocks have two important properties:
(1) no two blocks share any tuples and, (2) the only constants that occur in more
than one block are ai and bj (the dangling endpoints ḃi,k and ȧj,k are not shared).

The tuple probabilities as for queries of type 1-1. We rename all symbols in RL

to P1, . . . , Pm, in order be able to refer to them using a single index. Consider a
block Dk(ai, bj). We associate to each symbol Pq a variable xq; the probability of
the unique tuple Pq in this block is defined as 1− uq, where uq is a distinguishing
value for the variable xq, to be determined below. This probability depends only on
the symbol Pq, and not on i, j, k. There is one exception: we choose an arbitrary,
but fixed, binary relation S, and an arbitrary pair of non-zero levelings, say 11,
and designate S11 the distinguished tuple. Let Pq0 be the distinguished tuple (i.e.
Pq0 and S11 are the same symbol). We define the probability of the distinguished
tuples to be 1 − zk, where k is the slice number of the block. This probability
is independent of i, j. Since there are s slices, we have s variables z1, . . . , zs. We
repeat the same process for the left dangling blocks Dk(ai, ·), introducing s1 fresh
variables z′1, . . . , z

′
s1 , then for the right dangling blocks Dk(·, bj), introducing s2

variables z′′1 , . . . , z
′′
s2 . This completes the definition of the tuple probabilities.

In the rest of this section we show how to use an oracle for PDL(¬dL) to compute
#Φ, thus reducing the #PP2CNF problem to dL. By Prop. 6.9 dL ≤FO

lin d, which
implies that d is #P-hard.

8.4.2 The Events E0∗
u and E∗0

v . Given a possible world W ⊆ DL, we denote
Wk(ai, bj) = Dk(ai, bj) ∩W , and similarly for Wk(ai, ·) and Wk(·, bj). To compute
P (¬dL), we start with a simple observation:

Lemma 8.18. Let cρ ∈ C∗∗. Then W |= cρ iff ∃i, j, k s.t. Wk(ai, bj) |= cρ or
Wk(ai, ·) |= cρ or Wk(·, bj) |= cρ.
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Proof. Clearly, if cρ is true in some block, say Wk(ai, bj), then it is true in
the world W . We prove the converse. Assume cρ has a root variable x (the case
when it has root variable y is similar). We cannot have ρX(x) = 0, because x is
the single variable in level X, and that would imply Im(ρX) = {0} contradicting
cρ ∈ C∗∗, thus ρX(x) > 0. Thus, any valuation that maps cρ to W must map x
either to a constant of the form ăij,k, or ăi·,k, or ă·j,k (but not ai): by construction
of the blocks, it maps all atoms in cρ to Wk(ai, bj), or to Wk(ai, ·), or to Wk(·, bj)
respectively.

However, a component in C0∗ may span multiple blocks, and similarly for com-
ponents in C∗0. We cannot compute P (¬dL) by conditioning on the events Eθ, as
we did for queries of type 1-1, because we do not have the unary symbols. Instead,
we will use a different kind of events, E0∗

u and E∗0
v . We illustrate with our running

example:

Example 8.19. The leveling of d⋄ is dL⋄ = d0∗⋄ ∨ d∗∗⋄ ∨ d∗0⋄ , where:

d0∗⋄ =
∨

τ1,τ2∈[2]

S0τ1
1 (x, y̆1), S

0τ2
2 (x, y̆2) ∨

∨

τ∈[2]

S0τ
1 (x1, y̆), S

0τ
2 (x2, y̆)

d∗∗⋄ =
∨

τ2,τ∈[2]

S0τ
1 (x1, y̆), S

τ2τ
2 (x̆2, y̆) ∨

∨

τ1,τ∈[2]

Sτ1τ
1 (x̆1, y̆), S

0τ
2 (x2, y̆)

∨
∨

τ,τ1,τ2∈[2]

Sττ1
1 (x̆, y̆1), S

ττ2
2 (x̆, y̆2) ∨

∨

τ1,τ2,τ∈[2]

Sτ1τ
1 (x̆1, y̆), S

τ2τ
2 (x̆2, y̆)

∨
∨

τ,τ1∈[2]

Sττ1
1 (x̆, y̆1), S

τ0
2 (x̆, y2) ∨

∨

τ,τ2∈[2]

Sτ0
1 (x̆, y1), S

ττ2
2 (x̆, y̆2)

d∗0⋄ =
∨

τ∈[2]

Sτ0
1 (x̆, y1), S

τ0
2 (x̆, y2) ∨

∨

τ1,τ∈[2]

Sτ10
1 (x̆1, y), S

τ20
2 (x̆2, y)

Consider first a component in d∗∗⋄ , for example c = S01
1 (x1, y̆), S

21
2 (x̆2, y̆). By

Lemma 8.18, to check that c is false in a world W , it suffices to check that it false
in every block of W . Indeed, suppose it is true in W , and assume the valuation
maps y̆ to b̆ij,k: then it must map the two atoms to S01

1 (ai, b̆ij,k), S
21
2 (ăij,k, b̆ij,k),

and both are in the same block Wk(ai, bj); similarly if y̆ is mapped to b̆i·,k or b̆·j,k.
Consider now a component in d0∗⋄ , say c = S01

1 (x, y̆1), S
01
2 (x, y̆2). Now it is not

sufficient to check that c is false in every block: indeed, a valuation may map the
first atom to S01

1 (ai, b̆ij1,k1
), and the second atom to S01

2 (ai, b̆ij2,k2
), which are in

different blocks Wk1
(ai, bj1) and Wk2

(ai, bj2). To justify our solution, suppose for
a moment that |A| = 1, that is, we have a single constant ai ∈ A. Denote E1 the
following event (a property on the random world W ⊆ DL):

E1 : W 6|= ∃y̆1.S
01
1 (ai, y̆1)

By requiring the event E1 to hold, we make a commitment that S01
1 (x, y̆1) will

be false at x = ai. We still need to check that the entire query dL⋄ is false, but
now we can simplify its component S01

1 (x, y̆1), S
01
2 (x, y̆2) to just S01

1 (x, y̆1). This
new component is false in W iff it is false in all blocks Dk(ai, bj),, Dk(ai, ·), or
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Dk(·, bj). Similarly, denote E2 the event:

E2 : W 6|= ∃y̆2.S
01
2 (ai, y̆2)

In this case, the component simplifies to S01
2 (x, y̆2). Thus, to compute P (¬dL⋄ ), we

will reason by cases, considering the events E1 and E2. This is similar to what
we did for Type 1-1 queries in Sect. 5, where we conditioned on R(ai) and ¬R(ai).
However, there are two important differences from Type 1-1 queries: the events E1,
E2 are not exclusive, and they are not exhaustive. Here we make an important
observation: if dL⋄ is false, then either E1 is true, or E2 is true, or both are true.
To see this, suppose that both E1 and E1 are false: then ∃y̆1.S

01
1 (ai, y̆1) is true in

the world W , and also ∃y̆2.S
01
2 (ai, y̆2) is true, implying that S01

1 (x, y̆1), S
01
2 (x, y̆2)

is true, contradicting the fact that dL⋄ is false. Therefore, in our toy example where
there is a single constant ai, P (¬dL⋄ ) = P (¬dL⋄ ∧ (E1∨E2)). We compute the latter
using the inclusion-exclusion formula. This achieves our goal: in P (E1 ∧ (¬dL⋄ )),
our component simplifies to just S01

1 (x, y̆1), so the blocks are again independent,
and similarly in P (E2 ∧ (¬dL⋄ )). In essence, we will replace the Shannon expansion
formula

∑
θ P (·|Eθ)P (Eθ) that we used for Type 1-1 queries, with Mobius’ inversion

formula −
∑

u µ(u, 1̂)P (· ∧ Eu).

We describe now the events E0∗
u and E∗0

v that generalize the example.

Definition 8.20. Let ci be a component with the following X-subcomponents
scX = {ci1, ci2, . . .} (Sect. 7.2). The X-split of ci is σX(ci) =

∧
j cij [xj/X], where

xj is a fresh variable for each subcomponent cij of ci. If d =
∨

i ci, then we define
its X-split to be σX(d) =

∨
i σX(ci). The Y -split is defined similarly.

For a simple example, consider c = S(x, y1), S1(x, y1), S(x, y2), S2(x, y2); then
σX(c) = S(x1, y1), S1(x1, y1), S(x2, y2), S2(x2, y2).
For any constant a, ci[a/X] ≡ σX(ci)[a/X]; that is, the two queries become

equivalent if we substitute all variables xi in level X with the same constant a.
Note that σX(ci) is, in general, a conjunctive query, which may be disconnected.
Define:

Q0∗ = σX(d0∗) Q∗0 = σY (d
∗0)

Thus, Q0∗ is a union of conjunctive queries of two kinds: if ci = S1(x, yi1), S2(x, yi2), . . .
has root variable x, then σX(c0ρY

i ) = S1(xi1 , yi1), S2(xi2 , yi2), . . . and is possible
disconnected (unless ci has also a root variable y, i.e. i1 = i2 = . . .); if ci =
S1(xi1 , y), S2(xi2 , y), . . . has root variable y, then σX(c0ρY

i ) = S1(x, y), S2(x, y), . . .
(because ci has a unique X-subcomponent). Both Q0∗ and Q∗0 are Unions of
Conjunctive Queries and their connection to d0∗, d∗0 is captured by:

Q0∗[a/X] = d0∗[a/X] Q∗0[b/Y ] = d∗0[b/Y ]

for any constants a, b. Write these queries as CNF query expressions (Sect. 2.6):

Q0∗ =
∧

j=1,l

d0∗j Q∗0 =
∧

j=1,r

d∗0j (40)

We define the left lattice L̂ and the right lattice R̂ to be their CNF lattices,
L̂ = L(Q0∗), R̂ = L(Q∗0) (Def. 4.8). In this section we follow standard nota-
tion [Stanley 1997], and denote a lattice with L̂; when we drop the hat, we mean
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L = L̂ − {1̂}, which is a meet semilattice. For each u ∈ L, we let d0∗u denote the
disjunctive query associated to the lattice element u (see the definition of du, right
after Def. 4.8); recall that d0∗j = d0∗{j} represents a coatom in the lattice. For v ∈ R,

we denote similarly d∗0v .
Every component in d0∗u and d∗0r has both x and y as root variables, i.e. it looks

like this S1(x, y), S2(x, y), . . .. Therefore, if the component is true in a world, then
it is true in a block of that world, because no two blocks share two constants. Recall
from Eq. 24 that A = {ai | i ∈ [nX ]} and B = {bj | j ∈ [nY ]}:

Definition 8.21. For any lattice element u ∈ L, and constant ai ∈ A, denote
E0∗

u (ai) the following event on a random world W :

E0∗
u (ai) : W 6|= d0∗u [ai/X]

Let u ∈ LA be a function from A to L. Denote the following event: E0∗
u =∧

ai∈A E0∗
u(ai)

(ai). Define similar events on the “right”, E∗0
v (bj) and E∗0

v .

Lemma 8.22. Let W be a world such that W |= ¬dL, and let ai ∈ A. Then there
exists u ∈ L such that W satisfies the event E0∗

u (ai).

Proof. (The proof generalizes our discussion in Example 8.19.) We prove that
the lattice element u can be taken of the form u = {j} (i.e. a co-atom in the lattice
L̂); in this case, d0∗u = d0∗j is one of the disjunctive queries in Eq. 40. Suppose

the contrary, that W |= d0∗1 [ai/X], . . . , W |= d0∗l [ai/X]. Then W |= d0∗1 [ai/X] ∧
. . .∧ d0∗l [ai/X], which means that W |= Q0∗[ai/X]. By Q0∗[ai/X] ≡ d0∗[ai/X], we
obtain W |= d0∗, hence W |= dL, which is a contradiction.

Therefore, if we fix ai and assume that dL is false, then one of the events E0∗
u (ai),

u ∈ L must hold.

Lemma 8.23. Fix ai ∈ A; the set of events {E0∗
u (ai) | u ∈ L} is a meet semilat-

tice isomorphic to L. {Eu | u ∈ LA} is a meet semilattice isomorphic to LA.

Proof. We prove that u 7→ E0∗
u (ai) is an order isomorphism. If u, v ∈ L and

u ≤ v, then d0∗u ⇐ d0∗v , implying E0∗
u (ai) ⊆ E0∗

v (ai), thus the mapping is monotone.
If u 6≤ v then d0∗u 6⇐ d0∗v and by Prop. 2.13 there exists a component c in d0∗v s.t.
d0∗u 6⇐ c. Dk(ai, bj) is a block, and has one tuple for each relational symbol. Denote
W be the world consisting of exactly the tuples in c. We haveW |= c, thusW 6|= d0∗v ,
but W 6|= d0∗u (otherwise d0∗u has a component c′ s.t. W |= c′, which implies c′ ⇐ c),
implying E0∗

u (ai) 6⊆ E0∗
v (ai), which proves that the mapping is injective.

Lemma 8.24. Let u ∈ LA and v ∈ RB. Conditioned on the event Euv =
E0∗

u ∧E∗0
v , the event W |= ¬dL is equivalent to the following conjunction of events:

∧

ai∈A,bj∈B,k∈[s]

Wk(ai, bj) 6|= d∗∗ ∧
∧

ai∈A,k∈[s1]

Wk(ai, ·) 6|= (d∗∗ ∨ d∗0) ∧
∧

bj∈B,k∈[s1]

Wk(·, bj) 6|= (d0∗ ∨ d∗∗)

Proof. If dL is false in W , then it is obviously false in every block. Conversely,
suppose dL = d0∗ ∨ d∗∗ ∨ d∗0 is true in W . If d∗∗ is true, then it is true in some
block, by Lemma 8.18. Assume w.l.o.g. that d0∗ is true. For all ai ∈ A, the event
E0∗

u implies that d0∗
u(ai)

[ai/X] is false, hence d0∗[ai/X] is false. Therefore one of

Journal of the ACM, Vol. V, No. N, Month 20YY.



76 · Dalvi and Suciu

d0∗[ăij,k/X], d0∗[ăi·,k/X], d0∗[ă·j,k/X], or d0∗[ȧj,k/X] is true; by construction, the
query is true in Dk(ai, bj), or Dk(ai, ·), or Dk(·, bj), or Dk(·, bj).

For each u ∈ L, v ∈ R, denote the following queries:

duv = d0∗u ∨ d∗∗ ∨ d∗0v du· = d0∗u ∨ d∗∗ ∨ d∗0 d·v = d0∗ ∨ d∗∗ ∨ d∗0v

Corollary 8.25. The event W |= ¬dL is equivalent to the following:

∨

u∈LA,v∈RB


 ∧

ai,bj ,k

Wk(ai, bj) 6|= duv ∧
∧

ai,k

Wk(ai, ·) 6|= du· ∧
∧

bj ,k

Wk(·, bj) 6|= d·v




Proof. By Lemma 8.22 we have (W |= ¬dL) ≡
∨

u∈LA,v∈RB [Euv∧(W |= ¬dL)],
and the rest follows from the previous lemma.

Example 8.26. We illustrate this on our running example (Example 8.19):

d0∗⋄ =
∨

τ1,τ2∈[2]

S0τ1
1 (x, y̆1), S

0τ2
2 (x, y̆2) ∨

∨

τ∈[2]

S0τ
1 (x1, y̆), S

0τ
2 (x2, y̆)

Q0∗ =
∨

τ1,τ2∈[2]

S0τ1
1 (x1, y̆1), S

0τ2
2 (x2, y̆2) ∨

∨

τ∈[2]

S0τ
1 (x, y̆), S0τ

2 (x, y̆)

= (S01
1 (x1, y̆1) ∨ S02

1 (x1, y̆1) ∨
∨

τ∈[2]

S0τ
1 (x, y̆), S0τ

2 (x, y̆))

∧ (S01
2 (x2, y̆2) ∨ S02

2 (x2, y̆2) ∨
∨

τ∈[2]

S0τ
1 (x, y̆), S0τ

2 (x, y̆))

= (S01
1 (x1, y̆1) ∨ S02

1 (x1, y̆1)) ∧ (S01
2 (x2, y̆2) ∨ S02

2 (x2, y̆2)) = d0∗1 ∧ d0∗2

The left semilattice L has three elements and their associated queries are the fol-
lowing:

d0∗1 =S01
1 (x, y̆) ∨ S02

1 (x, y̆) d0∗2 = S01
2 (x, y̆) ∨ S02

2 (x, y̆)

d0∗12 =d0∗1 ∨ d0∗2 = S01
1 (x, y̆) ∨ S02

1 (x, y̆) ∨ S01
2 (x, y̆) ∨ S02

2 (x, y̆)

Lemma 8.22 says that, if dL⋄ is false in a world W , then, for every ai ∈ A, either
d0∗1 [ai/x], or d0∗2 [ai/x], or both (meaning d0∗12[ai/x]) are false in W .
The right lattice R is isomorphic to L, and has three elements, d∗01 , d∗02 , d∗012. If

dL⋄ is false, then for each block Dk(ai, bj), there are 9 cases for its endpoints: one
of d0∗u , u ∈ L, is false on ai, and one of d∗0v , v ∈ R is false on bj. Thus, one of the
9 queries duv = d0∗u ∨ d∗∗ ∨ d∗0v is false on the block Dk(ai, bj). These are “simple”
queries, since each component has exactly two variables, x, y.

The next step is to compute P (¬dL) by applying Mobius’ inversion formula to
Corollary 8.25. The number of terms in the disjunction

∨
u,v is exponential in the

size of the PP2CNF Φ, yet we must express P (¬dL) with a formula of polynomial
size. First, we compute the probabilities of the events in each block, P (Wk(ai, bj) 6|=
duv) etc, and the Mobius function for the lattice of events (u,v) ∈ LA ×RB .
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8.4.3 The Multilinear Polynomials. For each u ∈ L, v ∈ R define:

fuv(x̄) =PDk(a,b)(¬duv) (41)

fu·(x̄
′) =PDk(a,·)(¬du·)

f·v(x̄
′′) =PDk(·,b)(¬d·v)

Recall that each tuple in the block Dk(a, b) has an associated real variable xq;
therefore, all three functions above are multilinear polynomials in x̄ = (x1, x2, . . .).
Once we choose the distinguished tuple, each variable is substituted with a con-
stant, xq = uq, except for the distinguished variable which becomes xq0 = zk.
Therefore, denoting D(a, b) =

⋃
k=1,s Dk(a, b), D(a, ·) =

⋃
k=1,s1

Dk(a, ·), D(·, b) =⋃
k=1,s2

Dk(·, b):

yuv =PD(a,b)(¬duv) =
∏

k=1,s

fuv[ū](zk)

yu· =PD(a,·)(¬du·) =
∏

k=1,s1

fu·[ū](z
′
k)

y·v =PD(·,b)(¬d·v) =
∏

k=1,s2

f·v[ū](z
′′
k )

In the first line zk substitutes the distinguished variable xq0 in fuv, and the other
variables are substituted with distinguished constants; similarly in lines 2 and 3.
We will prove later that such a distinguished variables exists, then use Prop. 5.6 to
prove that their Jacobian is non-zero.

8.4.4 The Strict Lattice Product. We now compute the Mobius function of the
lattice of events (u,v) ∈ LA × RB . By Lemma 8.23 the semilattice of this lattice
is the product LA ×RB ; the lattice turns out to be a strict lattice product.
Given two lattices L̂1, L̂2, their product L̂1×L̂2 is also a lattice, and , µL̂1×L̂2

((u, v), (x, y)) =

µL̂1
(u, x) · µL̂2

(v, y). Define the strict product of L̂1 and L̂2 as:

L̂1 × L2 =(L1 × L2) ∪ {1̂}

Thus, the strict product does not include elements of the form (u, 1̂) or (1̂, v);
instead, it contains 1̂, which can be thought of as (1̂, 1̂). This is indeed a lattice,
because Li is a meet semilattice, for i = 1, 2, hence L1 × L2 is a meet semilattice,
and after completing with 1̂ it becomes a lattice. We prove that its Mobius function
is given by:

Lemma 8.27. µ
L̂1×L2

((u, v), 1̂) = −µL̂1
(u, 1̂) · µL̂2

(v, 1̂).

Proof.

µ
L̂1×L2

((u, v), 1̂) =−
∑

(u,v)≤(x,y)<1̂

µ
L̂1×L2

((u, v), (x, y))

=−
∑

u≤x<1̂,v≤y<1̂

µL̂1
(u, x)× µL̂2

(v, y) = −µL̂1
(u, 1̂) · µL̂2

(v, 1̂)

Here, we used the fact that the interval [(u, v), (x, y)] of the strict product L̂1 × L2
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is isomorphic to the same interval in the regular product L̂1 × L̂2, because x < 1̂
and y < 1̂.

Given a lattice L̂, we denote L̂n the strict cartesian product:

̂L× . . .× L

It follows from the lemma that µ
L̂n(ū, 1̂) = −(−1)n

∏
i µL̂(ui, 1̂).

8.4.5 The Expansion Formula. Now we apply Mobius’ inversion formula to
Corollary 8.25. Denote:

LL = {u | u ∈ L, µL̂(u, 1̂) 6= 0}

RR = {v | v ∈ R,µR̂(v, 1̂) 6= 0}

s1 = |LL| s2 = |RR| s = s1 · s2

Now we can finally define the number of slices s, s1, and s2: they are the number

of lattice elements with non-zero Mobius values in L̂×R, L, and R respectively.
Recall that the PP2CNF is Φ =

∧
(i,j)∈E(Xi ∨ Yj), E ⊆ [n1] × [n2] and that

m = |E| and n = n1 + n2.

Definition 8.28. Let u ∈ LLA and v ∈ RRB. For every u ∈ LL and v ∈ RR
denote the following sets:

Kuv(u,v) = {(i, j) | (i, j) ∈ E,u(ai) = u,v(bj) = v}

Ku·(u) = {i | i ∈ [n1],u(ai) = u}

K·v(v) = {j | j ∈ [n2],v(bj) = v}

Given an (s + s1 + s2)-tuple k = (kuv, ku·, k·v)u∈LL,v∈RR ∈ ({0, . . . ,m})s+s1+s2 ,
denote:

#k = |{(u,v)|u ∈ (LL)A,v ∈ (RR)B , ∀u ∈ LL, v ∈ RR :

|Kuv(u,v)| = kuv, |Ku·(u)| = ku·, |K·v(v)| = k·v}|

This definition generalizes Eq. 21. There, we started from a valuation θ : {Xi |
i ∈ [n1]} ∪ {Yj | j ∈ [n2]} → {true, false} and defined Kuv(θ) for u, v ∈ [2]. Now,
instead of the valuation θ we have the two functions u,v.

The expansion formula for P (¬dL) is given by:

Proposition 8.29. The probability of ¬dL on the database DL is given by:

P (¬dL) = (−1)n
∑

k

∏

u∈LL,v∈RR

ykuv
uv ·

∏

u∈LL

(µL̂(u, 1̂) · yu·)
ku· ·

∏

v∈RR

(µR̂(v, 1̂) · y·v)
k·v

Proof. By direct application of the Mobius inversion formula to Corollary 8.25:

P (¬dL) =P (
∨

u,v

(Euv ∧ ¬dL)) = −
∑

u,v

(−1) · µ(u, 1̂) · µ(v, 1̂) · P (Euv ∧ ¬dL)

=(−1)n
∑

u,v

(
∏

ai

µ(u(ai), 1̂) · yu(ai)·) · (
∏

bj

µ(v(bj), 1̂) · y·v(bj)) · (
∏

ai,bj

yu(ai)v(bj))

=(−1)n
∑

k

∏

u∈LL,v∈RR

ykuv
uv ·

∏

u∈LL

(µL̂(u, 1̂) · yu·)
ku· ·

∏

v∈RR

(µR̂(v, 1̂) · y·v)
k·v
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In the second line, all terms where µ(u(ai), 1̂) = 0 for some element ai disappear,
hence it suffices to consider only those functions u ∈ LA whose range is LL, hence
u ∈ LLA; similarly for v ∈ RRB. The last line simply groups these functions by
the number of elements ai and bj that return a fixed value u ∈ LL or v ∈ RR.

We can now explain the role of the dangling blocks Dk(a, ·), Dk(·, b): their role
is to absorb the powers of the Mobius function above. Without the dangling blocks
we would have had terms of the form (µL̂(u, 1̂))

ku . The dangling blocks introduce
the multilinear polynomials yu·, which are multiplied by these Mobius functions.
Define the new multilinear polynomials:

Yu· = µL̂(u, 1̂) · yu·, ∀u ∈ L Y·v = µR̂(v, 1̂) · y·v, ∀v ∈ R

Then Prop. 8.29 becomes:

P (¬dL) = (−1)n
∑

k

∏

u∈LL,v∈RR

ykuv
uv ·

∏

u∈LL

Y ku·

u· ·
∏

v∈RR

Y k·v
·v (42)

This is now similar to Eq. 39 which we used to prove hardness for queries of type
1-1. We must prove that, collectively, the s + s1 + s2 functions yuv, Yu·, Y·v have
a non-zero Jacobian. The three groups depend on different variables: there are
distinguished variables zk for the regular blocks Dk(ai, bj), for k = 1, s, which
occur only in yuv; there are different distinguished variables z′k for the dangling
blocks Dk(ai, ·), for k = 1, s1, which occur only in Yu·; and there are different
distinguished variables z′′k for Y·v. Furthermore, the mapping z̄′ 7→ (Yu·)u∈LL has a
non-zero Jacobian iff the mapping z̄′ 7→ (yu·)u∈LL has a non-zero Jacobian, because
all numbers µL̂(u, 1̂) are 6= 0, and similarly for Y·v. Thus, it suffices to prove that
each of the following three functions has a non-zero Jacobian:

z̄ 7→ (yuv)u∈LL,v∈RR z̄′ 7→ (yu·)u∈LL z̄′′ 7→ (y·v)v∈RR

For that, we will prove that each of the three sets of multivariate polynomials in
Eq. 41 has a distinguished variable. We claim that this completes the proof of
hardness of dL. By repeatedly calling the Oracle for P (¬dL), we can form a system
of equations from Eq. 42, whose matrix is non-singular, and, thus, solve for all
coefficients #k. We show how these can be used to compute #Φ. Fix any element
u1 ∈ LL and associate it with false and associate all other elements u2 ∈ LL with
true; similarly, v1 ∈ RR denotes false, all other elements denote true. Then:

#Φ =
∑

k:ku1v1
=0

#k

8.4.6 The Dual Lineage Expressions for Queries of Type 2-2. Our goal is to
prove that each of the three sets of multivariate polynomials in Eq. 41 has a dis-
tinguished variable. As for type 1-1 queries, we examine the Boolean functions
representing the dual lineage expressions. The blocks Dk(ai, bj) Dk(ai, ·), Dk(·, bj)
are isomorphic; consider any of them, associate a Boolean variable Z1, Z2, . . . , Zm

to each leveled symbol P1, P2, . . . , Pm, and denote Y 0∗
u , Y 0∗, Y ∗∗, Y ∗0, Y ∗0

v , for u ∈
LL, v ∈ RR the dual lineage expressions of the queries d0∗u , d0∗, d∗∗, d∗0, d∗0v on this
block. Then the multivariate polynomials in Eq. 41 are the arithmetization of the
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following Boolean expressions:

Yuv = Y 0∗
u ∧ Y ∗∗ ∧ Y ∗0

v u ∈ LL, v ∈ RR (43)

Yu· = Y 0∗
u ∧ Y ∗∗ ∧ Y ∗0 u ∈ LL

Y·v = Y 0∗ ∧ Y ∗∗ ∧ Y ∗0 v ∈ RR

For example, fuv = P (Yuv), etc. We prove that, in each of the three lines, the set
of Boolean functions in that line has a distinguished variable Zq0 . In fact, we will
prove something stronger: that all Boolean functions Yuv, Yu·, Y·v are irreducible.
We show here why this implies that they have distinguished variables, then will
prove the claim in the remainder of this section.
Given d =

∨
i ci, denote Sym(ci) the set of relational symbols occurring in ci.

Recall from Sect. 8.3 that the dual lineage Y of d on block has one clause for each
component ci, consisting of one Boolean variable for each symbol in Sym(ci). We
will blur the distinction between Sym(ci) and the clause corresponding to ci.

Let ci, cj be two distinct components. If Sym(cj) ⊆ Sym(ci) then the clause
corresponding to ci is redundant. For example if d = S1(x, y1), S2(x, y2), S3(x, y3)∨
S1(x1, y), S2(x2, y), then its dual lineage has two clauses Y = (Z1∨Z2∨Z3)∧ (Z1∨
Z2), but the first clause is redundant, and Y ≡ Z1∨Z2. Thus, some non-redundant
components may have a redundant clauses. However, we show that, if a component
ci is leveled injectively, then its corresponding clause is non-redundant.

Lemma 8.30. Let Let ci be a component, and cρXρY

i a leveling such that both ρX :
V arX(ci) → {0}∪ [nX ] and ρY : V arY (ci) → {0}∪ [nY ] are injective functions. Let
cρj be any other leveled component. If Sym(cρj ) ⊆ Sym(cρXρY

i ) then the implication
ci ⇒ cj holds.

In particular, if d has no redundant components, then all clauses corresponding
to injective levelings cρXρY

i are non-redundant.

Proof. Let f : cρ
′

j → cρXρY

i be the function that maps each atom in cρ
′

j to the
atom with the same relation symbol in cρXρY

i . We prove that this is a homomor-
phism cj → ci, contradicting the fact that d was minimized. We claim that if two

atoms have the same variable in cρ
′

j , then the corresponding atoms in cρXρY

i also
have the same variable: this immediately proves that f is a homomorphism cj → ci.
Assume w.l.o.g. that cρXρY

i has root variable x̆: then our claim holds vacuously

on the xi-variables in cj . Suppose two atoms in cρ
′

j have the same y-variable: then
their levelings must have the same level for the second attribute, namely τ = ρ′(y),
i.e. the atoms are Sτ1τ

1 (x1, y) and Sτ2τ
2 (x2, y). By assumption, cρXρY

i also contains
two atoms Sτ1τ

1 (. . .) and Sτ2τ
2 (. . .) and, since we have chosen ρY to be injective, it

follows that they must have the same x-variable.

The condition that the leveling is injective is necessary. To see this, consider
S1(x, y1), S2(x, y2), S3(x, y3) ∨ S1(x1, y), S2(x2, y): if the first component is leveled
as S11

1 (x̆, y̆1), S
11
2 (x̆, y̆2), S

11
3 (x̆, y̆3) then it’s clause is made redundant by similar

leveling of the second component. This explains why we use nX and nY extra
levels for queries of type 2-2.
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Proposition 8.31. Suppose that all Boolean functions Yuv, u ∈ LL, v ∈ RR
defined in Eq. 43 are irreducible (as per Def. 8.12). Then they have a distinguished
Boolean variable. Similarly, if all Boolean functions Yu·, u ∈ LL are irreducible then
they have a distinguished variable; and similarly for the set of Boolean function Y·v,
v ∈ RR.

Proof. We prove the statement for the set of functions Yuv only; the other two
are similar. It suffices to prove two facts: (1) there exists a Boolean variable Zq0

s.t. all functions Yuv depend on it, and (2) all functions are inequivalent. Choose
Zq0 to be the a Boolean representing a symbol S11. (The choice of 11 is arbitrary,
any leveling τ1τ2 with τ1 6= 0 and τ2 6= 0 works.) We will prove that in each
CNF expression Yuv there exists a clause containing Zq0 . Indeed, let ci be any
component that contains S, and let cρXρY

i be any injective leveling of ci s.t. (a)
∀x ∈ V arX(ci), ρX(x) > 0 and ∀y ∈ V arY (ci), ρY (y) > 0. (b) at least one S-atom
is leveled into S11. Such a leveling always exists because we have nX ≥ |V arX(ci)|
and nY ≥ |V arY (ci)|. By the previous lemma, the clause Sym(cρXρY

i ) is not
redundant in Y ∗∗. It remains to prove the clause is not redundant in Y 0∗∧Y ∗∗∧Y ∗0.
This follows from the fact that all clauses in Y 0∗ have symbols with levelings 0τ ,
hence none of these symbols belongs to Sym(cρXρY

i ), and similarly for Y ∗0. Now
we prove (2): the Boolean expressions Yuv are inequivalent. Suppose otherwise,
Yu1v1

≡ Yu2v2
. Set to true all variables Zi corresponding to symbols Sτ1τ2 where

τ1 ≥ 1, and denote Y ′, Y ′′ the resulting Boolean expressions. Equivalently, Y ′, Y ′′

are the dual lineages of the query obtained from du1v1
and du2v2

by setting all
symbols Sτ1τ2 where τ1 ≥ 1 to false: these queries are precisely du1· and du2·,
hence Y ′ ≡ Yu1· and Y ′′ ≡ Yu2·. If Y ′ ≡ Y ′′ then we have du1· ≡ du2·, which
implies u1 = u2 (see the discussion immediately after Def. 4.8). Similarly, we prove
that v1 = v2. Therefore, all irreducible factors containing Zq0 are inequivalent,
implying that the real variable zq0 is a distinguished variable for the multilinear
polynomials fuv. The proofs for Yu· and for Y·v are similar and omitted.

It remains to prove that the Boolean functions Yuv, Yu·, Y·v are irreducible. For
that we first need to establish some properties of queries of type 2-2.

8.4.7 The Properties of Forbidden Queries of Type 2-2. We prove here two prop-
erties of queries of type 2-2. This is the only place were we need the full power of
the shatter rewrite rule in Def. 4.13: so far we only needed shattering of an entire
level, d[A/Z], but in this section we need general shattering.
Throughout this section we fix a strict left-to-right path in d: c0, c1, . . . , ck (de-

fined in Sect. 8.1). We have k ≥ 1, because c0 is a left component and ck is a right
component, and they must be distinct. If k = 1 then we say that d is a short query.
If k > 1 we say that d is a long query; in this case, each of c1, . . . , ck−1 has root
variables both x and y. The two properties are:

Proposition 8.32. Let c be any component. Then there exists i > 0 such that
Sym(c) ∩ Sym(ci) 6= ∅, and there exists i < k such that Sym(c) ∩ Sym(ci) 6= ∅,

In particular, if c is any left component, then c, c1, . . . , ck is also a strict left-
right path: indeed c has no common symbols with c2, . . . , ck (otherwise we obtain
a shorter path), hence the proposition implies that c, c1 must have some common
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symbol. Similarly, if c is a right component, then c0, . . . , ck−1, c is also a left-right
path.

Proposition 8.33. The following hold:

∀s ∈ scX(c0), ∀s
′ ∈ scY (c1) : Sym(s) 6⊆ Sym(s′) (44)

∀s ∈ scY (ck−1), ∀s
′ ∈ scX(ck) : Sym(s) 6⊆ Sym(s′) (45)

We illustrate with an example.

Example 8.34. Consider the query qdiamond shown at the end of Sect. 8.1. There
are two connected components, c0, c1, which also form a strict left-to-right path.
The first component c0 has two X-subcomponents, S1(x, y1), S2(x, y1), S3(x, y1) and
S1(x, y2), S2(x, y2), S4(x, y2) and their sets of symbols are {S1, S2, S3} and {S1, S2, S4};
the second component c1 has two Y -subcomponents S3(x1, y), S4(x1, y), S1(x1, y)
and S3(x2, y), S4(x2, y), S2(x2, y) and their sets of symbols are {S1, S3, S4} and
{S2, S3, S4}. None of the former two sets is included in the latter, and vice versa.

On the other had, consider our running example q⋄. This is not a forbidden
query, as we show shortly, we only used it as a simpler surrogate for qdiamond. It
also has two components: the first has the X-subcomponents S1(x, y1) and S2(x, y2)
with symbol-sets {S1}, {S2}, and the second has two subcomponents with two symbol
sets {S1}, {S2}. They are pairwise equal, thus violating the proposition.

We prove the propositions through a sequence of lemmas.

Lemma 8.35. Let c be any component of a forbidden query. (1) For any two
distinct X-subcomponents, s, s′ ∈ scX(c), we have Sym(s) 6⊆ Sym(s′). (2) Let c′ be
any other component distinct from c, and let s′ ∈ scX(c′); then Sym(c) 6⊆ Sym(s′).

Proof. Suppose otherwise, Sym(s) ⊆ Sym(s′). Then there exists a homo-
morphism s′ → s (since both s and s′ have only two variables, x, y and x, y′

respectively); this contradicts the fact that c is minimized. Similarly, if Sym(c) ⊆
Sym(s′), then we can define a homomorphism c → s′ and, thus, c → c′, which
implies c′ ⇒ c, contradicting the fact that d has no redundant components.

For any symbol S, denote scX(c, S) = {s | S ∈ Sym(s), s ∈ scX(c)} the set of
subcomponents of c that contain the symbol S; similarly for scY (c, S).

Lemma 8.36. If S1 ∈ Sym(c0)∩Sym(c1) and S ∈ Sym(c0)∪Sym(c1) then one
of the following relations holds:

scX(c0, S1) ⊆ scX(c0, S) or scY (c1, S1) ⊆ scY (c1, S)

Similarly, for S1 ∈ Sym(ck−1) ∩ Sym(ck) and S ∈ Sym(ck−1) ∪ Sym(ck) we have
scX(ck−1, S1) ⊆ scX(ck−1, S) or scY (ck, S1) ⊆ scY (ck, S).

Proof. Suppose otherwise and assume w.l.o.g. S 6= S1. Then there exists two
subcomponents s0 ∈ scX(c0, S1)−scX(c0, S) and s1 ∈ scY (c1, S1)−scY (c1, S). Let
A,B be two sets of constants such that |A| = |scX(c0, S)| and |B| = |scY (c1, S)|,
and define the following shattered vocabulary RAB :

(1) S shatters into Sa∗ and S∗b for all a ∈ A, b ∈ B; it does not shatter into S∗∗.

(2) Every symbol S′ 6= S shatters into S′
∗∗, and:
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(a) if S′ ∈ scX(c0, S) then it also shatters into S′
a∗ for all a ∈ A, and

(b) if S′ ∈ scY (c1, S) then it also shatters into S′
∗b for all b ∈ B.

Denote dAB the shattered query w.r.t. this vocabulary, thus d → dAB by Def. 4.13.
Note that seq(dAB) < seq(d), because we reduce by 1 the number of relations of
arity 2. We prove that dAB is unsafe, contradicting the fact that d is forbidden
(recall Def. 7.2).
Denote c0,A a shattering of c0, with the following properties: all variables yi that

occur in some S-atom are shattered into distinct constants ai ∈ A, i.e. if the S-
atoms are S(x, y1), S(x, y2), . . . then they are shattered to S∗a1

(x), S∗a2
(x), . . .; all

variables yi that do not occur in S are shattered to ∗; this means that, if a variable
yi does not occur in S, then any atom S′(x, yi) shatters to S′

∗∗(x, yi). It follows
that (a) c0,A is not redundant in dAB (because we used distinct constants), (b) c0,A
has only x as root variable (since either c0 contains S, and in that case c0,A has
at least one unary symbol S∗a(x), or c0 does not contain S and in that case all its
variables yi are shattered to ∗∗, hence c0,A has at least two variables yi), and (c) it
contains the symbol S1,∗∗ (because the subcomponent s0 contains S1 but does not
contain S, and therefore it is shattered into ∗∗).
Next we consider two cases, depending on whether d is short or long. If it is

short, then c1 is a right component, and we consider the shattering c1,B obtained
similarly to c0,A: thus, c1,B is non-redundant, does not have root variable x, and
contains the symbol S1,∗∗. Therefore, dAB is unsafe, because c0,A and c1,B are
symbol-connected, the only root level in the first component is X, and the only
root level in the second component is Y .

If d is long, then it has both x and y as root variables, and it has a single
Y -component, scY (c1) = {c1}. If S ∈ Sym(c1), then scY (c1, S) = scY (c1), contra-
dicting our assumption that scY (c1, S1) 6⊆ scY (c1, S). Therefore S 6∈ Sym(c1); we
have S ∈ Sym(c0). In fact, S does not occur in any component c2, c3, . . . , ck, oth-
erwise we could find a shorter left-right path. Consider the shattering of c1, . . . , ck
where all variables (xi or y) are shattered to ∗, denote them c1,∗, . . . , ck,∗. They are
non-redundant, symbol-connected, and the only root level in ck,∗ is Y . Moreover,
c0,A shares the symbol S1,∗∗ with c1,∗ and therefore the set c0,A, c1,∗, . . . , ck,∗ does
not have a separator.

In the proof of Lemma 8.36 we used arbitrary shattering; if we restrict the shat-
tering rule in Sect. 7 to shatter only an entire level d → d[A/Z], then the lemma
fails. We illustrate with an example.

Example 8.37. The query d⋄ does not satisfy Lemma 8.36, because scX(c0, S1) 6⊆
scX(c0, S2) (the former is {S1(x, y1)}, while the latter is {S2(x, y2)}), and similarly
scY (c1, S1) 6⊆ scX(c1, S2). We show that d⋄ is not forbidden, by applying the shat-
tering described in the lemma: we shatter S2 to S2,a∗ and S2,∗b, and shatter S1 only
to S1,∗∗. The shattered query is: S1,∗∗(x, y1), S2,∗b(x)∨S1,∗∗(x1, y), S2,a∗(y), which
is isomorphic to h1 = R(x), S(x, y) ∨ S(x, y), T (y) up to symbol renaming. Thus,
h1 ≤FO

lin d⋄ by Prop. 2.9.

Lemma 8.38. ∀s ∈ scX(c0), Sym(s)∩Sym(c1) 6= ∅ and ∀s ∈ scY (ck), Sym(ck−1)∩
Sym(s) 6= ∅.
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Proof. Suppose Sym(s)∩Sym(c1) = ∅ and let S1 be any symbol in Sym(c0)∩
Sym(c1) (it exists by the definition of a left-right path c0, c1, . . . , ck) and let s1 ∈
scX(c0, S1) be any subcomponent that contains S1. Then Sym(s) ⊆ Sym(s1)
because, for any S′ ∈ Sym(s), we have scX(c0, S1) ⊆ scX(c0, S

′) by Lemma 8.36
(since S′ does not occur in c1), which implies s1 ∈ scX(c0, S

′), in other words, s1
contains S′. Thus Sym(s) ⊆ Sym(s1), contradicting Lemma 8.35.

Denote UX(c) =
⋂

s∈scX(c) Sym(s): these are the symbols that occur in all sub-

components of s. We call a symbol S ∈ UX(c) X-ubiquitous in c. Note that if c
has root variable y, then every symbol is X-ubiquitous, because scX(c) = {c}. We
define similarly UY (c).

Lemma 8.39. Every symbol occurring in c0 or c1 is either X-ubiquitous in c0
or is Y -ubiquitous in c1. In other words, Sym(c0) ∪ Sym(c1) ⊆ UX(c0) ∪ UY (c1).
Similarly, Sym(ck−1) ∪ Sym(ck) ⊆ UX(ck−1) ∪ UY (ck).

Proof. We consider three cases.
Case 1. S ∈ Sym(c0) − Sym(c1), and S is not X-ubiquitous in c0. Let s ∈

scX(c0)− scX(c0, S) be any subcomponent that does not contain S. We claim that
s has no common symbols with c1. Indeed, if S1 ∈ Sym(s) ∩ Sym(c1) then by
Lemma 8.36 we must have either scX(c0, S1) ⊆ scX(c0, S) (which is not possible
because s ∈ scX(c0, S1) and s 6∈ scX(c0, S)) or scY (c1, S1) ⊆ scY (c1, S) (which is
not possible because scY (c1, S) = ∅). Thus, the subcomponent s has no symbols in
common with c1, which is a contradiction by Lemma 8.38.
Case 2. S ∈ Sym(c1) − Sym(c0) and S is not Y -ubiquitous in c1. Then k = 1:

otherwise, if k > 1 then c1 has two root variables, x and y, and every symbol
S ∈ Sym(c1) is ubiquitous in c1. This case is symmetric to case 1.
Case 3. S1 ∈ Sym(c0) ∩ Sym(c1), and suppose that it is not X-ubiquitous in c0

and not Y -ubiquitous in c1; in particular, k = 1. Let s ∈ scX(c0) and s′ ∈ scY (c1)
be two subcomponents that do not contain S1. By Lemma 8.38 the subcomponent
s contains some common symbol S with c1, i.e. S ∈ Sym(s) ∩ Sym(c1). By
Lemma 8.36:

scY (c1, S) ⊆ scY (c1, S1) (46)

because scX(c0, S) 6⊆ scX(c0, S1). Choose similarly S′ ∈ Sym(c0)∩Sym(s′), hence:

scX(c0, S
′) ⊆ scX(c0, S1) (47)

Now we apply Lemma 8.36 to S′ and S and derive a contradiction. More precisely,
we show that neither scX(c0, S

′) ⊆ scX(c0, S) nor scY (c1, S
′) ⊆ scY (c1, S) holds.

For the second non-containment we use the fact that s′ ∈ scY (c0, S
′); by construc-

tion we have s′ 6∈ scY (c0, S1), which implies s′ 6∈ scY (c0, S) by Eq. 46, proving
the second non-containment. For the first non-containment, we prove that we can
choose S ∈ Sym(s) such that there exists s0 ∈ scX(c0, S

′) s.t. s0 6∈ scX(c0, S).
Indeed, choose any s0 ∈ scX(c0, S

′) ⊆ scX(c0, S1). By Lemma 8.35 Sym(s) 6⊆
Sym(s0). By Case 1, if a symbol S ∈ Sym(s) does not occur in Sym(c1), then S
is ubiquitous, hence S ∈ Sym(s0). This implies that there exists S ∈ Sym(s) such
that (a) S occurs in c1, and (b) does not occur in s0. This is the symbol we choose,
and prove the claim.
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When k > 1 then the lemma says that all symbols that occur in c0 but not in c1
are X-ubiquitous in c0; similarly, all symbols that occur in ck but not in ck−1 are
Y -ubiquitous in ck.

Example 8.40. We illustrate with the query ddiamond (Eq. 37). In the first com-
ponent, c0 = S1(x, y1), S2(x, y1), S3(x, y1), S1(x, y2), S2(x, y2), S4(x, y2), both S1, S2

are ubiquitous; in c1 = S3(x1, y), S4(x1, y), S1(x1, y), S3(x2, y), S4(x2, y), S2(x2, y),
the symbols S3, S4 are ubiquitous. Every symbol occurring in c0 or c1 is ubiquitous
in either the first of the second component. On the other hand, the query q⋄ does
not satisfy the lemma (because it is not a forbidden query).
To see a more complex query of type 2-2 consider d = c0 ∨ c1 ∨ c2 where:

c0 = S(x, y1), S2(x, y1), S3(x, y1), S(x, y2), S1(x, y2), S3(x, y2), S(x, y3), S1(x, y3), S2(x, y3)

c1 = S1(x, y), S2(x, y), S3(x, y), S4(x, y), S5(x, y), S6(x, y)

c2 = S′(x4, y), S5(x4, y), S6(x4, y), S
′(x5, y), S4(x5, y), S6(x5, y), S

′(x6, y), S4(x6, y), S5(x6, y)

In the left component c0, S is ubiquitous, and all other symbols occur in c1; in c2, S
′

is ubiquitous. The reader may check that the query is indeed forbidden: for example,
d[S1 = true] is safe, because c0[S1 = true] minimizes to S(x, y), S2(x, y), S3(x, y)
and is no longer a left component. The left semi-lattice of leveled query dL has 7
points, and so does the right semi-lattice. In general, one can show that any left
lattice L and right lattice R can be realized, i.e. there is a forbidden query of type
2-2 having these as left and right lattice respectively.

We now prove Prop. 8.32. Given a component c, we show that it has some
common symbols with c1, . . . , ck. Suppose otherwise: then all its symbols are in
c0 (since the strict path contains all symbols), and it shares no symbols with c1.
By Lemma 8.39 every symbol S ∈ Sym(c) is in UX(c0) (because it does not occur
in c1). Let s ∈ scX(c0) be any subcomponent: by definition of the ubiquitous,
UX(c0) ⊆ Sym(s), hence Sym(c) ⊆ Sym(s), contradicting Lemma 8.35. The proof
that c has a common symbol with c0, . . . , ck−1 is similar and omitted.

Lemma 8.41. Let s0 ∈ scX(c0) and s1 ∈ scY (c1). Then Sym(s0) 6⊆ Sym(s1).

Proof. Suppose Sym(s0) ⊆ Sym(s1). Then Sym(c0) ⊆ Sym(s1) because every
symbol in c0 is either ubiquitous in c0, hence it occurs in s0, or is ubiquitous in
c1, which by definition means that it occurs in s1. But this is a contradiction by
Lemma 8.35.

This proves Eq. 44 of the proposition for the case when i = 1; for i > 1 the
proposition holds vacuously because c0 and ci have no common symbols.

8.4.8 The Dual Lineage Expressions Are Irreducible

Proposition 8.42. For all u ∈ LL, v ∈ RR, each of the Boolean expressions
Yuv, Yu·, Y·v (Eq. 43) is irreducible.

Proof. (or Prop. 8.42) We prove the statement for Yuv only; the proof for Yu·

and Y·v is similar. Recall that Yuv = Y 0∗
u ∧Y ∗∗∧Y ∗0

v , where the three dual lineages
are for the queries d0∗u , d∗∗ and d∗0v respectively. Fix a left-to-right path in d:
c0, . . . , ck. Define the core to be the following set of leveled components of dL: it
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consists of all leveled component cρXρY where c is one of ci, i = 0, k and ρX , ρY are
injective, except for levelings c0ρY

0 and cρX0
k . In other words, the core contains the

following components: (a) cτρY

0 where τ 6= 0, (b) cτ1,τ2i for 0 < i < k and for any
τ1, τ2 (except 00, since that leveling does not exists), and (c) cρXτ

k , with τ > 0. We
prove the following, for all u ∈ LL, v ∈ RR: (1) every core component occurs as
a non-redundant component in duv; (2) every component in duv shares a common
symbol with some core component; and (3) the core is symbol-connected. The three
claims prove the proposition. Indeed, (1) and Lemma 8.30 implies that every core
component corresponds to a non-redundant clause in Yuv, (3) implies that all these
clauses connected in the primal graph, and together with (2) it implies that the
primal graph is connected. Therefore, by Corollary 8.14, Yuv is irreducible.

We prove claim (1). Recall that duv = d0∗u ∨ d∗∗ ∨ d∗0v . We first show that each
core component appears in one of these three queries. Indeed, both cτρY

0 and cρXτ
k

are in C∗∗, hence they appear in d∗∗ because τ 6= 0 and neither ρX nor ρY can be
identically 0, because they are injective. If k = 1 (d is short) then there are no
other core components, so assume k > 1 (d is long) and consider a core component
cτ1τ2i where 0 < i < k. If τ1, τ2 6= 0 then it belongs to C∗∗. If τ1 = 0, then it
belongs to C0∗. Since both X and Y are root levels in ci, the X-split is itself,
σX(c0τ2i ) = c0τ2i , and therefore it appears in all disjunctive queries d0∗j that define

Q0∗ (Eq. 40). Therefore, c0τ2i appears in d0∗u for every u ∈ LL. Similarly for cτ10i .
Next, we prove that no core component is redundant in duv. Suppose otherwise,
that cρXρY

i ⇒ cρ for some component cρ of duv. By Lemma 8.30, cρ cannot be a
component in dL, thus it must be a subcomponent of dL (which occur in d0∗u and
d∗0v ). Assume w.l.o.g. that c is in d0∗u , which means that c ∈ scX(c′) where c′ is
a left component; it also means that its leveling is ρ = 0τ , i.e. cρ = c0τ and all
its symbols are of the form S0τ . We have Sym(cρ) ⊆ Sym(cρXρY

i ). Since a left
component c′ shares symbols only with c0 and c1, we must have i = 0 or i = 1.
We prove that i = 1; otherwise, if i = 0 then by construction the core contains
only levelings cτ0ρY

0 where τ0 > 0, which has no symbols of the form S0τ . Thus,
i = 1. Since ρX is injective, only one Y -subcomponent s ∈ scY (c1) can be leveled
0τ , implying that Sym(c0τ ) ⊆ Sym(s0τ ), and hence Sym(c) ⊆ Sym(s). This is
impossible, by Prop. 8.33.
We prove claim (2). Let cρ be any component in duv. Suppose it contains some

symbol Sτ1τ2 where τ1 > 0 and τ2 > 0. The strict path c0, . . . , ck contains all
symbols, so there exists ci that contains S. Construct any injective leveling of
ci, c

ρXρY

i that contains the symbol Sτ1τ2 : since neither ρX ≡ 0 nor ρY ≡ 0, this
component is in the core, even if i = 0 or i = k. Suppose now that all symbols in
cρ have leveling S0τ . Then by Prop. 8.32 c has a common symbol S with some ci
where i > 0. As before, we construct an injective leveling cρXρY

i that contains S0τ ,
and, since i > 0, this leveling is in the core.
It remains to prove claim (3). For any (τ1, τ2) 6= (0, 0) define the following

sequence of core components:

Pτ1τ2 = [cτ1ρY

0 , ]cτ1τ21 , . . . , cτ1τ2i , . . . [, cρXτ2
k ] (48)

The sequence contains all components cτ1τ2i for 0 < i < k. If τ1 6= 0 then we
include the first component, by choosing some injective ρY s.t. cτ1ρY

0 and cτ1τ21

Journal of the ACM, Vol. V, No. N, Month 20YY.



Dichotomy of Unions of Conjunctive Queries · 87

share a common symbol; similarly, if τ2 6= 0 then we include the last component
in the sequence. Thus, Pτ1τ2 is a subset of the core, and is symbol-connected.
Moreover, every component in the core belongs to some Pτ1τ2 . We will prove that
all these sequences are connected. We start by showing that, for all τ 6= 0, any two

components cτρY

0 and c
τρ′

Y

0 are symbol connected. Notice that the range of ρY is
{0} ∪ [nY ], thus contains at least one more level than the number of variables in
V arY (c0). Therefore, there exists t, t

′ ∈ {0}∪[nY ] s.t. t 6∈ Im(ρY ) and t′ 6∈ Im(ρ′Y ).
Case 1: t = t′, thus ρY , ρ

′
Y avoid a common level. Define ρ′′Y and ρ′′′Y as follows:

ρ′′Y (y1) = t ρ′′Y (yj) = ρY (yj), ∀j > 1

ρ′′′Y (y1) = t ρ′′′Y (yj) = ρ′Y (yj), ∀j > 1

Then both ρ′′Y and ρ′′′Y are injective, and any two consecutive components in the
sequence below share a common symbol:

cτρY

0 , c
τρ′′

Y

0 , c
τρ′′′

Y

0 , c
τρ′

Y

0

Case 2: t 6= t′. Define ρ′′Y as follows:

ρ′′Y (yi) =

{
ρY (yi) if ρY (yi) 6= t′

t if ρY (yi) = t′

Then ρ′′Y is injective, and the two components cτρY

0 , c
τρ′′

Y

0 share at least one common

symbol. Now we apply case 1 to c
τρ′′

Y

0 and c
τρ′

Y

0 . This proves that cτρY

0 and c
τρ′

Y

0 are

symbol connected. Similarly, cρXτ
k and c

ρ′

Xτ
k are symbol connected, for all τ 6= 0.

Finally, we show that any two paths Pτ1τ2 and Pτ3τ4 defined by Eq. 48 are symbol-
connected. Suppose first that τ1 6= 0 and τ4 6= 0. Then Pτ1τ2 is connected to Pτ1τ4

at the left end, and Pτ1τ4 is connected to Pτ3τ4 at the right end. Similarly for the
case when τ3 6= 0 and τ2 6= 0. It remains to consider the case τ1 = τ3 = 0 (and
similarly τ2 = τ4 = 0). In this case we have τ2 6= 0 and τ4 6= 0, therefore P0τ2 is
connected to P1τ2 , which is connected to P1τ4 , which is connected to P0τ4 .

8.4.9 Discussion. We explain here that the use of the general shattering rule
d → dA in Sect. 7 is essential in order to prove hardness of queries of type 2-2; in
other words, the more restricted shattering d → d[A/Z] was sufficient for Sect. 7,
but is insufficient here. Recall that the general shattering allowed us to rewrite d⋄
to h1. It turns out that d⋄ still has a distinguished variable, although some of its
9 Boolean functions Yuv are disconnected; in this regards, it behaves much like a
query of type 1-1. However, the following query does not have any distinguished
variables.

Example 8.43. Consider the following query:

d =S1(x, y1), S2(x, y2), S3(x, y3)∨

S2(x1, y), S3(x1, y), S1(x2, y), S3(x2, y), S1(x3, y), S2(x3, y)

The query is not forbidden, because it does not satisfy Prop. 8.33. (Another way to
see this is that it has no ubiquitous symbols, hence it fails Lemma 8.39.) Had we
adopted a set of rewrite rules that only allows shattering of the form d[A/Z] then the
query were forbidden: there are only two levels, and the queries d[S1 = false] =
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false, and d[S1 = true] ≡ S1(x, y1), S2(x, y2), S3(x, y3) ∨ S2(x1, y), S3(x1, y) are
safe. We show here that our hardness proof for type 2-2 queries fails on d. To see
this, notice that nX = nY = 3, and the left semilattice has 7 elements. The three
coatoms are:

d0∗1 =
∨

τ∈[3]

(
S0τ
1 (x, y1)∨

S0τ
2 (x1, y), S

0τ
3 (x1, y), S

0τ
1 (x2, y), S

0τ
3 (x2, y), S

0τ
1 (x3, y), S

0τ
2 (x3, y)

)

=
∨

τ∈[3]

S0τ
1 (x, y1)

d0∗2 =
∨

τ∈[3]

S0τ
2 (x, y2)

d0∗3 =
∨

τ∈[3]

S0τ
3 (x, y3)

In addition the semilattice contains all unions, d0∗12 = d0∗1 ∨ d0∗2 , etc. We claim
that the connected component containing the symbols Sτ1τ2

i with levelings τ1, τ2 > 0
is the same in d0∗12 ∨ d∗∗ and in d0∗123 ∨ d∗∗. This is because all components in
d∗∗ that have common symbols with d0∗ (i.e. symbols of the form S0τ

i ) are re-
dundant in both d0∗12 ∨ d∗∗ and d0∗123 ∨ d∗∗. For simple illustration, the subcompo-
nent S01

2 (x1, y), S
01
3 (x1, y), S

11
1 (x2, y), S

11
3 (x2, y), S

21
1 (x3, y), S

21
2 (x3, y), is redundant

in both queries. In other words, the two queries can be written as d0∗12 ∨ d′ and
d0∗123 ∨ d′, where d′ has no common symbols with d0∗. This implies that none of
the symbols in d′ can serve as distinguished variable. A simpler argument implies
that none of the symbols S0∗

i can serve as distinguished variable: for any τ , the
symbol S0τ

3 does not occur at all in d0∗12 ∨d∗∗, hence it cannot serve as distinguished
variable, and similarly for S0τ

1 and S0τ
2 .

8.5 Finding a Non-singular Matrix in PTIME

Finally, we show how to solve the linear systems of equations derived from Eq. 39
(for queries of type 1-1) or Prop. 8.29 (for queries of type 2-2) in PTIME, given
that the Jacobian of its ȳ functions is non-zero.
The principle that we apply is very simple. Given a polynomial in a single

variable x, f(x) =
∑

k akx
k, one can find in PTIME in n a value v s.t. f(v) 6= 0:

indeed, simply choose n + 1 distinct real values v0, v1, . . . , vn and compute f(vj)
for j = 0, . . . , n. At least one 6= 0, otherwise the polynomial is identical zero. We
apply the same principle to our matrix.
More precisely, we prove the following. Recall that whenever we write P = Q for

two multivariate polynomials, we mean that they are identical.

Proposition 8.44. Let x̄ = (x1, . . . , xm) be m variables, and Ḡ(x̄) = (G1(x̄), . . . , Gn(x̄))
be n multivariate polynomials in x̄. Consider n distinct copies of x̄, denoted x̄i,
i = 1, n, and let X̄ = (x̄i)i=1,n be the set of m · n distinct variables. Define the
following n× n matrix of polynomials:

M(Ḡ) = (Gj(x̄i))i,j=1,n (49)
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Then there exists an algorithm that runs in time (n + 1)O(m) and either deter-
mines that det(M) = 0 (as a multivariate polynomial in X̄) or finds values V̄ s.t.
det(M(Ḡ)[V̄ /X̄]) 6= 0.

We explain how to use the proposition in the case of queries of type 1-1; the
discussion extends also to queries of type 2-2. Consider Eq. 39. For each term k =
(k11, k12, k21, k22), define the polynomial Gk(z1, z2, z3, z4) = yk11

11 · · · yk22

22 . There are
(m + 1)4 polynomials Gk. One can think of the matrix of the system of (m + 1)4

copies of Eq. 39 as the matrix M(Ḡ), where each row i = 1, (m+1)4 has a different
set of values z̄i. The proposition gives us a PTIME procedure to find these (m+1)4

values such that the resulting matrix is non-singular. Thus, we run the oracle for
P (dL) on the database obtained by setting the distinguished variables (z1, . . . , z4)
to the values z̄i, for each i = 1, (m+1)4: the proposition ensures that the resulting
matrix is non-singular, and we can therefore invert it in PTIME. In the rest of this
section we prove the propositions, using two lemmas.

Lemma 8.45. Let P (x1, . . . , xm) be a multivariate polynomial of degree n, with
m = O(1) variables. Suppose we have an Oracle that, given values v1, . . . , vm,
computes P (v1, . . . , vm) in time T . Then there exists an algorithm that runs in
time O((n + 1)mT ) and either determines that P = 0 or returns a set of values
v̄ = (v1, . . . , vm) s.t. P (v̄) 6= 0.

Proof. By induction on m. Choose n + 1 distinct values for the last variable:
xm = v0m, xm = v1m, . . ., xm = vnm. For each value vim we substitute xm = vim
in P . We obtain a new polynomial, Q = P [xm/vim], with m − 1 variables. By
induction, we can find in time O((n + 1)m−1T ) a set of values v1, . . . , vm−1 s.t.
Q[x1/v1, . . . , xm−1/vm−1] 6= 0, or determine that none exists. If for some i we
find such values, then augment them with vim and return (v1, . . . , vm−1, v

i
m). If

Q = P [vim/xm] = 0 for all i = 0, n, then P is divisible by
∏

i(xm−vim), by Hilbert’s
Nullstellensatz. Since the degree of xm in P is at most n, it follows P = 0.

Fix n multivariate polynomials G1, . . . , Gn. Called them linearly independent if,
for any constants c1, . . . , cn, if c1G1 + . . .+ cnGn = 0 then c1 = . . . = cn = 0.

Lemma 8.46. The polynomials G1, . . . , Gn are linearly dependent iff det(M(Ḡ)) =
0, where M is given by Eq. 49.

Proof. The “only if” direction follows immediately from the fact that the
columns in M are linearly dependent. For the “if” direction, we prove by in-
duction on n that, if n polynomials G1, . . . , Gn are linearly independent, then
det(M) 6= 0. Let M ′ be the (n − 1) × (n − 1) upper-left minor of M . Since
G1, . . . , Gn−1 are also linearly independent, det(M ′) 6= 0. Hence, there exists val-
ues V̄ ′ = (v̄1, . . . , v̄n−1) s.t. det(M

′)[V̄ ′] 6= 0. Define the matrix M ′′ = M [V̄ ′]: that
is, we substitute x̄1, . . . , x̄n−1 with the values V̄ ′, and keep only the variables x̄N .
We prove that det(M ′′) 6= 0. The matrix M ′′ has in the last row the polynomials
G1(x̄n), . . . , Gn(x̄n), and has constants in all other rows. Its value is a linear combi-
nation of the polynomials in the last row: det(M ′′) = c1 ·G1+ . . .+cn ·Gn. The last
coefficient, cn = det(M ′)[V̄ ′], is non-zero. Since at least one coefficient is non-zero
and we assumed the polynomials to be independent, it follows that det(M ′′) 6= 0.
This implies det(M) 6= 0.
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We can now prove Prop. 8.44.We proceed by induction on n. Consider the upper
left minor M ′ of dimensions (n− 1)× (n− 1). Apply induction to the matrix M ′.
If we determine that det(M ′) = 0, then this implies that G1, . . . , Gn−1 are linearly
dependent, and therefore so are G1, . . . , Gn, which implies det(M) = 0. Otherwise,
we have computed a set of values V̄ ′ = (v̄1, . . . , v̄n−1) that make the upper left
minor M ′ non-singular. Denote M ′′ = M [x̄1 = v̄1, . . . , x̄n−1 = v̄n−1]. The last
row of this matrix consists of G1(x̄n), . . . , Gn(x̄n); all other entries are constants.
Denote P (x̄n) = det(M). This is a multivariate polynomial. We cannot compute
the polynomial explicitly, since it has exponentially many coefficients. However,
for any values v̄n, we can compute P [x̄n = v̄n] in time O(n3), by first substituting
x̄n = v̄n in all polynomials in the last row of M ′′, then computing the determinant.
We use this oracle and Lemma 8.45 to compute in time O((n + 1)m+3) a set of
values v̄n for which P [x̄n = v̄n] 6= 0; if no such value exists, then G1, . . . , Gn are
linearly dependent, since P is a linear combination of G1, . . . , Gn, and therefore
det(M) = 0. Otherwise, return the vector consisting of V̄ ′ concatenated with v̄n.

9. CONCLUSIONS

In this paper we have studied a fundamental computational problem connecting
logic an probability theory: given a query and a probabilistic database, compute
the probability of the query on that database. We have established a dichotomy
for unions of conjunctive queries (also known as the positive, existential fragment
of First Order logic): for every query Q, either P (Q) can be computed in PTIME
in the size of the database, or it is #P-hard. We call the query safe in the first
case, and unsafe in the second case. Safety/unsafety can be decided solely on the
syntax of the query, where “syntax” includes, unexpectedly, the Mobius function
of a certain lattice derived from the query. For safe queries we have given a simple,
yet quite non-obvious algorithm, which alternates between an inclusion/exclusion
step over the CNF representation of the query, and an elimination step of one
existential variable. For the hardness proof, we have made novel use of techniques
from classical algebra and calculus, such as the use of the Jacobian, Cauchy’s double
alternant, and irreducible multivariate polynomials, in order to prove hardness by
reduction from Provan and Ball’s Positive Partitioned 2CNF counting problem.
Acknowledgments We thank Christoph Koch and Paul Beame for pointing us

(independently) to incidence algebras, and Phokion Kolaitis for discussions on the
complexity classes #P and FP#P .
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A. PRIOR WORK ON CONJUNCTIVE QUERIES

In previous work [Dalvi and Suciu 2007a; Dalvi and Suciu 2006] we described a
PTIME algorithm for conjunctive queries, and claimed that it is complete, in the
sense that every query on which the algorithm fails is #P-hard. We clarify here
the status of that algorithm. First, the algorithm is sound (after fixing some minor
mistakes, as we explain below): whenever it succeeds on a query, it correctly com-
putes its probability. Second, its completeness remains open; as we explain below,
the algorithm is complete on queries over vocabularies of arities ≤ 2, but it remains
open whether it is complete in general. Our initial proof consisted of showing that,
if the algorithms gets stuck on a query Q, then hk ≤FO

prob Q, where k is is the length
of the inversion without eraser. But the proof was very complex, since it combined
all of Sect. 6, Sect. 7, and parts of Sect. 8 in one single giant step. It was also very
sensitive to small changes in the algorithm, and we could not resolve some gaps in
the proof.
With the techniques developed in this paper we have a much better understanding

of the algorithm in [Dalvi and Suciu 2007a] and its limitations. We review it below.
We will use the terminology in the current paper, and will use apostrophes when
referring to the terminology in [Dalvi and Suciu 2007a].

Notations

Although the goal in [Dalvi and Suciu 2007a] was to study only conjunctive queries,
due to ranking, the algorithm considered unions of conjunctive queries:

Q = q1 ∨ . . . ∨ qn (50)

The “strict coverage” in [Dalvi and Suciu 2007a] means, in our current terminology,
that the query is ranked. Let F = {f1, . . . , fk} be the set of all components in
all conjunctive: they were called “factors” in [Dalvi and Suciu 2007a], but we
will continue to refer to them as components, to have a consistent terminology in
this paper. A “coverage” is a pair C = (F , C) where F is a set of components,
|F| = k, and C = {c1, . . . , cn} where each ci ⊆ [k] represents the components in
the conjunctive query qi. The coverage C uniquely determines the UCQ query Q.
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Let f be a component, and x a variable. Denote at(x) the set of atoms that
contain a variable x. Call f hierarchical if for any two distinct variables x, y we
have either at(x) ⊆ at(y) or at(x) ∩ at(y) = ∅ or at(x) ⊇ at(y). We will assume
that all components are hierarchical: otherwise, the query is #P-hard.

Recall (Def. 4.1) that a ranking of fi is a partial order on the variables, (V ar(fi),�i

), such that, for any atom S(x1, . . . , xm) in fi, x1 ≺i x2 ≺i . . . ≺i xm. We say that
the ranking is compatible with the hierarchy if at(x) ⊃ at(y) implies x ≺i y, for
any two variables x, y. If S is a relational symbol of arity m and π is a permu-
tation on [m] then denote Sπ the relational symbol obtained from S by permut-
ing the attributes according to π. If Π denotes a set of permutations (πS)S∈R,
one for each symbol in the vocabulary, then fΠ

i denotes the query where each
atom S(x1, . . . xm) is replaced with S(xπS(1), . . . , xπS(m)). A set of components
{f1, . . . , fk} is called inversion free if each component is hierarchical, and if there
exists a set of permutations Π for the vocabulary such that, for each i = 1,m there
exists a ranking (V ar(fΠ

i ),�i) that is compatible with the hierarchy on fΠ
i . We

show three simple examples. First, the two components f1 = R(x1), S(x1, y1)
and f2 = T (x2), S(x2, y2) are inversion free, because the ranking x1 ≺1 y1 is
compatible with at(x1) ⊃ at(y1) and the ranking x2 ≺2 y2 is compatible with
at(x2) ⊃ at(y2). Second, consider the components f1 = R(y1), S(x1, y1) and
f2 = T (y2), S(x2, y2). This is also inversion free: first permute the attributes of S,
s.t. Sπ(y, x) = S(x, y) then the two components become fπ

1 = R(y1), S
π(y1, x1)

and fπ
2 = T (y2), S

π(y2, x2), now they are obviously inversion-free. Finally, consider
f1 = R(x1), S(x1, y1) and f2 = T (y2), S(x2, y2): this has an inversion because no
matter how we permute the attributes of S we cannot make it compatible with both
hierarchy orders at(x1) ⊃ at(y1) and at(x2) ⊂ at(y2).
We will omit mentioning the permutation Π for an inversion-free set of compo-

nents F = {f1, . . . , fk} when clear from the context, and will only indicate the
rankings �1, . . . ,�m. Inversion-free sets have the following nice properties. (1) F
has a separator. Indeed, let xi be the minimal variable in V ar(fi) w.r.t. the order
�i. Then at(xi) is a maximal set, hence it includes all atoms in fi, because fi is
hierarchical, and, moreover, it occurs on the first position in each atom; therefore
the set of variables x1, . . . , xm forms a separator. (2) Let a be a constant, and let
F ′ = {g1, . . . , gp} be the set of all components of all queries fi[a/xi], excluding the
components that consist of a single ground tuple. If gj is a component of fi[a/xi],
denote �′

j the restriction of �i to V ar(gj). Then �′
j is a ranking for gj compatible

with its hierarchy. In particular, F ′ is inversion-free.

Review of the Algorithm from [Dalvi and Suciu 2007a]

Call a non-empty subset σ ⊆ [k] a “signature”, and denote fσ the conjunctive query∧
i∈σ fi. Define the lattice K(C) to be (K ∪ {1̂},≤) where K = {σ | fσ ⇒ Q}, and

σ1 ≤ σ2 if σ1 ⊇ σ2. Note σ1 ≤ σ2 implies fσ1
⇒ fσ2

, but the converse is not true in
general: we may have two distinct components such that f1 ⇒ f2, yet {1} 6≤ {2}.
The lattice meet corresponds to set union, i.e. σ1 ∧ σ2 = σ1 ∪ σ2. Assuming the
expression Q in Eq. 50 has no redundant queries qi, the co-atoms of the lattice K
are precisely the sets c1, c2, . . . , cn ∈ C.

We did not introduce the notion of a lattice in [Dalvi and Suciu 2007a], but de-
fined a quantity that is related to the Mobius function. For s ⊆ [n], let its signature
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be sig(s) =
⋃

i∈s ci. In Definition 2.10 we set: N(C, σ) = (−1)|σ|
∑

s⊆C,sig(s)=σ(−1)|s|.
Then, one can check that:

N(C, σ) =

{
(−1)|σ|µK(σ, 1̂) if σ ∈ K

0 if σ 6∈ K

To compute P (Q) we will use Mobius’ inversion formula on Eq. 50, and for that
we need to define a different lattice. Call a set s ⊆ [n] a “cover”, define its
“signature” to be sig(s) =

⋃
i∈s ci ⊆ [k], and denote qs = fsig(s). Equivalently,

qs =
∧

i∈s qi and, in particular q{i} = qi. Define the closure of a cover s ⊆ [n]
to be s̄ = {i | qs ⇒ qi} ⊆ [n]. Define the DNF lattice of the coverage C to be
L(C) = (L,≤) where L ⊆ [n] is the set of closed sets, and s1 ≤ s2 if qs1 ⇒ qs2 . By
Prop. 2.13 the latter holds iff ∀j ∈ s2, ∃i ∈ s1 such that fi ⇒ fj and, since s1 is
closed, it implies that j ∈ s1. Thus, s1 ≤ s2 iff s1 ⊇ s2. The definition of the DNF
lattice is dual to that of the CNF lattice in Def. 4.8.
Thus, the lattice K consists of all subsets of [k] that contain at least some ci,

while L consists of all subsets of [n] that are closed; we need K because that’s
what we used in [Dalvi and Suciu 2007a], and we need L because that is the lattice
were we can compute P (Q). Their relationship is the following. L is a meet-
sublattice of K, through the injection s 7→ sig(s): indeed, if sig(s1) = sig(s2) = σ
then qs1 ≡ fσ ≡ qs2 proving that s̄1 = s̄2 and, hence, s1 = s2 because s1, s2 are
closed. Moreover, L and K have the same sets of co-atoms, modulo the injection,
namely c1, c2, . . . , cn in K and {1}, . . . , {n} in L. The following property holds for
a meet-sublattice L that contains all co-atoms [Suciu et al. 2011, Corollary 4.17]:

µK(sig(s), 1̂) =µL(s, 1̂) (51)

µK(σ, 1̂) =0 if σ 6= sig(s), ∀s ∈ L

The Expansion Theorem 2.11 in [Dalvi and Suciu 2007a] is, at its essence, Mo-
bius’ inversion formula:

P (Q) =−
∑

s∈L

µL(s, 1̂)P (qs) = −
∑

σ∈K

µK(σ, 1̂)P (fσ) = −
∑

σ⊆[k]

N(C, σ)(−1)|σ|P (fσ)

(52)

In Theorem 2.11, the term (−1)|σ|P (fσ) is replaced with a more complex formula,
(an inclusion-exclusion expression over the active domain), which we do not need
in our discussion here.
There are two algorithms in [Dalvi and Suciu 2007a], both starting from Eq. 52.
Algorithm 1: Inversion-Free Queries. The first algorithm shows how to

compute P (fσ) in PTIME when the set of components of fσ is inversion-free:
this is Theorem 3.8 [Dalvi and Suciu 2007a]. While this algorithm is definitely
more complicated than our (more general) algorithm 2, it is quite clearly described
in [Dalvi and Suciu 2007a], and does not require further review. In [Dalvi and Suciu 2007a]
we only use this result to claim that Q is in PTIME if the set of all components
is inversion free, the following stronger result holds immediately: if for every σ s.t.
N(C, σ) 6= 0, fσ is inversion-free, then Q is in PTIME.
Thus, by ignoring terms P (fσ) where N(C, σ) = 0, we obtain the following com-

pleteness result for Algorithm 1:
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Proposition A.1. If all relational symbols in the vocabulary have arity ≤ 2,
then Algorithm 1 in [Dalvi and Suciu 2007a] is complete.

Proof. Let Q be any UCQ query, and consider its CNF lattice (Def. 4.8). The
lattice elements are labeled with queries of the form fi1 ∨ . . . ∨ fim . If the set
{fi1 , . . . , fim} is inversion free then their union has a separator and, because all
symbols are binary, the converse holds too. It follows that the only non-zero terms
P (fi1 ∨ . . . ∨ fim) in Mobius’ inversion formula on the CNF lattice (Eq. 12) are
over sets of components that are inversion-free. Use inclusion-exclusion to con-
vert these terms to sums of probability of conjuncts, i.e. P (fi1 ∨ . . . ∨ fim) =
−
∑

σ⊆{i1,...,im},σ 6=∅ P (fσ). It follows that the only terms that don’t vanish in Eq. 52
are inversion-free.

We illustrate Algorithm 1 on two examples

QV =R(x1), S(x1, y1) ∨ S(x2, y2), T (y2) ∨R(x3), T (y3)

QW =(h30 ∨ h32) ∧ (h30 ∨ h33) ∧ (h31 ∨ h33)

=h30, h31 ∨ h30, h33 ∨ h32, h33

The first, QV , is from Example 3.5, the second is shown in Fig. 1. In both cases
the DNF lattice L is shaped like a W and is isomorphic to the lattice shown in
Fig. 1. The only lattice element where qs has an inversion is the bottom element,
but it also has µL(s, 1̂) = 0. By Eq. 51 and Eq. 52, the only elements where fσ has
an inversion has N(C, σ) 6= 0.
Algorithm 2: Erasers The major limitation of the approach in [Dalvi and Suciu 2007a]

is that, by working on the DNF rather than the CNF representation, we could not
use the projection rule (step 17 of algorithm 2). This required a much more com-
plex approach, using a technique called “eraser”. It is open whether this approach
is complete. We describe here the main idea, pointing out and fixing some errors
in [Dalvi and Suciu 2007a], and proving its soundness. We will illustrate on the
following example:

Q′
V =R(z1, x1), S(z1, x1, y1) ∨ S(z2, x2, y2), T (z2, y2) ∨R(z3, x3), T (z3, y3) = f1 ∨ f2 ∨ f3

The variables z1, z2, z3 form a separator, so algorithm 2 would simply substitute
them with a constant, then the query becomes isomorphic to QV . Instead, the
algorithm in [Dalvi and Suciu 2007a] applies the inclusion/exclusion formula ob-
taining 7 terms, of which two have inversions: P (f1, f2) and P (f1, f2, f3):

P (Q′
V ) = P (f1) + P (f2) + P (f3)− P (f1, f3)− P (f2, f3)− P (f1, f2) + P (f1, f2, f3)

Let f1, f2 ∈ F be two components, and let S(x1, x2, . . . , xm) be an atom in f1
(where x1, . . . , xm must be distinct variables, because the query is ranked), and let
S(y1, y2, . . . , ym) be an atom in f2. Denote f12 = θ(f1, f2) the MGU (Most General
Unifier) that unifies the two S-atoms. An “eraser” is a component f3 ∈ F with the
following properties: (a) the logical implication θ(f1, f2) ⇒ f3 holds (this is query
containment); (b) for any σ ⊆ [k], N(σ∪{1, 2}) = N(σ∪{1, 2, 3}), and (c) for each
i = 1, 2, 3 there exists a partial order (V ar(fi),�i) that is compatible with the
hierarchy in fi such that there exists two permutations Π1,Π2 on the attributes of
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the vocabulary for which �1,�3 are rankings for fΠ1

1 , fΠ1

3 and �2,�3 are rankings
for fΠ2

2 , fΠ2

3 . In particular, the set {f1, f3} is inversion-free, and the set {f2, f3} is
inversion-free, but not necessarily the set {f1, f2, f3}.
In our running example, f3 is an eraser for f1, f2. Indeed, θ(f1, f2) ≡ R(z, x), S(z, x, y), T (z, y)

and condition (a) holds trivially. To check condition (b) it suffices to notice that
N(C, {1, 2}) = −1 = N(C, {1, 2, 3}). To check the condition (c), we order the
variables as follows:

f1 :z1 ≺1 x1 ≺1 y1

f2 :z2 ≺2 y2 ≺2 x2

f3 :z3 ≺3 x3, z3 ≺3 y3

Then ≺1,≺3 are compatible with the hierarchies on f1, f3 respectively (no per-
mutation is needed); for f1, f3, consider the permutation that switches the x, y
attributes in S, i.e. Sπ(z, y, x) = S(z, x, y): then fπ

2 and fπ
3 become fπ

2 =
Sπ(z2, y2, x2), T (z2, y2) and fπ

3 = f3 = R(z3, x3), T (z3, y3). Notice that f3 re-
mains unchanged under the two permutations, but that in f1 and f2 we permuted
differently the order of the attributes in S.

We now state the soundness of the eraser technique, and sketch a proof. In [Dalvi and Suciu 2007a]
soundness was proven using Lemma 4.13, which in essence says that, the terms
P (fσ, f1, f2) and P (fσ, f1, f2, f3) can be reduced to inversion-free queries. Its proof
is correct (assuming our current definition of erasers, see the discussion below),
but quite complicated; to illustrate it we give here a different, much simpler proof,
assuming for simplicity that σ = ∅. Let be x1, x2, x3 the minimial variables under
the order �1,�2,�3, and write fi ≡ ∃xi.gi for i = 1, 2, 3, where gi is an expression
where xi is a free variable: note that xi occurs in all atoms, on the first position.
The two terms have opposite signs in Eq. 52, and they can be grouped as follows,

P (f1, f2)− P (f1, f2, f3) =P (f1, f2,¬f3) = P (f1,¬f3) + P (f2,¬f3)− P ((f1 ∨ f2),¬f3)

The first two terms are inversion-free: more precisely P (f1,¬f3) = P (f1)−P (f1, f3)
where each of the two queries f1 and f1, f3 are inversion free. So we focus on the
last query above and write it as:

(f1 ∨ f2),¬f3 ≡ [∃y.(g1[y/x1] ∨ g2[y/x2])] ∧ ¬f3 ≡ [∃y.(g1[y/x1] ∨ g2[y/x2]) ∧ ¬g3[y/x3]] ∧ ¬f3

Denote g′i = gi[y/xi] and, for a fixed constant a, denote f ′
i = fi[a/xi] = gi[a/xi].

Then:

P ((f1 ∨ f2),¬f3) = P (∃y.[(g′1 ∨ g′2) ∧ ¬g′3] ∧ ¬f3) = P (∃y.[(g′1 ∨ g′2) ∧ ¬g′3] ∨ f3)− P (f3)

P (∃y.[(g′1 ∨ g′2) ∧ ¬g′3] ∨ f3) = P (∃y.[[(g′1 ∨ g′2) ∧ ¬g′3] ∨ g′3]) = 1−
∏

a∈ADom

(1− P ((f ′
1 ∨ f ′

2) ∧ ¬f ′
3))

Looking at the query (f ′
1 ∨ f ′

2) ∧ ¬f ′
3, we consider two cases. The first is when

the atom S in f1, f2 had arity 1: in that case, after substituting with a constant a
it becomes a ground atom (arity 0 after shattering), the two S-atoms in f1[a/x1]
and f2[a/x2] unify, which means that f ′

1, f
′
2 ⇒ f ′

3, which further implies that the
two events f ′

1,¬f
′
3 and f ′

2,¬f
′
3 are exclusive: hence we have P ((f ′

1 ∨ f ′
2) ∧ ¬f ′

3) =
P (f ′

1 ∧ ¬f ′
3) + P (f ′

2 ∧ ¬f ′
3), and every subquery is inversion-free. The second case

is when the atom S had arity 2 or larger. Then we apply inductively the same

Journal of the ACM, Vol. V, No. N, Month 20YY.



Dichotomy of Unions of Conjunctive Queries · 97

argument to P ((f ′
1 ∨ f ′

2) ∧ ¬f ′
3). This proves that P (f1, f2) − P (f1, f2, f3) can be

reduced to computing the probability of several inversion-free queries.
Finally, we correct three mistakes in [Dalvi and Suciu 2007a]. First, there we

applied an eraser to every pair of components f1, f2 that share a common symbol.
When no eraser f3 existed, then we considered adding the unifier θ(f1, f2) as a new
component, when this was hierarchical. In fact, we add all unifiers that satisfied a
condition called “hierarchical”, and used that as eraser. As we saw in Prop. A.1,
adding unnecessary unifiers is not needed when there are no inversions: in fact, once
we start adding such unifiers, we no longer know whether completeness (Prop. A.1)
still holds. Thus, it is open which unifiers should be added in general. A second,
minor point is that we defined erasers slightly more generally to consists of a set
of components, rather than one single component. It is open whether these more
general erasers increase the expressive power, so we did not mention them here.
The third is more important: the definition of an eraser was too weak, making
the algorithm unsound. The weaker condition is insufficient for proving Lemma
4.13, and therefore the algorithm is not sound as stated. To obtain soundness,
the definition of an eraser must be restricted to condition (c) (and further refined
to handle chains of unifiers): we have sketched a proof of soundness earlier. We
illustrate this issue with two examples:

Q1 =[S1(x, y1), S2(x, y1), S3(x, y1)], [S1(x, y2), S2(x, y2), S4(x, y2)]∨

[S1(x1, y), S3(x1, y), S4(x1, y)], [S2(x2, y), S3(x2, y), S4(x2, y)]

Q2 =[S(x, y1), S1(x, y1)], [S(x, y2), S2(x, y2)]∨

S1(x, y), S2(x, y), S3(x, y), S4(x, y)∨

[S′(x1, y), S3(x1, y)], [S
′(x2, y), S4(x2, y)]

The first query has two components, denote them f1, f2, and each component has
two subcomponents, shown in square brackets. Consider unifying the atom S1(x, y1)
with S1(x1, y): the resulting query minimizes to θ(f1, f2) = f3 = S1(x, y), S2(x, y), S3(x, y), S4(x, y):
this is a hierarchical query and, therefore, according to our definition [Dalvi and Suciu 2007a;
Dalvi and Suciu 2006], would be included in F∗. This implies that all unifiers be-
long to F∗ = {f1, f2, f3}; by Lemma 4.13 the query should be in PTIME, which is
incorrect, because Q1 is a forbidden query, hence it is #P-hard. In our new defini-
tion, f3 is not an eraser for f1, f2 because it cannot be ranked to be simultaneously
inversion-free with both f1 and f2. The problem is further illustrated in Q2, where
there are three components f1, f3, f2 and any unification between f1, f3 results in
S(x, y), S1(x, y), S2(x, y), S3(x, y), S4(x, y), which further unifies with f2 resulting
in S(x, y), S′(x, y), S1(x, y), S2(x, y), S3(x, y), S4(x, y): both are considered hierar-
chical unifiers in [Dalvi and Suciu 2007a; Dalvi and Suciu 2006] and the query is
classified incorrectly as being in PTIME (the query is a forbidden query). The
definition of erasers must insist that the variable order in a component be the same
in all usages of that component.
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