
Queries and Materialized Views on Probabilistic Databases

Nilesh Dalvia, Christopher Reb, Dan Suciuc∗

aYahoo Reserach

bUniversity of Washington

cUniversity of Washington

We review in this paper some recent yet fundamental results on evaluating queries
over probabilistic databases. While one can see this problem as a special instance of
general purpose probabilistic inference, we describe in this paper two key database specific
techniques that significantly reduce the complexity of query evaluation on probabilistic
databases. The first is the separation of the query and the data: we show here that by
doing so, one can identify queries whose data complexity is #P-hard, and queries whose
data complexity is in PTIME. The second is the aggressive use of previously computed
query results (materialized views): in particular, by rewriting a query in terms of views,
one can reduce its complexity from #P-complete to PTIME. We describe a notion of a
partial representation for views, and show that, once computed and stored, this partial
representation can be used to answer subsequent queries on the probabilistic databases.
evaluation.

1. Introduction

Probabilistic databases are databases where the presence of a tuple, or the value of an
attribute is a probabilistic event. The major difficulty in probabilistic database is query
evaluation: the result of a SQL query over a probabilistic database is a set of tuples to-
gether with the probability that those tuples belong to the output, and those probabilities
turn out to be hard to compute. In fact, computing those output probabilities is a special
instance of probabilistic inference, which is a problem that has been studied extensively
by the Knowledge Representation community. Unlike general purpose probabilistic infer-
ence, in query evaluation we have a few specific techniques that we can deploy to speed
up the evaluation considerably.

The first is the separation between the query and the data: the query is small, the
data is large. Following Vardi [31], define the data complexity to be the complexity of
query evaluation where the query is fixed, and the complexity is measured only in the
size of the database. A number of results in query processing over probabilistic databases
have shown that for some queries the data complexity is PTIME, while for others it is
#P-hard: we review those results in Sec. 3, following mostly [11].

∗This work was partially supported by NSF Grants IIS-0454425, IIS-0513877, IIS-0713576, and a Gift
from Microsoft.

1

2 Dalvi, Re, Suciu

The second technique is the use of materialized views. A materialized view is simply
the result of a query that has been precomputed and stored. In traditional databases,
materialized views are used widely to speed up query processing [28,3,18]. Examples of
traditional materialized views include standard indexes, join-indexes, and aggregates in
data cubes. We describe in this paper an approach by which materialized views can be
used to speedup query processing in probabilistic databases. As in traditional databases,
we compute and store the answer to a view over a probabilistic database, then rewrite a
query to use the view(s) whenever possible. In our approach, the view looks like any other
probabilistic relation: it consists of a set of tuples, and their marginal probabilities. The
main difficulty is how to represent the correlations between these tuples. One possibility
would be to store their lineage, as done by the Trio system [7]: the lineage represents how
a tuple was derived, and thus can be used during query processing to account for corre-
lations. There are two costs in evaluating a query over a probabilistic database: the cost
of relational processing (selections, joins, etc), and the cost of the probabilistic inference.
Views with explicit lineage expressions can reduce the cost of relational processing, but
not that of the probabilistic inference, and for that reason we favor a different approach
to represent correlations in the view. We compute a partial representation of the proba-
bilistic view, which allows us to determine for every two tuples in the view whether they
are independent, disjoint, or have a more complex correlation that is not captured in the
partial representation. We say that a query is well defined on the view if its output prob-
ability depends only on the marginal tuple probabilities in the view, assuming that the
independence and disjointness relationships specified in the partial representation hold; in
other words, the query is well defined if it does not depend on the unknown correlations
between tuples in the view. We prove several results about partial representations and
well-definedness. First, we show that every probabilistic database represented by a c-table
admits a “best” partial representation that captures all independence relationships; this
representation is instance specific, i.e. best for the given instance. Next, we show that
every probabilistic view defined by a conjunctive query admits a “best” partial repre-
sentation; this representation is instance-independent, i.e. it depends on the expression
defining the view, but is independent on the input probabilistic database instance. Fi-
nally, we give a necessary and sufficient condition for a query to be well-defined given a
view. The results on materialized views and well-definedness are described in Section 4.
Some of the results in this section have been announced previously in [26].

2. Definition: the Possible Worlds Data Model

We review here the definition of a probabilistic database based on possible worlds, and
of a disjoint-independent database. We restrict our discussion to relational data over an
infinite discrete domain: extensions to continuous domains [14] and to XML [19,1,30] have
also been considered.

We fix a relational schema R = (R1, . . . , Rk), where Ri is a relation name, has a set of
attributes Attr(Ri), and a key Key(Ri) ⊆ Attr(Ri). Denote D a finite domain of atomic
values: D is the active domain or a superset thereof, and is considered part of the input.
Let Tup be the set of all typed tuples of the form t = Ri(a1, . . . , am), for some i = 1, k
and a1, . . . , am ∈ D. We denote Key(t) the tuple consisting of the key attributes in t

Queries and Materialized Views 3

(hence its arity is |Key(Ri)|). A database instance is any subset I ⊆ Tup that satisfies
all key constraints.

In a probabilistic database the state of the database, i.e. the instance I is not known.
Instead the database can be in any one of a finite number of possible states I1, I2, . . .,
called possible worlds, each with some probability.

Definition 2.1 A probabilistic database is a probability space PDB = (W,P) where
the set of outcomes is a set of possible worlds W = {I1, . . . , In}, and P is a function
P : W → (0, 1] s.t.

∑
I∈W P(I) = 1.

Fig. 1 illustrates three possible worlds of a probabilistic database. The probabilistic
database has more worlds, and the probabilities of all worlds must sum up to 1; the
figure illustrates only three worlds. The intuition is that we have a database with schema
R(A,B,C,D), but we are not sure about the content of the database: there are several
possible contents, each with a probability.

A possible tuple for a probabilistic database PDB is a tuple that occurs in at least one
possible world; we typically denote T the set of possible tuples.

2.1. Query Semantics
Consider a query q of output arity k, expressed over the relational schema R. Recall

that, when evaluated over a standard database instance I, a query returns a relation of
arity k, q(I) ⊆ Dk. If k = 0, then we call the query a Boolean query.

Definition 2.2 Let q be a query of arity k and PDB = (W,P) a probabilistic database.
Then q(PDB) is the following probability distribution on the query’s outputs: q(PDB) =
(W ′,P′) where:

W ′ = {q(I) | I ∈ W}
P′(J) =

∑
I∈W :q(I)=J

P(I)

That is, when applied to a probabilistic database PDB the query returns another
probabilistic database obtained by applying the query separately on each world. The
probability space q(PDB) is called an image probability space in [16].

A particular case of great importance to us is when q is a Boolean query. Then q
defines the event {I | I |= q} over a probabilistic database, and its marginal probability
is P(q) =

∑
I∈W |I|=q P(I): note that the image probability space in this case has only two

possible worlds: q(PDB) = ({I0, I1},P′), where I0 = ∅, I1 = {()}, and P′(I0) = 1−P(q),
P′(I1) = P(q). Thus, for all practical purposes q(PDB) and P(q) are the same, and we
will refer only to P(q) when the query q is Boolean. A special case of a Boolean query is
a single tuple t, and its marginal probability is P(t) =

∑
I∈W |t∈I P(I). Note that t 6= t′

and Key(t) = Key(t′) implies P(t, t′) = 0, i.e. t, t′ are disjoint events.

2.2. Block-Independent-Disjoint Databases
In order to study query complexity on probabilistic databases we need to choose a

way to represent the input database. We could enumerate all possible worlds I1, I2, . . . ,

4 Dalvi, Re, Suciu

together with their probabilities p1, p2, . . . , assumed to be rational numbers. But such
an enumeration is clearly infeasible in practice because it is too verbose. A number of
researchers have searched for compact representations of probabilistic databases [12,7,16,
6,5], and Green and Tannen [16] observed a strong connection between representation
systems for probabilistic databases and for incomplete databases.

In our study we choose a representation of probabilistic databases where tuples are
either disjoint probabilistic events, or independent probabilistic events.

Definition 2.3 A probabilistic database PDB is block-independent-disjoint, or BID, if
∀t1, . . . , tn ∈ T , Key(ti) 6= Key(tj) for i 6= j implies P(t1, . . . , tn) = P(t1) · · ·P(tn).

This justifies the I in BID: the D is justified by the fact that tuples with the same
values of the key attributes are disjoint (this holds in any probabilistic database, not only
in BIDs).

A BID specification is (T,P), where T ⊆ Tup is a set of tuples, called possible tuples,
and P : T → [0, 1] is such that, denoting K = {Key(t) | t ∈ T} the set of key values,
∀k ∈ K,

∑
t∈T :Key(t)=k P(t) ≤ 1.

Theorem 2.4 Let (T,P0) be a BID specification. Then there exists a unique BID prob-
abilistic database PDB = (W,P) s.t. its set of possible tuples is T and for all t ∈ T its
marginal probability P(t) is equal to P0(t).

Proof: (Sketch) Let PDB = (W,P) be a BID probabilistic database whose marginal
tuple probabilities are P0, and let I ∈ W . Obviously I ⊆ T , and we will show that P(I)
is uniquely defined by (T,P0) and the independence assumption. For any key k ∈ K,
let pk = P0(t), if there exists t ∈ I s.t. Key(t) = k, and pk = 1 −

∑
t∈T :Key(t)=k P0(t)

otherwise. Then P(I) =
∏

k∈K pk. Conversely, define the PDB = (Inst(T),P), where
Inst(T) denotes the set of instances over the tuples T , and P is defined as above: it is
easy to check that this is a probability space (

∑
I P(I) = 1), that it is BID, and that its

marginal tuple probabilities are given by P0. 2

The size of a BID specification (T,P) is |T |; we always assume the probabilities to be
rational numbers. Fig. 2 illustrates a BID, which has 16 possible worlds, three of which
are shown in Fig. 1. There are seven possible tuples, each with some probability and it
is convenient to group the possible tuples by their keys, A,B, to emphasize that at most
one can be chosen in each group.

We call the database independent if Key(Ri) = Attr(Ri) for all relation symbols Ri,
i.e. there are no disjoint tuples.

2.3. pc-Tables and Lineage
BID’s are known to be an incomplete representation system2. Several, essentially equiv-

alent, complete representation systems have been discussed in the literature [12,16,7].

2For example, consider three possible tuples, T = {t1, t2, t3}, and a probabilistic database with three
possible worlds, {t1, t2}, {t1, t2}, {t2, t3}, each with probability 1/3. Then the tuples t1, t2 are neither
disjoint, nor independent.

Queries and Materialized Views 5

Here we follow the representation system described by Green and Tannen [16] and called
pc-tables, which extends the c-tables of [20].

Fix a set of variables X̄ = {X1, . . . , Xm}, and for each variable Xi fix a finite domain
Dom(Xj) = {0, 1, . . . , dj}. We consider Boolean formulas ϕ consisting of Boolean combi-
nations of atomic predicates of the form Xj = v, where v ∈ Dom(Xj). Define a constant
c-table to be conventional relation R, where each tuple ti is annotated with a Boolean
formula ϕi, called the lineage of t. Note that our definition is a restriction of the standard
definition of c-tables [20] in that no variables are allowed in the tuples, hence the term
“constant”: we will drop this term and refer to a constant c-table simply as a c-table in
the rest of this paper.

A valuation θ assigns each variable Xj to a value θ(Xj) ∈ Dom(Xj), and we write
θ(R) = {ti | θ(ϕi) = true}.

A pc-table [16] PR is a pair (R,P), consisting of a c-table R and a set of probability
spaces (Dom(Xj),Pj), one for each j = 1, . . . ,m. We denote P the product space, i.e.
where the variables Xj are independent: P(θ) =

∏
j Pj(θ(Xj)), for every valuation θ.

A BID database PDB = (T,P) can be expressed as pc-tables as follows. Denote
K = {k1, k2, . . . , km} the set of all key values in T , and define a set of variables X =
{X1, . . . , Xm} (one variable for each key value). Suppose that the key value kj occurs in
dj distinct tuples in T , call them tj1, tj2, . . . , tjdj

: then define Dom(Xj) = {0, 1, . . . , dj}
and annotate the tuple tji with the Boolean expression Xj = i. Finally, for each j
define the probability space (Dom(Xj),Pj) by setting Pj(i) = P(tji) for i > 0 and
Pj(0) = 1−

∑
i P(tji).

A fundamental result of c-tables [20] is that they are closed under relational queries.
Given a database consisting of a set of c-tables over variables X̄ and a relational query
q of output arity k, the query’s output can also be represented as a c-table, of arity k,
where the lineage of each output tuple t ∈ Dk, is some Boolean expressions ϕq(t) using
the same variables X̄. We illustrate this query lineage with a simple example.

Example 2.5 Consider the schema R(A,B), S(B), and consider seven possible tuples,
four in R and three in S:

R : A B
a1 b1 X1 = 1
a1 b2 X1 = 2
a2 b1 X2 = 1
a2 b3 X2 = 2

S : B
b1 Y1 = 1
b2 Y2 = 1
b3 Y3 = 1

Assume Dom(X1) = Dom(X2) = {0, 1, 2} and Dom(Y1) = Dom(Y2) = Dom(Y3) =
{0, 1}. There are 3 · 3 · 8 = 72 possible worlds. Another way to look at this is that the 72
possible worlds are precisely those subsets of the seven possible tuples where A is a key
in R. Consider the Boolean query h2 ≡ R(x, y), S(y). Then ϕh2 is:

ϕh2 = (X1 = 1) ∧ (Y1 = 1) ∨
(X1 = 2) ∧ (Y2 = 1) ∨
(X2 = 1) ∧ (Y1 = 1) ∨
(X2 = 2) ∧ (Y3 = 1)

6 Dalvi, Re, Suciu

I1
A B C D

a1 b1 c1 d1

a2 b1 c3 d1

a2 b2 c4 d2

P(I1) = 0.06
(= p1p3p6)

I2
A B C D

a1 b1 c2 d2

a2 b1 c2 d1

a2 b2 c4 d2

P(I2) = 0.12
(= p2p5p6)

I3
A B C D

a1 b1 c1 d1

a2 b2 c4 d2

P(I3) = 0.04
(= p1(1-p3-p4-p5)p6)

Figure 1. A probabilistic database PDB = ({I1, I2, I3, . . .},P) with schema
R(A,B,C,D); we show only three possible worlds.

A B C D P

a1 b1 c1 d1 p1 = 0.25
c2 d2 p2 = 0.75

a2 b1 c3 d1 p3 = 0.3
c1 d3 p4 = 0.3
c2 d1 p5 = 0.2

a2 b2 c4 d2 p6 = 0.8
c5 d2 p7 = 0.2

Figure 2. Representation of a BID. The seven possible tuples are grouped by their keys,
for readability. There are 16 possible worlds; three are shown in Fig. 1.

3. Query Evaluation on Probabilistic Databases

In this section we summarize the results on query evaluation from [11].
We study here the following problem. Given a Boolean query q and a BID PDB =

(T,P), compute q(PDB). In general the query is expressed in FO, and we will study
extensively the case when q is a conjunctive query. We are interested in the data com-
plexity [31]: fix q, and study the complexity of P(q) as a function of the input PDB. The
probabilities are assumed to be rational numbers.

Since c-tables are closed under relational queries, given a set of possible tuples T , any
query q expressed in FO has a well defined lineage ϕq, which is a Boolean formula whose
size is polynomial in the size of T . Moreover, if q is a conjunctive query, then ϕq is a
DNF formula of polynomial size in T , therefore, any upper bounds for computing the
probability of a Boolean formula P(ϕq) become upper bounds for computing a query
probability P(q). Thus:

Theorem 3.1 (1) Computing P(ϕ) for a Boolean expression ϕ is in #P [29]. It follows

Queries and Materialized Views 7

that for any query q in FO, the problem “given a BID, compute P(q)” is in #P. (2)
Computing P(ϕ) for a DNF formula ϕ has a FPTRAS 3 [21]. It follows that for any
conjunctive query q the problem “given a BID, compute P(q)” has an FPTRAS.

The complexity class #P consists of problems of the following form: given an NP
machine, compute the number of accepting computations [23]. For a Boolean expression
ϕ, let #ϕ denote the number of satisfying assignments for ϕ. Valiant [29] has shown that
the problem: given ϕ, compute #ϕ, is #P-complete. The statement above “computing
P(ϕ) is in #P” means the following: there exists a function F over the input probabilities
P(X1), . . . ,P(Xn) (which are rational numbers) s.t. (a) F can be computed in PTIME
in n, and (b) the problem “compute F · P(ϕ)” is in #P. For example, in the case of a
uniform distribution where P(Xi) = 1/2 and all variables are independent, then we take
F = 2n, and 2nP(ϕ) = #ϕ, hence computing F · P(ϕ) is in #P. To be more accurate,
computing P(ϕ) is in the class FP with an oracle to #P, in fact with a single call to the
#P oracle.

A Dichotomy for Queries without Self-joins
We now establish the following dichotomy for conjunctive queries without self-joins:

computing P(q) is either #P-hard or is in PTIME in the size of the database PDB =
(T,P). A query q is said to be without self-joins if each relational symbol occurs at most
once in the query body [9,8]. For example R(x, y), R(y, z) has self-joins, R(x, y), S(y, z)
has not.

Theorem 3.2 For each of the queries below (where k,m ≥ 1), computing P(q) is #P-
hard in the size of the database:

h1 = R(x), S(x, y), T (y)

h+
2 = R1(x, y), . . . , Rk(x, y), S(y)

h+
3 = R1(x, y), . . . , Rk(x, y), S1(x, y), . . . , Sm(x, y)

The underlined positions represent the key attributes (see Sec. 2), thus, in h1 the
database is tuple independent, while in h+

2 , h
+
3 it is a BID. When k = m = 1 then we

omit the + superscript and write:

h2 = R(x, y), S(y)

h3 = R(x, y), S(x, y)

The significance of these three (classes of) queries is that the hardness of any other
conjunctive query without self-joins follows from a simple reduction from one of these

3FPTRAS stands for fully poly-time randomized approximation scheme. More precisely: there exists
a randomized algorithm A with inputs ϕ, ε, δ, which runs in polynomial time in |ϕ|, 1/ε, and 1/δ,
and returns a value p̃ s.t. PA(|p̃/p − 1| > ε) < δ. Here PA denotes the probability over the random
choices of the algorithm. Grädel et al. [15] show how to extend this FPTRAS from the case when all
probabilities are 1/2 to arbitrary (but independent) probabilities; we showed in [11] how to extend it to
disjoint-independent probabilities.

8 Dalvi, Re, Suciu

three (Lemma 3.4). By contrast, the hardness of these three queries is shown directly (by
reducing Positive Partitioned 2DNF [24] to h1, and PERMANENT [29] to h+

2 , h
+
3) and

these proofs are more involved.
Previously, the complexity has been studied only for independent probabilistic databases.

De Rougemont [13] claimed that it is is in PTIME. Grädel at al. [13,15] corrected this and
proved that the query R(x), R(y), S1(x, z), S2(y, z) is #P-hard, by reduction from regular
(non-partitioned) 2DNF: note that this query has a self-join (R occurs twice); h1 does not
have a self-join, and was first shown to be #P-hard in [9]; h+

2 and h+
3 were first shown to

be #P-hard in [11].
A PTIME Algorithm We describe here an algorithm that evaluates P(q) in polyno-

mial time in the size of the database, which works for some queries, and fails for others.
We need some notations. V ars(q) and Sg(q) are the set of variables, and the set of sub-
goals respectively. If g ∈ Sg(q) then V ars(g) and KV ars(g) denote all variables in g, and
all variables in the key positions in g: e.g. for g = R(x, a, y, x, z), V ars(g) = {x, y, z},
KV ars(g) = {x, y}. For x ∈ V ars(q), let sg(x) = {g | g ∈ Sg(q), x ∈ KV ars(g)}.
Technically sg(x) depends both on the variable x and the query q, but we will use the
notation sg(x) rather than sg(x, q), whenever the query q is clear from the context. Given
a database PDB = (T,P), D is its active domain.

Algorithm 3.1 computes P(q) by recursion on the structure of q. If q consists of con-
nected components q1, q2, then it returns P(q1)P(q2): this is correct since q has no self-
joins, e.g P(R(x), S(y, z), T (y)) = P(R(x))P(S(y, z), T (y)). (We will comment below
on the significance of the assumption that q has no self-joins.) If some variable x oc-
curs in a key position in all subgoals, then it applies the independent-project rule: e.g.
P(R(x)) = 1 −

∏
a∈D(1 − P(R(a))) is the probability that R is nonempty. For another

example, we apply an independent project on x in q = R(x, y), S(x, y): this is correct
because q[a1/x], q[a2/x], . . . are independent events whenever the constants a1, a2, . . . are
distinct. If there exists a subgoal g whose key positions are constants, then it applies a
disjoint project on any variable in g: e.g. x is such a variable in q = R(x, y), S(c, d, x),
and any two events q[a/x], q[b/x] are disjoint because of the S subgoal.

We illustrate the algorithm on the query below, where a is a constant, and x, y, u are
variables:

q = R(x), S(x, y), T (y), U(u, y), V (a, u)

P(q) =
∑
b∈D

P(R(x), S(x, y), T (y), U(b, y), V (a, b))

=
∑
b∈D

P(R(x), S(x, y), T (y), U(b, y))P(V (a, b))

=
∑
b∈D

∑
c∈D

P(R(x), S(x, c), T (c), U(b, c))P(V (a, b))

=
∑
b∈D

∑
c∈D

P(R(x), S(x, c))P(T (c))P(U(b, c))P(V (a, b))

=
∑
b∈D

∑
c∈D

(1−
∏
d∈D

(1−P(R(d))P(S(d, c)))) ·P(T (c))P(U(b, c))P(V (a, b))

Queries and Materialized Views 9

Algorithm 3.1 Safe-Eval

Input: query q and database PDB = (T,P)
Output: P(q)

1: Base Case: if q = R(ā)
return if R(ā) ∈ T then P(R(ā)) else 0

2: Join: if q = q1, q2 and V ars(q1) ∩ V ars(q2) = ∅
return P(q1)P(q2)

3: Independent project: if sg(x) = Sg(q)
return 1−

∏
a∈D(1−P(q[a/x]))

4: Disjoint project: if ∃g(x ∈ V ars(g), KV ars(g) = ∅)
return

∑
a∈D P(q[a/x])

5: Otherwise: FAIL

We call a query safe if algorithm Safe-Eval terminates successfully; otherwise we call
it unsafe. Safety is a property that depends only on the query q, not on the database
PDB, and it can be checked in PTIME in the size of q by simply running the algorithm
over an active domain of size 1, D = {a}. Based on our previous discussion, if the query
is safe then the algorithm computes the probability correctly:

Proposition 3.3 For any safe query q, the algorithm computes correctly P(q) and runs
in time O(|q| · |D||V ars(q)|).

We first described Safe-Eval in [8], in a format more suitable for an implementation, by
translating q into an algebra plan using joins, independent projects, and disjoint projects,
and stated without proof the dichotomy property. Andritsos et al. [4] describe a query
evaluation algorithm for a more restricted class of queries.

The Dichotomy Property We define below a rewrite rule q ⇒ q′ between two queries.
Here q is a conjunctive query without self-joins over a schema R, while q′ is a conjunctive
query without self-joins over a possibly different schema R′. The symbols g, g′ denote
subgoals below:

q ⇒ q[a/x] if x ∈ V ars(q), a ∈ D
q ⇒ q1 if q = q1, q2, V ars(q1) ∩ V ars(q2) = ∅
q ⇒ q[y/x] if ∃g ∈ Sg(q), x, y ∈ V ars(g)

q, g ⇒ q if KV ars(g) = V ars(g)
q, g ⇒ q, g′ if KV ars(g′) = KV ars(g),

V ars(g′) = V ars(g), arity(g′) < arity(g)

The intuition is that if q ⇒ q′ then evaluating P(q′) can be reduced in polynomial
time to evaluating P(q). The reduction is quite easy to prove in each case. For example
consider an instance of the first reduction: if q[a/x] is a hard query, then obviously q
(which has no self-joins) is hard too: otherwise, we can compute q[a/x] on a BID instance
by simply removing all possible tuples that do not have an a in the positions where x
occurs. All other cases can be checked similarly. This implies:

Lemma 3.4 If q ⇒∗ q′ and q′ is #P-hard, then q is #P-hard.

10 Dalvi, Re, Suciu

Thus, ⇒ gives us a convenient tool for checking if a query is hard, by trying to rewrite
it to one of the known hard queries. For example, consider the queries q and q′ below:
Safe-Eval fails immediately on both queries, i.e. none of its cases apply. We show that
both are hard by rewriting them to h1 and h+

3 respectively. By abuse of notations we
reuse the same relation name during the rewriting. Strictly speaking, the relation schema
in the third line should contain new relation symbols S ′, T ′, different from those in the
second line, but we reuse the same symbols for readability:

q = R(x), R′(x), S(x, y, y), T (y, z, b)

⇒ R(x), S(x, y, y), T (y, z, b)

⇒∗ R(x), S(x, y), T (y) = h1

q′ = R(x, y), S(y, z), T (z, x), U(y, x)

⇒ R(x, y), S(y, x), T (x, x), U(y, x)

⇒∗ R(x, y), S(y, x), U(y, x) = h+
3

Call a query q final if it is unsafe, and ∀q′, if q ⇒ q′ then q′ is safe. Clearly every unsafe
query rewrites to a final query: simply apply ⇒ repeatedly until all rewritings are to safe
queries. We prove in [11]:

Lemma 3.5 h1, h
+
2 , h

+
3 are the only final queries.

This implies immediately the dichotomy property:

Theorem 3.6 Let q be a query without self-joins. Then one of the following holds:

• q is unsafe and q rewrites to one of h1, h
+
2 , h

+
3 . In particular, q is #P-hard.

• q is safe. In particular, it is in PTIME.

Proof: The rewrite rule ⇒ is strongly terminating: each rule results in a query that has
either fewer variables, or fewer subgoals, or subgoals with smaller arities. Let l(q) denote
the length of the longest rewriting q ⇒ q1 ⇒ . . . ⇒ ql(q). We prove that every unsafe
query q rewrites to one of h1, h

+
2 , or h+

3 . There are two cases. First, q is final: then, by
Lemma 3.5, q is one of h1, h

+
2 , h

+
3 . Second, q is not final: then, by definition, there exists

an unsafe query q′ such that q ⇒ q′. Since l(q′) < l(q), we can apply induction to q′ and
show that it rewrites to one of h1, h

+
2 , h

+
3 : hence, q also rewrites to one of h1, h

+
2 , h

+
3 . 2

How restrictive is the assumption that the query has no self-joins ? It is used both in
Join and in Independent project. We illustrate on q = R(x, y), R(y, z) how, by dropping
the assumption, independent projects become incorrect. Although y occurs in all subgoals,
we cannot apply an independent project because the two queries q[a/y] = R(x, a), R(a, z)
and q[b/y] = R(x, b), R(b, z) are not independent: both ϕq[a/y] and ϕq[b/y] depend on
the tuple R(a, b) (and also on R(b, a)). In fact q is #P-hard [10]. The restriction to
queries without self-joins is thus significant. We have extended the dichotomy property to
unrestricted conjunctive queries, but only over independent probabilistic databases [10];

Queries and Materialized Views 11

the complexity of unrestricted conjunctive queries over BID probabilistic databases is
open.

The Complexity of the Complexity We complete our analysis by studying the
following problem: given a relational schema R and conjunctive query q without self-
joins over R, decide whether q is safe4. We have seen that this problem is in PTIME
(simply run the algorithm on a PDB with one tuple per relation and see if it gets stuck);
here we establish tighter bounds.

In the case of independent databases, the key in each relation R consists of all the
attributes, Key(R) = Attr(R), hence sg(x) becomes: sg(x) = {g | x ∈ V ars(g)}.

Definition 3.7 A conjunctive query is hierarchical if for any two variables x, y, either
sg(x) ∩ sg(y) = ∅, or sg(x) ⊆ sg(y), or sg(y) ⊆ sg(x).

As an example, the query5 q = R(x), S(x, y) is hierarchical because sg(x) = {R,S},
sg(y) = {S}, while h1 = R(x), S(x, y), T (y) is not hierarchical because sg(x) = {R,S}
and sg(y) = {S, T}. SAFE-EVAL works as follows on independent databases. When the
hierarchy {sg(x) | x ∈ V ars(q)} has a root variable x, then it applies an independent
project on x; when it has multiple connected components, then it applies joins. One can
check easily that a query is unsafe iff it contains a sub-pattern:

R(x, . . .), S(x, y, . . .), T (y, . . .)

Proposition 3.8 Let SG be a binary relation name. We represent a pair R, q, where
R is a relational schema for an independent database and q a conjunctive query without
self-joins, as an instance over SG, as follows6. The constants are R ∪ V ars(q), and for
each subgoal R of q and each variable x ∈ V ars(R), there is a tuple SG(R, x). Then the
property “given R, q, q is unsafe” can be expressed in FO over the vocabulary SG.

In fact, it is expressed by the following conjunctive query with negations, with variables
R,S, T, x, y:

SG(R, x),¬SG(R, y), SG(S, x), SG(S, y), SG(T, y),¬SG(T, x)

In the case of BIDs, checking safety is PTIME complete. Recall the Alternating Graph
Accessibility Problem (AGAP): given a directed graph where the nodes are partitioned
into two sets called AND-nodes and OR-nodes, decide if all nodes are accessible. An
AND-node is accessible if all its parents are; an OR node is accessible if at least one of
its parents is. AGAP is PTIME-complete [17]. We prove:

Proposition 3.9 AGAP is reducible in LOGSPACE to the following problem: given a
schema R and a query q without self-joins, check if q is safe. In particular, the latter is
PTIME-hard.

4For a fixed R there are only finitely many queries without self-joins: this is the reason why R is part of
the input.
5Since all attributes are keys we don’t underline them.
6This representation is lossy, because it ignores both the positions where the variables occur in the
subgoals in q, and it also ignores all constants in q.

12 Dalvi, Re, Suciu

Proof: Let G be an AND/OR graph, we construct the following relational schema R and
query q. There will be one variable in q for every node in G, plus one extra variable c; the
invariant is: a node is accessible in the graph iff the corresponding variable can be made
constant by SAFE-EVAL. For every AND node x with parents y, z, . . . we introduce a new
relational symbol R and a subgoal R(y, z, . . ., x) in q (a disjoint project applies to x iff all
its parents are constants). For every OR node x with parents y, z, . . . we introduce a new
subgoal for each parent Sy(y, z), . . . (a disjoint project applies to z iff one of its parents
is constant). Finally, for each node x, y, z, . . . we create a new subgoal Tx(c, x), Ty(c, y):
these prevent an independent-project until all variables became constants. 2

4. Materialized Views on Probabilistic Databases

We have shown that there exists a sharp separation between safe queries, which can be
evaluated efficiently, and unsafe queries, which are provably hard. Since a probabilistic
database system needs to support arbitrary queries, not just safe queries, a key research
problem is how one can improve the performance of unsafe queries. The approach that
we describe here uses materialized views.

Materialized views are widely used today to speed up query evaluation in traditional
databases. Early query optimizers used materialized views that were restricted to indexes
(which are simple projections on the attributes being indexed) and join indexes [28];
modern query optimizers can use arbitrary materialized views [3].

When used in probabilistic databases, materialized views can make dramatic impact.
Suppose we need to evaluate a Boolean query q on a BID probabilistic database, and as-
sume q is unsafe. In this case, one has to use some general-purpose probabilistic inference
method, for example Luby and Karp’s FPTRAS, and its performance in practice is much
worse than that of safe plans: in one experimental study [25] we have observed two orders
of magnitudes difference in performance. However, by rewriting q in terms of a view it
may be possible to transform it into a safe query, which can be evaluated very efficiently.
There is no magic here: we simply pay the #P cost when we materialize the view, then
evaluate the query in PTIME at runtime.

Example 4.1 Consider the schema R(C,A), S(C,A,B), T (C,B), and the view:

v(z) :- R(z, x), S(z, x, y), T (z, y)

Denote V (Z) the schema of the materialized view. Then, all tuples in the materialized
view V are independent. For the intuition behind this statement, notice that for two
different constants a 6= b, the Boolean queries v(a) and v(b) depend on disjoint sets of
tuples in the input BID probabilistic database: the first depends on inputs of the form
R(a, . . .), S(a, . . .), T (a, . . .), while the second on inputs of the form R(b, . . .), S(b, . . .),
T (b, . . .). Thus, v(a) and v(b) are independent probabilistic events, and we say that
the tuples a and b in the view are independent. In general, any set of tuples a, b, c, . . .
in the view are independent. Suppose we compute and store the view, meaning that
we will determine all its tuples a, b, c, . . . and compute their probabilities. This will be
expensive, because, for each constant a, the Boolean query v(a) rewrites to h1 (see The-
orem 3.2), hence it is a #P-hard. Nevertheless, we will pay this cost, and materialize

Queries and Materialized Views 13

the view. Later, we will use V to answer queries. For example consider the Boolean
query q:-R(z, x), S(z, x, y), T (z, y), U(z, v), where U(C,D) is another relation. Then q is
#P-hard, but after rewriting it as q:-V (z), U(z, v) it becomes a safe query, and can be
computed by a safe plan. Thus, by using V to evaluate q we obtain a dramatic reduction
in complexity.

The major challenge in using probabilistic views for query processing is how to find,
represent, and use independence relationships between the tuples in the view. In general,
the tuples in the view may be correlated in complex ways. One possibility is to store the
lineage for each tuple t (this is the approach in Trio [27]), but this makes query evaluation
on the view no more efficient than expanding the view definition in the query.

We propose an alternative approach:

• When we materialize the view we store only the set of possible tuples and their
marginal probabilities. We do not store their lineage.

• We compute a partial representation for the view. This is a schema level information,
consisting of a set of attributes such that tuples in the view that have distinct
values of these attributes are guaranteed to be independent; the representation can
be further refined with a second set of attributes, such that any distinct tuples
that agree on these attributes are disjoint. Thus, a partial representation describes
independence or disjointness relationships between some tuples, while leaving other
correlations unspecified.

• To evaluate a query q, one first checks if q can be rewritten in terms of the view
(using standard techniques [18]). If that is the case, then an additional test needs to
be performed to see if the probability of q depends only on sets of tuples in the view
whose correlations are known, that is, if q inspects only sets of independent tuples
or sets that contain at least one pair of disjoint tuples. In the latter case, q can be
evaluated by using the data and marginal probabilities in the view v. Otherwise,
the view cannot be used and the computation needs to evaluate q on the base tables.

Some of the results in this section have been announced in [26].

4.1. Partial Representation of a Probabilistic Table
Consider a probabilistic database (W,P), as in Definition 2.1, over a schema consisting

of a single relation name V . In this section we will no longer assume that V is a block
disjoint-independent (BID) table, but rather allow it to be an arbitrary probability space
over the set of possible instances for V . The intuition is that V is a view computed by
evaluating a query over some BID database: the output of the view is, in general, not a
BID table, but some arbitrary probabilistic database (W,P).

Recall that P(t) is the probability of the event “a randomly chosen instance contains
the tuple t”, and P(q) is the probability of the event “a randomly chosen instance satisfies
q”. A set of events {e1, . . . , en} is called independent if P(e1 ∧ · · · ∧ en) = P(e1) · · ·P(en).
Two events e1, e2 are disjoint if P(e1∧e2) = 0. We abbreviate the event e1∧e2 with e1, e2.

When the view V is a BID table, then, denoting K = Key(V), the following two
properties hold: for any set of tuples, if any two tuples in the set differ on at least one

14 Dalvi, Re, Suciu

of the K attributes, then the set of tuples is independent, and any two tuples that agree
on the K attributes are disjoint. If the view V is not a BID table, but an arbitrary
probabilistic relation, then we may still be able to find two sets of attributes, L and K,
that satisfy these two properties separately. Formally:

Definition 4.2 Let (W,P) be a probabilistic database over a single relation V .

• We say that (W,P) is L-block independent, where L ⊆ Attr(V), if any set of tuples
{t1, . . . , tn} s.t. ti.L 6= tj.L, 1 ≤ i < j ≤ n, is independent.

• We say that (W,P) is K-block disjoint, where K ⊆ Attr(V), if any two tuples t, t′

s.t. t.K = t′.K are disjoint. Equivalently, K is a key in each possible world of V .

A partial representation is a pair of sets of attributes (L,K) such that V is L-block
independent and K-block disjoint. A partial representation for a view allows us to answer
queries by using the view. For example, if the partial representation (L,K) is such that
K = L, then V is a BID table with Key(V) = K, and therefore, once we have computed
the marginal probabilities for each tuple in V , we can use it to compute other queries by
using the view as a regular base tables. Even if L 6= K we can often still leverage the
view to answer some queries from the view. For a trivial example suppose the query is
q:-V (ā), V (b̄), where ā and b̄ are two ground tuples that differ on at least one attribute
in L. Then, these two tuples are independent, hence we can answer the query q as the
product of the marginal probabilities of ā and b̄.

A probabilistic table V may admit more than one partial representation. For example,
every probabilistic table V admits the trivial partial representation L = ∅ and K =
Attr(V), but this representation is not useful to answer queries, except the most trivial
queries that check for the presence of a single ground tuple. Intuitively, we want a “large”
L and a “small” K. It is easy to check that we can always relax the representation in
the other way: if (L,K) is a partial representation, and L′, K ′ are such that L′ ⊆ L and
K ⊆ K ′, then (L′, K ′) is also a partial representation. Of course, we want to go in the
opposite direction: increase L, decrease K. We will give several results in the following
sections showing that a unique maximal L exists, and will explain how to compute it. On
the other hand, no minimal K exists in general; we will show that the space of possible
choices for K can be described using standard functional dependencies theory.

It is not obvious at all that a maximal L exists, and in fact it fails in the most general
case, as shown by the following example.

Example 4.3 Consider a probabilistic table V (A,B,C) with three possible tuples:
T : A B C

a b c t1
a b′ c t2
a b′ c′ t3

and four possible worlds: I1 = ∅, I1 = {t1, t2}, I2 = {t2, t3}, I3 = {t1, t3}, each with
probability 1/4. Any two tuples are independent: indeed P(t1) = P(t2) = P(t3) = 1/2
and P(t1t2) = P(t1t3) = P(t2t3) = 1/4. V is AB-block independent: this is because the
only sets of tuples that differ on AB are {t1, t2} and {t1, t3}, and they are independent.

Queries and Materialized Views 15

Similarly, V is also AC-block independent. But V is not ABC-block independent, because
any two tuples in set {t1, t2, t3} differ on ABC, yet the entire set is not independent:
P(t1t2t3) = 0. This shows that there is no largest set L: both AB and AC are maximal.

A weaker result holds. For a set L ⊆ Attr(V) we say that V is L-block 2-independent
if any two tuples t1, t2 s.t. t1.L 6= t2.L are independent.

Lemma 4.4 Let V be a probabilistic table. Then there exists a maximal set L s.t. V is
L-block 2-independent.

Proof: We prove the following: if L1, L2 ⊆ Attr(V) are such that V is Li-block 2-
independent for each i = 1, 2, then V is also L-block 2-independent, where L = L1 ∪ L2.
Indeed, let t1, t2 be two tuples s.t. t1.L 6= t2.L. Then either t1.L1 6= t2.L1 or t1.L2 6= t2.L2,
hence t1, t2 are independent tuples. The largest set L claimed by the lemma is then the
union of all sets L′ s.t. V is L′-block 2-independent. 2

Continuing Example 4.3 we note that V is ABC-block 2-independent, since any two of
the tuples t1, t2, t3 are independent.

4.2. Partial Representation of a pc-Table
If V is a view defined by an FO query over a BID database, then V can be expressed as

a pc-table. In this section we study the partial representation of a pc-table. Recall that
a pc-table consists of two parts: V = (CV,P), where CV is a c-table and P a product
probability space on the set of variables X̄ that are used in the Boolean expressions of the
c-table. Our main result in this section is the following: given the c-table CV there exists
a maximal set of attributes L such that for any product probability space P, the pc-table
(CV,P) is L-block independent. Thus, if V is a view defined by an FO query over a BID
database, then this result shows us how to compute a good partial representation for the
view.

Let X̄ = {X1, . . . , Xm} be the variables used in the Boolean expressions in the c-table
CV , and let Dom(Xj) be the finite domain of values for the variable Xj, j = 1,m.
The c-table CV consists of n tuples t1, . . . , tn, each annotated with a Boolean expression
ϕ1, . . . , ϕn obtained from atomic formulas of the form Xj = v, where v ∈ Dom(Xj), and
the connectives ∧, ∨, and ¬. A valuation θ is a function θ : X̄ →

⋃
iDom(Xj) s.t.,

θ(Xj) ∈ Dom(Xj), for j = 1,m.
The following definition is adapted from [22].

Definition 4.5 Let ϕ be a Boolean expression over variables X̄. A variable Xj is called
a critical variable for ϕ if there exists a valuation θ for the variables X̄ − {Xj} and two
values v′, v′′ ∈ Dom(Xj) s.t. ϕ[θ ∪ {(Xj, v

′)}] 6= ϕ[θ ∪ {(Xj, v
′′)}].

For a simple illustration, suppose Dom(X1) = Dom(X2) = Dom(X3) = {0, 1, 2}, and
consider the Boolean expression

ϕ ≡ (X1 = 0) ∨ (X1 = 1) ∨ ((X3 = 1) ∧ ¬(X1 = 2))

Then X2 is not a critical variable for ϕ, because it is not mentioned in the expression of
ϕ. X3 is also not a critical variable, because ϕ simplifies to (X1 = 0) ∨ (X1 = 1) (since

16 Dalvi, Re, Suciu

Dom(X1) = {0, 1, 2}). On the other hand, X1 is a critical variable: by changing X1 from
0 to 2 we change ϕ from true to false. In notation, if θ is the valuation {(X2, 0), (X3, 0)},
then ϕ[θ ∪ {(X1, 0)}] = true, ϕ[θ ∪ {(X1, 2)}] = false.

To obtain a pc-table from a c-table CV we need to define a product probability space P.
This consists of n independent probabilty spaces Pi over Dom(Xi), Pi : Dom(Xi) → [0, 1]
s.t.

∑
v∈Dom(Xi)

Pi(v) = 1, and is defined as P(X1 = v1, . . . , Xn = vn) =
∏

i Pi(vi).

Any Boolean expression ϕ is a probabilistic event, and we denote P(ϕ) its probability.
The main result in this section is based on the following technical lemma, which is a
generalization of [22].

Lemma 4.6 Let ϕ, ψ be two Boolean expressions. Then the following two statements are
equivalent:

• For every product probability space P on the set of variables X̄, ϕ and ψ are inde-
pendent events.

• ϕ and ψ have no common critical variables.

Proof: The “if” direction is straightforward: if ϕ, ψ use disjoint sets of variables, then
P(ϕ ∧ ψ) = P(ϕ)P(ψ), hence they are independent for any choice of P.

The “only if” direction was shown in [22] for the case when all variables Xj are Boolean,
i.e. |Dom(Xj)| = 2. We briefly review the proof here, then show how to extend it to non-
boolean variables. Given a probability spaces (Dom(Xj),Pj), denote xj = Pj(Xj = 1),
hence Pj(Xj = 0) = 1− xj. Then P(ϕ) is a polynomial in the variables x1, . . . , xm where
each variable has degree ≤ 1. (For example, if ϕ = ¬(X1 ⊗X2 ⊗X3) (exclusive or) then
P(ϕ) = x1x2(1 − x3) + x1(1 − x2)x3 + (1 − x1)x2x3 + (1 − x1)(1 − x2)(1 − x3), which is
a polynomial of degree 1 in x1, x2, x3.) One can check that if Xj is a critical variable for
ϕ then the degree of xj in the polynomial P(ϕ) is 1; on the other hand, if Xj is not a
critical variable, then the degree of xj in the polynomial P(ϕ) is 0 (in other words the
polynomial does not depend on xj). The identity P(ϕ)P(ψ) = P(ϕ ∧ ψ) must hold for
any values of x1, . . . , xm, because ϕ, ψ are independent for any P. If Xj were a common
critical variable for both ϕ and ψ then the degree of xj in the left hand side polynomial
is 2, while the right hand side has degree at most 1, which is a contradiction.

We now extend this proof to non-Boolean domains. In this case a variable Xj may
take values 0, 1, . . . , dj, for dj ≥ 1. Define the variables xij to be xij = P(Xj = i), for
i = 1, . . . , dj, thus P(Xj = 0) = 1−x1j −x2j − · · ·−xdjj. As before P(ϕ) is a polynomial
of degree 1 in the variables xij with the additional property that if i1 6= i2 then xi1j and
xi2j cannot appear in the same monomial. We still have the identity P(ϕψ) = P(ϕ)P(ψ),
for all values of the variables xij (since the identity holds on the set xij ≥ 0 for all i, j,
and

∑
i xij ≤ 1, for all j, and this set has a non-empty interior). If Xj is a critical

variable for ϕ then P(ϕ) must have a monomial containing some xi1j; if it is also critical
for ψ, then P(ψ) has a monomial containing xi2j. Hence their product contains xi1j · xi2j,
contradiction. 2

We will use the lemma to prove the main result in this section:

Theorem 4.7 Let CV be a c-table. Then there exists a unique maximal set of attributes L
such that, for any product probability space P, the pc-table (CV,P) is L-block independent.

Queries and Materialized Views 17

Proof: Denote t1, . . . , tn the tuples of the c-table CV , and ϕ1, . . . , ϕn their Boolean ex-
pressions annotations. Let L be a set of attributes. We prove the following:

Lemma 4.8 The following three statements are equivalent:

1. For any P, the pc-table (CV,P) is L-block independent.

2. For any P, the pc-table (CV,P) is L-block 2-independent.

3. For any two tuples ti, tj, if ti.L 6= tj.L then the Boolean expressions ϕi and ϕj do
not have any common critical variables.

Proof: Obviously (1) implies (2), and from the Lemma 4.6 it follows that (2) implies (3)
(since P(ti) = P(ϕi) and P(ti, tj) = P(ϕi ∧ ϕj)). For the last implication, let P be any
product probability space, and consider somem tuples ti1 , . . . , tim that have distinct values
for their L attributes. Then, the Boolean expressions ϕi1 , . . . , ϕim depend on disjoint
sets of Boolean variables, hence P(t1, . . . , tm) = P(ϕi1 , . . . , ϕim) = P(ϕi1) · · ·P(ϕim) =
P(t1) · · ·P(tm), proving that they are independent. Thus, the three statements above are
equivalent. 2

Continuing the proof of Theorem 4.7, consider two sets of attributes L1, L2 such that
each satisfies condition (3) in Lemma 4.8. Then their union, L1∪L2, also satisfies condition
(3): indeed, if ti and tj are two tuples such that ti.(L1 ∪ L2) 6= tj.(L1 ∪ L2), then either
ti.L1 6= tj.L1 or ti.L2 6= tj.L2, and in either case ϕi and ϕj do not have any common
critical tuples. It follows that there exists a maximal set of attributes L that satisfies
condition (3), which proves the theorem. 2

As an application of this result, we show how to apply it to a view V defined by an FO
expression over a BID database. Let R be a relational schema, and let PDB = (T,P) be
a BID database, where T is a set of possible tuples.

Corollary 4.9 For every FO view definition v over the relational schema R and for every
set of possible tuples T there exists a unique maximal set of attributes L such that: for
any BID database PDB = (T,P) the probabilistic view v(T,P) is L-block independent.

The proof follows immediately from Theorem 4.7 and the observation that the view
v(PDB) is a pc-table.

We end this section by noting that, in general, no unique minimalK exists. For example
the c-table below has two minimal keys, {A} and {B}:

A B
a1 b1 X = 1 ∧ Y = 1
a1 b2 X = 1 ∧ Y = 2
a2 b1 X = 2 ∧ Y = 1
a2 b2 X = 2 ∧ Y = 2

Therefore, any pc-table defined over this table is both A-block disjoint, and B-block
disjoint, but it is not ∅-block disjoint.

18 Dalvi, Re, Suciu

4.3. Partial Representation of a Conjunctive View
In the previous section we have shown how to compute a partial representation for

a given view (expressed in FO) and a given input BID database. We now study how
to compute a partial representation given only the view expression, and not the input
database. In this case we seek a partial representation (L,K) that is satisfied by the
the view for any input BID database. This partial representation depends only on the
view expression, not the data instance, and is computed through static analysis on the
view expression only. Throughout this section we will restrict the view expression to be
a conjunctive query: we will allow self-joins, unless otherwise stated.

Fix the schema R of a BID database, and let V be defined by a conjunctive query v over
R. Given a BID input, PDB, we denote V = v(PDB) the probabilistic table obtained
by evaluating the view on the BID input. We prove in this section two results.

Theorem 4.10 Fix a relational schema R.

1. For any conjunctive query v there exists a unique maximal set of attributes L ⊆
Attrs(v) such that for any BID database PDB over the schema R, v(PDB) is
L-block independent.

2. The problem “given a conjunctive query v and L ⊆ Attrs(v) check whether for any
BID database PDB, v(PDB) is L-block independent”, is in Πp

2. Moreover, there
exists a schema R for which this problem is Πp

2-hard.

The theorem, in essence, says that there exists a unique maximal set of attributes L,
and computing such a set is Πp

2-complete in the size of the conjunctive query v. To obtain
a good partial representation (L,K) for the view v, we also need to compute K: finding
K is equivalent to inferring functional dependencies on the output of a conjunctive view,
from the key dependencies in the input schema R. This problem is well studied [2], and
we will not discuss it further, but note that, in general, there may not be a unique minimal
set K.

Before proving Theorem 4.10 we give some examples of partial representations for con-
junctive views.

Example 4.11 1. Consider the schema R(A), S(A,B,C,D), and the view:

v(x, y, z) :- R(x), S(x, y, z, u)

Denote V (X,Y, Z) the schema of the materialized view. A partial representation
for V is (X,XY). To see that V is X-block independent, notice that if two tuples in
V differ on their X attribute, then the lineage of the two tuples depends on disjoint
sets of input tuples in R and S. To see that V is XY -block disjoint, it suffices to
see that the functional dependency XY → Z holds in V (because it holds in S).
Thus, (X,XY) is a partial representation for V , and one can see that it is the best
possible (that is, we cannot increase X nor decrease XY).

Queries and Materialized Views 19

2. Consider the schema R(A,B,C), S(A,C,B) and the view:

v(x, y, z) :- R(x, y, z), S(x, z, y)

Here V is X-block independent. In addition, V is both XY -block disjoint and
XZ-block disjoint: but it is not X-block disjoint. There are two “best” partial
representations: (X,XY) and (X,XZ).

In the remainder of this section we will prove Theorem 4.10, and start with Part 1. Fix a
BID probabilistic database PDB. Then V = v(PDB) is a pc-table: by Theorem 4.7 there
exists a unique maximal set of attributes LPDB such that V is L-block independent (for
any choice of the probability function in PDB). Then the set of attributes

⋂
PDB LPDB

is the unique, maximal set of attributes claimed by the theorem.
Before proving part 2 of Theorem 4.10, we need to review the notion of a critical tuple

for a Boolean query q.

Definition 4.12 A ground tuple t is called critical for a Boolean query q if there exists
a (conventional) database instance I s.t. q(I) 6= q(I ∪ {t}).

A tuple is critical if it makes a difference for the query. For a simple illustration, consider
the Boolean query q:-R(x, x), S(a, x, y), where a is a constant. Then R(b, b) (for some
constant b) is a critical tuple because q is false on the instance I = {S(a, b, c)} but true
on the instance {R(b, b), S(a, b, c)}. On the other hand R(b, c) is not a critical tuple. In
general, if the query q is a conjunctive query, then any critical tuple must be the ground
instantiation of a subgoal. The converse is not true as the following example from [22]
shows: q:-R(x, y, z, z, u), R(x, x, x, y, y). The tuple t = R(a, a, b, b, c), which is a ground
instantiation of the first subgoal, is not a critical tuple. Indeed, if q is true on I∪{t}, then
only the first subgoal can be mapped to t, and therefore the second subgoal is mapped to
the ground tuple R(a, a, a, a, a), which must be in I: but then q is also true on I, hence t
is not critical. We review here the main results from [22]. While these results were shown
for a relational schema R where the key of each relation is the set of all its attributes
(in other words, any BID database over schema R is a tuple-independent probabilistic
database), they extend immediately to BID probabilistic databases (the main step of the
extension consists of Lemma 4.6).

Theorem 4.13 [22] Fix a relational schema R.

1. Let q, q′ be two Boolean conjunctive queries over the schema R. Then the following
two statements are equivalent: (a) q and q′ have no common critical tuples, (b) for
any BID probabilistic database over the schema R, q and q′ are independent events.

2. The problem “given two Boolean queries q, q′, check whether they have no common
critical tuples” is in Πp

2.

3. There exists a schema R such that the problem “given a Boolean query q and a
ground tuple t, check whether t is not a critical tuple for q”, is Πp

2-hard.

20 Dalvi, Re, Suciu

We now prove part 2 of Theorem 4.10. Given a set of attributes L, the following two
conditions are equivalent: (a) for any input PDB, v(PDB) is L-block independent, and
(b) for any two distinct grounded |L|-tuples ā, b̄, the two boolean queries v(ā) and v(b̄)
have no common critical tuples. (Here v(ā) denotes the Boolean query where the head
variables corresponding to the L attributes are subtituted with ā, while the rest of the
head variables are existentially quantified). The equivalence between (a) and (b) follows
from Lemma 4.8 (2) and Theorem 4.13 (1). Membership in Π2

2 follows now from property
(b) and Theorem 4.13 (2).

To prove hardness for Πp
2, we use Theorem 4.13 (3): we reduce the problem “given a

query q and a tuple t check whether t is not a critical tuple for q” to the problem (b)
above. Let R be the vocabulary for q and t, and let the ground tuple t be T (a1, . . . , ak).
Construct a new vocabulary R′ obtained from R by adding two new attributes to each
relation name: that is, if R(A1, . . . , Am) is a relation name in R, then R′(U, V,A1, . . . , Am)
is a relation name in R′. Let U, V be two variables. Denote q′(U, V) the query obtained
from q by replacing every subgoal R(. . .) in q with R′(U, V, . . .) (thus, the variables U, V
will occur in all subgoals of q′(U, V)), and define the following view:

v(U, V) :- q′(U, V), T (V, U, a1, . . . , ak)

We show that v is UV -block independent iff t is not a critical tuple for q. For that,
we consider two distinct constant tuples (u1, v1) and (u2, v2) and examine whether the
Boolean queries v(u1, v1) and v(u2, v2) are independent, or, equivalently, have no com-
mon critical tuples. All critical tuples of v(u1, v1) must have the form R(u1, v1, . . .), or
T (v1, u1, . . .); in other words, they must start with the constants u1, v1 or with v1, u1.
Similarly for v(u2, v2); hence, if {u1, v1} 6= {u2, v2} then the queries v(u1, v1) and v(u2, v2)
have no common critical tuples. The only case when they could have common critical
tuples is when u1 = v2 and u2 = v1 (since (u1, v1) 6= (u2, v2)), and in that case they have
a common critical tuple iff T (u1, v1, a1, . . . , ak) is a critical tuple for q′(u1, v1), and this
happens iff T (a1, . . . , ak) is a critical tuple for q. This completes the hardness proof.

4.4. Querying Partially Represented Views
We have shown how to compute a “best” partial representation (L,K) for a materialized

view V : tuples with distinct values for L are independent, while tuples that agree onK are
disjoint. All other pairs of tuples, which we call intertwined, have unspecified correlations.
In this section we study the problem of deciding whether a query q can be answered by
using only the marginal probabilities in V : we say that q is well-defined in terms of the
view and its partial representation. Intuitively, q does not look at pairs of intertwined
tuples. This problem is complementary to the query answering using views problem [18]:
there, we are given a query q over a conventional database and a set of views, and we
want to check if q can be rewritten into an equivalent query q′ that uses the views. We
assume that the rewriting has already been done, thus q already mentions the view(s).

We illustrate with an example:

Example 4.14 Let V (A,B,C) have the following partial representation: L = A, K =
AB. Consider the following queries:

Queries and Materialized Views 21

q1 :- V (a, y, z)

q2 :- V (x, b, y)

q3 :- V (x, y, c)

Here x, y, z are variables, and a, b, c are constants. For example, the view could be
that from Example 4.11 (1), v(x, y, z):-R(x), S(x, y, z, u), and the query q1 could be
q1:-R(a), S(a, y, z, u): after rewriting q1 in terms of the view, we obtain the equivalent
expression q1:-V (a, y, z).

We argue that q2 is well-defined, while q1, q3 are not. Consider first q2. Its value de-
pends only on the tuples of the form (ai, b, cj), where the constants ai and cj range over
the active domain, and b is the fixed constant occurring in the query. Partition these
tuples by ai. For each i = 1, 2, . . ., any two tuples in the set defined by ai are disjoint
(because V satisfies the partial representation (A,AB), and any two tuples in the same
group agree on both A and B): thus, the Boolean query ∃z.V (ai, b, z) is a disjunction
of the exclusive events V (ai, b, cj), and therefore its probability is the sum of the prob-
abilities P(V (ai, b, cj)). Moreover, the set of events {∃z.V (a1, b, z),∃z.V (a2, b, z), . . .}, is
independent, which allows us to compute the probability of the query q2, since it is the
disjunction of these independent events: q2 ≡ ∃x.∃z.V (x, b, z). Thus, assuming that the
view V satisfies the partial representation (A,AB), the probability of q2 depends only on
the marginal tuples probabilities in the view V .

In contrast, neither q1 nor q2 are well-defined. To see this, suppose that the view has
exactly two tuples, t1 = (a, b1, c) and t2 = (a, b2, c). These tuples are intertwined, i.e.
the probability P(t1, t2) is unknown. Further, P(q1) = P(q3) = P(t1 ∨ t2) = P(t1) +
P(t2) − P(t1t2): P(t1) and P(t2) are well defined in the view, but P(t1, t2) is unknown.
So, neither q1 nor q3 is well-defined.

In this section we consider Boolean, monotone queries q, which includes conjunctive
queries. We assume that q is over a single view V , and mentions no other relations. This
is not too restrictive, since q may have self-joins over V , or unions (since we allow arbitrary
monotone queries). It is straightforward to extend our results to a query expressed over
multiple views V1, V2, . . ., each with its own partial representation, assuming that all views
are independent.

Definition 4.15 Let V be a view with a partial representation (L,K), and let q be a
monotone Boolean query over the single relation name V . We say that q is well-defined
given the partial representation (L,K), if for any two probabilistic relations PV = (W,P)
and PV ′ = (W ′,P′) that satisfy the partial representation (L,K), and that have identical
tuple probabilities7, the following holds: P(q) = P′(q).

Thus, q is well defined iff P(q) depends only on the marginal tuple probabilities P(t)
(which we know), and not on the entire distribution P (which we don’t know). We will
give now a necessary and sufficient condition for q to be well defined, but first we need to
introduce two notions: intertwined tuples, and a set of critical tuples.

7∀t P(t) = P′(t)

22 Dalvi, Re, Suciu

Definition 4.16 Let (L,K) be a partial representation of a view V . Let t, t′ be two ground
tuples of the same arity as V . We call t,t′ intertwined if t.L = t′.L and t.K 6= t′.K.

Next, we generalize a critical tuple (see Definition 4.12) to a set of critical tuples. Let
Inst = P(Tup) be the set of (conventional) database instances over the set of ground
tuples Tup. To each Boolean query q we associate the numerical function fq : Inst → R:

fq(I) =

{
1 if q(I) is true
0 if q(I) is false

Definition 4.17 Let f : Inst → R be a numerical function on instances. The differential
of f w.r.t. a set of tuples S ⊆ Tup is the numerical function ∆Sf : Inst → R defined as
follows:

∆∅f(I) = f(I)

∆{t}∪Sf(I) = ∆Sf(I)−∆S(f(I − {t})) if t 6∈ S

Definition 4.18 A set of tuples C ⊆ Tup is critical for f if there exists an instance I
s.t. ∆Cf(I) 6= 0. A set of tuples C is critical for a Boolean query q if it is critical for fq.

We can now state the main result in this section:

Theorem 4.19 Let V be a view with a partial representation (L,K).

1. A monotone Boolean query q over V is well defined iff for any two intertwined tuples
t, t′ the set {t, t′} is not critical for q.

2. The problem “given a Boolean conjunctive query q over the view V , decide whether q
is well defined” is in Πp

2. Moreover, there exists a view V and partial representation
(L,K) for which this problem is Πp

2 hard.

Thus, in order to evaluate a query q using a view V with partial representation (L,K)
one proceeds as follows. First, we check if q is well defined, by checking if it has no pair
of intertwined, critical tuples: this is a Πp

2-complete problem in the size of the query q.
Second, if this holds, then we evaluate q over V by assuming V is a BID table with key
attributes L; or, alternatively, we may assume a BID table with key attributes K. The
well-definedness condition ensures that we obtain the same answer over any of these two
BID tables as over the view V .

In the rest of the section we prove Theorem 4.19, and for that we give a definition, and
three lemmas.

Definition 4.20 Let T ⊆ Tup be a set of tuples. The restriction of a numerical function
f to T is: fT (I) = f(I ∩ T). Similarly, the restriction of a Boolean query q to T is:
qT (I) = q(I ∩ T).

The first lemma establishes some simple properties of critical sets of tuples. Note that
a set of tuples C is not critical for f iff ∆Cf = 0, meaning ∀I : ∆Cf(I) = 0.

Queries and Materialized Views 23

Lemma 4.21 Let C be a set of tuples and suppose ∆Cf = 0. Then:

1. For any set of tuples D ⊇ C, ∆Df = 0.

2. For any set of tuples S, ∆C∆Sf = 0.

3. For any set of tuples T , ∆Cf
T = 0.

Proof: (1): we show that ∆Df(I) = 0 by induction on the size of D. If D = C then
it follows from the assumption that ∆Cf = 0. We show this for D ∪ {t}, where t 6∈ D:
∆D∪{t}(I) = ∆D(I) − ∆D(I − {t}) = 0 − 0 = 0. (2): ∆C∆Sf(I) = ∆S∪Cf(I), and the
latter is 0 by the previous claim. (3): ∆Cf

T (I) = ∆Cf(I ∩ T) = 0, because ∆Cf = 0. 2

The second lemma gives a series expansion for any numerical function f : Inst → R, in
terms of its differentials.

Lemma 4.22 For any set of tuples T ⊆ Tup:

f =
∑
S⊆T

∆Sf
Tup−(T−S) (1)

As a consequence:

f =
∑

S⊆Tup

∆Sf
S (2)

Equation (1) can be written equivalently as f(I) =
∑

S⊆T ∆Sf(I − (T − S)). For
example, by setting T = {t} or T = {t1, t2} in Eq.(1) we obtain:

f(I) = f(I − {t}) + ∆tf(I)

f(I) = f(I − {t1, t2}) + ∆t1f(I − {t2}) + ∆t2f(I − {t1}) + ∆t1,t2f(I)

Proof: (Sketch) We prove (1) by induction on the size of the set T . The first example
above shows the base case. Assuming s 6∈ T , we can split the sum over S ⊆ T ∪ {t} into
to sums: one iterating over S where S ⊆ T and the other iterating over S ∪ {t} where
S ⊆ T : ∑

S⊆T∪{t}

∆Sf
Tup−(T∪{t}−S)(I) =

=
∑
S⊆T

∆Sf
Tup−(T∪{t}−S)(I) +

∑
S⊆T

∆S∪{t}f
Tup−(T−S)(I)

=
∑
S⊆T

∆Sf
Tup−(T∪{t}−S)(I) +

∑
S⊆T

∆Sf
Tup−(T−S)(I)−

∑
S⊆T

∆Sf
Tup−(T−S)(I − {t})

=
∑
S⊆T

∆Sf
Tup−(T−S)(I) = f(I)

The last identity holds because fTup−(T∪{t}−S)(I) = fTup−(T−S)(I − {t}). This completes
the proof of (1). To prove (2) we set T = Tup in (1). 2

24 Dalvi, Re, Suciu

For the third lemma, we fix the partial representation (L,K) of the view.

Definition 4.23 A set of ground tuples T is non-intertwined, or NIT, if ∀t, t′ ∈ T , t and
t′ are not intertwined. In other words: ∀t, t′ ∈ T , either t.L 6= t′.L or t.K = t′.K.

Lemma 4.24 Let (L,K) be a partial representation of a view V , and let q be a monotone
Boolean query over V . Assume q has no critical pairs of intertwined tuples, and let T be
a NIT set of tuples. Then qT is well defined given the partial representation (L,K) of the
view V .

Proof: A minterm for qT is a minimal instance J s.t. qT (J) is true; that is, J is a set of
tuples s.t. qT (J) is true and forall J ′ ⊆ J , if qT (J ′) is true then J = J ′. Denote M the
set of all minterms for qT . Obviously, each minterm for qT is a subset of T . Since qT is
monotone (because q is monotone), it is uniquely determined by M:

qT (I) =
∨
J∈M

(J ⊆ I)

In other words, qT is true on an instance I iff the set of tuples I contains a minterm J .
Denote rJ the Boolean query rJ(I) = (J ⊆ I), we apply the inclusion-exclusion formula
to derive:

P(qT) = P(
∨
J∈M

rJ) =
∑

N⊆M,N 6=∅

(−1)|N |P(r
S

N)

Finally, we observe that for each N ⊆ M, the expression P(r
S

N) is well defined. Indeed,
the set J =

⋃
N is the union of minterms in N , thus it is a subset of T , hence it is a

NIT set. If J = {t1, t2, . . .}, the query rJ simply checks for the presence of all tuples
t1, t2, . . .; in more familiar notation P(rJ) = P(t1t2 · · ·). If the set J contains two disjoint
tuples (ti.K = tj.K) then P(t1t2 · · ·) = 0. Otherwise, it contains only independent tuples
(ti.L 6= tj.L), hence P(t1t2 · · ·) = P(t1)P(t2) · · · In either cases it is well-defined and,
hence, so is P(qT). 2

We now prove Theorem 4.19

Proof: Part 1: We start with the “only if” direction. Let q be well defined, and assume
it has a pair t, t′ of intertwined, critical tuples. By definition there exists an instance I
s.t. fq(I)− fq(I − {t})− fq(I − {t′}) + fq(I − {t, t′}) 6= 0. Since q is monotone it follows
that fq is monotone, hence q(I) = true, q(I − {t, t′}) = false, and either q(I − {t}) =
q(I−{t′}) = false or q(I−{t}) = q(I−{t′}) = true. Without loss of generality, assume that
q(I−{t}) = q(I−{t′}) = false. Then we define two probabilistic databases PV = (W,P)
and PV ′ = (W,P′) as follows. Each has four possible worlds: I, I−{t}, I−{t′}, I−{t, t′}.
In PV these worlds are assigned probability P = (0.5, 0, 0, 0.5), respectively; here, t1 and
t2 are positively correlated. In PV ′, all worlds are assigned probability 0.25 i.e. the two
tuples are independent. Observe that in both cases, the marginal probability of any tuple
is the same, P(t) = P(t′) = 0.5 and all other tuples have probability 1. Then we have
P(q) = 0.5 and P′(q) = 0.25, contradicting the assumption that q is well-defined.

Queries and Materialized Views 25

Next we prove the “if” part, so assume q has no pair of intertwined, critical tuples. The
basic plan is this. Suppose an instance I contains two intertwined tuples t, t′ (hence we
don’t know their correlations). Write q(I) = q(I −{t, t′}) + ∆tq(I −{t′}) + ∆t′q(I −{t})
(because ∆t,t′q = 0). Thus, we can “remove” t or t′ or both from I and get a definition
of q on a smaller instance, and by repeating this process we can eliminate all intertwined
tuples from I, then we apply Lemma 4.24

Formally, let q be a monotone Boolean query that has no critical pair of intertwined
tuples for (L,K). Let PV = (W,P) be a probabilistic database that satisfies the partial
representation (L,K), and let Tup be the set of possible tuples in PV . We expand fq

using Lemma 4.22:

fq =
∑

T⊆Tup

∆Tf
T
q

=
∑

T⊆Tup:T is NIT

∆Tf
T
q

=
∑

T⊆Tup:T is NIT

∑
S⊆T

(−1)|S|fT−S
q (3)

The first line is Eq.(2) in Lemma 4.22. To show the second line, we start from the
fact that ∆{t,t′}fq = 0 when t, t′ are intertwined tuples, because we assumed that q has
no critical pair of intertwined tuples. Then, every set T that is not NIT can be written
as T = {t, t′} ∪ T ′ where t, t′ are two intertwined tuples. We apply Lemma 4.21 twice:
∆{t,t′}fq = 0 implies ∆{t,t′}f

T
q = 0, which further implies ∆Tf

T
q = 0. Thus, the only terms

in the first line that are non-zero are those that correspond to sets T that are NIT: this
is what the second line says. Finally, the last line is the direct definition of ∆T .

Next we apply the expectation on both sides of Eq.(3), and use the linearity of expec-
tation plus P(q) = E[fq]:

P(q) = E[fq] =
∑

T⊆Tup:T is NIT

∑
S⊆T

(−1)|S|E[fT−S
q]

=
∑

T⊆Tup:T is NIT

∑
S⊆T

(−1)|S|P(qT−S)

The claim of the theorem follows from that fact that by Lemma 4.24 each expression
P(qT−S) is well defined.

We now prove Part 2, by providing a reduction from the problem “given a conjunctive
query q and a tuple t check whether t is critical for q”. Assume w.l.o.g. that the query
and the tuple are over a vocabulary with a single relation symbol (namely V). If not, we
rename relation symbols by padding them so that they have the same arities, then adding
constants: for example if the vocabulary is R1(A,B), R2(C,D,E, F), R3(G,H,K), then
we will rewrite both the query and the tuple using a single relation symbol V of arity 5
(the largest of the three arities plus one), and replace R1(x, y) with V (x, y, a, a), replace

26 Dalvi, Re, Suciu

R2(x, y, z, u) with V (x, y, z, u, b), and replace R3(x, y, z) with V (x, y, z, c, c), where a, b, c
are fixed constants.

Thus, we have a query q and a ground tuple t, over a single relation symbol V of arity
k, in particular t = V (c1, . . . , ck) = V (c̄). We want to check whether t is a critical tuple
for q. We reduce this problem to the problem of checking whether some query q′ is well
defined over some view V ′; the new view will have arity k+ 1. Fix two distinct constants
a, b. The new query q′ is obtained from q by replacing every subgoal V (x, y, . . .) with
V ′(a, x, y, . . .), and by adding the constant subgoal V (b, c1, . . . , ck). Thus, queries q and
q′ look like this:

q = V (x̄1), V (x̄2), . . . , V (x̄m)

q′ = V ′(a, x̄1), V
′(a, x̄2), . . . , V

′(a, x̄m), V ′(b, c̄)

Consider the partial representation (L,K) for V ′, where L = Attr(V) and K = Attr(V ′).
Recall that q′ is well defined over this partial representation, iff it has no pairs of inter-
twined, critical tuples. Thus, to prove the hardness claim it suffices to show that the
following two statements are equivalent:

1. There exists two intertwined, critical tuples for q′.

2. t is a critical tuple for q.

We start by showing 1 implies 2. Two tuples t1, t2 are intertwined iff they agree on the
L attributes, t1.L = t2.L, and disagree on the K attributes, hence t1.A 6= t2.A, where
A = Attrs(V ′)−L is the extra attribute that was added to V ′. On the other hand, if the
set {t1, t2} is also critical for q′, then t1.A = a and t2.A = b (since q′ only inspects tuples
that have A = a or A = b), and, moreover, t1.L = t2.L = c̄ (since the only tuple with
A = b that is critical for q′ is V ′(b, c̄)). Let I ′ be an instance that witnesses the fact that
{t1, t2} is doubly critical:

0 6= ∆t1,t2fq′(I ′) = fq′(I ′)− fq′(I ′ − {t1})− fq′(I ′ − {t2}) + fq′(I ′ − {t1, t2})
= 1− fq′(I ′ − {t1})− 0 + 0

We used the fact that fq′(I ′) = 1 (otherwise, if fq′(I ′) = 0 then ∆t1,t2(fq′(I ′)) = 0), which
implies that t2 = V ′(b, c̄) ∈ I ′. Thus, we have q′(I ′) = true and q′(I ′ − {t1}) = false. We
construct from here an instance I such that q(I) = true and q(I − {t}) = false: indeed,
take I = {V (d̄) | V (a, d̄) ∈ I ′}, it obviously satisfies this property. Thus, I is a witness
for t being a critical tuple for q.

To prove 2 implies 1 we use the same argument, in reverse. We start with an instance I
such that q(I) = true, q(I−{t}) = false, and define I ′ = {V (a, d̄) | V (d̄) ∈ I}∪{V (b, c̄)}.
It is easy to check that ∆t1,t2fq′(I ′) 6= 0. This completes the proof. 2

5. Conclusions

At a superficial look, query evaluation on probabilistic databases seems just a special
instance of probabilistic inference, e.g. in probabilistic networks. However, there are
specific concepts and techniques that have been used on conventional databases for many
years, and that can be deployed to probabilistic databases as well, to scale up query

Queries and Materialized Views 27

processing to large data instances. We have presented two such techniques in this paper.
The first is the separation of the query and the data: we have shown here that by doing
so, one can identify queries whose data complexity is #P-hard, and queries whose data
complexity is in PTIME. The second is the aggressive use of materialized views (or any
previously computed query results): we have shown that by using a materialized view
the query complexity can decrease from #P-hard to PTIME, and have described static
analysis techniques to derive a partial representation for the view, and to further use it
in query evaluation.

REFERENCES

1. S. Abiteboul and P. Senellart. Querying and updating probabilistic information in
XML. In EDBT, pages 1059–1068, 2006.

2. Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison
Wesley Publishing Co, 1995.

3. Sanjay Agrawal, Surajit Chaudhuri, and Vivek R. Narasayya. Automated selection of
materialized views and indexes in sql databases. In VLDB 2000, Proceedings of 26th
International Conference on Very Large Data Bases, September 10-14, 2000, Cairo,
Egypt, pages 496–505. Morgan Kaufmann, 2000.

4. P. Andritsos, A. Fuxman, and R. J. Miller. Clean answers over dirty databases. In
ICDE, 2006.

5. L. Antova, C. Koch, and D. Olteanu. 10^(10^6) worlds and beyond: Efficient repre-
sentation and processing of incomplete information. In ICDE, 2007.

6. L. Antova, C. Koch, and D. Olteanu. World-set decompositions: Expressiveness and
efficient algorithms. In ICDT, pages 194–208, 2007.

7. O. Benjelloun, A. Das Sarma, A. Halevy, and J. Widom. ULDBs: Databases with
uncertainty and lineage. In VLDB, pages 953–964, 2006.

8. N. Dalvi, Chris Re, and D. Suciu. Query evaluation on probabilistic databases. IEEE
Data Engineering Bulletin, 29(1):25–31, 2006.

9. N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases. In
VLDB, Toronto, Canada, 2004.

10. N. Dalvi and D. Suciu. The dichotomy of conjunctive queries on probabilistic struc-
tures. In PODS, pages 293–302, 2007.

11. N. Dalvi and D. Suciu. Management of probabilistic data: Foundations and chal-
lenges. In PODS, pages 1–12, Beijing, China, 2007. (invited talk).

12. A. Das Sarma, O. Benjelloun, A. Halevy, and J. Widom. Working models for uncertain
data. In ICDE, 2006.

13. Michel de Rougemont. The reliability of queries. In PODS, pages 286–291, 1995.
14. A. Deshpande, C. Guestrin, S. Madden, J. M. Hellerstein, and W. Hong. Model-driven

data acquisition in sensor networks. In VLDB, pages 588–599, 2004.
15. E. Grädel, Y. Gurevich, and C. Hirsch. The complexity of query reliability. In PODS,

pages 227–234, 1998.
16. T. Green and V. Tannen. Models for incomplete and probabilistic information. IEEE

Data Engineering Bulletin, 29(1):17–24, March 2006.
17. R. Greenlaw, J. Hoover, and W. Ruzzo. Limits to Parallel Computation. P-

28 Dalvi, Re, Suciu

Completeness Theory. Oxford University Press, New York, Oxford, 1995.
18. Alon Halevy. Answering queries using views: A survey. VLDB Journal, 10(4):270–

294, 2001.
19. E. Hung, L. Getoor, and V.S. Subrahmanian. PXML: A probabilistic semistructured

data model and algebra. In ICDE, 2003.
20. T. Imielinski and W. Lipski. Incomplete information in relational databases. Journal

of the ACM, 31:761–791, October 1984.
21. R. Karp and M. Luby. Monte-Carlo algorithms for enumeration and reliability prob-

lems. In Proceedings of the annual ACM symposium on Theory of computing, 1983.
22. G. Miklau and D. Suciu. A formal analysis of information disclosure in data exchange.

J. Comput. System Sci., 73(3):507–534, 2007.
23. Christos Papadimitriou. Computational Complexity. Addison Wesley Publishing

Company, 1994.
24. J. S. Provan and M. O. Ball. The complexity of counting cuts and of computing the

probability that a graph is connected. SIAM J. Comput., 12(4):777–788, 1983.
25. C. Re, N. Dalvi, and D. Suciu. Efficient Top-k query evaluation on probabilistic data.

In ICDE, 2007.
26. C. Re and D.Suciu. Materialized views in probabilistic databases for information

exchange and query optimization. In Proceedings of VLDB, 2007.
27. A. Das Sarma, M. Theobald, and J. Widom. Exploiting lineage for confidence com-

putation in uncertain and probabilistic databases. In ICDE, pages 1023–1032, 2008.
28. Patrick Valduriez. Join indices. ACM Transactions on Database Systems, 12(2):218–

246, 1987.
29. L. Valiant. The complexity of enumeration and reliability problems. SIAM J. Com-

put., 8:410–421, 1979.
30. M. van Keulen, A. de Keijzer, and W. Alink. A probabilistic XML approach to data

integration. In ICDE, pages 459–470, 2005.
31. M. Y. Vardi. The complexity of relational query languages. In Proceedings of 14th

ACM SIGACT Symposium on the Theory of Computing, pages 137–146, San Fran-
cisco, California, 1982.

