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ABSTRACT
As a consequence of the popularity of big data, many users
with a variety of backgrounds seek to extract high level in-
formation from datasets collected from various sources and
combined using data integration techniques. A major chal-
lenge for research in data management is to develop tools
to assist users in explaining observed query outputs. In this
paper we introduce a principled approach to provide expla-
nations for answers to SQL queries based on intervention:
removal of tuples from the database that significantly affect
the query answers. We provide a formal definition of inter-
vention in the presence of multiple relations which can inter-
act with each other through foreign keys. First we give a set
of recursive rules to compute the intervention for any given
explanation in polynomial time (data complexity). Then we
give simple and efficient algorithms based on SQL queries
that can compute the top-K explanations by using standard
database management systems under certain conditions. We
evaluate the quality and performance of our approach by ex-
periments on real datasets.

Categories and Subject Descriptors
H.1.0 [Models and Principles]: General; H.2.8 [Database
Management]: Database Applications

Keywords
Explanations; Causality; Intervention; Recursion; Data cube

1. INTRODUCTION
As a consequence of the popularity of “big data”, many

users with a variety of backgrounds seek to extract high
level information from datasets. The typical scenario is this.
A user integrates a number of data sets, computes some
statistics, then seeks an explanation for what she sees. Why
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Figure 1: Number of SIGMOD publications in a five years
windows, broken down into papers from industry (‘com’)
and academia (‘edu’). While both increase until 2000-2007,
afterward the number of papers from academia continue to
increase while that from industry decreases.

are these data values outliers? Or why are they not outliers?
Why are two graphs similar (or dissimilar)? Why is this
value so high (low)? A major challenge for research in both
data management and AI is to develop tools to assist users
in explaining observed query outputs.

Consider the following example. Figure 1 shows the num-
ber of publications in SIGMOD during a moving five years
window, broken down into papers published by authors from
industry and papers published by authors from academia.
The graph was generated using a three-way-join SQL query
over the DBLP dataset integrated with an affiliation table1.
Around 2000-2007 one can notice an interesting bump: while
before that period both the number of academic and indus-
trial papers increase over time, after that period the number
of academic papers continues to increase, but that of indus-
trial papers decreases. This is clearly an interesting phe-
nomenon. For certain users (say, the director of a govern-
ment funding agency), it is important to find explanations
for this phenomenon, by digging deeper into the data.

The golden standard for an explanation is the actual cause
of the observed outcome. Causality has been studied and de-
fined algorithmically by Judea Pearl, in a highly influential
work [11]. At the core, causality is defined in terms of inter-
vention: an input is said to be a cause if we can affect the
output by changing just the value of that input, while keep-
ing all others unchanged. Causality can only be established
in a controlled physical experiment, and cannot be derived
solely from data. (Pearl, and others, circumvent that by as-
suming that causal paths are already known, allowing the

1The affiliation information was available only for some au-
thors, therefore the graph does not include all papers; papers
with authors from both industry and academia are included
in both bars.



rank explanation

1 [affiliation = ibm.com]
2 [affiliation = bell-labs.com]
3 [author = Rajeev Rastogi]
4 [affiliation = ucla.edu]
5 [author = Hamid Pirahesh]
6 [affiliation = asu.edu]
7 [author = Rakesh Agrawal]
8 [affiliation = utah.edu]
9 [affiliation = gwu.edu]

Figure 2: Top explanations for the observation in Figure 1.

controlled experiment to be simulated algorithmically.) In
contrast, an explanation lowers the bar of causality, and only
requires that a change in the input affects the output [6, 9]:
the more it affects the output, the better the explanation.
All previous work on explanations have adopted the princi-
ple of intervention either explicitly or implicitly (for exam-
ple, by using influence as a metric for explanation [19]).

In the context of databases, a major challenge in find-
ing explanations is the difficulty of defining and computing
interventions for complex datasets and queries. Users of-
ten examine multiple datasets, and the query is complex,
involving joins and aggregates; often the question is the re-
lationship of several queries rather than a single query. The
challenge is to define an intervention, and compute all in-
terventions in real time. Previous work on explaining data
outcomes have been restricted to single table only, and to
queries without joins [15, 2, 6, 19]. However, many interest-
ing observations in data are made when we integrate multi-
ple data sets and run complex queries, including joins. Any
single dataset may be uninteresting, but once we join them
we make interesting observations, which we wish to explain.

In this paper we introduce a principled approach to query
explanation that applies to SQL queries. Our definition is
based on intervention: an explanation is a predicate with
the property that, when we remove from the database all
tuples satisfying that predicate, then we affect significantly
the outcome that we want to explain. For an illustration
we show in Figure 2 the top explanations for the observa-
tion made in Figure 1. For example, bell-labs had a very
active database groups in the mid 90’s: if we intervene by
removing bell-labs from the data then we flatten to some
extent the bump in industrial publications in the late 90’s
(prior to 2000-2007) thus “explaining” the bump; similar ex-
planations come from top researchers in industrial labs who
published intensively in the 90’s. A different kind of explana-
tions are for the increase in academic publications: a large
chunk comes from some highly prolific academic database
groups established or increased during the 2000’s, such as
asu.edu, utah.edu, gwu.edu. Notice that all these are sim-
ply“explanations”and we do not claim to establish causality:
in this particular example, the only way to prove causality
would be to repeat the history. However, good explanations
can go a long way in helping the user dig deeper in search
for the ultimate cause2

In this paper we make the following contributions:
Framework In Section 2 we define a formal framework

for explaining the outputs to SQL queries based on the no-

2We believe that the cause for the phenomenon observed in
our example is a combination of a strategic hires by several
Computer Science Departments of strong database faculty,
combined with a hiring slowdown or even decline of database
groups at some major industrial research labs.

tion of intervention. A key novel feature of our approach is
to use foreign keys to model causal paths. We observe that
SQL’s cascade-delete rule already encodes a causal path: a
record with a key pk is a cause for all records whose foreign
key is fk = pk. We introduce a novel constraint that captures
the reverse causal path, which often occurs in data, namely
when the latter record causes the former record: we call this
a back-and-forth foreign key, and show that it models nat-
urally causal paths in databases. For example an author is
cause for all her papers, hence if the intervention removes
the author then it must also remove all her papers; in con-
trast the author is not a cause of her institution, hence an
intervention may remove the author without removing her
institution. In our framework, such causal paths can be
modeled through a simple extension of foreign keys.

Theory In Section 3 we show that the minimal interven-
tion associated to an explanation is uniquely defined. This
is a key property for our framework, which allows us to mea-
sure the degree of explanation based on its unique minimal
intervention. We further show that it can be defined as
the minimal fixpoint of a recursive program that is mono-
tone in its IDBs (hence has a unique minimal fixpoint), yet
non-monotone in the input database (the intervention is not
monotone in the input). We show some important prop-
erties of the recursive program: in particular we identify
restrictions on the input schema under which the fixpoint is
obtained in a constant number of iterations, thus eliminating
the need for recursion.

Implementation and Optimization In Section 4 we
show that, under certain restrictions, one can use SQL’s
data-cube operation to compute the degree of all candi-
date explanations, then return the top k to the user. While
this technique works only under certain restrictions on the
query and the database schema, when it can be applied,
then it can compute and rank all explanations in real time.
Furthermore, the entire computation can be pushed inside
the database engine and, therefore, exploit all optimizations
available for the data cube. Notice that, in contrast to our
approach, the technique proposed recently by Wu and Mad-
den [19] is based on a search algorithm on decision trees,
which needs to be performed outside of the DBMS.

Experiments In Section 5 we run experiments on two
real datasets. We show that explanations returned by our
framework are interesting, and that they can be computed
and returned in real time.

Related Work.
Pearl and others have explored various definitions of causal-
ity primarily using the concept of counterfactuals (see, e.g.,
[11, 12]); Meliou et al. adapted these notions to database
queries [7, 8]. Silverstein et al. [15] study causal relationship
in data mining settings for market basket data. Various
approaches to explanations exists in the AI literature [10,
20]. In databases, Khoussainova et al. [6] proposed the sys-
tem PerfXplain that explains systems performance. Fabbri
and LeFevre studied explanation-based auditing of access log
[3]. Das et al. [2] studied the problem of “Meaningful Rat-
ings Interpretation (MRI)” based on the idea of data cube.
Kanagal et al. [5] studied the problem of computing top-k
influential variables and top-k explanations (to answer, e.g.,
“why a tuple is in the output”, “why the probability of an
output tuple is greater than another one”) in probabilistic
databases. In recent work, Wu and Madden [19] discussed a



framework for finding explanations for aggregate queries on
a single relation based on the notion of influence. Related to
explanation are Sarawagi and Sathe’s techniques for efficient
and automated data analysis in OLAP cubes (by RELAX,
DIFF, and SURPRISE operators) [13, 14]. Our frame-
work for explanation shares the same common philosophy
of previous systems (measuring explanation by some sort of
intervention or influence), but is the first comprehensive ap-
proach that can handle complex SQL queries over complex
database schemas.

2. FRAMEWORK OF EXPLANATIONS
Let D be a database consisting of relations R1,⋯,Rk. For

all3 i ∈ [k] we denote Ai the set of attributes of Ri. We
assume that each relation Ri has a primary key, pk ⊆ Ai. A
numerical query is an expression of the form:

Q =E(q1, . . . , qm) (1)

Here each qj is any SQL query where the select clause con-
tains a single aggregate operator (qj = select agg(. . .) . . .),
and E is an arithmetic expression, consisting of any numer-
ical operators legal in SQL (+,−,∗, /, log, exp etc).

Definition 2.1. A user question is a pair (Q,dir), where
(i) Q is a numerical query, and (ii) dir ∈ {high, low} is a
direction specifying whether the user thinks Q is higher or
lower than the expected value on D.

Example 2.2. Our running example is a simplified ver-
sion of the DBLP database[17] and has the following schema:
Author(id,name,inst,dom)
Authored(id,pubid)

Publication(pubid,year,venue)

A small instance is in Figure 3. The “bump” around 2000-07
in Figure 1 is expressed as the following numerical query

Q =
q1
q2

/
q3
q4

=
q1
q2

×
q4
q3

which compares the ratios of SIGMOD publications from
dom =

′ com′ and dom =
′ edu′ in 2000-04 to that in 2007-11.

The user question is (Q,high). Here

q1: select count(distinct z.pubid)

from Author x, Authored y, Publication z

where x.id = y.id and y.pubid = z.pubid

and z.venue = ’SIGMOD’ and x.dom = ’com’

and 2000 <= z.year and z.year <= 2004

Similar queries can be written for

q2: (2007 <= z.year <= 2011, x.dom = ’com’),

q3: (2000 <= z.year <= 2004, x.dom = ’edu’), and

q4: (2007 <= z.year <= 2011, x.dom = ’edu’).

The bars for these four queries are indicated in Figure 1.

We envision a user interface4 where the user would inter-
act with the system by generating a graph (like Figure 1)
using a group-by SQL query with one or several aggregates:
each aggregate value represents a point in the graph. Us-
ing a graphical interface the user would select some points

3For two integers a ≤ b, [a, b] denotes the set {a, a+ 1,⋯, b−
1, b} and [b] = [1, b].
4We are currently developing the user interface.

Author
id name inst dom
A1 JG C.edu edu r1
A2 RR M.com com r2
A3 CM I.com com r3
Publication
pubid year venue

P1 2001 SIGMOD t1
P2 2011 VLDB t2
P3 2001 SIGMOD t3

Authored
id pubid
A1 P1 s1
A2 P1 s2
A1 P2 s3
A3 P2 s4
A2 P3 s5
A3 P3 s6

Figure 3: Tables for the running example, identifiers are
shown next to the tuples for easy reference.

on the graph (like the four bars in Figure 1) and ask why
a certain relationship holds; the system would convert this
into a user question (Q,dir), as illustrated in our example.
In this paper we assume that input to the system is the user
question (Q,dir).

Given a database instance D = (R1, . . . ,Rk), we denote by
U(D) = R1&. . .&Rk the universal relation, obtained by join-
ing all tables on all foreign key constraints. The universal
table for our running example in Figure 3 is shown in Fig-
ure 4. We assume that all relations are semijoin-reduced5; in
other words, for every i, Ri = ΠAi(U(D)), i.e. Ri can be ob-
tained by projecting the universal relation on its attributes;
if this does not hold, we simply replace Ri with ΠAi(U(D)).
In our running example, this means that every author has
published at least one paper, and every paper has at least
one author. All relations in Figure 3 are semijoin-reduced.
We also assume that the schema is acyclic for simplicity6.

2.1 Explanations
In response to a user question (Q,dir), the system returns

a list of candidate explanations.

Definition 2.3. A candidate explanation φ is a conjunc-
tion of predicates on attributes: φ = ⋀j φj, where each φj is
an atomic predicate of the form φj = [Ri.A op c], where A
is an attribute of Ri, c is a constant, and op ∈ {=,<,≤,>,≥}.

We note that our choice of defining explanations as pred-
icates is similar to other frameworks for explanations [9, 19,
6], and is unlike frameworks for causality, where a cause is
defined to consist of a single tuple [7, 8] (not predicates).

A simple example is φ = [Author.name = JG]; another ex-
ample is φ = [Author.name = JG ∧ Publication.year = 2001].
The intuition is that the tuples in the database that satisfy
the predicates in the explanation are major contributors to
the value of Q being too high or too low. The system will
rank the candidate explanations in decreasing order of their
degree of explanation, which measures of how well φ explains
the observed phenomenon. We will define two such degrees.
The first one, called degree of explanation by aggravation, is
simple but more limited: it simply measures the value of Q
on the subset of the database that satisfies φ. Let U = U(D)

be the universal table, and denote Uφ = σφ(U). Let Dφ
be the database whose relations are ΠA1(Uφ), . . . ,ΠAk(Uφ).
Then:

Definition 2.4. Given database D and a user question
(Q,dir), the degree of a candidate explanation φ by aggra-

5They are called globally consistent in [1]
6We can handle cyclic schemas but with the standard re-
strictions for the universal relation [16], sec 17.8, page 1056.



vation is defined as:

µaggr(D,Q,dir)(φ) = {
−Q(Dφ) if dir = low

Q(Dφ) if dir = high

We will omit D,Q,dir in the subscript where they are clear
from the context. Intuitively, if we restrict the database to
tuples that satisfy the explanation predicate, it will further
aggravate the situation by changing the answer to Q in the
same direction as dir (e.g., if dir = low, explanations with
even lower values of Q(Dφ) will have top ranks).

The explanation by aggravation is appealing through its
simplicity, but it ignores any causality path. Our second
definition is called degree of explanation by intervention and
is based on causality relations in the data, which we define
next.

2.2 Causal Paths and Foreign Keys
An intervention is a set of tuples to be deleted from D.

If ∆i ⊆ Ri for i ∈ [k], then we denote the intervention as
∆ = (∆1, . . . ,∆k) and write D′

= D − ∆ for the residual
database instance after deleting all tuples in ∆. Each can-
didate explanation φ defines a certain intervention ∆φ; its
degree of explanation by intervention is the amount by which
the query on the residual database Q(D′

) moves in the di-
rection expected by the user. Unlike aggravation, interven-
tion ∆φ includes all tuples reachable through a causal path
(discussed further in Section 3.3). Intuitively, there exists a
causal path from a tuple t to another tuple t′ if t is a nec-
essary cause for t′. In other words, if we delete t from the
database then the semantics of the data is such that we must
delete t′ as well. Pearl defines causal paths in terms of causal
networks [10]. In this paper we propose a simpler definition
of a causal path by exploiting the foreign-key relationships
in the database.

A standard foreign key constraint Rj .fk → Ri.pk means
that for every tuple tj ∈ Rj there exists a tuple ti ∈ Ri such
that tj .fk = ti.pk. For a simple example, in Figure 3 we
have the foreign key Authored.id→ Author.id. Every for-
eign key automatically induces a causal relation between the
two tuples, which we denote ti → tj . The precise meaning
that we give to this causal relation is that, whenever we
delete ti from the database, we must delete tj as well. We
call this causal relation a cascade causal relation, because it
corresponds precisely to the cascade rule in SQL.

In some datasets, however, the reverse causal relation
holds too, tj → ti. This happens when every member of
a collection is necessary for the existence of the collection;
for example, every author is necessary for the existence of a
paper, every part is needed for the existence of an electronic
gadget. In that case we denote the foreign key constraint
as Rj .fk ↪ Ri.pk. The meaning is that we have two causal
relations, a cascade relation ti → tj and backward cascade
relation, which we denote by tj ⇢ ti: if either ti or tj is
deleted then the other tuple must be deleted as well. We
say that Rj .fk↪ Ri.pk is a back-and-forth foreign key.

Definition 2.5. Let D = (R1, . . . ,Rk) be a database with
a set of foreign keys (standard and back-and-forth). Let ∆ =

(∆1, . . . ,∆k), where ∆i ⊆ Ri for all i ∈ [k]. We call ∆ closed
if it satisfies the following conditions:

● For every standard foreign key Rj .fk → Ri.pk and for
all tuples ti ∈ Ri, tj ∈ Rj such that tj .fk = ti.pk, if
ti ∈ ∆i then tj ∈ ∆j.

id pubid name inst dom year venue
A1 P1 JG C.edu edu 2001 SIGMOD u1

A2 P1 RR M.com com 2001 SIGMOD u2

A1 P2 JG C.edu edu 2011 VLDB u3

A3 P2 CM I.com com 2011 VLDB u4

A2 P3 RR M.com com 2001 SIGMOD u5

A3 P3 CM I.com com 2001 SIGMOD u6

Figure 4: Universal table U(D) for the running example.

● For every back-and-forth foreign key Rj .fk ↪ Ri.pk
and for all tuples ti ∈ Ri, tj ∈ Rj such that tj .fk = ti.pk
(a) if ti ∈ ∆i then tj ∈ ∆j (forth), and (b) if tj ∈ ∆j

then ti ∈ ∆i (back).

We illustrate on our running example Figure 3. Here we
have a natural causal path from authors to papers: the pres-
ence of an author is necessary for their papers. In other
words, if we delete an author from the database, then we
should delete all her papers too. By contrast, there exists
no causal path from papers to authors: we can delete a paper
without deleting its authors. This is captured by a standard
foreign key and a back-and-forth foreign key:

Authored.id→ Author.id

Authored.pubid↪ Publication.pubid (2)

Referring to the tuples in Figure 3, we have the causal rela-
tions r1 → s1 ⇢ t1 and also r1 → s3 ⇢ t2. This means that if
we delete the author r1 then we must also delete s1, s3, t1, t3,
then also delete s2 and s4 by the standard cascade rule.

The intervention associated to a candidate explanation φ
is a set of tuples ∆φ to be deleted.

Definition 2.6. Let D = (R1,⋯,Rk) be a database and
φ be a candidate explanation. A set ∆ = (∆1,⋯,∆k) ⊆ D is
called a valid intervention for φ if:

1. ∆ is closed (Definition 2.5).

2. The residual database D −∆ is semi-join reduced.

3. For each tuple t in the residual universal relation U(D−
∆), φ(t) = false.

The intervention associated to φ, denoted ∆φ, is the minimal
valid intervention for φ, in the sense that, for every valid ∆′

we have ∆φ
⊆ ∆′.

The trivial intervention ∆ =D is always valid, but in gen-
eral, is not minimal. We show in the next section that there
always exists a unique minimal intervention. Our second
(and main) definition of degree of explanation is based on
intervention:

Definition 2.7. Given database D and a user question
(Q,dir), the degree of a candidate explanation φ by inter-
vention is defined as:

µinterv(D,Q,dir)(φ) = {
Q(D −∆φ

) if dir = low

−Q(D −∆φ
) if dir = high

Note that the sign for µinterv is opposite to that for µaggr
(Definition 2.4), since unlike µaggr here we want to intervene
or inhibit the situation by changing the value of Q in the
opposite direction of dir.

Example 2.8. For our running example, consider the ex-
planation φ = [Author.name = JG ∧ Publication.year = 2001].
The associated intervention is:

∆Author =∅ ∆Authored ={s1, s2} ∆Publication ={t1}



To see this, note that we must delete s1. If we don’t then
any residual database D′

⊆ D that contains s1 must contain
r1, t1, and therefore its universal relation contains (r1, s1, t1),
which satisfies φ; but this violates item 3 of Definition 2.6.
But once we delete s1 we must also delete t1 (because of
the back-and-forth Authored.pubid↪ Publication.pubid),
then cascade delete s2. Notice how the causal path from
Author to Publication lead to an asymmetric intervention
∆φ, where we delete the paper with Publication.year = 2001

but do not delete the author with Author.name = JG.
In contrast, if both foreign keys in Eq.(2) were standard,

then intervention ∆φ will be symmetric for the same φ:

∆Author =∅ ∆Authored ={s1} ∆Publication =∅

because if we delete only s1 then all foreign keys still hold,
and no tuple in the universal relation satisfies φ.

We explain now the critical role of item (2) of Defini-
tion 2.6, requiring the residual database D −∆φ to be semi-
join reduced. This is necessary in order to ensure that every
explanation has a unique, minimal, and valid intervention.
To see why the condition is necessary, consider this example:

Example 2.9. The schema is R1(x), S1(x, y), R2(y),

S2(y, z), R3(z). There are four standard FK’s (from S1

to R1,R2, and from S2 to R2,R3), the database instance is

D ={R1(a), S1(a, b),R2(b), S2(b, c),R3(c)} (3)

and the explanation φ = [R1.x = a∧R2.y = b∧R3.z = c]. If we
don’t require the residual database to be semi-join reduced,
then there are two minimal interventions, ∆ = {S1(a, b)}
and ∆ = {S2(b, c)}: in both cases the residual database D−∆
has dangling tuples and its universal relation is empty, thus
satisfying all conditions in Definition 2.6, except item (2).

Since we require D−∆ to be semijoin reduced, there is al-
ways a unique minimal intervention ∆φ (we prove this in the
next section), and this is an important property that makes
our framework work, since we can rank explanations based
on degree of their unique minimal intervention7. Continuing
Example 2.9, the minimal intervention is ∆φ

= D, because
after semijoin reduction the residual database becomes ∅.

Finally, our last remark is that the minimal intervention
∆φ is a non-monotone function of the input database8. We
show this by continuing Example 2.9 further:

Example 2.10. Suppose we insert the tuples S1(a, b
′
),

R2(b
′
), S2(b

′, c) into D (Eq.(3)): the minimal intervention
decreases to ∆φ = {S1(a, b),R1(b), S2(b, c)}, in other words
the tuples R1(a), R3(c) remain in the residual database. No-
tice that this is a valid intervention – the universal table of
the residual database has a single tuple (R1(a), S1(a, b

′
),

R2(b
′
), S2(b

′, c), R3(c)), which does not satisfy φ.)

We show in Section 3 how to compute ∆φ efficiently, then
discuss in Section 4 how to compute efficiently all degrees of
intervention µ(D,Q,dir, φ), for all candidate explanations
φ, using SQL’s data cube feature.

7For simple aggregate (SPJA) queries this is not a limita-
tion (the dangling tuples do not contribute to the query an-
swer). But for more complex nested aggregate queries this
constraint is needed to have a unique minimal intervention.
8This is somewhat surprising, since, in contrast, Dφ, is a
monotone function in the database.

3. COMPUTATION OF INTERVENTION
In this section we show how to compute the interven-

tion ∆φ associated to a candidate explanation φ. We show
that Definition 2.6 is equivalent to the minimal fixpoint of
a monotone query; in particular, it follows that the mini-
mal valid intervention is well defined and unique. We also
discuss convergence properties of this recursive query.

3.1 Rules for Intervention
Given a database D, consider the following recursive pro-

gram P, computing k sets ∆ = (∆1,∆2,⋯,∆k):

∆i = Ri −ΠAiσ¬φ[R1 &⋯ &Rk] ∀i ∈ [k] (i)

∆i = Ri−ΠAi[(R1−∆1)&⋯&(Rk−∆k)] ∀i ∈ [k] (ii)

∆i = Ri ⋉pk=fk ∆j (iii)

(∀ back-and-forth Rj .fk↪ Ri.pk)

The body of each rule in P is a relational algebra ex-
pression; multiple rules with the same head predicate ∆i

are interpreted as a union. The join operators in Rules (i)
and (ii) are on all foreign key constraints: that is, both com-
pute the universal relation. We explain the program next.
Rule (i) computes ∆i that represent a minimum set of tu-
ples to be deleted from each Ri to ensure that no tuples
in the universal relation satisfy φ. In general, this ∆i is
a strict subset of ΠAiσφ[R1 & ⋯ & Rk]; in our running ex-
ample for the candidate explanation φ ∶ [Author.name = JG

∧ Publication.year = 2001], we do not want to delete the
tuple r1 with [Author.name = JG] from the Author relation
since he is a coauthor of another publication that does not
satisfy the predicate φ (tuple t2 with year = 2011). Rule (ii)
performs a semijoin reduction on R1 − ∆1, . . . ,Rk − ∆k; in
particular this rule also enforces the cascade semantics for
every foreign key dependency. There is one instance of
Rule (iii) for every back-and-forth foreign key, which sim-
ply enforces the backwards cascade semantics for that for-
eign key. Recall that the semi-join operation is defined as
R ⋉ S = ΠAttr(R)(R & S); Rule (iii) simply removes from Ri
(by inserting into ∆i) all tuples ti for which there exists
some tj ∈ ∆j with tj .fk = ti.pk.

Proposition 3.1. The program P is monotone in ∆1, ⋯,
∆k, but is not monotone in the input database R1, . . . ,Rk
(and therefore is not equivalent to any datalog program).

To see that P is monotone in ∆1, ⋯, ∆k, note that in
Rule (ii) all ∆i’s occur under two set difference operators,
hence all three rules are monotone in ∆. Therefore, P has
a unique minimal fixpoint, which can be computed in the
normal fashion, by starting with ∆0

= (∅, . . . ,∅), then com-
puting iteratively ∆0

⊆ ∆1
⊆ ∆2

⊆ . . . until we reach a fix-
point ∆`

= ∆`+1; we denote P(D) = ∆` the minimal fix-
point. Interestingly, the program is not monotone in the
input database; in Example 2.10,∆φ decreased when D in-
creased. Nevertheless,

Proposition 3.2. The program P can be expressed in
datalog¬ by a straightforward rewriting.

Below, xi denote the set of variables used in Ri, all xi use
the same variable for the same attribute, and x = ∪ixi:

Si(xi) ∶ − R1(x1),⋯,Rk(xk),¬φ(x) ∀i ∈ [k]



∆i(xi) ∶ − Ri(xi),¬Si(xi) ∀i ∈ [k] (Rule (i))

Ti(xi) ∶ − R1(x1),¬∆1(x1),⋯,Rk(xk),¬∆k(xk)

∀i ∈ [k]

∆i(xi) ∶ − Ri(xi),¬Ti(xi) ∀i ∈ [k] (Rule (ii))

∆i(xi) ∶ − Ri(xi),∆j(xj) for Rj .fk↪ Ri.pk (Rule (iii))

Rule (i) is not recursive and is applied only in the first
iteration. We will refer to the tuples collected after the first
iteration ∆1

= {∆1
1,⋯,∆

1
k} as the seed tuples. The following

theorem shows that P computes the (unique) intervention
∆φ for a given φ.

Theorem 3.3. The unique minimal fixpoint P(D) is equal
to the intervention ∆φ associated to an explanation φ (Def-
inition 2.6).

Proof. U(D−∆1
) = (R1 −∆1

1)&⋯&(R1 −∆1
1) is exactly

the subset of U(D) that does not satisfy φ, where ∆1 denotes
the seed tuples collected in the first iteration by Rule (i).
Hence any minimal ∆φ

= (∆1,⋯,∆k) satisfying the third
condition of Definition 2.6 satisfies that

U(D −∆φ
) ⊆ U(D −∆1

) (4)

Rules (ii) and (iii) ensure the first and second conditions
of Definition 2.6 that ∆φ is closed and D −∆φ is semijoin-
reduced. Hence it suffices to show that any such valid ∆φ

⊇

∆1. Then it immediately follows that a minimal ∆φ is the
unique least minimal fixpoint of the program P(D).

Suppose ∆φ
/⊇ ∆1. Assume, without loss of generality,

that ∆1 /⊇ ∆1
1. Then, there exists y ∈ ∆1

1 −∆1 Then, y ∈ ∆1
1

⇒ y ∉ R1 −∆1
1, which implies that

/∃ t ∈ U(D −∆1
) such that ΠAit = y (5)

Also, y ∉ ∆1⇒ y ∈ R1−∆1. SinceD−∆φ is semijoin-reduced,

∃ t ∈ U(D −∆φ
) such that ΠAit = y (6)

(5) and (6) together contradict (4). Hence ∆φ
⊇ ∆1 and the

theorem holds.

3.2 Convergence Properties of the Rule Set
Since the program P is monotone, the polynomial data

complexity is immediate:

Proposition 3.4. The Rules (i)-(iii) converge in ≤ n it-
erations where n = ∑

k
i=1 ∣Ri∣.

Further, if there are no back-and-forth foreign keys (only
standard cascade delete holds), we have a much faster con-
vergence:

Proposition 3.5. If the input database has no back-and-
forth foreign keys, then Rules (i)-(iii) in program P converge
in only two steps, i.e., ∆2

i = ∆3
i for all i ∈ [k].

Proof sketch. After iteration 1, the seed tuples (if any)
are computed applying Rule (i), so possibly some ∆1

i ⊋ ∆0
i .

After iteration 2 (if needed), relations are again semijoin-
reduced by applying Rule (ii), so possibly some ∆2

i ⊋ ∆1
i .

Rule (iii) cannot be applied since there are no back-and-forth
foreign keys. By Rule (ii), all Ri −∆2

i are semijoin-reduced
relations. Therefore, Ri − ∆2

i = ΠAi[(R1 − ∆2
1) & ⋯ & (Rk −

∆2
k)]; i.e., ∆3

i = Ri − (Ri −∆2
i ) = ∆2

i .

Table R1
a

a1 r1
a2 r2

Table R3
c a b

c1 a1 b0 s1a
c2 a1 b1 s1b
c3 a2 b1 s2a
c4 a2 b2 s2b

Table R2
b

b0 t0
b1 t1
b2 t2

(a) Individual relations

R1.a R3.c R3.a R3.b R2.b
a1 c1 a1 b0 b0
a1 c2 a1 b1 b1
a2 c3 a2 b1 b1
a2 c4 a2 b2 b2

(b) Universal relation

r1 r2 t0 t1 t2 

s1b s2a s2b s1a 

(c) Data causal graph

Figure 5: Example where program P needs n − 1 itera-
tions. For general n = 2p + 1, R1,R2,R3 will have tuples
(r1,⋯, rp), (t0,⋯, tp), and (s1a, s1b,⋯, spa, spb) respectively,
and the rules converge in 2p steps.

For no back-and-forth foreign keys, the following corollary
also holds. This will be useful to efficiently compute the
degree of explanations in the next section.

Corollary 3.6. If there are no back-and-forth foreign
keys, then

(R1 −∆1) & ⋯ & (Rk −∆k) = σ¬φ(R1 &⋯ &Rk)

Proof Sketch. By Proposition 3.5, ∆ = ∆2. After the
first iteration, by Rule (i), U(D −∆1

) = σ¬φ(R1 & ⋯ &Rk).
Since ∆2

⊇ ∆1, U(D − ∆1
) ⊇ U(D − ∆2

). We claim that
U(D −∆1

) = U(D −∆2
), which will prove the lemma.

Suppose not. Then there exists t ∈ U(D−∆1
)−U(D−∆2

).
Since t ∉ U(D − ∆2

), there exists i ∈ [k] such that ΠAit ∉
Ri − ∆2

i . Then ΠAit ∈ ∆2
i . Hence ΠAit ∈ Ri − ΠAiU(D −

∆1
). Hence ΠAit ∉ ΠAiU(D − ∆1

), which implies that t ∉
U(D − ∆1

). This is a contradiction since we assumed that
t ∈ U(D −∆1

) −U(D −∆2
).

On the other hand, the following example shows that, if we
have a very simple schema with three relations R1(a), R2(b),
R3(c, a, b), and two back-and-forth foreign keys R3.a↪ R1.a
and R3.b↪ R2.b, then Rules (i)-(iii) take n − 1 iterations to
converge, which also shows that the upper bound in Propo-
sition 3.4 is essentially tight.

Example 3.7. We illustrate for n = 9. The three rela-
tions and the initial universal relation are shown in Fig-
ure 5, where every tuple is assigned an identifier for easy
reference. Our candidate explanation is φ ∶ (c = c1). Ini-
tially all ∆0

i = ∅, for i ∈ [1,3]. In iteration 1, only ∆1
3

changes to {s1a}. In iteration 2, ∆2
1 = {r1},∆

2
2 = {t0} by

Rule (iii), ∆2
3 = ∆1

3. In iteration 3, ∆3
1 = ∆2

1,∆
3
2 = ∆2

2, but
∆3

3 = ∆2
3∪{s1b} by Rule (ii). In iteration 4, only ∆4

2 changes:
∆4

2 = ∆3
2 ∪ {t1} by Rule (iii). The same process is repeated

through iterations 4 to 8, and the tuples s2a, r2, s2b, t2 are
acquired in their respective ∆is.

3.3 Avoiding Recursion in Special Cases
In general we need a recursive query to compute ∆φ (Ex-

ample 3.7), while Proposition 3.5 shows that in a very simple
case recursion can be avoided completely. Here we general-
ize Proposition 3.5 and show that for a class of acyclic causal
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Figure 6: (a) Schema causal graph, (b) Data causal graph

graphs recursion can be avoided and be replaced by an iter-
ative query with a bounded number of steps9.

Definition 3.8. Fix a database schema. The schema
causal graph, G, has one node for each relation R1,⋯,Rk;
for every standard foreign key Rj .fk → Ri.pk there is an
edge from Ri to Rj; for every back-and-forth foreign key
Rj .fk↪ Ri.pk there is an edge from Ri to Rj, and a dotted
edge from Rj to Ri.

Let D be a database. The data causal graph, GD, has one
node for each tuple in D and the following edges:

1. There is a directed solid edge from ti ∈ Ri to tj ∈ Rj if
∀ u ∈ U(D), ΠAju = tj ⇒ ΠAiu = ti.

2. There is a directed dotted edge from tj ∈ Rj to ti ∈ Ri if
there is a dotted edge (Rj ,Ri) in G and tj .fk = ti.pk.

Intuitively, both graphs depict the standard and back-and-
forth causal relations through solid and dotted edges, at
the schema and at the data level respectively. However, at
the data level, the definition is more involved because it
also needs to account for semi-join reduction. First, note
that for every standard foreign key Rj .fk → Ri.pk and two
tuples ti, tj s.t. ti.pk = tj .fk there is a solid edge ti → tj ,
because every universal tuple u for which ΠAj = tj must
have ti = ΠAi(u). However, suppose that tj is the only tuple
in Rj with the property tj .fk = ti.pk: then if we delete tj we
end up deleting ti too when doing the semi-join reduction.
The definition ensures that in the latter case we also have a
solid edge tj → ti.

In figures we show the relations Ri as supernodes con-
taining data nodes; also if there is both a solid edge and a
dotted edge between two nodes, we omit the solid edge. The
schema causal graph and the data causal graph of our run-
ning example (Example 2.2) is shown in Figure 6, whereas
Figure 5c shows the data causal graph for Example 3.7. Re-
call that a path in a graph is called simple if every node is
visited at most once.

Definition 3.9. A causal path P is a simple, directed
path in GD. The causal-length of P is the number of directed
dotted edges in P .

For instance, in Figure 6, P = r1 → s1 ⇢ t1 → s2 is a causal
path from r1, of causal length 1. Further, P is maximal.

Recall that ∆1 denotes the set of the seed tuples, defined
by Rule (i). The following proposition gives a tighter con-
vergence property of program P in terms of the maximum
causal length of the causal paths from the seed tuples.
9Note that (i) our general framework does not require the
causal graph to be acyclic, and (ii) causal graphs can have
cycles even if the schema is acyclic, as is the case with our
running example.

Proposition 3.10. The program P converges in ≤ 2q + 2
steps, where q is the maximum causal-length over all causal
paths P starting at a seed tuple.

We get Proposition 3.5 as a corollary of Proposition 3.10
when there are no back-and-forth foreign keys (i.e., no dot-
ted edges in GD, or q = 0). It can also be verified that there
is a causal path in Example 3.7 of length q = ∣R3∣ = (n−1)/2
(n is odd), and therefore it takes n − 1 ≤ 2q + 2 steps to
converge.

Proof. The proof is an immediate extension of the proof
of Proposition 3.5. It suffices to note that Rule (ii) in isola-
tion can fire at most once, because after one application all
relations Ri −∆i are semi-join reduced. Therefore, progress
is made only as long as Rule (iii) can discover new facts,
and this happens at most q times. The factor 2 accounts for
possible alternation between the rules (ii) and (iii), while the
additive term +2 is for applying Rule (i) in the first iteration,
and for the final semi-join reduction in the last iteration.

Proposition 3.10 tightens Proposition 3.4. As we saw in
Example 3.7, if some relation Rj has two back-and-forth for-
eign keys Rj .fk↪ Ri.pk and Rj .fk↪ Rp.pk, then recursion
is required. However, we use the proposition to show that, in
an acyclic schema, if no relation Rj has two back-and-forth
foreign keys, then recursion can be avoided (in this case the
maximum number of back-and-forth foreign keys ≤ k).

Proposition 3.11. Suppose the schema causal graph is
simple10 and acyclic. Furthermore, suppose that every rela-
tion Rj has at most one back-and-forth foreign key. Then
the program P converges in 2s + 2 steps where s = the total
number of back-and-forth foreign keys in the schema. As a
consequence, ∆φ can be computed by a non-recursive query.

Proof. We show that the causal length of any causal
path is bounded by s. Then the proposition follows from
Proposition 3.10. In particular, we show that for any causal
path P and any relation Ri, there can be at most one tuple
t ∈ Ri on P with a dotted outgoing edge on P .

Suppose not. Then there is a relation Ri, a database D,
a causal path P = u0 → . . . t⇢ v → . . . t′ ⇢ v′ → . . . u` in GD,
where t, t′ are two distinct tuples in Ri (note that a causal
path is simple and the schema causal graph is acyclic), and
both outgoing edges (t, v) and (t′, v′) are dotted edges. Note
that v, v′ must belong to the same relation Rj since there is
at most one outgoing dotted edge from Ri. Further, v ≠ v′

since the causal path is simple.
By Definition 3.8, if there is a directed path from x ∈ Ri

to y ∈ Rj in GD, then there is a tuple u ∈ U(D) such that
ΠAiu = x and ΠAju = y. Then the causal path Pv↝t′ , which
is a sub-path of P from v to t′, indicates that there is a
tuple u ∈ U(D) with ΠAju = v and ΠAiu = t′. This is
a contradiction since there is a back-and-forth foreign key
Rj .fk↪ Ri.pk, and therefore t ∈ Ri can only join with v ∈ Rj
whereas v ≠ v′. Hence the proposition follows.

As an application, consider our running example in Fig-
ure 3, whose schema has the two foreign keys in Eq.(2). Only
one is a back-and-forth foreign key, therefore the program P
terminates in at most 4 iterations. Concretely, it can be un-
folded into four steps: Rule (i) computes the seeds, Rule (ii)
performs semi-join reduction, Rule (iii) does backwards cas-
cade, and finally Rule (ii) performs the final semi-join re-
duction.

10There is at most one foreign key between any two relations.



4. FINDING TOP EXPLANATIONS
Given a user question (Q,dir), the system needs to it-

erate over all candidate explanations φ1, φ2, . . ., compute
their degrees, and rank them accordingly (either by ag-
gravation µaggrv or by intervention µinterv). To compute
µinterv, we have shown in Section 3 that each intervention
∆φ1 ,∆φ2 , . . ., can be computed in polynomial time in the
size of the database; however, a naive approach that com-
putes sequentially µinterv(∆

φ1), µinterv(∆
φ2), . . . is too in-

efficient to be used interactively. In this section we show
that, under certain conditions, the top-K explanations can
be found efficiently using existing DBMS systems that sup-
port data cube operations. Throughout this section we only
consider candidate explanations where the predicate is an
equality operator.

The data cube operation is supported in most of the com-
mercial database management systems (SQLServer, DB2,
Oracle). It can find the value of an aggregate query for
all combinations of values of the attributes specified in the
Group By clause, where the ‘dont-care’ attributes take null

value. We illustrate the cube operation below:

Example 4.1. The following query computes a cube over
the data in Figure 3.
select x.name, z.year, count(*)

from Author x, Authored y,

Publication z

where x.id = y.id

and y.pubid = z.pubid

group by x.name, z.year

with cube

Each row in the cube corresponds
to an explanation: e.g., the row
(null,2001,4) corresponds to
z.year = 2001, while the row

name year

JG 2001 1
JG 2011 1
RR 2001 2
CM 2001 1
CM 2011 1
JG null 2
RR null 2
CM null 2
null 2001 4
null 2011 2
null null 6

(CM,2011,1) to [x.name = CM ∧ z.year = 2001].

4.1 Degrees of Explanation using Data-Cube
We start by showing how to compute µaggr using data-

cube. Recall from Eq.(1) that Q is an arithmetic expression
on several aggregate queries Q = E(q1, . . . , qm). U = U(D) =

R1&. . .&Rk is the universal relation, and Dφ is the database
whose relations are ΠA1(σφ(U)), . . . ,ΠAk(σφ(U)). Recall:
µaggr(φ) = Q(Dφ) = E[q1(Dφ),⋯, qm(Dφ)].

For each aggregate query qj compute a data-cube where
each row contains the values qj(σφ(U)) = qj(Dφ) for some
candidate explanation φ. Next, join thesem cubes, and com-
pute the expression E on the values q1(Dφ), . . . , qm(Dφ).
The join is a full outer join so that we do not lose explana-
tions φ which do not appear in some of these m cubes; in
those cubes they are considered to have zero value. Finally,
return the explanations with the top K values of E.

Next, we show how to compute µinterv using data-cube,
under certain restrictions. For presentation purposes we as-
sume that the degree of explanation (Definition 2.7) is given
by µinterv(φ) = Q(D −∆φ

); the case when the sign is nega-
tive is similar and omitted.

Definition 4.2. An aggregate query q is intervention-
additive if for all input databases D and candidate expla-
nation φ, we have q(D −∆φ

) = q(D) − q(Dφ), where ∆φ is
the intervention defined in Definition 2.6.

A numerical query Q = E(q1,⋯, qm) is intervention-additive
if all qj , j ∈ [m] are intervention-additive.

When the numerical query Q is intervention-additive, we
can compute µinterv(φ) for all φ using data-cube operations.
For each query qj , start by computing a data-cube where
each row contains qj(σφ(U)) = qj(Dφ) for some candidate
explanations φ; derive qj(D −∆φ

) = qj(D) − qj(Dφ). Next,
we join these m cubes, and in each row compute the expres-
sion E on the values q1(D −∆φ

), . . . , qm(D −∆φ
). Finally,

we return the explanations with the top-K values of E.
In general, note that, U(D − ∆φ

) ⊆ U(D − ∆1
) = U¬φ =

U − Uφ (see the proof of Theorem 3.3), where ∆1 is the
set computed by the first iteration of program P by Rule
(i). So, in general, q(D − ∆φ

) = q(D) − q(Dφ) does not
hold. We give two sufficient conditions for the query to be
intervention-additive.

Count(∗). If q is a count(∗) aggregate over the univer-
sal relation R1 & . . . &Rk where there are no back-and-forth
foreign keys, then it is intervention-additive. This follows
from Corollary 3.6 which shows that U(D − ∆φ

) = U − Uφ,
and due to the additive property of count(∗) queries.

Count(distinct Ri.pk). If q is a count(distinct Ri.pk)
aggregate over the universal relation R1& . . .&Rk, and there
exists some back-and-forth foreign key Rj .fk ↪ Ri.pk such
that every row in U(D) contains a unique tuple from Rj ,
then qj is intervention-additive. For instance, our running
DBLP example with the foreign keys given in Eq.(2), a query
with an aggregate of the form count(distinct pubid) is
intervention-additive for any explanation φ, since every row
of U(D) contains a unique entry from the Authored table,
although U(D −∆φ

) may be a strict subset of U −Uφ. 11

In the presence of back-and-forth foreign keys the
intervention-additive property does not hold in general
(e.g., count(∗) queries on our running example are not
intervention-additive). However, we can sometimes trans-
form the database into an equivalent database (meaning
that it has the same causal paths) where each back-and-
forth foreign key is replaced with several standard foreign
keys. We illustrate this on our running example in Fig-
ure 3; a formal argument is deferred to the full version of
this paper. Assume that every paper in the database has at
most 3 authors. Then we make three copies of the Author

and Authored tables: Authori(idi,namei,insti,domi) and
Authoredi(kadi,idi,pubid), where kadi is the primary key
of Authoredi. Then we convert Publication to

Publication
′
(kad1,kad2,kad3,pubid,year,venue).

11To see this, consider the subset Uφ of U which are re-
moved by Rule (i) to find the initial set ∆1. Since
every entry of Authored appears in exactly one row of
U , [ΠAttr(Authored)Uφ = ∆1

Authored] and [ΠAttr(Authored)U¬φ =

Authored − ∆1
Authored]. By backwards cascade, Rule (iii)

will include entries in ∆2
Publication that tuples in ∆1

Authored

refer to. Then Rule (ii) will further include tuples in
∆3

Authored (if any) that join with ∆2
Publication. As a result,

U(D − ∆φ
) will not have any publication from ∆2

Publication,
and will have all the publications from Publication −

∆2
Publication. The count(distinct pubid) query q on Dφ ≡

Uφ will exactly count the publications from ∆2
Publication. The

count(distinct pubid) query q on (D−∆φ
) counts the pub-

lications in Publication −∆2
Publication, which is exactly the

same as q(D) − q(Dφ).



Then, the foreign keys given in Eq.(2) are replaced by the
following standard foreign keys:

● Authoredi.idi → Authori.idi, i ∈ [3]

● Publication.kadi → Authoredi.kadi,i ∈ [3]

The entries Author and Authored tables are replicated in
their three instances, and a dummy value is added to every
table to allow for < 3 authors for a publication. The (at
most) three authors are assigned arbitrarily to kad1,⋯, kad3,
for < 3 authors, they take the dummy value. It is not hard
to see that now there will be exactly one entry per distinct
pubid in the universal table. Then count(∗) is run on the
universal table (the predicate on the Author table changes
to a disjunction of the condition on three authors), and the
results are grouped by a post-processing step.

4.2 Algorithm
We now describe briefly our algorithm that computes de-

grees of all explanations (both µinterv and µaggr). The input
is an intervention-additive numerical query Q = E(q1,⋯, qm)

(Definition 4.2), and a subset of attributes A′ on which ex-
planations are being thought; the subset A′ helps both in
focusing the search and improving performance and can be
set by the user.

Algorithm 1 Computes µinterv(φ) and µaggr(φ) for all φ.

1: Let u1,⋯, um be the values of all aggregate queries
q1,⋯, qm on the original database D.

2: Let C1,⋯,Cm be the data cubes for q1,⋯, qm; store the
aggregate values as attributes v1,⋯, vm in C1,⋯,Cm re-
spectively (i.e., for any row φ, vj(φ) = qj(Dφ)).

3: Let M = the full outer join on the cubes C1,⋯,Cm.
4: Add a column in M for µinterv; set it as µinterv(φ) =

sign × E(u1 − v1(φ),⋯, um − vm(φ)) for each row φ
(sign = +1 if dir = low, sign = −1 if dir = high).

5: Add a column in M for µaggr; set it as µaggr(φ) = sign ×
E(v1(φ),⋯, vm(φ)) for each row φ (sign = +1 if dir =

high, sign = −1 if dir = low).

Optimizations. We employed several optimizations.
The individual cubes C1,⋯,Cm are materialized before they
were joined to compute M . As illustrated in Example 4.1,
the rows in the cubes will have null values for ‘dont-care’
attributes, which prevents us from using equi-join, because
if both attribute A and B are null, then the equality A = B
fails. A naive solution will be to check for all combinations
of null or not null, as in (isnull A and isnull B) or (A = B).
To use equi-join, we replaced all null values in all the m
cubes with a dummy value before performing the join.

4.3 Finding Minimal and Top Explanations
Once the table M is materialized by Algorithm 1, we can

run top-K SQL queries to find explanations with high de-
grees (µinterv or µaggr). However, blindly looking at the
top-K outputs may result in some redundant answers. Con-
sider Example 4.1, and assume that Q = q1. Here all the ex-
planations will have the same value for both µinterv, µaggr.
Although φ1 = [name = RR,inst = null] and φ2 = [name =

null,inst = MS] denote two “minimal” explanations both
having the same value for µinterv, the explanation φ3 =

[name = RR,inst = MS] is dominated by both φ1, φ2 and

therefore is redundant. Formally, we call an explanation
φ minimal if there are no other explanation φ′ such that
µinterv(φ) ≤ µinterv(φ

′
), and the (attribute, value) pairs

with value ≠ null for φ′ is a subset of such pairs for φ (sim-
ilarly for µaggr). We ignore the trivial explanation where all
attributes take null value.

We implemented two strategies for finding minimal top-K
explanations12, which we empirically evaluated.

1. Minimal-self join: while outputting the top-K ex-
planations, use a self-join on M to find the minimal
explanations that are not dominated by others (the
actual query is simple and is omitted).

2. Minimal-append: A dummy value is chosen such
that it is > all valid values. Then a Top-1 query is run
for K steps, that outputs explanations in decreasing
order of µinterv (or µaggr) which will give preference to
shorter explanations having the same degree. To elim-
inate the non-minimal explanations, all explanations
φ1,⋯, φi−1 output in the first i − 1 steps are appended
to the Top-1 query in the i-th iteration in the Where

clause as (¬φ1) ∧ ⋯ ∧ (¬φi−1).

5. EXPERIMENTS
We present our experimental results in this section. We

describe qualitative and performance evaluation on the na-
tality dataset in Section 5.1, and on the DBLP dataset in
Section 5.2. The prototype of our system was built in Java
with JDK 6.0 over Microsoft SQLServer 2012. All experi-
ments were run locally on a 64-bit Windows 7 machine with
Intel(R) CoreTM i7-2600 processor (4 GB RAM, 3.40 GHz).

5.1 Natality Dataset
The natality dataset contains all the births registered

in the United States in 2010, and is a public dataset
available from the National Center for Health Statistics
(NCHS) through the Centers for Disease Control and Pre-
vention (CDC), http://www.cdc.gov/nchs/data_access/

ftp_data.htm. The dataset has 233 attributes, 4,007,106
anonymized entries, and 2.89GB size. The attributes are
about the mother (age, race, marital status, education,
smoking habit, disease information during pregnancy, etc),
about the father, about the delivery process (in hospital or
not, caesarian or not, time and type of prenatal care received
during pregnancy), and about the health of the baby after
birth (as APGAR score[18]). The APGAR score (AP) is an
integer between 0 and 10; we define AP = good if AP ∈ [7,10],
and poor if ∈ [0,6] [18]. Our goal is to“explain” the APGAR
score (AP) in terms of the other attributes, and we report
here two such experiments for qualitative and performance
evaluation13:

(i) APGAR Score vs. race (R) of the mother (QRace):
Figure 8 (details in Figure 7) shows that for R = Asian,

12Our definition of minimality prefers ‘general’ explanations
with less conditions that a larger number of tuples satisfy.
An alternative meaning of minimality can prefer ‘specific’
explanations with more conditions that a smaller number of
tuples satisfy. Our techniques can support both definitions
and the user will be able to specify her choice in our system.

13Our goal in these experiments was to efficiently visualize
different conditions that characterize the predicates in the
questions asked by the user, and not to establish any social,
medical, or scientific claims.

http://www.cdc.gov/nchs/data_access/ftp_data.htm
http://www.cdc.gov/nchs/data_access/ftp_data.htm


AP Race
White Black Am. Ind. Asian

poor 49873 19600 1037 3058
good 3012046 613464 45580 242593

AP Marital status
married unmarried

poor 35961 35491
good 2322404 1591279

Figure 7: No. of tuples for QRace and QMarital
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Figure 9: Plot for QMarital

the percentage of babies with AP = good is higher than the
percentage of babies with AP = poor. For this observa-
tion, the user question is (QRace, high), where QRace =

q1
q2

;

q1, q2 are count(*) queries for [AP = good,R = Asian] and
[AP = poor,R = Asian]. A more interesting question may be
why this ratio (AP = good vs. poor) is higher for R = Asian
than for R = Black, which can be easily captured as another
question (Q′

Race, high), Q
′
Race = (

q1
q2

)/(
q3
q4

), here q3, q4 are

count(*) queries similar to q1, q2.
(ii) APGAR Score vs. marital status (M) of

the mother (QMarital): Figure 9 (with details in Fig-
ure 7) shows that the ratio of AP = good to AP = poor is
higher for M = married, than for M = unmarried. For
this observation, the user question is (QMarital, high), where
QMarital =

q1
q2

/
q3
q4

; q1, q2, q3, q4 respectively count the entries

in the database that satisfy (i) M =married, AP = good, (ii)
M =married, AP = poor, (iii) M =unmarried, AP = good,
and (iv) M =unmarried, AP = poor.

5.1.1 Qualitative Evaluation
We restricted the search space of candidate explanations

to five attributes (recoded in groups): (1) Age (A), (2)
whether the mother used tobacco during pregnancy (T ), (3)
the month when prenatal care began (1st/2nd/3rd trimester
or none) (PN), (4) level of education (Edu), (5) marital sta-
tus of the mother (M) for QRace and race (R) for QMarital.
We chose a threshold such that at least one of the aggregate
queries qj has value ≥ 1000. We also added a small threshold
of 0.0001 to all counts to avoid any division by zero error in
the calculation of the ratios.

QRace

explanation µinterv

1 M=married -62.3
2 PN=1st trim. -75.1
3 T=non smoking -75.3
4 Edu>=16 yrs. -75.6
5 A=30-34 yrs. -75.8

QMarital

explanation µinterv

1 Edu> 16yrs -1.381
2 A=30-34 yrs -1.387
3 PN=1st. trim, -1.396

T=non smoking
4 A= 15-19 yrs -1.397
5 PN=1st. trim -1.405

Figure 10: Top-5 (minimal) explanations by intervention for
QRace and QMarital.

Explanation by intervention for QRace and QMarital.
The top-5 (minimal) explanations are shown in Figure 10.
They are very general containing only one or two attribute,
and therefore have high support (high counts for q1, q2,⋯).
By removing the intervention ∆, the value of QRace(D−∆φ

)

becomes smaller than the original value QRace(D) = 79.3.
Intuitively, the top-5 answers say that the query’s output
can be explained by the fact that Asian mothers are not
too young, married, non-smoking, received higher educa-
tion, and received early prenatal care; because, if they were
removed from the population, the value of QRace becomes
smaller. Similarly, the original value of QMarital(D) was
1.46, and the top explanations lower this value either by de-

creasing q1
q2

more (removing older, educated, non-smoking

mothers reduces this fraction), or by increasing q3
q4

more (re-

moving younger mothers will affect the unmarried popula-
tion more than the married population). We get similar
observations for Q′

Race, the details are omitted due to lack
of space.

Explanation by aggravation for QRace and QMarital.
Figure 11 shows the top-3 explanations by aggravation. Sim-
ilar to explanations by intervention, for QRace, mothers who
are not too young, do not smoke, highly educated, married,
and received early prenatal care appear in the top explana-
tions. However, these explanations are more specific (con-
junction of multiple attributes), and therefore their support
(counts) are smaller (a few thousands). If the queries q1, q2
are restricted to these sub-populations, the value of QRace
becomes much higher than the original value of 79.3. On the
other hand, for QMarital, the two top explanations make the
value of q1

q2
infinity (∞) since q2 = 0.

5.1.2 Performance Evaluation
Our framework to output top explanations consists of two

main steps: (i) compute the degrees of explanations for all
candidate explanations and store them in a table M (ref.
Section 4.2), and (ii) given M , compute the minimal top-k
explanations (ref. Section 4.3). In this section we evaluate
different approaches for these two steps varying the follow-
ing parameters: (a) the size of input data – to vary input
data size, we selected and stored x% entries from the natal-
ity table at random and varied x from 0.01 (only ∼400 rows)
to 50 (2M rows); (b) the number of attributes used in ex-
planation predicates – the attributes are multi-valued (with
2-9 distinct values), more attributes lead to more candidate
explanations; and (c) complexity of the user question – this
is number of select-aggregate queries q1, q2,⋯ used in the
questions. We consideredQRace andQMarital, which involve
two (q1, q2) and four (q1,⋯, q4) such queries respectively. In
addition, for (ii), we vary k to evaluate the approaches to
output minimal explanations discussed in Section 4.3.
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Figure 12: Benefits of data cube optimization for QRace:
(a) Data size vs. time (with two attributes), (b) No. of
attributes vs. time (with 1% entries)

Benefits of data cube optimization. Figure 12 com-
pares the naive evaluation that iterates over all combinations



QRace

explanation µaggr

1 M=married, Edu≥16 yrs, PN=2nd trim. 174
2 M=married, A=40−44 yrs, Edu≥ 16 yrs, PN=1st trim. 173
3 Edu≥16 yrs, PN=2nd trim., T=non smoking 172

QMarital

explanation µaggr

1 A=15−19 yrs, Edu=9−11 yrs, PN=3rd trim. 1.36×104(∞)
2 A<15 yrs 1.23×104(∞)
3 Edu = 9−11 yrs, PN=no prenatal care,

T=non smoking 3.2

Figure 11: Top-3 (minimal) explanations by aggravation for QRace and QMarital.

of attributes used in the explanations (referred to as ‘No
Cube’), v.s. Algorithm 1 (referred to as ‘Cube’), for the
query QRace. In the first graph we vary the input data size
(the number of entries on the horizontal axis are approxi-
mate), whereas in the second graph we vary the number of
attributes used in the explanations. Both the graphs show
that the benefit from the data cube is dramatic. In the
remaining experiments we only discuss the data cube imple-
mentation.

Size of the data vs. time. Figure 13a shows the time
required to compute the degrees for all candidate explana-
tions (i.e., table M) for QRace and QMarital as a function
of the size of the input database. The same four attributes
A,T,PN,BP were used as relevant attributes in the expla-
nations for both the queries. As expected, the time taken
by the queries increases with the database size. Recall that
to compute table M , Algorithm 1 first computes the cubes
C1,C2,⋯ for q1, q2,⋯, and then computes M by doing full
outer joins on C1,C2,⋯. Hence QMarital requires more time,
because compared to two queries q1, q2 in QRace, QMarital

has four such queries. However, the time taken by both
queries is only < 4 seconds even for the entire dataset, mak-
ing it suitable for an interactive setting.
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Figure 13: Time to compute degrees for all explanations

Number of attributes in explanation predicates vs.
time. Figure 13b shows the time to compute the degrees of
explanations as a function of the number of attributes used
in the explanations. Here we used the entire dataset (4M
entries) and added four other attributes to A,T,BN,BP
(mother’s education, sex of the infant born, whether the
mother had hypertension/diabetes). The time is shown in
log-scale; as expected, the time increases rapidly with the
number of attributes. The cube algorithm can run up to six
attributes within a few seconds, afterward the time increases
due to increase in the number of candidate explanations. For
eight attributes there are > 71K candidate explanations for
QRace and > 192K candidate explanations for QMarital join-
ing (resp. two and four) cubes with 33k − 78K rows. The
cubes C1,C2,⋯ and the table M that contains all explana-
tions and their degrees are small (< 3.8 MB for QRace and
< 11.32 MB for QMarital).

Outputting ‘minimal’ top-K explanations. Fig-
ure 14 shows the time taken to compute the top-K expla-
nations by µinterv for QRace on the entire natality dataset
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Figure 14: Time to compute minimal top-K explanations

where we again vary the number of attributes on the hor-
izontal axis (since this is run on the stored table M , the
behavior for QMarital and µaggr is similar). The plots com-
pare three top-K strategies, (i) No Minimal: simply out-
put the top-K answers sorted by µinterv by a SQL top-K
query, (ii) Minimal-self join, and (iii) Minimal-append,
as discussed in Section 4.3. Clearly, the No Minimal ap-
proach takes the least time, but can output redundant ex-
planations (the explanation ranked 5 in Figure 10 is the 14th
explanation if we do not enforce minimality). Minimal-self
join performs slightly better than Minimal-append when the
number of relevant attributes is small (since computing the
self-join onM is less expensive than running a top-1 query K
times). However, for larger value of the number of relevant
attributes Minimal-append performs much better (takes < 1
sec for K = 10 even with eight attributes).

5.2 DBLP Dataset
We also experimented on a database obtained by integrat-

ing the popular DBLP data [17], from which we extracted
the tables Author (1.095M entries), Authored (5.127M en-
tries), and (conference) Publication (1.088M entries), with
Geo-DBLP, a research project from another research group [4],
which includes affiliation information (affiliation, city, and
country) for every publication obtained by crawling ACM14

Our goal was to validate our system’s ability to explain
queries over integrated datasets. We have already described
one such query in Section 1 (Figures 1 and 2); here we dis-
cuss another experiment.

The graph Figure 15a shows the percentage of SIGMOD
and PODS publications by country, between 2001 and 2011
(note that the country information is not available from all
publications). As expected, there are fewer PODS papers
than SIGMOD papers from most countries: however, sur-
prisingly, more than 50% of the papers from the UK are in
PODS. We used our system to search for explanations.

We express this as a user question (Q, low), where Q =
q1
q2

,

and q1, q2 respectively count the number of distinct SIG-
MOD and PODS publications from UK between 2001 and
2011. Due to limited availability of the country informa-
tion, we express publications from UK as [domain =′ uk′ ∨
country =

′ United Kingdom′
], where domain is extracted

14The affiliation in Geo-DBLP is not normalized, and may
contain several formats like ‘Univ.’, ‘U.’ or ‘University’ for
the same institute as well as joint affiliation using ‘and’.
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explanation µ
1 name=L. Libkin 1.04
2 name= G. Gottlob 0.81
3 name= F. Geerts 0.74
4 name= M. Benedikt 0.74
5 city= Edinburgh 0.73
6 city= Oxford 0.72
7 inst= Oxford Univ. 0.69

(b)

Figure 15: (a) Plot for percentage of SIGMOD and PODS
publications in different countries between 2001 and 2011,
(b) Top explanations by intervention µinterv

from homepage urls in DBLP, and country is from Geo-
DBLP. Therefore both q1, q2 involve equi-join of eight ta-
bles (three from DBLP and five from Geo-DBLP). The rel-
evant attributes considered are Author.name, AuthorG.inst,
AffiliationG.city (Author is from DBLP, whereas AuthorG
and AffiliationG are from Geo-DBLP).

The top explanations by intervention are shown in Fig-
ure 15b which shows researchers from UK who published
a lot more in PODS in 2001-2011 than in SIGMOD, and
the universities in UK (researchers who published both in
SIGMOD and PODS do not appear in the top explana-
tions). The explanations [city = Oxford] has higher value
of µinterv than [inst = Oxford Univ.] due to the presence of
[inst = Semmle Ltd.] in Oxford city, and different format
of the university in the database (‘Oxford’, ‘University of
Oxford’ etc.). The top explanations by aggravation are sim-
ilar and therefore omitted. With three relevant attributes,
the time taken to compute and materialize the table M (ref.
Algorithm 1) is 2.176 seconds; although eight tables were
joined in the cube operation, three having > 1M rows, the
time taken is small possibly due to low selectivity of the
queries q1, q2 and use of indexes on the primary keys of all
the tables. The time taken to top-50 answers by Minimal
-self join is < 4 ms (the joined table M has < 1000 entries).

6. DISCUSSIONS
We proposed a formal framework for finding explanations

for database queries. Our approach is based on the notion
of intervention from the causality literature, and exploits
foreign key constraints in a novel way in order to describe
causal paths in the data. We proved a key property, that ev-
ery explanation has a unique minimal intervention, and gave
a recursive query that can compute this intervention; we fur-
ther showed that, under certain conditions, recursion can be
avoided and the degrees of all candidate explanations can
be efficiently computed using SQL’s data cube operation.
We evaluated our approach on two real datasets, showing
that our techniques find interesting explanations and can
find them efficiently.

Some extensions are required to expand the applicabil-
ity of explanations, and we incorporate some of these in
the system that we are currently developing. (i) Beyond
data cube: The data cube optimization is highly effec-
tive when it applies, but when it fails to apply then naive
iterative algorithm is too slow. We are currently investi-
gating optimizations to the iterative algorithm that can be
deployed for general queries. (ii) Explanations with in-
equalities, and disjunctions: In some applications mean-
ingful explanations include inequalities (e.g. papers with
year > 1977 ∧ year < 1982) and disjunctions (e.g. author =

Levy ∨ author = Halevy) Conceptually, our framework can
support such explanations, but adding them would increase
the search space of explanations, making query evaluation
and ranking more challenging. (iii) Intervention vs. ag-
gravation: Unlike explanation by intervention, explana-
tion by aggravation can always be computed using the data
cube, without any restrictions. However, they completely
ignore causal path, hence they are useful only in simple
schemas that have few, or no foreign keys. In future work
we consider a hybrid definition between intervention and
aggravation that uses some, but not all causal path,a nd
can always be evaluated by the data cube. (iv) Beyond
count queries and more complex user questions: Com-
plex questions are supported in our framework, and we are
currently implementing them in our prototype. For example,
why is this sequence of bars increasing(decreasing), trans-
lates into why is the slope of the linear regression of these
datapoints positive(negative)?, which can easily converted
into a numerical query as in Eq.(1). A challenge, however,
is designing a effective user interface that allows users to ask
such complex questions.
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