
The Dichotomy of Conjunctive Queries on Probabilistic
Structures∗

Nilesh Dalvi
University of Washington

Seattle, WA
nilesh@cs.washington.edu

Dan Suciu
University of Washington

Seattle, WA
suciu@cs.washington.edu

ABSTRACT
We show that for every conjunctive query, the complexity of evalu-
ating it on a probabilistic database is either PTIME or #P-complete,
and we give an algorithm for deciding whether a given conjunctive
query is PTIME or #P-complete. The dichotomy property is a fun-
damental result on query evaluation on probabilistic databases and
it gives a complete classification of the complexity of conjunctive
queries.

Categories and Subject Descriptors
F.4.1 [Mathematical Logic]; G.3 [Probability and statistics]; H.2.5
[Heterogeneous databases]

General Terms
Algorithms, Management, Theory

Keywords
probabilistic databases, query processing

1. PROBLEM STATEMENT
Fix a relational vocabulary R1, . . . , Rk , denoted R. A tuple-

independent probabilistic structure is a pair (A, p) where A = (A,
RA

1 , . . ., RA
k) is first order structure and p is a function that as-

sociates to each tuple t in A a rational number p(t) ∈ [0, 1]. A
probabilistic structure (A, p) induces a probability distribution on
the set of substructures B of A by:

p(B) =

kY

i=1

(
Y

t∈RB
i

p(t) ×
Y

t∈RA
i −RB

i

(1 − p(t))) (1)

where B ⊆ A, more precisely B = (A, RB
1 , . . . , BB

k) is s.t.
RB

i ⊆ RA
i for i = 1, k.

∗This research was supported in part by Suciu’s NSF CAREER
grant IIS-0092955, NSF grants IIS-0415193, IIS-0513877, IIS-
0428168, and a gift from Microsoft.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’07, June 11–13, 2007, Beijing, China.
Copyright 2007 ACM 978-1-59593-685-1/07/0006 ...$5.00.

A conjunctive query, q, is a sentence of the form

∃x̄.(ϕ1 ∧ . . . ∧ ϕm)

where each ϕi is a positive atomic predicate R(t), called a sub-
goal, and the tuple t consists of variables and/or constants. As
usual, we drop the existential quantifiers and the ∧, writing q =
ϕ1, ϕ2, . . . , ϕm. A conjunctive property is a property on structures
defined by a conjunctive query q, and its probability on a proba-
bilistic structure (A, p) is defined as:

p(q) =
X

B⊆A:B|=q

p(B) (2)

In this paper we study the data complexity of Boolean conjunc-
tive properties on tuple independent probabilistic structures. (When
clear from the context we blur the distinction between queries and
properties).

More precisely, for a fixed vocabulary and a Boolean conjunctive
query q we study the following problem:

EVALUATION For a given probabilistic structure (A, p), compute
the probability p(q).

The complexity is in the size of A and in the size of the represen-
tations of the rational numbers p(t). This problem is contained in
#P, as discussed in [5]. We show here conditions under which it is
in PTIME, and conditions where it is #P-hard. The class #P [12]
is the counting analogue of the class NP.

THEOREM 1.1. (Dichotomy Theorem) Given any conjunctive
query q, the complexity of EVALUATION is either PTIME or #P-
complete.

Background and motivation Dichotomy theorems are funda-
mental to our understanding of the structure of conjunctive queries.
A widely studied problem, which can be viewed as the dual of
our problem, is the constraint satisfaction problem (CSP) and is as
follows: given a fixed relational structure, what is the complexity
of evaluating conjunctive queries over the structure? Shaefer [11]
has shown that over binary domains, CSP has a dichotomy into
PTIME and NP-complete. Feder and Vardi [6] have conjectured
that a similar dichotomy holds for arbitrary (non-binary) domains.
Creignou and Hermann [3] showed that the counting version of the
CSP problem has a dichotomy into PTIME and #P-complete. The
problem we study in this paper is different in nature, yet still inter-
esting.

In addition to the pure theoretical interest we also have a practical
motivation. Probabilistic databases are increasingly used to man-
age a wide range of imprecise data [13, 2]. But general purpose
probabilistic database are difficult to build, because query evalua-
tion is difficult: it is both theoretically hard (#P-hard [8, 4]) and

293

plain difficult to understand. All systems reported in the litera-
ture have circumvented the full query evaluation problem by either
severely restricting the queries [1], or by using a non-scalable (ex-
ponential) evaluation algorithm [7], or by using a weaker semantics
based on intervals [9]. In our own system, MystiQ [2], we sup-
port arbitrary conjunctive queries as follows. For queries without
self-joins, we test if they have a PTIME plan using the techniques
in [10]; if not, then we run a Monte Carlo simulation algorithm.
The query execution times between the two cases differ by one or
two orders of magnitude (seconds v.s. minutes). The desire to im-
prove MystiQ’s query performance on arbitrary queries (i.e. with
self-joins) has partially motivated this work.

1.1 Overview of Results
We summarize here our main results on the query evaluation

problem. Some of this discussion is informal and is intended to
introduce the major concepts needed to understand the evaluation
of conjunctive queries on probabilistic structures.

Hierarchical queries: For a conjunctive query q, let V ars(q)
denote its set of variables, and, for x ∈ V ars(q), let sg(x) be the
set of sub-goals that contain x.

DEFINITION 1.2. A conjunctive query is hierarchical if for any
two variables x, y, either sg(x) ∩ sg(y) = ∅, or sg(x) ⊆ sg(y),
or sg(y) ⊆ sg(x). We write x 	 y whenever sg(x) ⊆ sg(y)
and write x ≡ y when sq(x) = sg(y). A conjunctive property is
hierarchical if it is defined by some hierarchical conjunctive query.

It is easy to check that a conjunctive property is hierarchical if the
minimal conjunctive query defining it is hierarchical. As an ex-
ample, the query qhier = R(x), S(x, y) is hierarchical because
sg(x) = {R, S}, sg(y) = {S}. On the other hand, the query
qnon-h = R(x), S(x, y), T (y) is not hierarchical because sg(x) =
{R, S} and sg(y) = {S, T}.

In prior work [4] we have studied the evaluation problem under
following restriction: every sub-goal of q refers to a different rela-
tion name. We say that q has no self-joins. The main result in [4],
restated in the terminology used here, is:

THEOREM 1.3. [4] Assume q has no self joins. Then: (1) If q is
hierarchical, then it is in PTIME. (2) If q is not hierarchical then
it is #P-hard.

Moreover, the PTIME algorithm for a hierarchical query is the fol-
lowing simple recurrence on query’s structure. Call a variable x
maximal if for all y, y � x implies x � y. In a hierarchical
query, every connected component has a maximal variable. Let
f0, f1(x1), . . . , fm(xm) be the connected components of q, with
each xi a maximal variable: f0 contains all constant sub-goals, and
fi(xi) consists of all sub-goals containing xi for i = 1, m. Then:

p(q) = p(f0) ·
Y

i=1,m

(1 −
Y

a∈A

(1 − p(fi[a/xi]))) (3)

This formula is a recurrence on the query’s structure (since each
fi[a/xi] is simpler than q) and it is correct because fi[a/xi] is
independent from fj [a

′/xj] whenever i �= j or a �= a′. As an
example, for query fhier = R(x), S(x, y), we have

p(q) = 1 −
Y

a∈A

(1 − p(R(a))(1−
Y

b∈A

(1 − p(S(a, b)))))

In this paper we study arbitrary conjunctive queries (i.e. allowing
self-joins), which turn out to be significantly more complex. The
starting point is the following extension of Theorem 1.3 (2)

THEOREM 1.4. If q is not hierarchical then it is #P-hard.

Thus, from now on we consider only hierarchical conjunctive queries
in this paper, unless otherwise stated.

As a first contact with the issues raised by self-joins, let us con-
sider the following query:

q = R(x), S(x, y), S(x′, y′), T (x′)

We write it as q = f1(x)f2(x
′), where f1(x) = R(x), S(x, y) and

f2(x
′) = S(x′, y′), T (x′). The query is hierarchical, but it has

a self-join because the symbol S occurs twice: as a consequence
f1[a/x] is no longer independent from f2[a/x′] (they share com-
mon tuples of the form S(a, b)), which prevents us from applying
Equation (3) directly. Our approach here is to define a new query
by equating x = x′,

f3(x) = f1(x)f2(x)

= R(x), S(x, y), S(x, y′), T (x)

≡ R(x), S(x, y), T (x)

We show that the probability p(q) can be expressed recursively
over the probabilities of queries of the form f1[a/x1], f2[a

′/x2],
f3[a

′′/x3], as a sum of a few formulas1 in the same style as (3) (see
Example 3.10). The correctness is based on the fact that fi[a/xi]
and fj [a

′/xj] are independent if i �= j or a �= a′.
Inversions: The above approach does not work for all hierar-

chical queries. Consider:

H0 = R(x), S(x, y), S(x′, y′), T (y′)

This query is hierarchical, but the above approach no longer works.
The reason is that the two sub-goals S(x, y) and S(x′, y′) unify,
while x � y and x′ � y′: we call this an inversion (formal def-
inition is in Sec. 2.2). If we write H0 as f1(x)f2(y

′) and attempt
to apply a recurrence formula, the queries f1[a/x] and f2[a

′/y′]
are no longer independent even if a �= a′, because they share the
common tuple S(a, a′).

Inversions can occur as a result of a chain of unifications:

Hk =
R(x),S0(x, y),

S0(u1, v1),S1(u1, v1)
S1(u2, v2),. . .

Sk−1(uk, vk),Sk(uk, vk)
Sk(x′, y′), T (y′)

Here any two consecutive pairs of variables in the sequence x � y,
u1 ≡ v1, u2 ≡ v2, . . . , x′ � y′ unify, and we also call this an
inversion. We prove:

THEOREM 1.5. For every k ≥ 0, Hk is #P-hard.

Thus, some hierarchical queries with inversions are #P-hard. We
prove, however, that if q has no inversions, then it is in PTIME:

THEOREM 1.6. If q is hierarchical and has no inversions, then
it is in PTIME.

Erasers The precise boundary between PTIME and #P-hard
queries is more subtle than simply testing for inversions: some
1This particular example admits an alternative, perhaps sim-
pler PTIME solution, based on a dynamic programming al-
gorithm on the domain A. For other, very simple queries,
we are not aware of any algorithm that is simpler than ours
(formula (9), Sec. 3.2), for example R(x, y, y, x), R(x, y, x, z),
or R(y, x, y, x, y), R(y, x, y, z, x), R(x, x, y, z, u) (both are in
PTIME because they have no inversions). To appreciate the
difficulties even with such simple queries note, by contrast,
R(y, x, y, x, y), R(y, y, y, z, x), R(x, x, y, z, u) is #P-hard.

294

queries with inversion are #P-hard, while others are in PTIME,
as illustrated below:

Example 1.7 Consider the hierarchical query q

q =R(r, x),S(r, x, y), U(a, r), U(r, z), V (r, z)
S(r′, x′, y′), T (r′, y′), V (a, r′)

R(a, b), S(a, b, c), U(a, a)

Here a, b, c are constants and the rest are variables. This query has
an inversion between x � y and x′ � y′ (when unifying S(r, x, y)
with S(r′, x′, y′)). Because of this inversion, one may be tempted
to try to prove that it is #P-hard, using a reduction from H0. Our
standard construction starts by equating r = r′ to make q “like”
H0: call q′ the resulting query (i.e. q′ = q[r/r′]). If one works out
the details of the reduction, one gets stuck by the existence of the
following homomorphism from h : q → q′ that “avoids the inver-
sion”: it maps the variables r, x, y, z, r′, x′, y′ to a, b, c, r, r, x′, y′

respectively, in particular sending the sub-goals U(r, z), V (r, z) to
U(a, r), V (a, r). Thus, h takes advantage of the two sub-goals
U(a, r), V (a, r) in q′ which did not exists in q, and its image does
not contain the sub-goal S(r, x, y), which is part of the inversion.
We call such a homomorphism an eraser for this inversion: the
formal definition is in Sec. 2.3. Because of this eraser, we cannot
use the inversion to prove that the query is #P-hard. So far this
discussion suggests that erasers are just a technical annoyance that
prevent us from proving hardness of some queries with inversions.
But, quite remarkably, erasers can also be used in the opposite di-
rection, to derive a PTIME algorithm: they are used to cancel out
(hence “erase”) the terms in a certain expansion of p(q) that cor-
respond to inversions and that do not have polynomial size closed
forms. Thus, our final result is:

THEOREM 1.8 (DICHOTOMY). Let q be hierarchical.
(1) If q has an inversion without erasers then q is #P-hard.
(2) If all inversions of q have erasers then q is in PTIME.

As a non-trivial application of (1) we show that each of the follow-
ing two queries are #P-hard, since each has an inversion between
two isomorphic copies of itself:

q2path = R(x, y),R(y, z)

qmarked-ring = R(x), S(x, y), S(y, x)

In general, the hardness proof is by reduction from the query Hk,
where k is the length of an inversion without an eraser. The proof is
not straightforward. It turns out that not every eraser-free inversion
can be used to show hardness. Instead we show that if there is an
eraser-free inversion then there is one that admits a reduction from
Hk.

The PTIME algorithm in (2) is also not straightforward. It is
quite different from the recurrence formula in Theorem 1.6, since
we can no longer iterate on the structure of the query: in Example
1.7, the sub-query of q consisting of the first two lines is #P-hard
(since without the third line there is no eraser), hence we cannot
compute it separately from the third line. Our algorithm here com-
putes p(q) without recurrence, and thus is quite different from the
inversion-free PTIME algorithm, but uses the latter as a subroutine.

Organization In Section 2, we introduce the terminology and
develop some tools used in the proof of the dichotomy. In Section 3,
we prove Theorem 1.6 by giving a PTIME algorithm for evaluating
inversion-free queries. In Section 4, we establish the first half of the
dichotomy, by proving Theorem 1.8(2). In Section 5, we prove the
other half of the dichotomy, Theorem 1.8(1).

2. TERMINOLOGY
We introduce the key terminology and prove an expansion for-

mula for computing the probability of conjunctive queries that will
be used to device PTIME algorithms for query evaluation. For the
remainder of the paper, all queries are assumed to be hierarchical,
as we know that non-hierarchical queries are #P-hard.

2.1 Coverage
We call an arithmetic predicate a predicate of the form u = v,

u �= v, or u < v between a variable and a constant in C, or be-
tween two variables2. A restricted arithmetic predicate is an arith-
metic predicate that is either between a variable and a constant, or
between two variables u, v that co-occur in some sub-goal (equiva-
lently u � v or u 	 v). From now on, we will allow all conjunctive
queries to have restricted arithmetic predicates.

DEFINITION 2.1. A coverage for a query q is a set of conjunc-
tive queries C = {qc1, . . . , qcn} such that:

q ≡ qc1 ∨ . . . ∨ qcn

Each query in C is called a cover. A factor of C is a connected
component of some qci ∈ C. We denote the set of all factors in C
by F = {f1, . . . , fk}.

We alternatively represent a coverage by the pair (F , C), where
F is a set of factors and C is a set of subsets of F . Each element of
C determines a cover consisting of the corresponding set of factors
from F .

For any query q the set C = {q} is a trivial coverage. We also de-
fine C<(q), which we call the canonical coverage, obtained as fol-
lows. Consider all m pairs (u, v) of co-occurring variables u, v in
q, or of a variable u and constant v. For each such pair choose one
of the following predicates: u < v or u = v or u > v, and add it to
q. This results in 3m queries. Remove the unsatisfiable ones, then
remove all redundant ones (i.e. remove qci if there exists another
qcj s.t. qci ⊂ qcj). The resulting set C<(q) = {qc1, . . . , qcn} is
the canonical coverage of q.

Unifiers
Let q, q′ be two queries (not necessarily distinct). We rename their
variables to ensure that V ars(q) ∩ V ars(q′) = ∅, and write qq′

for their conjunction. Let g and g′ be two sub-goals in q and q′

respectively. The most general unifier, MGU, of g and g′ (or the
MGU of q, q′ when g, g′ are clear from the context) is a substitu-
tion θ for qq′ s.t. (a) θ(g) = θ(g′), (b) for any other substitution θ′

s.t. θ′(g) = θ′(g′) there exists ρ s.t. ρ ◦ θ = θ′.
A 1-1 substitution for queries q, q′ is a substitution θ for qq′ such

that: (a) for any variable x and constant a θ(x) �= a, and (b) for
any two distinct variables x, y in q (or in q′), θ(x) �= θ(y). The
set representation of a 1-1 substitution θ is the set {(x, y) | x ∈
V ars(q), y ∈ V ars(q′), θ(x) = θ(y)}.

DEFINITION 2.2. An MGU θ for two queries q, q′ is called strict
if it is a 1-1 substitution for qq′.

For a trivial illustration, if q = R(x, x, y, a, z) and q′ = R(u, v,
v, w, w) and their MGU is θ, then θ(x) = θ(y) = θ(u) = θ(v) =
x′, θ(w) = θ(z) = a, and the effect of the unification is θ(qq′) =
R(x′, x′, x′, a, a). This is not strict: e.g. θ(x) = θ(y) and also
θ(z) = a.

2As usual we require every variable to be range restricted, i.e. to
occur in at least one sub-goal.

295

DEFINITION 2.3. (Strict coverage) Let C be a coverage and F
be its factors. We say that C is strict if any MGU between any two
factors f, f ′ ∈ F is strict.

Example 2.4 Let q = T (x),R(x, x, y),R(u, v, v). The trivial
coverage C = {q} is not strict, as the MGU of the two R sub-
goals of q equate x with y and u with v. Alternatively, consider the
following three queries:

qc1 = T (x),R(x, x, x)

qc2 = T (x),R(x, x, y),R(u, u, u), x �= y

qc3 = T (x),R(x, x, y),R(u, v, v), x �= y, u �= v

One can show that q ≡ qc1 ∨qc2∨qc3, hence C = {qc1, qc2, qc3}
is a coverage for q. The set of factors F consists of the connected
components of these queries, which are

f1 = T (x),R(x, x, x) f2 = T (x),R(x, x, y), x �= y
f3 = R(u, u, u) f4 = R(u, v, v), u �= v

and C = {{f1}, {f2, f3}, {f2, f4}}. The coverage is strict, as a
unifier cannot equate x with y or u with v in any query because
of the inequalities. Similarly, the canonical coverage C<(q), which
has nine covers containing combinations of x < y, x = y, or x > y
with u < v, u = v, u > v, is also strict.

LEMMA 2.5. The canonical coverage C<(q) is always strict.

2.2 Inversions
Fix a strict coverage C for q, with factors F , and define the fol-

lowing undirected graph G. Its nodes are triples (f, x, y) with f ∈
F and x, y ∈ V ars(f), and edges are pairs ((f, x, y), (f ′, x′, y′))
s.t. there exists two sub-goals g, g′ in f, f ′ respectively whose
MGU θ satisfies θ(x) = θ(x′) and θ(y) = θ(y′). We call an
edge in G a unification edge, and a path a unification path. Recall
that for a preorder relation �, the notation x � y means x � y and
x �	 y.

DEFINITION 2.6. (Inversion-free Coverage) An inversion in C
is a unification path from a node (f, x, y) with x � y to a node
(f ′, x′, y′) with x′ � y′. An inversion-free coverage is a strict cov-
erage that does not have an inversion. We say that q is inversion-
free if it has at least one inversion-free coverage. Otherwise, we
say that q has inversion.

PROPOSITION 2.7. If there exists one coverage of q that does
not contain inversion, then the canonical cover C<(q) does not
contain inversion.

Example 2.8 We illustrate with two examples:
(a) Consider Hk in Theorem 1.5. The trivial coverage C = {Hk}

is strict, and has factors F = {f0, f1, . . . , fk+1} (each line in
the definition of Hk is one factor). The following is an inversion:
(f0, x, y), (f1, u1, v1), . . . , (fk, uk, vk), (fk+1, x

′, y′). This is an
inversion because x � y and x′ � y′. The canonical coverage C<

also has an inversion, e.g. along the factors obtained by adding the
predicates x < y, u1 < v1, . . . , uk < vk, x′ < y′.

(b) Consider the query q = R(x), S(x, y), S(y, x). The trivial
coverage C = {q} is strict, has one factor F = {q}, and there
is an inversion from (q, x, y) to (q, y, x) because S(x, y) unifies
with S(y, x) (recall that we rename the variables before the unifi-
cation, i.e. the unifier is between R(x), S(x, y), S(y, x) and its
copy R(x′), S(x′, y′), S(y′, x′)). In the canonical coverage C<

there are three factors, corresponding to x < y, x = y, and y < x,
and the inversion is between x < y and y < x.

2.3 An Expansion Formula for Coverage
Given a conjunctive query q and a probabilistic structure A =

(A, RA
1 , . . . , RA

k), we want to compute the probability p(q). Our
main tool is a generalized inclusion-exclusion formula that we ap-
ply to the coverage of a query.

DEFINITION 2.9. (Expansion Variables) Let C = (F , C) be a
strict coverage, where F = {f1, · · · , fk} is a set of factors and
C is a set of subsets of F . A set of expansion variables is a set
x̄ = {x̄f1 , · · · , x̄fk

} such that x̄fi ⊆ V ars(fi) for 1 ≤ i ≤ k.

We use (F , C, x̄) to denote a coverage where we have chosen
the expansion variables.

For f ∈ F , let Af = A|x̄f |, and for ā ∈ Af , let f(ā) denote the
query f [ā/x̄f], i.e., the conjunctive query obtained by substituting
the variables x̄f with ā. The following follows simply from the
definitions:

q =
_

c∈C

^

f∈c

_

ā∈Af

f(ā) (4)

Our next step is to apply the inclusion/exclusion formula to (4).
We need some notations. We call a subset σ ⊆ F a signature.
Given s ⊆ C, its signature is sig(s) =

S
c∈s c.

DEFINITION 2.10. Given a set σ ⊆ F , define

N(C, σ) = (−1)|σ| X

s⊆C:sig(s)=σ

(−1)|s|

For example, if C = {c1, c2, c3} where c1 = {f1, f2},c2 =
{f2, f3} and c3 = {f1, f3}, then for signature σ = {f1, f2, f3}
we have

N(σ) = (−1)|{f1,f2,f3}|((−1)|{c1,c2}| + (−1)|{c1,c3}| +

(−1)|{c2,c3}| + (−1)|{c1,c2,c3}|)

= −2

Given k sets T̄ = {Tf1 , . . . , Tfk
}, where Tfi ⊆ Afi , we denote

its signature sig(T̄) = {f | Tf �= ∅}, its cardinality |T̄ | =
P

i |
Tfi |, and denote F(T̄) the query

V
f∈F

V
a∈Tf

f(ā).

THEOREM 2.11. (Expansion Theorem) If C is a coverage for q,
then

p(q) =
X

T̄

N(C, sig(T̄))(−1)|T̄ |p(F(T̄)) (5)

This formula will be the main tool for the PTIME algorithms for
queries in the following sections.

3. INVERSION-FREE QUERIES
In this section, we show that all inversion-free queries have a

PTIME algorithm. We start by computing simple sums over func-
tions on sets, then use it to give a PTIME algorithm for queries
without inversion.

3.1 Simple Sums
Let A = {1, . . . , N}, ḡ = (g1, . . . , gk) be k functions gi :

A → R, i = 1, . . . , k, and T̄ = (T1, . . . , Tk) a k-tuple of sub-
sets of A. Denote ḡ(T̄) = g1(T1) · · · gk(Tk), where gi(Ti) =Q

ā∈Ti
gi(ā). ∅ �= T̄ abbreviates ∅ �= T1, . . . , ∅ �= Tk. Let φ be

a conjunction of statements of the form Ti ∩ Tj = ∅ or Ti ⊆ Tj ,
and define: Sφ = {σ | σ ⊆ [k], ∀i, j ∈ σ, φ �|= Ti ∩ Tj = ∅} ∩
{σ | σ ⊆ [k], ∀i ∈ σ, j �∈ σ, φ �|= Ti ⊆ Tj}.

296

DEFINITION 3.1. Denote the following sums:
M

φ
ḡ =

X

T̄⊆A,φ

ḡ(T̄)

M+

φ
ḡ =

X

∅�=T̄⊆A,φ

ḡ(T̄)

For σ ⊆ [k], denote ḡσ the family of functions (gi)i∈σ.

PROPOSITION 3.2. The following closed forms hold:
M

φ
ḡ =

Y

a∈A

X

σ∈Sφ

Y

i∈σ

gi(ā)

M+

φ
ḡ =

X

σ⊆[k]

(−1)k−|σ|Mḡσ

Moreover, the expressions have sizes O(k2kN) and O(k22kN) re-
spectively, hence all have an expression size that is linear in N .

Example 3.3 Consider four functions gi : A → R, i = 1, 2, 3, 4,
and suppose we want to compute the following sum:

X

T1∩T2=∅,T2∩T3=∅,T4⊆T2

g1(T1)g2(T2)g3(T3)g4(T4)

In our notation, this is
L

φḡ, where φ is T1 ∩ T2 = ∅ ∧ T2 ∩ T3 =

∅ ∧ T4 ⊆ T2. The set Sφ is {∅, {1}, {2}, {2, 4}, {3}, {1, 3}}.
Thus, the expression for the sum is

Y

a∈A

(1 + g1(a) + g2(a) + g2(a)g4(a) + g3(a) + g1(a)g3(a))

The size of this expression is 8N , where N is the size of A.

3.2 Inversion-Free Queries
Let q be an inversion-free query. We give now a PTIME algo-

rithm for computing q on a probabilistic structure.

DEFINITION 3.4. (Unary Coverage) A unary coverage is a cov-
erage C = (F , C, x̄) with the following properties: (1) for each
f ∈ F , the set x̄f consists of a single variable rf which is maxi-
mal and (2) any MGU between two (not necessarily distinct) factors
f, f ′ maps rf to rf ′

THEOREM 3.5. If q has no inversions then q has a unary cov-
erage.

Example 3.6 We illustrate Theorem 3.5 on two queries.

q1 = R(x, y), S(x, y), S(x′, y′), T (y′)

q2 = R(x, y),R(y, x)

In the trivial coverage C = {q1} for q1 the factors are

f1 = R(x, y), S(x, y) f2 = S(x′, y′), T (y′)

We see that rf1 = {y} and rf2 = {y′} satisfy the properties of
Theorem 3.5 (there are two maximal variables for f1, but we have
to pick y because it unifies with y′). For q2, the trivial coverage
C = {q3} does not work since there is a unifier that unifiers x with
y, and exactly one of them can be the expansion variable. On the
other hand, consider the following coverage:

f3 = R(x1, y1), R(y1, x1), x1 > y1 f4 = R(x, x)

now we can set rf3 = x1 and rf4 = x. �

Now, let q be a query without inversion and C = (F , C, x̄) be
any unary coverage. Theorem 4.9 applied to this unary coverage
gives:

p(q) =
X

T̄

N(C, sig(T̄))(−1)|T̄ |p(F(T̄)) (6)

Our first goal is to express p(F(T̄)) as
Q

f

Q
ā∈Tf

p(f(ā)), to ap-
ply the closed forms for the sums we developed in the previous sec-
tion. For that we need to ensure that any two queries f(ā), ā ∈ Af

and f ′(ā′), ā′ ∈ Af ′ are independent, and this does not hold in
general.

Example 3.7 We revisit the query q1 in Example 3.6 and consider
the trivial coverage C = {q1}, with the two factors

f1 = R(x, y), S(x, y) f2 = S(x′, y′), T (y′)

with y and y′ as their root variables. Then, we have

p(q1) =
X

T̄=T1,T2

N(C, sig(T̄))(−1)T1+T2p(f1(T1)f2(T2)) (7)

However, f1(T1) and f2(T2) are independent only when T1∩T2 =
∅. Therefore, we define a new query f12 by equating the root
variables of f1 and f2, i.e. f12(r) = f1(r)f2(r). Define T̄ ∗ =
{T1, T2, T12} and let ip(T̄ ∗) denote the predicate T1 ∩ T2 = T2 ∩
T12 = T12 ∩ T1 = ∅. Then, p(q1) equal

X

T̄∗|ip(T̄∗)

N(C, sig(T̄ ∗))(−1)T1+T2p(f1(T1)f2(T2)f12(T12))

(8)
where sig(T̄ ∗) is obtained in a straightforward way from T1, T2, T12.
The predicate ip(T̄ ∗) makes f1(T1), f2(T2) and f12(T12) indepen-
dent. �

Based on the observation in the above example, we proceed as
follows. For each u ⊂ F , we define a new query fu which is the
conjunction of all queries f ∈ u with their roots equated, i.e.

fu(r) =
^

f∈u

f [r/rf]

Let F∗ = {fu | u ⊆ F}. Given a family of sets T̄ ∗ = (Tu)u⊆F ,
define

ip(T̄ ∗) =
^

u �=u′
Tu ∩ Tu′ = ∅

|T̄ ∗| =
X

|u|=1

|Tu|

Also, given a set σ∗ ⊆ F∗, define

exp(σ∗) = {f | ∃u. u ∈ σ∗, f ∈ u}

Then, we obtain p(q) =
X

T̄∗|ip(T̄∗)

N(C, exp(sig(T̄ ∗)))(−1)|T̄
∗| Y

u∈F∗

Y

ā∈Tu

p(fu(ā))

Corresponding to each Tu ∈ T̄ ∗, let gu : A → R denote the
function gu(ā) = −p(fu(ā)) if |u| = 1 and gu(ā) = p(fu(ā)) if
|u| > 1. Thus, we have p(q) =

X

T̄∗|ip(T̄∗)

N(C, exp(sig(T̄ ∗)))
Y

u∈F∗

Y

ā∈Tu

g(ā)

We then use the closed forms for summations developed in Sec-
tion 3.1 to obtain the following result.

297

THEOREM 3.8. Let q be inversion-free.

1. The probability of q is given by

p(q) =
X

σ⊆F∗
N(C, exp(σ))

M+

ip
ḡσ (9)

where
L+ ranges over all sets of the form T̄ ∗.

2. For each u ∈ F∗, fu(ā) is an inversion-free query.

We use Proposition 3.2 to write a closed-form expression for
Equation (9) in terms of the probabilities gf (ā) = p(f(ā)) for
f ∈ F∗. Since each of these queries is inversion-free, we recur-
sively apply Equation (9) to compute their probabilities. For any
query q, let V (q) denote the maximum number of distinct variables
in any single sub-goal of q. Clearly, for any factor f , we have

V (f(ā)) < V (f) ≤ V (q)

since ā substitutes a variable in every sub-goal. Thus, the depth of
the recursion is bounded by V (q).

COROLLARY 3.9. If q is an inversion-free query, then p(q) can
be expressed as a formula of size O(NV (q)), where N is the size of
the domain. In particular q is in PTIME.

Example 3.10 We continue our running example from Example 3.7.
For this query, N(C, σ) = 1 if σ = {f1, f2} and 0 otherwise. Let
T̄ ∗ = (T1, T2, T12). Let g1(a) = −p(f1(a)), g2(a) = −p(f2(a))
and g12(a) = p(f12(a)). Let

φ ≡ (T1 ∩ T2 = ∅) ∧ (T1 ∩ T12 = ∅) ∧ (T2 ∩ T12 = ∅)
The subsets σ∗ of F∗ for which exp(σ∗) = {f1, f2} are {f1, f2},
{f12}, {f1, f12}, {f2, f12} and {f1, f2, f12}. Thus,

p(q) =
M+

φ
(g1, g2) +

M+

φ
(g12) +

M+

φ
(g1, g12) +

M+

φ
(g2, g12) +

M+

φ
(g1, g2, g12)

Now apply Prop. 3.2 to each expression. Each sum in turn has
a closed form. Furthermore, each fi(a) is a query with a single
variable (y or y′), hence each gi(a) = p(fi(a)) can be computed
inductively.

3.3 Queries with Negated Subgoals
The PTIME algorithm in this section can be extended to queries

with negated sub-goals.

DEFINITION 3.11. A conjunctive query with negations is a query
q = ∃x̄.(ϕ1∧. . .∧ϕk), where each ϕi is either a positive sub-goal
R(t), or a negative sub-goal not(R(t)), or an arithmetic pred-
icate. The query q is said to be inversion-free if the conjunctive
query obtained by replacing each not(R(t)) sub-goal with R(t)
sub-goal is inversion-free.

DEFINITION 3.12. (Inversion-free property) A property φ is ca-
lled inversion-free property if it can be expressed as a Boolean com-
bination of queries {q1, · · · , qm} such that each qi is a conjunctive
query with negation and the query q1q2 · · · qm is inversion-free.

THEOREM 3.13. If φ is any inversion-free property, computing
p(φ) is in PTIME.

PROOF. (Sketch) Consider a single inversion-free conjunctive
query with negation. The same recurrence formula in Theorem 3.8
applies, the only difference is during recursion we will reach negated
constant sub goals: p(not(R(a, b, c))) is simply 1−p(R(a, b, c)).
For any general φ, use inclusion/exclusion formula to reduce it
to conjunctive queries with negations, each of which is inversion-
free.

3.4 Complex Sums
In Section 3.2, we used simple sums to give a PTIME algorithm

for inversion-free queries. Here, we show that the PTIME algo-
rithm can be used to compute closed formulas for complex sums.
We call this the bootstrapping technique.

Bootstrapping: Let ḡ = (g1, . . . , gk) be a family of functions,
gi : Ari → R, where the arity of gi is ri. We want to compute
sums of the form sum =

P
S̄|φ ḡ(S̄), where φ is a complex pred-

icate. We cannot use the summations of Section 3.1, which only
apply when gi are unary. Instead, we use a bootstrapping tech-
nique to reduce this problem back to evaluating an inversion-free
query on a probabilistic database, and use the PTIME algorithm of
Section 3.2. The basic principle is that we can reduce the problem
to the evaluation of φ over a probabilistic database. Create an prob-
abilistic instance of S , where, assuming k = 1 for simplicity, for
each tuple ā ∈ S, set its probability to p(ā) = g(ā)/(1 + g(ā)).
Then, the probability of φ over this instance is

p(φ) =
X

S

Y

ā∈S

p(ā)
Y

ā�∈S

(1 − p(ā))

=
Y

ā

1/(1 + g(ā))
X

S|φ
g(S)

=
Y

ā

1/(1 + g(ā))sum

Thus, we can compute sum in PTIME if we can evaluate the query
φ in PTIME.

THEOREM 3.14. Let φ be an inversion-free property. Then, the
sum

P
S̄|φ ḡ(S̄) has a closed form polynomial in domain size.

4. THE GENERAL PTIME ALGORITHM
In this section, we formally define the notion of an eraser and

prove that if all the inversions of a query have erasers, then the
query is in PTIME. This establishes one half of the dichotomy.

In the previous section, we used a unary coverage to develop a
PTIME algorithm for inversion-free queries. When queries have
inversions, a unary coverage does not always exist. Instead, we
define the following:

DEFINITION 4.1. (Complete Coverage) A complete coverage
is a coverage C = (F , C, x̄) such that for each f ∈ F , x̄f =
V ars(f).

Thus, a complete coverage expands the query on all its variables.
We extend the theory of unary coverages for inversion-free queries
to complete coverages for the general PTIME algorithm. Infor-
mally, the algorithm works as follows:

1. We start with a query q where all inversions have erasers.

2. We use the Expansion Theorem on a complete coverage of q
to obtain a summation formula for p(q).

3. We add independence predicates to the summation formula.
For unary coverages, these independence predicates were sim-
ply predicates of the form Tu ∩ Tu′ = ∅, but now they are
much more involved.

4. We express the summation as a complex sum with a closed
form, as developed in Section 3.4. Recall that for unary cov-
erages, we had expressed the summation as a simple sum in
the style of Section 3.1.

298

5. We show that the complex predicate φ corresponding to the
complex sum is an inversion-free property. Thus, we use the
bootstrapping technique of Section 3.4 to obtain a PTIME
algorithm.

The rest of this section formalizes this algorithm.

4.1 Some Basic Results

4.1.1 Independence Predicates
Our goal in this section is to generalize the notion of indepen-

dence predicates. For unary coverages, an independence predicate
is simply a set of statements of the form Ti∩Tj �= ∅, but the general
case requires more formalism. We first introduce a new relational
vocabulary, T consisting of the relation symbols Tf1 , · · · , Tfk

of
arities |xf1 |, . . . , |xfk

| respectively. A structure over this vocab-
ulary is a k-tuple of sets T̄ ; given a conjunctive query φ over the
vocabulary T , T̄ |= φ means that φ is true on T̄ . For a trivial illus-
tration, assume Tf1 , Tf2 to be of arity 1, and φ = Tf1(x), Tf2(x).
Then φ states that Tf1 ∩ Tf2 �= ∅.

Suppose we have two factors fi and fj and θ is any 1-1 substi-
tution on fi, fj , given in set representation. Define

θR(fi, fj) = fi, fj ,
^

(xi,xj)∈θ

xi = xj

θT (fi, fj) = Tfi(x̄fi), Tfj (x̄fj),
^

(xi,xj)∈θ

xi = xj

Note that θR(fi, fj) is over the vocabulary R (same as the origi-
nal query q), while θT (fi, fj) is over the vocabulary T . We call
them the join query and the join predicate respectively. We call
the negation of join predicate, not(θT (fi, fj)), an independence
predicate.

Example 4.2 Consider factors f1 and f2 in Example 3.7, and let
θ = {(y, y′)}. Then,

θR(f1, f2) = R(x, y), S(x, y), S(x′, y), T (y)

≡ R(x, y), S(x, y), T (y)

θT (fi, fj) = T1(y), T2(y)

and the independence predicate not(θT (fi, fj)) says that T1 and
T2 are disjoint.

We want to add enough independence predicates so that the fol-
lowing holds: If Ti, Tj satisfy all independence predicates between
fi and fj , then for all ā ∈ Ti and ā′ ∈ Tj , fi(ā) and fj(ā

′) are
independent.

4.1.2 Hierarchical Closure
Recall from Example 3.7 that, in order to introduce an indepen-

dence predicate between two sets T1, T2 we needed to use the join
query of their factors, f12(r) = f1(r), f2(r). We started from the
set of factors F and added some join queries to obtain a new set of
factors. We will proceed similarly here. Starting from a coverage C
we will add join queries repeatedly until we obtain its hierarchical
closure, denoted C∗, then we will introduce independence predi-
cates. Computing C∗ is straightforward when C is an inversion-free
coverage (which is the case for our first PTIME algorithm), but
when C has inversions then some join queries are non-hierarchical
and we cannot add them to C∗. We define next C∗ in the general
case. Let C = (F , C, x̄) be any complete coverage.

DEFINITION 4.3. Given two factors f1 and f2, and a MGU
given by the set representation θ, the hierarchical unifier θu is the
maximal subset of θ such that:

1. If (x, y) ∈ θu and (x′, y′) is such that x 	 x′ or y 	 y′ and
(x′, y′) ∈ θ, then (x′, y′) ∈ θu.

2. The query θR
u (f1, f2) is hierarchical.

It can be shown that θu is uniquely determined. If θu is non-
empty, we say that f1 and f2 can be hierarchical joined using θ
and call the query θR

u (f1, f2) the hierarchical join of f1 and f2,
and θT

u (f1, f2) the hierarchical join predicate.

Example 4.4 Let

f1 = R(r, x), S(r, x, y), U(a, r), U(r, z), V (r, z)

f2 = S(r′, x′, y′), T (r′, y′), V (a, r′)

and θ = {(r, r′), (x, x′), (y, y′)} be the MGU of the two S sub-
goals. Then, the hierarchical unifier is θu = {(r, r′)}. If we in-
clude any of (x, x′) or (y, y′), we will have to include the other
because x � y and x′ � y′, and then the join will not be hierarchi-
cal. The hierarchical join for this unifier is

θR
u (f1, f2) = R(r, x), S(r, x, y), U(a, r), U(r, z), V (r, z)

S(r, x′, y′), T (r, y′), V (a, r)

�.

Starting from the factors F , we construct a set H, a function Factors
from H to subsets of F , and a set of expansion variables x̄h for
h ∈ H. This is done inductively as follows:

1. For each f ∈ F , add f to H and let Factors(f) = {f}.

2. For any two queries h1, h2 in H, and any MGU θ between h1

and h2, let h = θR
u (h1, h2) be their hierarchical join. Then

add h to H, define Factors(h) = Factors(h1)∪Factors(h2);
define x̄h = θu(x̄h1 ∪ x̄h2).

We need to show that H is finite. This follows from:

LEMMA 4.5. Given a fixed relational vocabulary R and a fixed
set of constants C, the number of distinct hierarchical queries over
R and C is finite.

Define F∗ to be the subset of H containing queries that are either
inversion-free or in F .

DEFINITION 4.6. (Hierarchical Closure) Given a coverage C =
(F , C, x̄), its hierarchical closure is C∗ = (F∗, C∗, x̄∗) where F∗,
x̄∗ are defined above and:

C∗ = {c | c ⊆ F∗,
[

f∈c

Factors(f) ∈ C}

Note that C∗ is indeed a coverage since the set F∗ contains the set
F , the set C∗ contains the set C, and the expansion variables sat-
isfy the conditions in Def. 2.9. Let ip(C∗) be the conjunction of
not(jp), where jp ranges over all possible hierarchical join pred-
icates in F∗.

LEMMA 4.7. If T |= ip(C∗), then

p(F(q)) =
Y

f∈F∗

Y

a∈Tf

p(f(ā))

299

4.1.3 Adding Independence Predicates
Finally, we look at conditions under which we can add the pred-

icate ip(C∗) over T̄ . We divide the join predicates into two dis-
joint sets, trivial and non-trivial. A join predicate between factors
hi and hj is called trivial if the join query is equivalent to either
hi or hj , and is called non-trivial otherwise. We write ip(C∗) as
ipn(C∗)∧ipt(C∗), where ipn(C∗) is the conjunction of not(jp)
over all non-trivial join predicates jp, and ipt(C∗) is the conjunc-
tion over all trivial join predicates.

DEFINITION 4.8. (Eraser) Given a hierarchical join query jq
= θR

u (fi, fj), an eraser for jp is a set of factors E ⊆ F s.t.:

1. ∀q ∈ E, there is a homomorphism from q to jq.

2. ∀σ ⊆ F , N(C, σ ∪ {fi, fj}) = N(C, σ ∪ {fi, fj} ∪ E).

THEOREM 4.9. Let q be a query such that every hierarchical
join query jq = θR

u (fi, fj) between two factors in F∗ has an
eraser. Then,

p(q) =
X

T̄ |ipn(C∗)

N(C∗, sig(T̄))(−1)|T̄ |p(F(T̄))

The theorem allows us to add all possible non-trivial indepen-
dence predicates over the summation. If the hierarchical join query
jp is inversion-free, then it belongs to F∗ and it is its own eraser
(i.e. E = {jp} satisfies both conditions above). We can use it to
separate Ti from Tj . In particular if q is inversion-free, then any
hierarchical join query has an eraser, and all sets can be separated.
But if jp has an inversion, then jp does not belong to F∗ and we
must find some different query (queries) in F∗ that can be used to
separate Ti from Tj .

Example 4.10 Consider the query q in Example 1.7 Although q
has an inversion (between the two S Subgoals) we have argued in
Sec. 1.1 that it is in PTIME. Importantly, the third line of constants
sub goals plays a critical role: if we removed it, the query becomes
#P-hard.
Consider the coverage C = (F , C, x̄), where F is3:

f1 = R(r, x), S(r, x, y), U(a, r), U(r, z), V (r, z), r �= a

f2 = S(r′, x′, y′), T (r′, y′), V (a, r′), r′ �= a

f3 = U(a, z′), V (a, z′)

f4 = R(a), S(a, b, c), U(a, a)

and C = {{f1, f2, f4}, {f2, f3, f4}}. We cannot simply take
the root variables r, r′, and z′ as expansion variables and pro-
ceed with the recurrence formula in Th. 3.8, because the query
f12 = f1(r)f2(r) is #P-hard. We must keep all variables as ex-
pansion variables to avoid the inversion. Thus, the root unifiers H
are (recall Example 4.4):

f12 = f1, f2, r = r′

f23 = f2, f3, r
′ = z′

f13 = f1, f3, r = z′

f123 = f1, f2, f3, r = r′ = z′

Out of these, f12 and f123 have inversions, thus

F∗(q) = {f1, f2, f3, f4, f23, f13}
3Strictly speaking each constant sub-goal R(a), S(a, b, c), U(a, a)
should be a distinct factor.

In the expansion Exp(C∗), there are sets T1, T2, T3, T4, T23, T13

but note that they are not unary, e.g. T1 has arity 4 as x̄f1 =
{r, x, y, z}. The critical question is how to separate now T1 from
T2, since we don’t have the factor f12. Here we use the fact that
there exists a homomorphism f3 → f12, thus f3 is an eraser be-
tween f1 and f2 and will use f3 to separate T1, T2. The defi-
nition of an eraser (Def. 4.8) requires us to check ∀σ, N(C, σ ∪
{f1, f2}) = N(C, σ ∪ {f1, f2, f3}). The only σ that makes both
N ’s non-zero is {f4} (and supersets), and indeed the two numbers
are equal to +1. It is interesting to note that, if we delete the last
line from q, then we have the same set of factors but a new coverage
C′ = {{f1, f2}, {f2, f3, f4}}: then f3 is no longer an eraser be-
cause for σ = ∅ we have N({f1, f2}) = 1 and N({f1, f2, f3}) =
0. Continuing the example, we conclude that, with aid from the
eraser, we can now insert all non-trivial independence predicates,
e.g. between f1 and f2, f2 and f3, f1 and f23 etc. We still
haven’t added the trivial independence predicates, e.g. between
f1 and f12, f23 and f123 etc. Also, observe that the non-trivial in-
dependence predicates are no longer simple disjointness conditions
e.g. the predicate between T1 and T2 is the negation of the query
T1(r, x, y, z), T2(r, x

′, y′). �

4.2 The General PTIME Algorithm
Let q be a conjunctive query and let C = (F , C) be a strict cov-

erage for q and let H be the set of hierarchical unifiers, as defined
in Section 4.1.2. Suppose the following holds: for every hierarchi-
cal join predicate jp = θT (hi, hj) between two factors in H, the
join query jq = θR(fi, fj) has an eraser. We will show here that q
is in PTIME, thus proving Theorem 1.8(2).

We set the expansion variables x̄ to include all variables to obtain
a complete coverage C = (F , C, x̄). Let C∗ = (F∗, C∗, x̄∗) be the
hierarchical closure of C. By Theorem 4.9, we have

p(q) =
X

T̄ |ipn(C∗)

N(C∗, sig(T̄))(−1)|T̄ |p(F∗(T̄))

=
X

σ

N(C∗, σ)
X

T̄ |ipn(C∗),sig(T̄)=σ

(−1)|T̄ |p(F∗(T̄)) (10)

We now focus on each of the inner sums in Equation (10). which
is of the form

X

T̄ |ipn(C∗),sig(T̄)=σ

(−1)|T̄ |p(F∗(T̄)) (11)

We want to reduce it to evaluation of an inversion-free property,
but there are two problems. First, the predicate ipn(C∗) over T̄
is not an inversion-free property. Second, we still need to add the
predicates ipt(C∗) to make p(F∗(T̄)) multiplicative. To solve
these problems, we apply a preprocessing step on Equation 10,
which we call the change of basis. In this step, we group T̄ that
generate the same F∗(T̄) and sum over these groups.

Example 4.11 Consider a factor f = R1(x, y),R2(y, z). We look
at the set T (x, y, z) corresponding to this factor, which is a ternary
set since x̄f = {x, y, z}. For every T , define S0 = πy(T), S1 =
πxy(T) and S2 = πy(T), hence T = S0 � S1 � S2 (natural
join). Clearly, S0, S1, S2 satisfy the predicate S0 = πy(S1) =
πy(S2). Consider the sum

X

T̄

(−1)|T̄ |p(f(T̄)) (12)

We group all T that generate the same S0, S1, S2 and show that

300

the summation in Eq. 12 is equivalent to the following:
X

S1, S2, S0 |
S0 = πy(S1) = πy(S2)

(−1)|S
1|+|S2|+|S0|p(R1(S

1)R2(S
2))

Thus, we have changed the summation basis from T to S0, S1, S2.
�

The change of basis introduces some new predicates between sets,
which we call the link predicates, e.g. predicates of the form S0 =
πy(S1). But at the same time, as we shall see, the change of ba-
sis simplifies the independence predicates ip(C∗), making them
inversion-free, so that the computation of Equation (10) can be re-
duced to evaluation of inversion-free queries. We now formally
define the change of basis. This consists of the following steps:
(1) we change the summation basis from T̄ to S̄. (2) we translate
the ipn(C∗) predicates from T̄ to S̄. (3) we introduce a new set
of predicates, called the link predicates, on S̄. (4) We add the re-
maining independence predicates, ipt(C∗), translated from T̄ to
S̄.

Consider a factor f ∈ F∗. It is a connected hierarchical query
with the hierarchy relation 	 on V ars(f). Given x ∈ V ars(f),
let [x] denotes its equivalence class under 	 and let �x� denote
{y | y � x}. Define a hierarchy tree for f as the tree where nodes
are equivalence classes of variables, and edges are such that their
transitive closure is 	. For instance, in Example 4.11, the hierarchy
tree of f has nodes {x}, {y}, {z} with {x} as root and {y}, {z}
its children.

Define a new vocabulary, consisting of a relation S
[x]
f for each

f ∈ F∗ and each node [x] in the hierarchy tree of f , with arity
equal to the size of �x�. Let S̄ denote instances of this vocabulary.
The intuition is that S

[x]
f denotes π	x
(Tf) in the change of basis

from T̄ to S̄. This completes step 1.
Step 2 is simple. Let ipn denote the set of independence pred-

icates on S̄, translated in a straightforward manner from the inde-
pendence predicates ipn(C∗) on T̄ .

Define a link predicate S
[x]
f = π	x
(S

[y]
f) for every edge ([x], [y])

in the hierarchy tree of f . Let lp be the set of all link predicates.
This is step 3.

Finally, we add the trivial independence predicates ipt. For this,
we expand the basis of summation from S̄ to S̄′ by adding the
following sets. We add a new set Si,j

xi,xj
corresponding to each pair

S
[xi]
fi

, S
[xj]

fj
such that (i) fi and fj have a hierarchical join query

which is equivalent to fj and (ii) there are sub-goals gi in hi and
gj in hj referring to the same relation such that V ars(gi) = �xi�
and V ars(gj) = �xj�. For each such Si,j

xi,xj
, ipt contains the

following conjuncts: S
[xi]
fi

∩ S
[xj]

fj
= ∅, Si,j

xi,xj
⊆ S

[xj]

fj
. This

describes the step 4.
Finally, we put it all together. We define a function G(S̄′) on

S̄′ as follows. Consider a relation S
[x]
f , and let p be the number of

children of [x] in the hierarchy tree. For a tuple t in S
[x]
f , let

G(t) = (−1)p+1
Y

g∈sg(f)|V ars(g)=	x

p(g(t))

Define G(S̄′) =
Q

t∈S̄′ G(t).

Denote sig(S̄′) the set {f | S
[rf]

f �= ∅}, where [rf] denotes the
root of the hierarchy tree of f .

THEOREM 4.12. With ipt, ipn, lp, sig and G as defined

above,
X

T̄ |ip(C∗),sig(T̄)=σ

(−1)|T̄ |p(F∗(T̄)) =
X

S̄′|ipn,ipt,lp,sig(S̄′)=σ

G(S̄′)

Finally, we use the bootstrapping principle to reduce the problem
of computing the summation to the evaluation of the query

φ = (ipn ∧ ipt ∧ lp ∧ sig(S̄′) = σ)

LEMMA 4.13. The query φ defined above is an inversion-free
property.

By using Theorem 3.14, we get the following:

THEOREM 4.14. Suppose for every hierarchical join predicate
jp = θT (hi, hj) between two factors in H, the join query jq =
θR(fi, fj) has an eraser. Then, q is PTIME.

5. #P-HARD QUERIES
Here we show the other half of Theorem 1.8, i.e., if q has an

inversion without an eraser, then q is #P-hard.
Let C = (F , C, x̄) be any strict coverage for q, C∗ = (F∗, C∗, x̄∗)

its closure and H the set of hierarchical join queries over F . Sup-
pose there are factors h, h′ ∈ H such that the join query hj =
θT (h, h′) has an inversion, but not an eraser. Among all such hj,
we will pick a specific one and use it to show that q is #P-hard.
Note that if there is no such hj, then the query is in PTIME by
Theorem 4.14.

Let the inversion in hj consist of a unification path of length k
from (f, x, y) with x � y to (f ′, x′, y′) with x′ � y′. Then, we
will prove the #P-hardness of q using a reduction from the chain
query Hk, which is #P-hard by Theorem 1.5.

Given an instance of Hk, we create an instance of q. The basic
idea is as follows: take the unification path in hj that has the in-
version and completely unify it. We get a non-hierarchical query
(due to the inversion) with two distinguished variables x and y (the
inversion variables), k + 2 distinguished sub-goals (that partici-
pated in the inversion), plus other sub-goals in the factor. Use the
structure of this query and the contents of the k + 2 relations in
the instance of Hk to create an instance for q. We skip the formal
description of the reduction, but instead illustrate it on examples.

Example 5.1 Consider q = U(x), V (x, y), V (y, x) and the cov-
erage C = (F , C) where F = {f} with f = U(x), V (x, y),
V (y, x), x �= y and C = {{f}}. The coverage has a single factor
and a single cover. The first V sub-goal of factor f unifies with the
second sub-goal of another copy of f to give an inversion between
x � y and their copy y′ � x′. If we unify the two sub-goals in two
copies of f , we get the query:

qu = U(x), V (x, y), V (y, x), U(y)

We have underlined the sub-goals taking part in the inversion. Now
we give a reduction from the query

H0 = R(x), S(x, y), S(x′, y′), T (y′)

Given any instance of R, S, T for H0 construct an instance of U, V
as follows. We map the R, S, T relations in H0 to the U, V, U
underlined sub goals of qu as follows: for each tuple R(a), create a
tuple U(a) with same probability. For each S(a, b), create V (a, b)
with the same probability. For each T (a), create U(a) with same
probability. Also, for each S(a, b), create V (b, a) with probability
1 (this corresponds to the non-underlined sub-goal).

301

There is a natural 1-1 correspondence between the substructures
of U, V and the substructures of R, S, T with the same proba-
bility. It can be shown that q is true on a substructure iff the
query R(x), S(x, y) ∨ S(x′, y′), T (y′) is true on the correspond-
ing substructure. Thus, we can compute the probability of the query
R(x), S(x, y)∨S(x′, y′), T (y′), and hence, the probability of H0,
by inclusion-exclusion.

Next, we show why a hardness reduction fails if the inversion
has an eraser.

Example 5.2 We revisit the query q in Example 4.10. There is an
inversion between x � y in f1 and x′ � y′ in f2. However, their
hierarchical join, f12 have an eraser. The unified query consists of

qu = R(r, x), S(r, x, y), U(a, r), U(r, z), V (r, z), V (a, r),

T (r, x), R(a), S(a, b, c), U(a, a)

We construct an instance RSTUV for q from an instance R′S′T ′

for H0 as in previous example. However, there is a bad mapping
from q to qu, corresponding to the eraser, which is {r → a, x →
b, y → c, x′ → x, y′ → y, z → r}, which avoids the R sub-goal.
The effect is that q is true on a world iff the query S′(x′, y′)T ′(y′)
(rather that H0) is true on the corresponding world. So the reduc-
tion from H0 fails. In fact, we know that this query q is in PTIME.

The final example shows that if there are multiple inversions
without erasers, we need to pick one carefully, which makes the
hardness reduction challenging.

Example 5.3 Consider the following variation of the query in pre-
vious example:

q =R(x),S(x, y), U(x, y, a, b), U(z1, z2, x, y), V (z1, z2, x, y)
S(x′, y′), T (y′), V (x′, y′, a, b)

R(a), S(a, b), U(a, b, a, b)

Let f1 and f2 denote the factors corresponding to the first two lines
of q. There is an inversion from x � y in f1 to x′ � y′ in f2

via the two S sub-goals, and it does not have an eraser. But if we
unify the two S sub-goals to obtain S, there is a "bad mapping"
from q to qu that maps x, y to a, b and z1, z2 to x, y. However,
as it turns out, there is another inversion in q that we can use for
hardness. The inversion is from x � y to z1 ≡ z2 to x′, y′ through
the following unification path: U(x, y, x, y) unifies with (a copy
of) U(z1, z2, x, y) and V (z1, z2, x, y) unifies with V (x′, y′, a, b).
We can show that this inversion works for the hardness reduction.

By formalizing these ideas, we prove:

THEOREM 5.4. Suppose there are h, h′ ∈ H∗(q) such that
their hierarchical join hj has an inversion without an eraser. Then,
q is #P-complete.

6. CONCLUSIONS
We show that every conjunctive query has either PTIME or #P-

complete complexity on a probabilistic structure. As part of the
analysis required to establish this result we have introduced new
notions such as hierarchical queries, inversions, and erasers. Fu-
ture work may include several research directions: a study whether
the hardness results can be sharpened to counting the number of
substructures (i.e. when all probabilities are 1/2); an analysis of the
query complexity; extensions to richer probabilistic models (e.g. to
probabilistic databases with disjoint and independent tuples [10]);
and, finally, studies for making our PTIME algorithm practical for
probabilistic database systems.

7. REFERENCES
[1] Daniel Barbará, Hector Garcia-Molina, and Daryl Porter.

The management of probabilistic data. IEEE Trans. Knowl.
Data Eng., 4(5):487–502, 1992.

[2] Jihad Boulos, Nilesh Dalvi, Bhushan Mandhani, Shobhit
Mathur, Chris Re, and Dan Suciu. Mystiq: a system for
finding more answers by using probabilities. In SIGMOD,
pages 891–893, 2005.

[3] Nadia Creignou and Miki Hermann. Complexity of
generalized satisfiability counting problems. Inf. Comput.,
125(1):1–12, 1996.

[4] Nilesh Dalvi and Dan Suciu. Efficient query evaluation on
probabilistic databases. In VLDB, 2004.

[5] Nilesh Dalvi and Dan Suciu. Management of probabilistic
data: Foundations and challenges. In PODS, 2007.

[6] Tomas Feder and Moshe Y. Vardi. Monotone monadic snp
and constraint satisfaction. In STOC, pages 612–622, 1993.

[7] Norbert Fuhr and Thomas Rolleke. A probabilistic relational
algebra for the integration of information retrieval and
database systems. ACM Trans. Inf. Syst., 15(1):32–66, 1997.

[8] Erich Gradel, Yuri Gurevich, and Colin Hirch. The
complexity of query reliability. In PODS, pages 227–234,
1998.

[9] Laks V. S. Lakshmanan, Nicola Leone, Robert Ross, and
V. S. Subrahmanian. Probview: a flexible probabilistic
database system. ACM Trans. Database Syst.,
22(3):419–469, 1997.

[10] Christopher Re, Nilesh Dalvi, and Dan Suciu. Query
evaluation on probabilistic databases. IEEE Data
Engineering Bulletin, 29(1):25–31, 2006.

[11] Thomas J. Schaefer. The complexity of satisfiability
problems. In STOC, pages 216–226, 1978.

[12] L. Valiant. The complexity of enumeration and reliability
problems. SIAM J. Comput., 8:410–421, 1979.

[13] Jennifer Widom. Trio: A system for integrated management
of data, accuracy, and lineage. In CIDR, 2005.

302

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

