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ABSTRACT
We consider the problem of evaluating large numbers of XPath

filters, each with many predicates, on a stream of XML doc-

uments. The solution we propose is to lazily construct a

single deterministic pushdown automata, called the XPush

Machine from the given XPath filters. We describe a num-

ber of optimization techniques to make the lazy XPush ma-

chine more efficient, both in terms of space and time. The

combination of these optimizations results in high, sustained

throughput. For example, if the total number of atomic pred-

icates in the filters is up to 200000, then the throughput is

at least 0.5 MB/sec: it increases to 4.5 MB/sec when each

filter contains a single predicate.

1. INTRODUCTION
A promising approach to intra- and inter-enterprise

integration is through message-oriented middleware servers
(MOM), in particular XML message brokers. These
systems allow applications to exchange information by
sending XML messages, and by subscribing to such mes-
sages. The broker’s main task is to route the messages
from producers to the consumers. It may also perform
additional tasks, such as simple message transforma-
tions and backups. Major database vendors, like IBM
and Oracle, already offer complete message brokers, and
a number of startup companies are addressing specifi-
cally the XML routing problem1.
The core technical challenge in such systems is pro-

cessing a large collection of XPath queries (filters) on an
incoming stream of XML packets. We call this the XML
stream processing problem. Each filter is a boolean ex-
pression, so the answer consists, for each XML docu-
ment, of a set of query IDs that are true on the doc-
ument. The XML stream processing problem occurs
in XML packet routing [20], selective dissemination of
information [2], and notification systems [17].

1Some of the companies are: Fiorano Software, Sarvega,
Elitesecureweb, Knowhow, Xbridgesoft, XmlBlaster.
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The difficulty in XML stream processing is that the
number of XPath queries in the workload is very high.
A naive approach to query evaluation, which computes
each query separately, obviously doesn’t scale. Previous
approaches [2, 4, 13, 11] have addressed this problem
by identifying and eliminating common subexpression
in the structure navigation part of the XPath queries.
However, no technique exists today for eliminating re-
dundant work in the predicate evaluation part of the
XPath queries. Unfortunately, the computation time
is dominated by the latter when queries have multiple
predicates, which is typical in XML messaging systems.

Example 1.1 [Running example] Consider the follow-
ing two XPath queries:

P1 = //a[b/text()=1 and .//a[@c>2]]

P2 = //a[@c>2 and b/text()=1]

We will use this workload as our running example
throughout the paper. The structure navigation part
consists of evaluating paths like //a, //a/b, //a//a[@c]

etc to find the atomic values that need to be tested,
while the predicate evaluation part evaluates the atomic
predicates, then combines them with the and connec-
tors in the queries. Previous techniques to XML stream
processing eliminate common subexpressions in the first
part, but cannot exploit, for the example, the fact that
the predicate [b/text()=1] is common to the two queries.
When the workload has many (say tens of thousand)
XPath queries, each with several (say 5-20) predicates,
such common predicates are frequent, and keeping track
of them separately for each query degrades the perfor-
mance significantly.
One approach to the predicate evaluation problem is

to group queries sharing one or more common predi-
cates: this is used, for example, in continuous queries [7,
8]. For each data packet, the common predicates in the
group are evaluated first. If they are true, and no query
in the group has any additional predicates, then we are
done with this group; otherwise we need to fall back
to evaluating the remaining predicates separately. This
approach works best when the groups have little overlap
and most queries in each group have no additional pred-
icates. Otherwise it degenerates to a naive evaluation
method. An important limitation of this approach is
that it requires direct access to the XML document: the
predicate evaluation order is decided by the optimizer
(usually starting with the most selective predicate), and



is not the document input order, hence we need to have
a DOM representation of the XML packet.
We present in this paper a new approach to processing

XPath expressions on streaming XML data that elimi-
nates both common subexpressions in the structure nav-
igation and in the predicates. Moreover, this technique
works on a stream representation of the XML docu-
ment, by using a SAX parser, hence requires no main
memory representation of the document. Our technique
scales to both large numbers of XPath expressions and
to large numbers of predicates per query. Predicates are
combined with and, or, and not, and can be interleaved
arbitrarily with the navigation.
Our goal is to perform a constant amount of work for

each SAX event. In particular if the SAX event causes
many predicates to become true, these predicates need
to be handled like a single group. Processing predicates
in XPath expressions leads naturally to a bottom-up
evaluation on the XML tree. For example, in order
to evaluate a[b/text()=1 and c/text()=2] on some
<a>...</a> element we need to check first the predi-
cates b/text()=1 and c/text()=2 on a’s children, and
only then can we conclude that the entire XPath ex-
pression is true on the <a>...</a> element. To avoid
a main memory representation of the entire XML tree,
we process the stream of SAX events with a stack, sim-
ulating the bottom-up computation. The information
we push on the stack keeps track of which predicates
have evaluated to true: each stack symbol corresponds
to a set of predicates in the XPath workload. For ex-
ample, when <a> is first encountered we push ∅ on the
stack, denoting the fact that no predicates are true
yet on this node; when we start processing its first
child, the stack is (. . . , ∅, ∅). If one of a’s children is
<b> 1 </b>, then after processing it the stack becomes
(. . . , ∅, {b/text()=1}); that is, still no predicate is true
on <a>, but the predicate b/text()=1 has been checked
on the level below. Now if we see a child <c> 2 </c> of
a: then the stack becomes (. . . , ∅, {b/text()=1, c/text()=2});
finally, when the end tag </a> is encountered, the the
stack becomes (. . . , {a[b/text()=1, and c/text()=2]}),
and we can conclude that the entire XPath expression
is true on the <a>...</a> element.
We translate the entire XPath workload into a sin-

gle deterministic pushdown automaton [15]. We modify
the definition of the pushdown automaton to adapt it to
XPath queries and XML data and call the resulting for-
malism an XPush Machine. We show how to translate
an entire workload of XPath filters into a single XPush
machine. A state in the XPush machine corresponds to
a set of predicates in the XPath queries. To avoid the
theoretical exponential state blow-up, we compute the
XPush machine lazily. There is a relatively high cost in
computing an XPush state at runtime, but we recover
that cost when the state is reused. Several heuristic-
based optimizations are possible on the XPush machine,
and we discuss here a few, showing their effectiveness.
The goal of the optimizations is three-fold: to reduce
the total number of XPush states (thus saving mem-
ory), to reduce the number of predicates per state (thus
making them easier to compute), and to pre-compute
some of the states.
Related Work In a seminal paper by Hoffman and

O’Donnell [14], the tree pattern matching problem was
introduced, in which a subject tree (the data) has to be
matched with a set of tree patterns (the queries). The
problem was motivated by several applications, and has
since spawned a large amount of work [3, 21, 10, 6, 16].
Hoffmann and O’Donnell show that the tree patterns
can be preprocessed into a data structure of exponen-
tial size, which factors out all common subpatterns, such
that every subject tree can subsequently be matched
bottom-up in linear time. In our work we share sim-
ilar goals, but cannot apply those techniques directly
because tree patterns are ordered, have no wildcards
(∗, //), and the exponential size data structure is pro-
hibitive for large workloads of XPath queries. The lazy
XPush machine and its associated optimizations can be
viewed as a significant generalization and improvement
of the tree pattern matching technique for the specific
task of evaluating XPath queries.
There is an alternative approach to pattern match-

ing that does not require any kind of preprocessing. To
date, the fastest top-down algorithm known isO(n log3 n),
where n is the combined subject plus pattern size [10]. A
good introduction to this literature can be found in [6].
The complexity of the XPath evaluation problem is dis-
cussed in [12].
Several research projects have discussed evaluation

of XPath expressions on XML streams. The XFilter
system [2] was the first to define the problem, and to
describe several evaluation techniques. It builds a sep-
arate FSM for each query; as a result it does not ex-
ploit commonality that exists among the path expres-
sions; XTrie [4] indexes sub-strings of path expressions
that only contain parent-child operators, and shares the
processing of only these common sub-strings among the
queries; YFilter [11] detects all common prefixes, includ-
ing wildcards and descendant axes; the entire workload
is converted into a lazy DFA in [13]. None of these
systems detect common predicates. A technique that
goes in this direction is the event notification system
described in [17], where complex events are defined as
conjuncts of atomic events, and common atomic events
are identified with a trie structure. Another system that
moves in this direction is NiagaraCQ [7], where a set of
conjunctive relational queries is continuously evaluated
on relational data sources that keep getting updated.
A technique for evaluating XPath expressions using

stack machines is described in [18]. In that approach
one single XPath expression is translated into multiple
pushdown automata that are connected by a network
and need to be run in parallel and synchronized. Such
a translation is not adequate for our purposes because it
does not scale to large numbers of XPath queries. The
technique we present here constructs a single XPush
machine for all XPath queries.
Paper Outline Background and problem definition

is given in Sec. 2. The XPush machine is formally de-
fined in Sec. 3, and its implementation is discussed in
Sec. 4. Several heuristic-based optimization techniques
are discussed in Sec. 5. A short theoretical study of the
number of states is given in Sec. 6 and an experimental
evaluation is in Sec. 7. We conclude in Sec. 8

2. PROBLEM DEFINITION



P ::= /E | //E

E ::= label | text() | * | @* | . |

E/E | E//E | E[Q]

Q ::= E | E Oprel Const |

Q and Q | Q or Q | not(Q)

Oprel ::= < | ≤ | > | ≥ | = | 6=

Figure 1: The XPath fragment considered in this

paper.

XPath The XPath fragment that we consider in this
paper contains element and attribute labels, wildcards,
child and descendant axis, atomic predicates on data
values, and the boolean connectors and, or, and not.
A complete grammar is given in Fig. 1. Notice that
not is supported, and this is important in XML mes-
saging, where sometimes packets need to be forwarded
when some condition is not true. Recall that not intro-
duces a universal quantification in XPath. For example
/a[not(b/text()=1)] matches an XML document if all
the b elements are 6= 1.
We treat an XPath expression P as above as a boolean

filter: an XML document matches P if and only if P
selects at least one node when evaluated on the docu-
ment’s root.
An Index for Atomic Predicates The set of atomic

predicates included in the XPath fragment is important
and affects significantly the techniques described in the
paper. We support atomic predicates (Fig. 1) that com-
pare an XPath expression with a constant, using one of
=, <,≤, >,≥, 6=; we assume a fixed, ordered domain of
data values V, which we will take to be V = int or
V = string in the examples in the paper. The basic
operation that we need to be able to support is: given
a data value v ∈ V, find which predicates from among
a given collection of atomic predicates are true on v.
This is done by constructing an index on the atomic
predicates: we call it an atomic predicate index. A bi-
nary search tree can easily offer this functionality for the
atomic predicates in Fig. 1. One may extend the set of
atomic predicates, provided that we can still build the
index. For example it is possible to support the string
oriented predicates starts-with and contains defined
in XPath [9], by adapting Aho and Corasick’s dictionary
search tree [1]. In general, however, such extensions are
non trivial.
XML and SAX Parsers We use a modified SAX

parser to read the XML document, which generates the
following five types of events:

startDocument()

startElement(a)

text(s)

endElement(a)

endDocument()

Here a is a label from an alphabet Σ of labels, and s

is a data value from V. To simplify the presentation
we treat in this paper attributes similarly to elements,
thus the label a above may refer either to an element
label or to an attribute label. For example, for the XML

document below:

<a c="3"> <b> 4 </b> </a>

gets converted by the parser into the following sequence
of events:

startDocument() startElement(b)

startElement(a) text("4")

startElement(@c) endElement(b)

text("3") endElement(a)

endElement(@c) endDocument()

An application provides five call-back functions cor-
responding to the five event types.
The XML stream processing problem Formally,

we are given a set P = {P1, . . . , Pn} of XPath filters,
where each filter has an associated oid from a set I =
{o1, . . . , on}, and a stream of XML documents. The
problem is to compute, for each document D, the set
of oid’s corresponding to the XPath expressions that
match D.

3. THE XPUSH MACHINE

3.1 De£nition
We define here the XPush Machine, which is a mod-

ified deterministic pushdown automaton (PDA). The
purpose of an XPush machine is to simulate the exe-
cution of a workload of XPath filters. When it exhausts
the input XML document, the XPush machine returns
a set of XPath oids, from a given set I = {o1, . . . , on}.
The main change from a standard PDA is that the states
have two components, a top-down and a bottom-up
component, and that the transition functions have been
carefully decomposed into several functions exploring
only that part of the state that they strictly need (top-
down or bottom-up): this results in a more complicated
definition with more transition functions, but leads to
space savings, as we shall see. A second change is that
the XPush machine accepts as inputs SAX events, as
defined in Sec. 2, with labels from an alphabet Σ and
data values from a domain V. Formally:

Definition 3.1. An XPush Machine is a tuple
(Qt, Qb, qt

0, q
b
0, tpush, tvalue, tpop, t

t
add, t

b
add, taccept)

where:

• Qt, Qb are called the sets of top-down and bottom-
up states respectively. A state is q = (qt, qb), qt ∈
Qt, qb ∈ Qb, and Q = Qt ×Qb denotes the set of
states.

• (qt
0, q

b
0) ∈ Q is the initial state.

• tpush, tvalue, tpop, t
b
add, t

t
add, taccept are partial func-

tions of the following types:

tpush : Qt × Σ→ Qt

tvalue : Qt × V → Qb

tpop : Qb × Σ→ Qb

tbadd : Qb ×Qb → Qb

ttadd : Qt ×Qb → Qt

taccept : Qb → P(I)



procedure startDocument()

qt ← qt
0 qb ← qb

0

s← empty stack;

procedure startElement(a)

push(s, (qt, qb));

qt ← tpush(q
t, a)

qb ← qb
0

procedure text(str)

qb ← tvalue(q
t, str)

procedure endElement(a)

qaux ← tpop(q
b, a)

(qt
s, q

b
s)← pop(s);

qb ← tbadd(q
b
s, qaux)

qt ← ttadd(q
t
s, qaux)

procedure endDocument()

return taccept(q
b);

Figure 2: SAX call-back functions implement-

ing the XPush Machine. The current state is

denoted (qt, qb).

The execution of the XPush Machine is defined in
Fig. 2. It maintains a current state q = (qt, qb) ∈ Q
and a current stack of states s. Initially q = (qt

0, q
b
0) and

s is the empty stack. The machine reads SAX events
from the input stream. On a startElement(a) event,
it pushes the current state, q on the stack and updates
the current state to (tpush(q

t, a), qb
0). On a text(str), it

updates the current state to (qt, tvalue(q
t, str)). On an

endElement(a) it first computes qaux = tpop(q
b, a), then

pops the top state qs = (q
t
s, q

b
s) from the stack, and up-

dates the current state to (ttadd(q
t
s, qaux), t

b
add(q

b
s, qaux)).

When the input document is exhausted, the machine
returns the set of identifiers taccept(q

b). Notice that the
XPush machine is deterministic, hence each SAX event
is processed in O(1) time.
The six transition functions are implemented by six

tables, Tpush, Tvalue, Tpop, T
b
add, T

t
add, Taccept. Four of the

tables, Tpush, Tpop, T
b
add, T

t
add, are arrays of hash ta-

bles, Tvalue is an array of atomic predicate indexes (see
Sec. 2), and Taccept is an array of lists of oids. Tpush

and Tpop may have entries corresponding to the wild-
cards ∗ and @∗, in addition to the labels in Σ, and
lookup is modified as follows: if Tpop[q

b][a] is undefined
then we lookup Tpop[q

b][∗], or Tpop[q
b][@∗], depending

on whether a is an element or attribute label, and sim-
ilarly for Tpush.

Example 3.2 Fig. 3 illustrates an XPush machine that
computes the workload {P1, P2} in Example 1.1. We
will describe in Example 3.3 how this XPush machine
was derived from the workload; here we describe only
its inner structure. There is a single top-down state, qt

0,
and 22 bottom-up states. Tpop is an array indexed by Q

b

(hence has 22 entries), and each is a hash table indexed
by Σ ∪ {∗,@∗}. T b

add is also an array indexed by Qb

whose entries are hash tables indexed by a certain sub-
set of Qb, namely those that appear in the Tpop table:

{q0, q3, q4, q6, q7, q14, q15}. The total number of entries
in all hash tables in T b

add is 22×7 = 154. This is a signif-
icant space savings over the traditional representation
of a pushdown automaton [15]: there the effects of Tpop

and T b
add are combined into a single transition table,

T [qb
s][q

b][a] = T b
add[q

b
s][Tpop[q

b][a]], and would require, in
our example, over 222 entries. Tvalue is an atomic pred-
icate index that indexes the two atomic predicates = 1
and > 2: it is a binary search tree, which we show as a

XPush machine for workload in Example 1.1:

Qt = {qt0}, Q
b = {q0, q1, . . . , q21}

Tpush[q
t][∗] = qt, ∀qt ∈ Qt

Tpop[q
b][σ] =

qb σ ∈ Σ ∪ {∗,@∗}
a b @c ∗ @∗

q0 q0 q0
q1 q3 q0 q0
q2 q4 q0 q0
q3 q0 q0
q4 q6 q0 q0
q5 q7 q0 q0
q6 q6 q0
q7 q7 q0
q8 q14 q6 q0
q9 q15 q7 q0
q10 q6 q0
q11 q7 q0
q12 q15 q6 q0
q13 q15 q7 q0
q14 q14 q0
q15 q15 q0
q16 q14 q0
q17 q15 q0
q18 q14 q0
q19 q15 q0
q20 q15 q14 q0
q21 q15 q0

Tb
add

[qbs][q
b] =

qbs qb

q0 q3 q4 q6 q7 q14 q15

q0 q0 q3 q4 q6 q7 q14 q15
q1 q1
q2 q2
q3 q3 q3 q5 q8 q9 q16 q17
q4 q4 q5 q4 q10 q11 q18 q19
q5 q5 q5 q5 q12 q13 q20 q21
q6 q6 q8 q10 q6 q7 q14 q15
q7 q7 q9 q11 q7 q7 q15 q15
q8 q8 q8 q12 q8 q9 q16 q17
q9 q9 q9 q13 q9 q9 q17 q17
q10 q10 q12 q10 q10 q11 q18 q19
q11 q11 q13 q11 q11 q11 q19 q19
q12 q12 q12 q12 q12 q13 q20 q21
q13 q13 q13 q13 q13 q13 q21 q21
q14 q14 q16 q18 q14 q15 q14 q15
q15 q15 q17 q19 q15 q15 q15 q15
q16 q16 q16 q20 q16 q17 q16 q17
q17 q17 q17 q21 q17 q17 q17 q17
q18 q18 q20 q18 q18 q19 q18 q19
q19 q19 q21 q19 q19 q19 q19 q19
q20 q20 q20 q20 q20 q21 q20 q21
q21 q21 q21 q21 q21 q21 q21 q21

Tt
add

[qt][qb] = qt, ∀qb ∈ Qb

Tvalue[q
t][v] =

qt v ∈ V

∈ Qt (−∞, 1) {1} (1, 2] (2,∞)

qt0 q1 q2

Taccept[q
b
] =



















{o1, o2} ∀qb ∈ {q15, q17, q19, q21}

{o1} ∀qb ∈ {q14, q16, q18, q20}

{o2} ∀qb ∈ {q7, q9, q11, q13}
∅ otherwise

   <a>  <b>     1   </b>  <a    c=    "3"    >    <b>   1   </b> </a> </a>

q0

q0

q0

q0
q0

q1

q0
q0

q3

q0

q0

q3
q0

q0

q0
q3
q0

q2

q0
q3
q0

q4

q3
q0

q0

q4
q3
q0

q1

q4
q3
q0

q5

q3
q0

q9

q0 q15q0

Figure 3: XPush Machine for Ex. 1.1, and

a trace of its execution. Missing entries in

T b
add[q

b
s][q

b] mean undefined entries. The trace

shows only the bottom-up state, since the top-

down state is always qt
0.



table in Fig. 3. The figure also illustrates the execution
trace of the XPush machine on the document:

<a> <b> 1 </b> <a c="3"> <b> 1 </b> </a> </a>

The top-down state component is omitted (it is al-
ways qt

0). The current state is shown at the top, and
the stack is shown below. We explain some of the tran-
sitions here. The interesting part starts when we en-
counter the first text(1) and the current state becomes
q1 = Tvalue[q

t
0][1]; next we see an endElement(b) and

we compute Tpop[q1][b] = q3, and the current state be-
comes T b

add[q0][q3] = q3; next we see startElement(a)
followed by startElement(@c) (see Sec. 2): each time
we push, and set the current state to q0. Now we see
text(3) and enter state q2 = Tvalue[q

t
0][3], followed by

endElement(@c) when we enter T b
add[q0][Tpop[q2][@c]] =

T b
add[q0][q4] = q4. The other transitions should be clear.
When the end of the document is encountered the ma-
chine is in state q15, and it returns Taccept[q15] = {o1, o2}.
This is correct, indeed: both P1 and P2 match the XML
document. Notice that there is no redundant compu-
tation in the XPush machine: each SAX event requires
only one or two lookups in the hash tables, hence gen-
eralizes to O(1) processing time regardless of how many
predicates in the workload of XPath expressions it af-
fects.

Bottom-up vs. top-down computationAn XPush
machine computes bottom-up on the XML tree, listen-
ing to text() and endElement() events: in the example,
the top-down phase only builds the stack. The bottom-
up style is unavoidable with a deterministic machine,
because bottom-up tree automata can be determinized,
but top-down automata cannot [19]. We will use, how-
ever, the top-down part to express certain optimiza-
tions, in Sec. 5.

3.2 Compiling a Set of XPath Filters to an
XPush Machine

We show how to compile a set of XPath filters P =
{P1, . . . , Pn} into a single XPush machine. The method
described here is naive, and we will discuss a number
of optimizations in the next section: we call the re-
sulting machine the bottom-up XPush machine. It is
obtained in two steps: (1) convert each of the XPath
filters P1, . . . , Pn into an Alternating Finite Automa-
ton, AFA, A1, . . . , An, (2) translate the set of all AFAs,
A1, . . . , An, to a single XPush machine. We describe
each step next.
Step 1: Constructing the Alternating Finite

Automata An Alternating Finite Automaton, AFA, [5,
19] is a nondeterministic finite automaton A where each
state is labeled with AND, OR, or NOT. Equivalently,
the set of states, S, is partitioned into S = SOR∪SAND∪
SNOT . We allow ε transitions and denote δ : S × (Σ ∪
{ε}) → P(S) the transition function. A has one initial
state, and each terminal state s ∈ S is labeled with
an atomic predicate on data values: we denote with
πs(v) the truth value of that predicate on v ∈ V. For
nonterminal states we set πs(v) = f alse. Without loss
of generality we impose the following constraints, which
help us simplify the presentation: AND and OR states
have only ε outgoing transitions, NOT states have a

single outgoing transition, and all terminal states are
OR states.
Given an XML document tree we say that A accepts

the document if its initial state matches the root node2.
An OR state, s ∈ SOR matches a node x if x is a data
value node and πs(x) is true, or there exists some tran-
sition s′ ∈ δ(s, a), and some child y of x labeled a
(or y = x when a = ε), such that s′ matches y. An
AND state, s ∈ SAND, matches x if for all transitions
s′ ∈ δ(s, ε), s′ matches x. A NOT state, s ∈ SNOT ,
matches x if s′ does not match x, where s′ is the unique
successor state of s, δ(s, ε) = {s′}.
During the first translation step, we convert every

XPath expression P1, . . . , Pn into an equivalent AFA,
A1, . . . , An. This construction is straightforward: when
stripped of the AND, OR, NOT labels the AFAs be-
come precisely the NFAs that have been considered in
previous XPath evaluation techniques [11, 13], so it suf-
fices to apply any of those techniques to build the NFAs
first, then insert appropriate AND and NOT labels for
the and and not boolean operators in the XPath expres-
sions, and label all other states with OR. If the query
does not have a predicate, then we assume a true pred-
icate. We will denote with S the union of all states in
A1, . . . , An, and s1, . . . , sn the initial state in each of
them.

Example 3.3 Fig. 4 illustrates two AFAs, A1, A2, cor-
responding to the two XPath expressions P1, P2 in our
running example. Here S = {1, 2, . . . , 13}, s1 = 1,
s2 = 8. States 2 and 9 are AND states and each has two
ε transitions, and all other states are OR states. Notice
that we use the wildcard ∗ in the representation of the
AFA (and, similarly, we may use @∗), and have to take
it into consideration when computing δ: e.g. δ(5, a) =
{5, 6}, δ(5, b) = {5}, and δ(5,@c) = ∅. To illustrate
predicates on data values, we have: π7(55) = true,
π7(1) = f alse, π2(v) = f alse, ∀v ∈ V, etc. The states
in the AFAs correspond to subqueries in the XPath
filters. For example state 3 corresponds to the sub-
query [b/text()=1] of P1, while state 2 corresponds
to the subquery [b/text()=1 and .//a[@c>2]]. One
may check that A1 accepts an XML tree if and only if
the XPath filter P1 is true on that tree, and similarly
for A2 and P2.

Step 2: Constructing the bottom-up XPush

Machine Finally, in the second step, the bottom-up
XPush machine is defined to be
(Qt, Qb, qt

0, q
b
0, tpush, tvalue, tpop, t

t
add, t

b
add, taccept) where:

Qt = {qt
0}

Qb = P(S)

qb
0 = ∅

tpush(q
t, a) = qt

tvalue(q
t, v) = {s | s ∈ S, πs(v) = true}

tpop(q
b, a) = δ−1(eval(qb), a)

tbadd(q
b
s, q

b) = qb
s ∪ q

b

ttadd(q
t, qb) = qt

2This is one node above the top-most element node, see
the formal XPath semantics in [9].



taccept(q
b) = {oi | oi ∈ I, si ∈ q

b}

We first explain the two notations introduced in tpop:
δ−1(q, a) denotes {s′ | δ(s′, a) ∩ q 6= ∅}, while eval(q)
takes a set of states q ⊆ S and adds to it repeatedly
all states that are logically implied by states already
present in q. That is: it adds an AND state s to q if all
its successors s′ ∈ δ(s, ε) are in q; it adds an OR state
s to q if some successor s′ ∈ δ(s, ε) is in q; and finally
it adds a NOT state s if its successor s′ ∈ δ(s, ε) is
not in q. Multiple iterations are required when boolean
connectives are nested in the XPath expressions, and
NOT states need to be handled bottom up, in order
to process correctly cases like not(not(Q)). The details
are straightforward and we omit them.
We now explain the bottom-up XPush machine. There

is a unique top-down state qt
0 and the bottom-up states

are sets of states in A, P(S). Thus a bottom-up state
corresponds to a set of subqueries in the original work-
load of XPath filters, since each AFA state corresponds
precisely to a subquery. The XPush machine keeps
track of which AFA states match the current XML node.
For a leaf XML node with value v, this set is precisely
tvalue(q

t, v) = {s | πs(v) = true}. To compute these
sets after an endElement(a), first find out which AFA
states have matched the a node: these are all states in
the current qb, plus all states that are logically implied
by it, as computed by eval(qb); next compute all AFA
states that matched a’s parent based on these matches:
this is tpop(q

b, a); finally union these with the previ-
ous states that matched a’s parent, retrieved from the
stack. Obviously, taccept(q

b) returns the oids of those
XPath expressions whose initial states are in qb.
Pruning the XPush MachinesA top-down or bottom-

up state in an XPush machine is called accessible if there
exists some XML document such that the XPush ma-
chine will reach that state when run on that document.
This definition depends on the class of XML documents
considered, e.g. whether a DTD is assumed or not. As-
suming for the moment that there is no DTD, one may
simply compute the set of accessible states by start-
ing from the initial states and repeatedly applying the
transition functions tvalue, tpop, t

b
add as defined aboveWe

only retain the accessible states in the bottom-up XPush
machine. To make pruning more effective, we will al-
ways assume that the XML document has no mixed
content. This means that leaf AFA states (which only
match atomic values) should not occur in the same set
with non-leaf AFA states that correspond to elements
(and not attributes): in particular we will not com-
pute tbadd(q

b
s, q

b) if this is violated. This would prohibit
the XPush machine to process <a> 1 <b> 2 </b> </a>,
but will still process <a c="2"> 1 </a>.

Example 3.4 Figure 4 illustrates the construction of
the bottom-up XPush machine from the two AFAs for
P1 and P2 in our running example: the transition tables
are in Fig. 3. Only accessible states are constructed,
by repeatedly applying the definitions of the bottom-up
XPush machine. We start by applying the definitions
for tvalue, and obtain

3: tvalue(q
t
0, 1) = {4, 13} = q1,

3The states q0, . . . , q21 are numbered in no particular

1

2

3 5

4 6

a

b a

ε ε

*

*

=1

>2

AND

7

@c

8

9

10 12

11

a

@c

ε ε

*

>2 =1

AND

13

b

A1 A2

q0 ∅
q1 {4, 13}
q2 {7, 11}
q3 {3, 12}
q4 {6, 10}
q5 {3, 6, 10, 12}
q6 {5}
q7 {5, 8}
q8 {3, 5, 12}
q9 {3, 5, 8, 12}
q10 {5, 6, 10}
q11 {5, 6, 8, 10}
q12 {3, 5, 6, 10, 12}
q13 {3, 5, 6, 8, 10, 12}
q14 {1, 5}
q15 {1, 5, 8}
q16 {1, 3, 5, 12}
q17 {1, 3, 5, 8, 12}
q18 {1, 5, 6, 10}
q19 {1, 5, 6, 8, 10}
q20 {1, 3, 5, 6, 10, 12}
q21 {1, 3, 5, 6, 8, 10, 12}

Figure 4: AFAs for P1, P2 in Example 1.1,

and the states of the corresponding bottom-up

XPush machine. The transition tables are shown

in Fig. 3.

tvalue(q
t
0, x) = {7, 11} = q2 for x > 2, and tvalue(q

t
0, x) =

∅ = q0 for all other values of x; in practice we obtain
tvalue by computing the atomic predicate index. Next
we apply the function tpop: tpop(q1, b) = {3, 12} = q3,
because eval(q1) = q1 = {4, 13} and, following a b tran-
sition backwards, one reaches the states 3, 12. Similarly
tpop(q2,@c) = {6, 10} = q4, and tpop(q4, a) = q6 = {5}.
To illustrate addition, we have tbadd(q3, q6) = {3, 12} ∪
{5} = {3, 5, 12} = q8. To understand how AND states
are handled (and similarly NOT, OR states) consider
tpop(q8, a). We first compute eval(q8) = eval({3, 5, 12}) =
{2, 3, 5, 12}. The meaning is that if states 3 and 5
have matched, then so has state 2. Next we follow
a transitions backwards from these states and obtain
tpop(q8, a) = {1, 5} = q14. All states and transitions in
Fig. 3 are obtained this way. Notice that in the T b

add

table the entries for q1 and q2 are left blank: this is
because both q1 and q2 contain leaf AFA states, hence,
assuming no mixed data in the XML documents, these
states cannot match together with any other states. It
is also interesting to see how the execution trace in
Fig. 3 keeps track of the set of matching AFA states.
For example, after reading the first endElement(b) the
current state is q3 = {3, 12}, meaning that the AFA
states 3 and 12 have matched so far, corresponding to
the common subquery [b/text()=1] in both P1 and
P2. After reading the second endElement(b) the cur-
rent state is q5 = {3, 6, 10, 12} which means that the
following subqueries have matched: [b/text()=1], [@c
> 2 and b/text()=1], and [@c > 2]. In other words,
the states in the bottom-up XPush machine eliminate
common subexpressions between filters.

4. IMPLEMENTATION
The XPush machine needs to be computed lazily. We

explain here why, and describe the runtime data struc-

order.



tures that we used.
The Lazy XPush MachineWe cannot eagerly com-

pute the entire bottom-up XPush machine for a large
workload of XPath expressions because it results in ex-
ponentially many states. Instead we compute it lazily,
at runtime, expanding only those states that are acces-
sible for the given input XML data instance. There is a
high penalty associated with computing a state, when
it is discovered for the first time. However, we recover
this cost later, when the state is reused. We discuss here
how the lazy computation helps avoid the exponential
state blowup.
By computing the XPush machine lazily we reduce

the number of states in three ways. First, we do not
construct states that are inconsistent with the DTD.
For example, consider n different XPath expressions of
the form:
/person[name/text()="John"]

/person[name/text()="Smith"]

. . .

each looking for a different value for name. The eager
XPush machine needs 2n states, one for each subset of
names that a person might have. Suppose, however,
that the DTD restricts a person to have only one name:
then at most n + 1 states will be created by the lazy
XPush machine. We could have achieved the same effect
by pruning the states in the eager XPush machine more
carefully, taking the DTD into account, but with the
lazy XPush machine this comes for free.
Second, lazy evaluation exploits regularities in the

data that are not captured by the DTD. For example,
consider several XPath expressions of the form
/person/[phone/text()="v"], with different values of
the phone number v, and assume that the DTD allows a
person to have multiple phones. The eager XPush ma-
chine needs 2n states to keep track of all possible sets
of phone numbers that a person might have, and clearly
the DTD would not help here. But in practice most
persons have only one phone, occasionally two, hence
the lazy XPush constructs at most n(n − 1)/2 states,
and quite likely only slightly more than n states.
Third, the lazy XPush Machine may simply avoid

constructing states that are both allowed by the DTD
and consistent with the application domain, but which
simply don’t occur in a given data set. This idea will
be exploited in Theorem 6.2.
Data Structures We have carefully coded the state

management to reduce the cost of a state computation.
An XPush state is represented as an sorted array of AFA
states, plus a 32 bit signature (hash value) of these AFA
states. All the XPush states that have been discovered,
are stored in a hash table indexed by their signature.
All operations in the definition of the XPush machine
are implemented such that the arrays of AFA states
are never required to be sorted explicitly. For example
to compute δ−1(q, a) needed in tpop(q

b, a) we maintain
backpointers for each AFA state4 and simply traverse
the sorted array q once, follow the back pointers, and ob-
tain δ−1(q, a) already in sorted order (because the sort
keys in the AFA states are generated based on depth-
first traversal). For q = eval(qb), we do a number of

4Each state s has either one or two incoming transitions.

iterations equal to the deepest nesting of boolean op-
erators in the XPath workload. Each iteration requires
one complete traversal of qb plus a merge between the
sorted qb and the sorted set of new states that need to be
inserted in qb. We omit the details. Finally, tbadd(q

b
s, q

b)
implies a merge-join of two sorted arrays.
State Precomputation To speed up the lazy XPush

machine at runtime we precompute eagerly some of its
states and transition table entries. In the bottom-up
XPush machine discussed so far, we only compute the
atomic predicate index and all the XPush states of the
form tvalue(q

t
0, v).

5. OPTIMIZATIONS
The heuristic-based optimizations described here have

three goals: reduce the number of states in the XPush
machine (thus saving space), reduce the number of AFA
states per XPush state (thus speeding up runtime state
construction), and precompute some XPush state before
processing any XML inputs.
Top-down Pruning The bottom-up XPush machine

may follow false leads that will be invalidated only later,
and this ultimately leads to unnecessary states. To il-
lustrate this point, assume that one or more <c> ele-
ment may occur in any of <e1>, <e2>, . . . , <en>. Let us
also assume that the workload consists of queries of the
form /ei[c/text()="ci"], i = 1, . . . , n. After reading
the XML fragment:
<e1> . . . <c> ci1 </c> . . . <c> cij </c> . . . </e1>

an XPush state will be created containing AFA states
from all the filters that look for a c element with text
value cik , where k ∈ {1, . . . , j}, ignoring the fact that
in the document, the c elements occur under an e1 ele-
ment. Clearly, those predicates that do not occur under
an e1 are false leads and will be invalidated later, but
they can create an exponential increase in the number
of XPush states because any subset of the predicates
c/text()="ci" can be true, depending upon which of
the ci’s appear in the document. The top-down prun-
ing optimization eliminates the wrong XPush states,
by keeping track of the enabled branches in the top-
down component of the state, and starting the bottom-
up computations only at the enabled branches. The
changes to the definitions in Sec. 3.2 are:

Qt = P(S)

qt
0 = {s1, . . . , sn}

tpush(q
t, a) = close({δ(s, a) | s ∈ qt})

tvalue(q
t, v) = {s | s ∈ qt, πs(v) = true}

ttadd(q
t, qb) = qt

close(qt) = repeat qt := qt ∪ {δ(s, ε) | s ∈ qt}

until no-more-change

return qt

Order Optimization This optimization is based on
order information between elements extracted from the
DTD. To illustrate consider the XPath expression

/person[name/text()="Smith" and age/text()="33"

and phone/text()="5551234"]



and assume that, according to the DTD, name, age, and
phone must appear in this order in XML data. The lazy
XPush machine still has 23 states, corresponding to all
subsets of the predicates: for example the XML docu-
ment <person> <name> John </name> <age> 33 </age>

... activates the age predicate but not the name predi-
cate. Similarly, each of the 23 subsets of predicates can
be activated by some XML document. To prevent that,
we use the DTD to define a partial order on elements
and attributes: a ≺ b if a must precede b whenever a
and b are siblings. Every attribute always precedes ev-
ery element, and additional order information between
elements can be extracted from the DTD, when avail-
able. Next, we extend this order relation to AFA states:
s ≺ s′ if s and s′ are both children of the same AND
state, and every outgoing label from s precedes every
outgoing label from s′: if either s or s′ have ∗ tran-
sition, then s 6≺ s′ and s′ 6≺ s. Using this relation
we make the following changes in the definition of the
XPush machine, where prec(s) = {s′ | s′ ≺ s}:

tbadd(q
b
s, q

b) = qb
s ∪ {s | s ∈ q

b, prec(s) ⊆ qb
s}

Early Notification Optimization Let s be the first
branching AFA state in some alternating automaton A:
for example in Fig. 4 the first branching state in A1 is 2,
and in A2 is 9. In early notification we stop the evalua-
tion of the AFA early, once this state has matched some
node in the XML document. For this technique to be
correct we must turn on top-down pruning. This en-
sures correctness for workloads that do not contain //:
to handle // correctly we need to intersect the bottom-
up state with the top-down state after every pop op-
eration (formally, this requires a minor change in the
definition of the XPush machine). This optimization
can be extremely effective when s occurs deeply: for
example in the case of a linear XPath expression, s is
the (unique) leaf state. It follows that during the en-
tire bottom-up phase of the evaluation, A’s states are
no longer included in the XPush states. In an extreme
case, when all XPath expressions are linear, the XPush
machine with this optimization degenerates to a top-
down automaton, which has been shown in [13] to be
very effective for processing linear XPath expressions.
Training the XPush Machine Given a workload

of XPath queries we generate the training data for that
workload as follows. We generate one XML document
tree D for every XPath query tree P : atomic predi-
cates are replaced with values that satisfy them, and la-
bel constants are replaced with elements or attributes.
Wildcards ∗ and // are expanded using the DTD, and
boolean connectors are simply ignored. For example,
the query:
/a[(b/text()=3 and @c=4) or d/text()=5]

will result into the following training document:
<a c="4"> <b> 3 </b> <d> 5 </d> </a>

The DTD is also consulted to generate the elements in
the right order: in the example above, b and d may be
swapped if the DTD requires d to occur before b. All
such generated documents are concatenated and the re-
sult is called training data. The lazy XPush machine is
run on the XML training data first, which determines it
to compute some of its states; then, the “warmed-up”
machine is run on the real XML data. Now, the states

that have been already computed by the training data
can be reused, which results in increased throughput.

6. A THEORETICAL ANALYSIS
We have observed empirically (Sec. 7) that the num-

ber of states in the lazy XPush machine is not exponen-
tial. Here we try to justify this observation analytically,
and give two explanations. The first is that there are
relationships between AFA states that make certain sets
of AFA states inaccessible, and the second is that low
selectivities of the atomic predicates reduces the number
of expected states in the lazy XPush machine.
To explain the first we borrow techniques developed

for tree pattern matching in [14]. Given two AFA states
s, s′ ∈ S, we say that s subsumes s′ if, for every node
in an XML document, if s matches that node then so
does s′: we denote s ⇒ s′. We say that s and s′ are
inconsistent if they never match the same node in an
XML document; we denote s | s′. Finally we say that
s, s′ are independent if neither s ⇒ s′, nor s′ ⇒ s, nor
s | s′. The independence graph is defined to have all
AFA states as vertices, and as edges all pairs (s, s′) of
independent states. We have the following result, an
adaptation of [14]:

Theorem 6.1. The number of accessible states in the
XPush machine is no larger than the number of cliques
in the independence graph.

Proof. Given an accessible state qb, we associate to
it a clique by removing all AFA states s s.t. there exists
s′ ∈ qb with s′ ⇒ s. It is easy to see that two dis-
tinct accessible XPush states will result in two distinct
cliques, proving the theorem.

For example, in Fig. 4, we have 8 ⇒ 5: as a con-
sequence the set {1, 8} is not a state in the XPush
machine. Also, 4 ⇔ 13, and 4 | s for every state
s 6= 13, since we assume that the XML documents have
no mixed content. As a consequence the only XPush
state containing 4 is q1 = {4, 13}.
The second factor is determined by data value pred-

icates with low selectivities. The intuition is that, in
order for k AFA states to form a state in the XPush
machine, all their predicates must be true on the same
input XML document. The probability of this happen-
ing in a given set of XML documents is a function of
those predicates’ selectivities, and decreases exponen-
tially with k. To make this argument formal, we con-
sider flat workloads. Define a flat XPath workload to
be a set of n XPath queries where each query is of the
form:

/a[b1/text() = v1 and . . . and bk/text() = vk]

That is, each query starts with /a (the same a in all
queries), and has some number of atomic predicates of
the form [bi/text() = vi]; predicates may be shared be-
tween XPath expressions, and a given tag bi may occur
in different predicates with different constants. Assume
that we run the lazy XPush machine on a stream of
N XML documents, and want to analyze the expected
number of states created. We consider both the case
without order optimization, and with order optimiza-
tion. To simplify the problem, assume that every atomic
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Figure 5: Filtering Time

predicate has the same probability σ of being true on a
given XML document; σ is the predicate’s selectivity.
In the case without order optimization, let us denote

with m the total number of distinct atomic predicates
in the workload: hence there are at most 2m possible
states in the XPush machine. For the second case, we
will assume that there is a total order imposed by the
DTD, b1 ≺ b2 ≺ . . ., and, furthermore, that every query
has exactly k atomic predicates. We have:

Theorem 6.2. Consider the execution of a lazy XPush
machine for flat XPath workload with n queries over an
XML stream of N documents. Assume that all atomic
predicates have the same selectivity σ ∈ (0, 1), and σ ¿
1/N . Then: (1) if the XPush machine does not im-
plement order optimization then the expected number of
states is at most 1 + Nmσ, where m is the total num-
ber of atomic predicates in the workload. (2) if the
XPush machine does order optimization, then the ex-
pected number of states is at most:

N(
1− σk+1

1− σ
)n

where k the number of atomic predicates per query and
assumed to be fixed.

Proof. (1) Fix an XML document D and a set of k
atomic predicates. The probability that exactly these
predicates are satisfied by D is σk(1 − σ)m−k; if this
happens, then D contributes with at most k states in
the lazy XPush machine, as the k atomic predicates
are satisfied in some order (we will count the empty set
separately). Thus, the expected number of non-empty
sets of predicates that will become states in the lazy
XPush machine while processing one XML document is
∑

k=0,m

(

m

k

)

kσk(1−σ)m−k = σm. The theorem follows
by adding up over all N XML documents, then account-
ing for the empty state. (2) A state in the lazy XPush
machine with order optimization is uniquely determined
by n numbers, r1, . . . , rn ∈ {0, 1, . . . , k}. The number
ri indicates that the first ri predicates in query i are
true and the remaining are false; clearly the probability
of this happening is σri . Thus, the expected number of
states in the XPush machine is:

N
∑

0≤r1,...,rn≤k

σr1 . . . σrk = N(
1− σk+1

1− σ
)n

This analysis reveals three things. First, as the se-
lectivity σ decreases, there are fewer expected states.
Second the number of states increases linearly with the
number of XML documents N : we need some form of
memory management in order to process infinite streams.
Third, assuming that the queries consist of conjunction
of predicates, when we apply the order optimization,
then the number of states decreases if we increase the
number of branches (i.e. atomic predicates) per query,
k, while keeping the total number of branches kn con-
stant, i.e. XPush machine with order optimization will
have fewer states for workloads with more branches per
query.

7. EXPERIMENTS
We evaluated the XPush machine addressing the fol-

lowing questions. How effective can the XPush machine
be ? What are the memory requirements of the lazy
XPush machine ? How close is the performance of the
lazy XPush machine to its ideal performance, when it
doesn’t have to compute any more states at runtime
? And, finally, how effective are the optimization tech-
niques ?
Experimental setting We run experiments on two

real data sets: Protein (http://pir.georgetown.edu
and NASA (http://xml.gsfc.nasa.gov), but report
results only for the Protein dataset, for lack of space
(the results for NASA were similar). All the experi-
ments used a 9.12 MB XML fragment of the Protein
dataset, unless stated otherwise. Protein dataset has
a non-recursive DTD and the maximum depth of the
document is 7. NASA dataset has a recursive DTD,
with maximum document depth equal to 8. We gener-
ated synthetic XPath queries using a modified version of
the generator in [11]: we modified it to generate bushy
query trees, rather than left-linear trees, and modified
it to generate atomic predicates using data values from
the given data instance, ensuring that each predicate
is true on at least some XML document. Thus the se-
lectivity of the atomic predicates depends on the data
set for which we generated the queries, and is not the
same in all experiments. The probability of wildcard
and descendant axis were both set to zero for the set
of experiments for which we report the numbers here.
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Figure 6: Number of XPush States
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Figure 7: Average XPush State Size
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Figure 8: Hit Ratio

All experiments are on a Pentium III, 700MHz machine,
with 2GB of memory, running RedHat Linux 7.1.
Effectiveness of the XPush machine In Fig. 5(a)

we show the filtering time (which includes the parsing
time also) for workloads with 50000 to 200000 queries
with about 1.15 predicates per query. Combination of
the four optimization techniques results in filtering time
of around 2.1 seconds, no matter how many queries are
there in the workload. To measure the effectiveness of
the “completed” XPush machine we ran it twice over
that data, and report only the time to process it the
second time: this took 1.2s including parsing time, and
should be compared with the time taken by Apache’s

parser to parse that data set, 2.53s (we used a faster
parser in the XPush machine, which took 1s to parse
9.12MB data). This confirms that the XPush machine
can be very efficient, and the only significant cost is that
associated to lazy state computation. In Fig. 5(b), we
report the same numbers for workloads with 10.45 pred-
icates per query on an average. Here the combination
of top down, order and training optimizations gives the
best results. Early notification does not result in any
further reduction in filtering time. This can be further
seen in Fig. 9(a) where we see that for the workloads
containing more than 5 predicates per query, the plot
for TD-order-train coincides with the plot for TD-order-
early-train.
Runtime memory requirements Fig. 6(a) and 7(a)

show the number of XPush states and the average size
of each state. In Fig. 6(a), for a workload of 200000
queries, the number of states for the basic XPush ma-
chine was around 150000, far from the worst case, which
is exponential in the number of atomic predicates. This
graph also shows the effect of the various optimizations
discussed. All the optimizations result in decrease in
number of states. The only exception is TD-order-train,
where the number of states actually increases as com-
pared to basic XPush. This is because of the additional
states created during the training phase, which are never
used later. The effect of the optimizations is even more
dramatic in Fig. 7(a), where we show the average size
of each state. Combining these two results in a slightly
above linear increase of the total memory requirement
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Figure 9: Filtering Time
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Figure 10: Number of XPush States

as a function of the workload. Fig. 6(b) and 7(b) show
the same results for the case of 10.45 predicates per
query. The graphs in Fig. 10(a) and 11(a) show the
same measures, but now we increased the number of
predicates per query while keeping the total number of
atomic predicates fixed at 200000. As we predicted in
Theorem 6.2, the number of states decreased. As a con-
sequence, the running time for these queries, shown in
Fig. 9(a) decreases too. Finally, Fig. 10(b) and 11(b)
show the same measurements as a function of the data
size, showing a slightly sub-linear increase.
Hit ratio One can think of the XPush machine as

a cache: states remember configurations that we have
seen before, and can be deleted when we run out of
memory and recomputed later. In Fig. 8, we show the
hit ratio, i.e. the number of successful lookups in the
XPush tables versus the total number of lookups. We
see that, after 20MB of data has been processed the hit
ratio is well above 90%, then increases to over 93%.
Effectiveness of the optimizations This can be

best seen in Fig. 5(a) and (b). Each optimization im-
proves performance, by essentially reducing the number
of states and their size. In Fig. 5(a), the exceptions to
this are order optimization and top-down with order op-
timization. This is because with only 1.15 predicates per
query, very few queries have more than one predicate.
So, the benefit obtained from order optimization is very

little, and it doesn’t offset its overhead. In Fig. 5(b),
the only exception is the top-down optimization in iso-
lation: the explanation here is that we can no longer
precompute the atomic predicate index, and doing it
at runtime affects performance. However, when cou-
pled with training, the top-down optimization is very
effective: this is because the training data generates all
predicate indexes in the XPush machine.

8. CONCLUSION AND FUTURE WORK
Our goal is to process efficiently large numbers of

XPath expressions with many predicates per query, on
a stream of XML data. We have described a new push-
down machine, called XPush, that can express such
workloads. If fully computed, the XPush machine runs
extremely fast on the XML stream, since it processes
each SAX event in O(1) time, independent of the query
workload: in our experiments it ran twice as fast as the
Apache parser. However, in most practical applications
the XPush machine cannot be precomputed but needs
to be computed lazily, at runtime. We have shown ex-
perimentally that by computing it lazily the memory re-
quirements of the XPush machine are manageable. We
have also shown that the cost paid for computing the
states at runtime is recovered later: the hit ratio in our
experiments was well over 90%, even over 93% after pro-
cessing large amounts of data. Finally, we have shown
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Figure 11: Average XPush State Size

that a combination of optimizations improved signifi-
cantly the runtime performance of the XPush machine.
Currently, we do not support updates to the XPath

workload, but they can be supported in one of the two
ways. The first is brute force: reset the lazy XPush
machine periodically and re-start it on the new XPath
workload, with an initially empty set of states and ta-
bles. This is equivalent to flushing an entire cache. The
second method applies to insertions of new XPath fil-
ters only. To insert a new XPath filter, build a new
XPush machine on top of the old XPush machine and
the new XPath expression. The states in the new XPush
machine are very small: they contain at most one state
from the old XPush machine and a few AFA states from
the new XPath filter.
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