
XViz: A Tool for Visualizing XPath Expressions

Ben Handy and Dan Suciu

University of Washington Department of Computer Science
handyman@u.washington.edu, suciu@cs.washington.edu

Abstract. We describe a visualization tool for XPath expressions called
XViz. Starting from a workload of XQueries, the tool extracts the set
of all XPath expressions, and displays them together with some rela-
tionships. XViz is intended to be used by an XML database administra-
tor in order to assist her in performing routine tasks such as database
tuning, performance debugging, comparison between versions, etc. Two
kinds of semantic relationships are computed and displayed by XViz, an-
cestor/descendant and containment. We describe an efficient, optimized
algorithm to compute them.

1 Introduction

This paper describes a visualization tool for XPath expressions, called XViz.
The tool starts from a workload of XQuery expressions, extracts all XPath ex-
pressions in the queries, then represents them graphically, indicating certain
structural relationships between them. The goal is to show a global picture of all
XPath expressions in the workload, indicating which queries use them, in what
context, and how they relate to each other. The tool has been designed to scale to
relatively large XQuery workloads, allowing a user to examine global structural
properties, such as interesting clusters of related XPath expressions, outliers, or
subtle differences between XPath expressions in two different workloads. XViz
is not a graphical editor, i.e. it is not intended to create and modify queries.

The intended user of XViz is an XML database administrator, who could
use it in order to perform various tasks needed to support applications with
large XQuery workloads. We mention here some possible usages of XViz, with-
out being exhaustive. One is to identify frequent common subexpressions used in
the workload; such XPath expressions will be easily visible in the diagram pro-
duced by XViz because they have a long list of associated XQuery identifiers.
Knowledge of the set of most frequent XPath expressions can be further used to
manually select indexes, or to select efficient mappings to a relational schema.
Clusters of almost identical XPath expressions can also be visually identified,
giving the administrator more guidance in selecting indexes. A similar applica-
tion consists of designing an efficient relational schema to store the XML data:
a visual inspection of the graph produced by XViz can be used for that. An-
other application is to find performance bugs in the workload, e.g. redundant
//’s or ∗’s. For example if both /a/b/c and /a/b//c occur in the workload then
XViz will draw a line between them, showing the structural connection, and

the administrator can then examine whether the // in the second expression is
indeed necessary or is a typo. Finally, XViz can be used to study the relation-
ship between two versions of the same workload, for example resulting from two
different versions of an application. The administrator can either compare the
graphs produced by XViz for the two different applications, or create a single
graph with XPath expressions from both workloads, and see how the XPath
expressions from the two versions relate.

In some cases there exist techniques that automatize some of these tasks:
for example an approach for index selection is discussed in [1], and efficient
mappings to relational storage are described in [3]. However, these techniques
are quite complex, and by no means universally available. A lightweight tool
like XViz, in the hands of a savvy administrator, can be quite effective. More
importantly, like any visualization tool, XViz allows an administrator to see
interesting facts even without requiring her to describe what she is looking for.

XViz starts from a text file containing a collection of XQueries, and extracts
all XPath expressions occurring in the workload. This set may contain XPath
expressions that are only implicitly, not explicitly used in the workload. For
example, given the query:

for $x in /a/b[@c=3],

$y in $x/d

. . .

XViz will display two XPath expressions: both /a/b[@c=3] (for $x) and a/b[@c=3]/d

(for $y).
Next, XViz establishes two kinds of interesting relationships between the

XPath expressions. The first is the ancestor relationship, checking whether the
nodes returned by the first expression are ancestors of nodes returned by the sec-
ond expression. The second is the containment relationship: this checks whether
the answer set of one expression contains that for the other expression. Both rela-
tionships are defined semantically, not syntactically; for example XViz will deter-
mine that /a//b[c//@d=3][@e=5] is an ancestor of1 a/b[@e=5][@f=7][c/@d=3]/g/h,
even though they are syntactically rather different.

Finally, the graph thus computed is output in a dot file then passed to
GraphViz, the graph visualization tool2. When the resulting graphs are large,
they can easily clutter the screen. To avoid this, XViz provides a number of
options for the user to specify what amount of detail to include.

The core of XViz is the module computing the relationships between XPath
expressions, and we have put a lot of effort into making it as complete and effi-
cient as possible. Recent theoretical work has established that checking contain-
ment of XPath expression is computationally hard, even for relatively simple
fragments. As we show here, these hardness results also extend to the ances-
tor/descendant relationship. For example, checking for containment is co-NP

1 We will define the ancestor/descendant relationship formally in Sec. 4.
2 GraphViz is a free tool from AT&T labs, available at
http://www.research.att.com/sw/tools/graphviz/.

complete, when the expressions are using //, *, and [] (predicates) [10]. When
disjunctions or DTDs are added then the complexity becomes PSPACE com-
plete, as shown in [11]; and it is even higher when joins are considered too [9].
For XViz we settled on an algorithm for checking the ancestor/descendant and
the containment relationships that is quite efficient (it runs in time O(mn) where
m and n are the sizes of the two XPath expressions) yet as complete as possible,
given the theoretical limitations; the algorithm is adapted from the homomor-
phism test described in [10].

Related work Hy+ is a query and data visualization tool [8, 7], used for
object-oriented data. It is also a graphical editor. For XML languages, several
graphical editors have been described. The earliest is for a graphical query lan-
guage, XML-GL [5]. More recently, a few graphical editors for XQuery have been
described. QURSED is a system that includes a graphical editor for XQuery [13],
and XQBE is graphical editor designed specifically for XQuery [2].

What sets XViz aside from previous query visualization tools and query
editors is its emphasis on finding and illustrating the semantics relationships be-
tween XPath expressions. For XML, this has been made possible only recently,
through theoretical work that studied the containment problem for XPath ex-
pressions, in [9–11].

2 A Simple Example

To illustrate our tool and motivate the work, we show it here in action on a
simple example. Consider a file f.xquery with the following workload:

Q1:

FOR $x in /a/b

WHERE sum($x/c) > 5

RETURN <result> $x/d </result>

Q2:

FOR $u in /a/b[c=6],

$v in /a/b

WHERE $u/d > $v/c

RETURN $v/d

The tool is invoked like this:

xviz -i f.xquery -o f.eps -p -q

This generates the output file f.eps, which is shown in in Fig. 1 (a). No-
tice that there is one node for each XPath expression in each query, and for

/a/b

XQueries: 1, 2

/a/b/c

XQueries: 1, 2

/a/b/d

XQueries: 1, 2

/a/b[c=6]

XQueries: 2

/a/b[c=6]/d

XQueries: 2

/a

XQueries: 1, 2 /a/b

/a/b/c /a/b/d /a/b[c=6]

/a/b[c=6]/d

/a

(a) (b)

Fig. 1. Example: with XQuery IDs (a) and without (b).

Flag Meaning Sample output

-p displays the XPath /a/b[c=6]/d

expression

-q displays the query XQuery: 2, 5, 9

where the expressions
occurs

-f displays for each query XQuery: 2(F), 5(W), 9(W)

the FLWR statement where
it occurs

-v displays the variable name XQuery: 2($x), 5(-), 9($y,-)

that is bound to it

-b brief: do not include prefixes
of the XPath expressions

-l display left-to-right
(rather than top-to-bottom)

Fig. 2. Flags used in conjunction with the xviz command.

each prefix of such an expression, with two kinds of edges: solid edges denote
ancestor/descendant relationships and dashed edges denote containment rela-
tionships.

There are several flags for the command line that control what pieces of
information is displayed. The flags are shown in Figure 2. For example, the first
one, -p, determines only the XPath expression to be displayed, i.e. drops the
XQuery identifiers. When used this way on our example, XViz produces the
graph in Fig. 1 (b).

XPath

Extractor

Graph

Constructor

Xpath

Containment

Algorithm

GraphViz

XQueries
 Xpaths

Dot File
Graph

Fig. 3. The System’s Architecture

3 Architecture

The overall system architecture is shown in Fig. 3. The input consists of a text file
containing a workload of XQuery expressions. The file does not need to contain
pure XQuery code, but may contain free text or code in a different programming
language, interleaved with XQuery expressions: this is useful for example in cases
where the workload is extracted from a document or from an application. The
XQuery workload is input to an XPath extractor that identifies and extracts
all XPath expressions in the workload. The extractor uses a set of heuristics
to identify the XQuery expressions, and, inside them the XPath expressions.
Next, the set of XPath expressions are fed into the graph constructor. This
makes several calls to the XPath containment algorithm (described in Sec. 4)
in order to construct the graph to be displayed. Finally, the graph is displayed
using GraphViz. A variety of output formats can be generated by GraphViz:
postscript, gif, pdf, etc.

4 Relationships Between XPath Expressions

XViz computes the following two relationships between XPath expressions: an-
cestor/descendant, and containment. We define them formally below. Notice
that both definitions are semantic, i.e. independent of the particular syntactic
representation of the XPath expression. This is important for XViz applications,
since it is precisely these hard to see semantic relationships that are important
to show to the user.

We denote with p some XPath expression, and with t some XML tree. Then
p(t) denotes the set of nodes obtained by evaluating p on the XML tree t. We
shall always assume that the evaluation starts at the root of the XML tree, i.e.
all our XPath expressions start with /.

We denote nodes in t with symbols x, y, . . . If x is a proper ancestor of y then
we write x � y: that is x can be y’s parent, or its parent’s parent, etc.

Ancestor/Descendant We say that p′ and p are in the ancestor/descendant
relationship, denoted p′ � p, if for every tree t and for any node y ∈ p(t) there
exists some node x ∈ p′(t) such that x � y. Notice that the definition is semantic,

i.e. in order to apply it directly one would need to check all possible XML trees
t. We will give below a practical algorithm for checking �.

Example 1. The following are examples and counterexamples of ancestor/descendant
relationships:

/a/b[c=6] � /a/b[c=6]/d

/a/b[c=6] � /a/b[c=6]/d[e=9]/f

/a/b 6� /a/b

/a//b � /a/b[c=6]/d (1)

/a/b[c=6] 6� /a/b/d

/a//b[c//@d=3][@e=5] � a/b[@e=5][@f=7][c/@d=3]/g/h

The first two examples should be clear. The third illustrates that the an-
cestor/descendant relationship is strict (i.e. anti-reflexive: p 6� p). The next
example, (1), shows a particular choice we made in the definition of �. A node
y returned by /a/b[c=6]/d always has an ancestor x (namely the b node) that
is also returned by /a//b; but /a//b can return nodes that are not ancestors
of any node satisfying /a/b[c=6]/d. The next two examples further illustrates
this point. There are some theoretical arguments in favor of our choice of the
definition (the elegant interaction between � and ⊇ defined below), but other
choices are also possible.

Containment We say that p′ contains p, in notation p′ ⊇ p, if for every
XML tree t, the following inclusion holds: p′(t) ⊇ p(t). That is, the set of nodes
returned by p′ includes all nodes returned by p. Notice that we place the larger
expression on the left, writing p′ ⊇ p rather than p ⊆ p′ as done in previous
work on query containment [9–11], because we want in the graph an arrow to go
from the larger to the smaller expression.

Example 2. The following illustrate some examples of containment and non-
containment:

/a/b ⊇ /a/b[c=6]

/a//e ⊇ /a/b[c=6][d=9]/e

/a//*/e ⊇ /a/*//e

/a/b[c=6] ⊇ /a/b[c=6][d=9]

/a/b 6⊇ /a/b/c

Here too, the definition is semantic: we will show below how to check this
efficiently. Notice that it is easy to check equivalence between XPath expressions
by using containment: p ≡ p′ iff p ⊇ p′ and p′ ⊇ p.

4.1 Reducing Ancestor/Descendant to Containment

The two relationships can be reduced to each other as follows:

p′ � p ⇐⇒ p′//∗ ⊇ p

p′ ⊇ p ⇐⇒ p′/a � p/a/∗

Here a is any tag name that does not occur in p′. We use the first reduction in
order to compute � using an algorithm for ⊇. We use second reduction only for
theoretical purposes, to argue that all hardness results for ⊇ also apply to �. For
example, for the fragment of XPath described in [10], checking the relationship
� is co-NP complete.

4.2 Computing the Graph

XViz uses the relationships � and ⊇ to compute and display the graph. A
relationship p′ � p will be displayed with a solid edge, while p′ ⊇ p is displayed
with a dashed edge.

Two steps are needed in order to compute the graph. First, identify equivalent
expressions and collapse them into a single graph node. Two XPath expressions
are equivalent, p ≡ p′ if both p ⊇ p′ and p′ ⊇ p hold. Once equivalent expres-
sions are identified and removed, only ⊃ relationships remain between XPath
expressions.

Second, decide which edges to represent. In order to reduce clutter, redundant
edges need not be represented. An edge is redundant if it can be inferred from
other edges using one of the four implications below:

p1 ⊃ p2 ∧ p2 ⊃ p3 =⇒ p1 ⊃ p3

p1 � p2 ∧ p2 � p3 =⇒ p1 � p3

p1 � p2 ∧ p2 ⊃ p3 =⇒ p1 � p3

p1 ⊃ p2 ∧ p2 � p3 =⇒ p1 � p3

The first two implications state that both � and ⊃ are transitive. The last two
capture the interactions between them.

Redundant edges can be naively identified with three nested loops, iterat-
ing over all triples (p1, p2, p3) and marking the edge on the right hand side as
redundant whenever the conditions on the left is satisfied. This method takes
O(n3) steps, where n is the number of XPath expressions. We will discuss a more
efficient way in Sec. 6.

5 An Application

We have experimented with XViz applied to three different workloads: the
XMark benchmark [12], the XQuery Use Cases [6], and the XMach bench-
mark [4]. We describe here XMark only, which is shown in Fig. 4. The other
two are similar: we show a fragment of the XQuery Use cases in Fig. 5, but omit
XMach for lack of space.

The result of applying XViz to the entire XMark benchmark3 is shown in
Fig. 4. It is too big to be readable in the printed version of this paper, but can
be magnified when read online.

Most of the relationships are ancestor/descendant relationships. The root
node / has one child, /site, which in turn has the following five children:

/site/people

/site//item

/site/regions

/site/open auctions

/site/closed auctions

Four of them correspond to the four children of site in the XML schema, but
/site//item does not have a correspondence in the schema. We emphasize that,
while the graph is somewhat related to the XML schema, it is different from the
schema, and precisely these differences are interesting to see and analyze.

For example, consider the following chain in the graph:

/site � /site//item

⊃ /site/regions//item

⊃ /site/regions/europe/item

� /site/regions/europe/item/name

Or consider the following two chains at the top of the figure, that start and end
at the same node (showing that the graph is a DAG, not a tree):

/site/people/person ⊃ /site/people/person[@id=’person0’]

� /site/people/person[@id=’person0’]/name

/site/people/person � /site/people/person/name

⊃ /site/people/person[@id=’person0’]/name

They both indicate relationships between XPath expressions that can be of great
interest to an administrator, depending on her particular needs.

For a more concrete application, consider the expressions:

/site/people/person/name

/site/people/person[@id=’person0’]/name

The first occurs in XQueries 8, 9, 10, 11, 12, 17 is connected by a dotted edge
(i.e. ⊃) to the second one, which also occurs in XQuery 1. Since they occur in
relatively many queries, are good candidates for building an index. Another such
candidate consists of p = /site/closed auctions/closed auction, which oc-
curs in queries 5, 8, 9, 15, 16, together with several descendants, like p/seller,
p/price, p/buyer, p/itemref, p/annotation.

3 We omitted query 7 since it clutters the picture too much.

6 Implementation

We describe here the implementation of XViz, referring to the Architecture in
Fig. 3.

6.1 The XPath Extractor

The XPath extractor identifies XQuery expressions in a text and extracts as
many XPath expressions from these queries as possible. It starts by searching
for the keywords FOR or LET. The following text is then examined to see if a
valid XQuery expression follows. We currently parse only a fragment of XQuery,
without nested queries or functions. The grammar that we support is described
in Fig. 6.

In this grammar, each Variable is assumed to start with a $ symbol and each
XPathExpr is assumed to be a valid XPath expression. XPathText is a body
of text, usually a combination of XML and expressions using XPaths, that we
can extract any number of XPath expressions from. After an entire XQuery has
been parsed, each XPath Expression is expanded by replacing all variables with
their declared expressions. Once all XPath expressions have been extracted from
a query, the Extractor continues to step through the text stream in search of
XQuery expressions.

6.2 The XPath Containment Algorithm

The core of XViz is the XPath containment algorithm, checking whether p′ ⊇ p
(recall that this is also used to check p′ � p, see Sec. 4.1). If the XQuery work-
load has n XPath expressions, then the containment algorithm may be called up
to O(n2) times (some optimizations may reduce this number however, see be-
low), hence we put a lot of effort in optimizing the containment test. Namely, we
checked containment using homomorphisms, by adapting the techniques in [10].
For presentation purposes we will restrict our discussion to the the XPath frag-
ment consisting of tags, wildcards ∗, /, //, and predicates [], and mention below
how we extended the basic techniques to other constructs.

Each XPath expression p is represented as a tree. A node, x, carries a label
label(x), which can be either a tag or ∗; nodes(p) denotes the set of nodes.
Edges are of two kinds, corresponding to / and to // respectively, and we denote
edges = edges/ ∪ edges//.

A homomorphism from p′ to p is a function from nodes(p′) to nodes(p) that
maps each node in p′ to a matching node in p (i.e. it either has the same label,
or the node in p′ is ∗), maps an /-edge to an /-edge, and maps a //-edge to a
path, and maps the return node in p′ to the return node in p. Fig. 7 illustrates a
homomorphism from p′ = /a/a[.//b]/∗[c]//a/b to p = /a/a/[.//c]/d[c]//a[a]/b.
Notice that the edge a//b is mapped to the path a/d//a/b.

If there exists a homomorphism from p′ to p then p′ ⊇ p. This allows us
to check containment by checking whether there exists homomorphism. This
is done bottom-up, using dynamic programming. Construct a boolean table C

where each entry C(x, y) for x ∈ nodes(p), y ∈ nodes(p′) contains ’true’ iff there
exists a homomorphism mapping y to x. The table C can be computed bottom
up since C(x, y) depends only on the entries C(x′, y′) for y′ a child of y and x′

a child or a descendant of x. More precisely, C(x, y) is true iff label(y) = ∗ or
label(y) = label(x) and, for every child y′ of y the following conditions holds.
If (y, y′) ∈ edges/(p

′) then C(x′, y′) is true for some /-child of x:

∨

(x,x′)∈edges/(p)

C(x′, y′)

If (y, y′) ∈ edges/(p
′) then C(x′, y′) is true for some descendant x′ of x:

∨

(x,x′)∈edges+(p)

C(x′, y′) (2)

Here edges
+(p) denotes the transitive closure of edges(p). This can be directly

translated into an algorithm of running time O(|p|2|p′|).
Optimizations We considered the following two optimizations.
The first addresses the fact that there are some simple cases of contain-

ment that have no homomorphism. For example there is no homomorphism
from /a//∗/b to /a/∗//b (see Figure 8 (a)) although the two expressions are
equivalent. For that we remove in p′ any sequence of ∗ nodes connected by /
or // edges and replace them with a single edge, carrying an additional integer
label that represents the number of ∗ nodes removed. This is shown in Figure 8
(b). The label thus associated to an edge (y, y′) is denoted k(y, y′). For example
k(y, y′) = 1 in Fig. 8 (b).

The second optimization reduces the running time to O(|p||p′|). For that,
we compute a second table, D(x, y′), which records whenever there exists a
descendant x′ of x s.t. C(x′, y′) is true. Moreover, D(x, y′) contains the actual
distance from x to x′. Then, we can avoid a search for all descendants x′ and
replace Eq.(2) with the test ′D(x, y′) ≥ 1 + k(y, y′). Both C(x, y) and D(x, y)
can now be computed bottom up, in time O(|p||p′|), as shown in Algorithm 1.

Other XPath Constructs Other constructs, like predicates on atomic val-
ues, first(), last() etc, are handled by XViz by extending the notion of ho-
momorphism in a straightforward way. For example a node labeled last() has
to be mapped into a node that is also labeled last(). Additional axes can be
handled similarly. The existence of a homomorphism continues to be a sufficient,
but not necessary condition for containment.

6.3 The Graph Constructor

The Graph Constructor takes a set of n XPath expressions, p1, . . . , pn, computes
all relationships � and ⊇, eliminates equivalent expressions, then computes a
minimal set of solid edges (corresponding to �) and dashed edges (correspond-
ing to ⊇) needed to represent all � and ⊇ relationships, by using the four
implications in Sec. 4.2.

Algorithm 1 Find homomorphism p′ → p

1: for x in nodes(p) do {The iteration proceeds bottom up on nodes of p}
2: for y in nodes(p′) do {The iteration proceeds bottom up on nodes of p′}
3: compute C(x, y) = (label(y) = “∗′′ ∨ label(x) = label(y))∧
4:

∧
(y,y′)∈edges/(p′)(

∨
(x,x′)∈edges/(p) C(x′, y′))∧

5:
∧

(y,y′)∈edges//(p′)(D(x, y′) ≥ 1 + k(y, y′))

6: if C(x, y) then

7: d = 0;
8: else

9: d = −∞
10: compute D(x, y) = max(d, 1 + max(x,x′)∈edges/(p) D(x′, y),

11: 1 + max(x,x′)∈edges//(p)(k(x, x′) + D(x′, y)))

12: return C(root(p),root(p′))

A naive approach would be to call the containment test O(n2) times, in order
to compute all relationships4 pi � pj and pi ⊇ pj , then to perform three nested
loops to remove redundant relationships (as explained in Sec. 4.2), for an extra
O(n3) running time.

To optimize this, we compute the graph G incrementally, by inserting the
XPath expressions p1, . . . , pn, one at a time. At each step the graph G is a DAG,
whose edges are either of the form pi � pj or pi ⊃ pj . Suppose that we have
computed the graph G for p1, . . . , pk−1, and now we want to add pk. We search
for the right place to insert pk in G, starting at G’s roots. Let G0 be the roots of
G, i.e. the XPath expressions that have no incoming edges. First determine if pk

is equivalent to any of these roots: if so, then merge pk with that root, and stop.
Otherwise determine whether there exists any edge(s) from pk to some XPath
expression(s) in G0. If so, add all these edges to G and stop: pk will be a new root
in G. Otherwise, remove the root nodes G0 from G, and proceed recursively, i.e.
compare pk with the new of roots in G−G0, etc. When we stop, by finding edges
from pk to some pi, then we also need to look one step “backwards” and look for
edges from any parent of pi to pk. While the worst case running time remains
O(n3), with O(n2) calls to the containment test, in practice this performs much
better.

7 Conclusions

We have described a tool, XViz, to visualize sets of XPath expressions, together
with their relationships. The intended use for XViz is by an XML database
administrator, in order to assist her in performing various tasks, such as index
selection, debugging, version management, etc. We put a lot of effort in making
the tool scalable (process large numbers of XPath expressions) and usable (accept
flexible input).

4 Recall that pi � pj is tested by checking the containment pi//∗ ⊇ pj .

We believe that a powerful visualization tool has great potential for the man-
agement of large query workloads. Our initial experience with standard work-
loads, like the XMark Benchmark, gave us a lot of insight about the structure
of the queries. This kind of insight will be even more valuable when applied to
workloads that are less well designed than the publicly available benchmarks.

Acknowledgments This research was partially supported by NSF Grant
IIS-0140493, a gift from Microsoft, and by Suciu’s NSF CAREER Grant 0092955
and Alfred P. Sloan Research Fellowship.

References

1. S. Agrawal, S. Chaudhuri, and V. R. Narasayya. Automated selection of mate-
rialized views and indexes in sql databases. In VLDB 2000, Proceedings of 26th
International Conference on Very Large Data Bases, September 10-14, 2000, Cairo,
Egypt, pages 496–505. Morgan Kaufmann, 2000.

2. E. Augurusa, D. Braga, A. Campi, and S. Ceri. Design of a graphical interface
to XQuery. In Proceedings of the ACM Symposium on Applied Computing (SAC),
pages 226–231, 2003.

3. P. Bohannon, J. Freire, P. Roy, and J. Simeon. From xml schema to relations: A
cost-based approach to xml storage. In ICDE, 2002.

4. T. Böhme and E. Rahm. Multi-user evaluation of XML data management systems
with XMach-1. In Proceedings of the Workshop on Efficiency and Effectiveness of
XML Tools and Techniques (EEXTT), pages 148–158. Springer Verlag, 2002.

5. S. Ceri, S. Comai, E. Damiani, P. Fraternali, and S. Paraboschi. XML-gl: a graph-
ical language for querying and restructuring XML documents. In Proceedings of
WWW8, Toronto, Canada, May 1999.

6. D. Chamberlin, J. Clark, D. Florescu, J. Robie, J. Simeon, and M. Ste-
fanescu. XQuery 1.0: an XML query language, 2001. available from the W3C,
http://www.w3.org/TR/query.

7. M. Consens, F. Eigler, M. Hasan, A. Mendelzon, E. Noik, A. Ryman, and D. Vista.
Architecture and applications of the hy+ visualization system. IBM Systems Jour-
nal, 33:3:458–476, 1994.

8. M. P. Consens and A. O. Mendelzon. Hy: A hygraph-based query and visualiza-
tion system. In Proceedings of 1993 ACM SIGMOD International Conference on
Management of Data, pages 511–516, Washington, D. C., May 1993.

9. A. Deutsch and V. Tannen. Optimization properties for classes of conjunctive
regular path queries. In Proceedings of the International Workshop on Database
Programming Lanugages, Italy, Septmeber 2001.

10. G. Miklau and D. Suciu. Containment and equivalence of an xpath fragment. In
Proceedings of the ACM SIGMOD/SIGART Symposium on Principles of Database
Systems, pages 65–76, June 2002.

11. F. Neven and T. Schwentick. XPath containment in the presence of disjunction,
DTDs, and variables. In International Conference on Database Theory, 2003.

12. A. Schmidt, F. Waas, M. Kersten, D. Florescu, M. Carey, I. Manolescu, and
R. Busse. Why and how to benchmark XML databases. Sigmod Record, 30(5),
2001.

13. V. V. Yannis Papakonstantinou, Michalis Petropoulos. QURSED: querying and
reporting semistructured data. In Proceedings ACM SIGMOD International Con-
ference on Management of Data, pages 192–203. ACM Press, 2002.

/site/people/person/[@id=’person0’]

XQueries: 1

/site/people/person[@id=’person0’]/name

XQueries: 1

/site/people/person/[@id=’person0’]/name/text()

XQueries: 1

/site/open_auctions/open_auction

XQueries: 2, 3, 4, 18, 11, 12

/site/open_auctions/open_auction/initial

XQueries: 11, 12

/site/open_auctions/open_auction/bidder

XQueries: 2, 3, 4

/site/open_auctions/open_auction//reserve

XQueries: 18

/site/open_auctions/open_auction/bidder/personref[@person=’person18829’]

XQueries: 4

/site/open_auctions/open_auction/bidder/personref[@person=’person10487’]

XQueries: 4

/site/open_auctions/open_auction/reserve/text()

XQueries: 4

/site/closed_auctions/closed_auction

XQueries: 5, 8, 9, 16, 15

/site/closed_auctions/closed_auction/price

XQueries: 5

/site/closed_auctions/closed_auction/buyer

XQueries: 8, 9

/site/closed_auctions/closed_auction/itemref

XQueries: 9

/site/closed_auctions/closed_auction/annotation

XQueries: 15, 16

/site/closed_auctions/closed_auction/seller

XQueries: 16

/site/closed_auctions/closed_auction/price/text()

XQueries: 5

/site/regions

XQueries: 6, 9, 13, 19

/site/regions//item

XQueries: 6, 19

/site/regions/europe

XQueries: 9

/site/regions/australia

XQueries: 13

/site/regions/europe/item

XQueries: 9

/site/regions/australia/item

XQueries: 13

/site/regions//item/name

XQueries: 19

/site/regions//item/location

XQueries: 19

/site/people/person

XQueries: 8, 9, 10, 11, 12, 17, 20, 1

/site/people/person/@id

XQueries: 8

/site/people/person/@income

XQueries: 20

/site/people/person/name

XQueries: 8, 9, 10, 11, 12, 17

/site/people/person/profile

XQueries: 10, 11, 12

/site/people/person/gender

XQueries: 10

/site/people/person/age

XQueries: 10

/site/people/person/education

XQueries: 10

/site/people/person/income

XQueries: 10

/site/people/person/street

XQueries: 10

/site/people/person/city

XQueries: 10

/site/people/person/country

XQueries: 10

/site/people/person/email

XQueries: 10

/site/people/person/homepage

XQueries: 10, 17

/site/people/person/creditcard

XQueries: 10

/site/closed_auctions/closed_auction/buyer/@person

XQueries: 8, 9

/site/people/person/name/text()

XQueries: 8, 9, 10, 11, 12, 17

/site/regions/europe/item/@id

XQueries: 9

/site/regions/europe/item/name

XQueries: 9

/site/regions/europe/item/name/text()

XQueries: 9

/site/closed_auctions/closed_auction/itemref/@item

XQueries: 9

/site/people/person/profile/interest/@category

XQueries: 10

/site/people/person/gender/text()

XQueries: 10

/site/people/person/age/text()

XQueries: 10

/site/people/person/education/text()

XQueries: 10

/site/people/person/income/text()

XQueries: 10

/site/people/person/street/text()

XQueries: 10

/site/people/person/city/text()

XQueries: 10

/site/people/person/country/text()

XQueries: 10

/site/people/person/email/text()

XQueries: 10

/site/people/person/homepage/text()

XQueries: 10, 17

/site/people/person/creditcard/text()

XQueries: 10

/site/open_auctions/open_auction/initial/text()

XQueries: 11, 12

/site/people/person/profile/@income

XQueries: 11, 12

/site/regions/australia/item/description

XQueries: 13

/site/regions/australia/item/name

XQueries: 13

/site/regions/australia/item/name/text()

XQueries: 13

/site//item

XQueries: 14

/site//item/description,

XQueries: 14

/site//item/name

XQueries: 14

/site//item/name/text()

XQueries: 14

/site/regions//item/name/text()

XQueries: 19

/site/closed_auctions/closed_auction/seller/@person

XQueries: 16

/site/open_auctions/open_auction//reserve/text()

XQueries: 18

/site/regions//item/location/text()

XQueries: 19

/site

XQueries: 1, 2, 3, 4, 5, 6, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20

/site/people

XQueries: 1, 8, 9, 10, 11, 12, 17, 20

/site/open_auctions

XQueries: 2, 3, 4, 11, 12, 18

/site/closed_auctions

XQueries: 5, 8, 9, 15, 16

/site/open_auctions/open_auction/bidder[1]

XQueries: 2, 3

/site/open_auctions/open_auction/bidder[last()]

XQueries: 3

/site/open_auctions/open_auction/bidder/personref

XQueries: 4

/site/open_auctions/open_auction/bidder[1]/increase

XQueries: 2, 3

/site/open_auctions/open_auction/bidder[last()]/increase

XQueries: 3

/site/open_auctions/open_auction/reserve

XQueries: 4

/site/people/person/profile/interest

XQueries: 10

/site/closed_auctions/closed_auction/annotation/description

XQueries: 15, 16

/site/closed_auctions/closed_auction/annotation/description/parlist

XQueries: 15, 16

F
ig

.
4
.
X

V
iz

sh
ow

in
g

th
e

en
tire

X
M

a
rk

B
en

ch
m

a
rk

w
o
rk

lo
a
d
.

doc(’items.xml’)//item_tuple

XQueries: 1, 2, 3, 4, 5, 6, 7, 12, 8, 10

doc(’items.xml’)//item_tuple/start_date

XQueries: 1

doc(’items.xml’)//item_tuple/end_date

XQueries: 1, 10

doc(’items.xml’)//item_tuple/[description =’Bicycle’]

XQueries: 1, 2, 5, 6

doc(’items.xml’)//item_tuple/itemno

XQueries: 1, 2, 4, 5, 6, 7, 12

doc(’items.xml’)//item_tuple/description

XQueries: 1, 2, 3, 4, 5, 6, 7, 12

doc(’items.xml’)//item_tuple/reserve_price

XQueries: 3, 7

doc(’items.xml’)//item_tuple/offered_by

XQueries: 3, 5, 6

doc(’items.xml’)//item_tuple[description =’Bicycle’)]

XQueries: 8

doc(’items.xml’)//item_tuple[get-year-from-date(end_date)=1999]

XQueries: 10

doc(’bids.xml’)//bid_tuple[itemno =doc(’items.xml’)//item_tuple/itemno]

XQueries: 2, 7, 12

doc(’bids.xml’)//bid_tuple[itemno =doc(’items.xml’)//item_tuple/itemno]/bid

XQueries: 2, 7, 12

doc(’bids.xml’)//bid_tuple[itemno =doc(’items.xml’)//item_tuple
[description =’Bicycle’)]/itemno]

XQueries: 8 doc(’bids.xml’)//bid_tuple[itemno =doc(’items.xml’)//item_tuple
[description =’Bicycle’)]/itemno]/bid

XQueries: 8

doc(’users.xml’)//user_tuple

XQueries: 3, 5, 6, 11, 15, 16, 13

doc(’users.xml’)//user_tuple/rating

XQueries: 3

doc(’users.xml’)//user_tuple/userid

XQueries: 3, 5, 6, 11, 16

doc(’users.xml’)//user_tuple/name

XQueries: 3, 5, 6, 16, 11, 15

doc(’users.xml’)//user_tuple[userid =doc(’bids.xml’)]

XQueries: 13

doc(’users.xml’)//user_tuple[userid =doc(’bids.xml’)//userid]/userid

XQueries: 13

doc(’users.xml’)//user_tuple/name/text()

XQueries: 11, 15

doc(’users.xml’)//user_tuple[userid =doc(’bids.xml’)//userid]/name

XQueries: 13

doc(’bids.xml’)//bid_tuple

XQueries: 5, 6, 11, 2, 7, 8, 12, 13, 14, 15, 16

doc(’bids.xml’)//bid_tuple/itemno

XQueries: 5, 6, 11

doc(’bids.xml’)//bid_tuple/userid

XQueries: 5, 6, 11

doc(’bids.xml’)//bid_tuple/bid

XQueries: 5, 6, 11

doc(’bids.xml’)//bid_tuple[itemno =doc(’items.xml’)]

XQueries: 2, 7, 8, 12

doc(’bids.xml’)//bid_tuple[userid =doc(’bids.xml’)]

XQueries: 13

doc(’bids.xml’)//bid_tuple[itemno =doc(’bids.xml’)]

XQueries: 14

doc(’bids.xml’)//bid_tuple[userid=doc(’users.xml’)]

XQueries: 15

doc(’bids.xml’)//bid_tuple[userid =doc(’users.xml’)]

XQueries: 16

doc(’bids.xml’)//bid_tuple[userid =doc(’bids.xml’)//userid]/bid

XQueries: 13

doc(’bids.xml’)//bid_tuple[itemno =doc(’bids.xml’)//itemno]/bid

XQueries: 14

doc(’items.xml’)//item_tuple [end_date >=date(’1999-03-01’)]
[end_date <=date(’1999-03-31’)]

XQueries: 9

doc(’items.xml’)//item_tuple[get-year-from-date(end_date)=1999]
[get-month-from-date(end_date)=doc(’items.xml’)//item_tuple/end_date]

XQueries: 10

doc(’bids.xml’)//userid

XQueries: 13

doc(’users.xml’)//user_tuple[userid =doc(’bids.xml’)//userid]

XQueries: 13

doc(’bids.xml’)//bid_tuple[userid =doc(’bids.xml’)//userid]

XQueries: 13

doc(’bids.xml’)//itemno

XQueries: 14

doc(’bids.xml’)//bid_tuple[itemno =doc(’bids.xml’)//itemno]

XQueries: 14

doc(’bids.xml’)//bid_tuple[userid=doc(’users.xml’)//user_tuple/userid][bid>=100]

XQueries: 15

doc(’bids.xml’)//bid_tuple[userid =doc(’users.xml’)//user_tuple/userid]

XQueries: 16

doc(’items.xml’)

XQueries: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12
doc(’items.xml’)//item_tuple

XQueries: 9

doc(’bids.xml’)

XQueries: 2, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16

doc(’bids.xml’)//bid_tuple[itemno =doc(’items.xml’)//item_tuple]

XQueries: 2, 7, 8, 12

doc(’bids.xml’)//bid_tuple[itemno =doc(’items.xml’)//item_tuple[description =’Bicycle’)]]

XQueries: 8

doc(’users.xml’)

XQueries: 3, 5, 6, 11, 13, 15, 16

doc(’items.xml’)//item_tuple [end_date >=date(’1999-03-01’)]

XQueries: 9

doc(’items.xml’)//item_tuple[get-year-from-date(end_date)=1999]
[get-month-from-date(end_date)=doc(’items.xml’)]

XQueries: 10

doc(’items.xml’)//item_tuple[get-year-from-date(end_date)=1999]
[get-month-from-date(end_date)=doc(’items.xml’)//item_tuple]

XQueries: 10

doc(’bids.xml’)//bid_tuple[userid=doc(’users.xml’)//user_tuple]

XQueries: 15

doc(’bids.xml’)//bid_tuple[userid=doc(’users.xml’)//user_tuple/userid]

XQueries: 15

doc(’bids.xml’)//bid_tuple[userid =doc(’users.xml’)//user_tuple]

XQueries: 16

F
ig

.
5
.
X

P
a
th

E
x
p
ressio

n
s

fro
m

th
e

“
R

”
S
ectio

n
o
f
th

e
X

Q
u
ery

U
se

C
a
ses.

FlwrExpr ::= (ForClause | letClause)+ whereClause? returnClause
ForClause ::= ’FOR’ Variable ’IN’ Expr (’,’ Variable IN Expr)*
LetClause ::= ’LET’ Variable ’:=’ Expr (’,’ Variable := Expr)*
WhereClause ::= ’WHERE’ XPathText
ReturnClause ::= ’RETURN’ XPathText
Expr ::= XPathExpr | FlwrExpr

Fig. 6. Simplified XQuery Grammar

b

a

a

b *

a c

a

a

c d

a c

b a

p = p
′
=

Fig. 7. Two tree patterns p, p′ and a homomorphism from p′ to p, proving p′ ⊇ p.

?

(a) (b)

�

�

�

�

�

�

� ���

�

�

�

�

�

� ��� �

���

Fig. 8. (a) Two equivalent queries p, p′ with no homomorphism from p′ to p; (b) same
queries represented differently, and a homomorphism between them.

