
Communication Steps for Parallel Query Processing∗

Paul Beame, Paraschos Koutris and Dan Suciu
University of Washington, Seattle, WA

{beame,pkoutris,suciu}@cs.washington.edu

ABSTRACT
We consider the problem of computing a relational query q
on a large input database of size n, using a large number
p of servers. The computation is performed in rounds, and
each server can receive only O(n/p1−ε) bits of data, where
ε ∈ [0, 1] is a parameter that controls replication. We ex-
amine how many global communication steps are needed to
compute q. We establish both lower and upper bounds, in
two settings. For a single round of communication, we give
lower bounds in the strongest possible model, where arbi-
trary bits may be exchanged; we show that any algorithm re-
quires ε ≥ 1−1/τ∗, where τ∗ is the fractional vertex cover of
the hypergraph of q. We also give an algorithm that matches
the lower bound for a specific class of databases. For mul-
tiple rounds of communication, we present lower bounds in
a model where routing decisions for a tuple are tuple-based.
We show that for the class of tree-like queries there exists a
tradeoff between the number of rounds and the space expo-
nent ε. The lower bounds for multiple rounds are the first
of their kind. Our results also imply that transitive closure
cannot be computed in O(1) rounds of communication.

Categories and Subject Descriptors
H.2.4 [Systems]: Parallel Databases

Keywords
Parallel Computation, Lower Bounds

1. INTRODUCTION
Most of the time spent in big data analysis today is allo-

cated in data processing tasks, such as identifying relevant
data, cleaning, filtering, joining, grouping, transforming, ex-
tracting features, and evaluating results [5, 8]. These tasks
form the main bottleneck in big data analysis, and a ma-
jor challenge for the database community is improving the

∗This work was partially supported by NSF IIS-1115188,
IIS-0915054 and IIS-1247469.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’13, June 22–27, 2013, New York, New York, USA.
Copyright 2013 ACM 978-1-4503-2066-5/13/06 ...$15.00.

performance and usability of data processing tools. The mo-
tivation for this paper comes from the need to understand
the complexity of query processing in big data management.

Query processing is typically performed on a shared-nothing
parallel architecture. In this setting, the data is stored on
a large number of independent servers interconnected by a
fast network. The servers perform local computations, then
exchange data in global data shuffling steps. This model of
computation has been popularized by MapReduce [7] and
Hadoop [15], and can be found in most big data processing
systems, like PigLatin [21], Hive [23], Dremmel [19].

Unlike traditional query processing, the complexity is no
longer dominated by the number of disk accesses. Typically,
a query is evaluated by a sufficiently large number of servers
such that the entire data can be kept in the main memory of
these servers. The new complexity bottleneck is the commu-
nication. Typical network speeds in large clusters are 1Gb/s,
which is significantly lower than main memory access. In
addition, any data reshuffling requires a global synchroniza-
tion of all servers, which also comes at significant cost; for
example, everyone needs to wait for the slowest server, and,
worse, in the case of a straggler, or a local node failure, ev-
eryone must wait for the full recovery. Thus, the dominating
complexity parameters in big data query processing are the
number of communication steps, and the amount of data
being exchanged.

MapReduce-related models.
Several computation models have been proposed in order

to understand the power of MapReduce and related mas-
sively parallel programming methods [9, 16, 17, 1]. These
all identify the number of communication steps/rounds as a
main complexity parameter, but differ in their treatment of
the communication.

The first of these models was the MUD (Massive, Un-
ordered, Distributed) model of Feldman et al. [9]. It takes
as input a sequence of elements and applies a binary merge
operation repeatedly, until obtaining a final result, similarly
to a User Defined Aggregate in database systems. The paper
compares MUD with streaming algorithms: a streaming al-
gorithm can trivially simulate MUD, and the converse is also
possible if the merge operators are computationally powerful
(beyond PTIME).

Karloff et al. [16] define MRC, a class of multi-round al-
gorithms based on using the MapReduce primitive as the
sole building block, and fixing specific parameters for bal-
anced processing. The number of processors p is Θ(N1−ε),
and each can exchange MapReduce outputs expressible in
Θ(N1−ε) bits per step, resulting in Θ(N2−2ε) total storage

among the processors on a problem of size N . Their focus
was algorithmic, showing simulations of other parallel mod-
els by MRC, as well as the power of two round algorithms
for specific problems.

Lower bounds for the single round MapReduce model are
first discussed by Afrati et al. [1], who derive an interesting
tradeoff between reducer size and replication rate. This is
nicely illustrated by Ullman’s drug interaction example [25].
There are n (= 6, 500) drugs, each consisting of about 1MB
of data about patients who took that drug, and one has to
find all drug interactions, by applying a user defined func-
tion (UDF) to all pairs of drugs. To see the tradeoffs, it
helps to simplify the example, by assuming we are given two
sets, each of size n, and we have to apply a UDF to every
pair of items, one from each set, in effect computing their
cartesian product. There are two extreme ways to solve this.
One can use n2 reducers, one for each pair of items; while
each reducer has size 2, this approach is impractical because
the entire data is replicated n times. At the other extreme
one can use a single reducer that handles the entire data;
the replication rate is 1, but the size of the reducer is 2n,
which is also impractical. As a tradeoff, partition each set
into g groups of size n/g, and use one reducer for each of the
g2 pairs of groups: the size of a reducer is 2n/g, while the
replication rate is g. Thus, there is a tradeoff between the
replication rate and the reducer size, which was also shown
to hold for several other classes of problems [1].

Towards lower bound models.
There are two significant limitations of this prior work:

(1) As powerful and as convenient as the MapReduce frame-
work is, the operations it provides may not be able to take
full advantage of the resource constraints of modern sys-
tems. The lower bounds say nothing about alternative ways
of structuring the computation that send and receive the
same amount data per step. (2) Even within the MapRe-
duce framework, the only lower bounds apply to a single
communication round, and say nothing about the limita-
tions of multi-round MapReduce algorithms.

While it is convenient that MapReduce hides the num-
ber of servers from the programmer, when considering the
most efficient way to use resources to solve problems it is
natural to expose information about those resources to the
programmer. In this paper, we take the view that the num-
ber of servers p should be an explicit parameter of the model,
which allows us to focus on the tradeoff between the amount
of communication and the number of rounds. For example,
going back to our cartesian product problem, if the number
of servers p is known, there is one optimal way to solve the
problem: partition each of the two sets into g =

√
p groups,

and let each server handle one pair of groups.
A model with p as explicit parameter was proposed by

Koutris and Suciu [17], who showed both lower and upper
bounds for one round of communication. In this model only
tuples are sent and they must be routed independent of each
other. For example, [17] proves that multi-joins on the same
attribute can be computed in one round, while multi-joins on
different attributes, like R(x), S(x, y), T (y) require strictly
more than one round. The study was mostly focused on
understanding data skew, the model was limited, and the
results do not apply to more than one round.

In this paper we develop more general models, establish
lower bounds that hold even in the absence of skew, and use

a bit model, rather than a tuple model, to represent data.

Our lower bound models and results.
We define the Massively Parallel Communication (MPC)

model, to analyze the tradeoff between the number of rounds
and the amount of communication required in a massively
parallel computing environment. We include the number of
servers p as a parameter, and allow each server to be in-
finitely powerful, subject only to the data to which it has
access. The model requires that each server receives only
O(N/p1−ε) bits of data at any step, where N is the prob-
lem size, and ε ∈ [0, 1] is a parameter of the model. This
implies that the replication factor is O(pε) per round. A
particularly natural case is ε = 0, which corresponds to a
replication factor of O(1), or O(N/p) bits per server; ε = 1
is degenerate, since it allows the entire data to be sent to
every server.

We establish both lower and upper bounds for comput-
ing a full conjunctive query q, in two settings. First, we
restrict the computation to a single communication round
and examine the minimum parameter ε for which it is possi-
ble to compute q with O(N/p1−ε) bits per processor; we call
this the space exponent. We show that the space exponent
for connected queries is always at least 1 − 1/τ∗(q), where
τ∗(q) is the fractional (vertex) covering number of the hy-
pergraph associated with q [6], which is the optimal value of
the vertex cover linear program (LP) for that hypergraph.
This lower bound applies to the strongest possible model in
which servers can encode any information in their messages,
and have access to a common source of randomness. This
is stronger than the lower bounds in [1, 17], which assume
that the units being exchanged are tuples.

Our one round lower bound holds even in the special case
of matching databases, when all attributes are from the
same domain [n] and all input relations are (hypergraph)
matchings, in other words, every relation has exactly n
tuples, and every attribute contains every value 1, 2, . . . , n
exactly once. Thus, the lower bound holds even in a case
in which there is no data skew. We describe a simple
tuple-independent algorithm that is easily implementable
in the MapReduce framework, which, in the special case
of matching databases, matches our lower bound for any
conjunctive query. The algorithm uses the optimal solution
for the fractional vertex cover to find an optimal split of
the input data to the servers. For example, the linear query
L2 = S1(x, y), S2(y, z) has an optimal vertex cover 0, 1, 0
(for the variables x, y, z), hence its space exponent is ε = 0,
whereas the cycle query C3 = S1(x, y), S2(y, z), S3(z, x)
has optimal vertex cover 1/2, 1/2, 1/2 and space exponent
ε = 1/3. We note that recent work [13, 4, 20] gives upper
bounds on the query size in terms of a fractional edge cover,
while our results are in terms of the vertex cover. Thus, our
first result is:

Theorem 1.1. For every connected conjunctive query q,
any p-processor randomized MPC algorithm computing q in
one round requires space exponent ε ≥ 1 − 1/τ∗(q). This
lower bound holds even over matching databases, for which
it is optimal.

Second, we establish lower bounds for multiple communi-
cation steps, for a restricted version of the MPC model,
called tuple-based MPC model. The messages sent in the
first round are still unrestricted, but in subsequent rounds
the servers can send only tuples, either base tuples in the in-

put tables, or join tuples corresponding to a subquery; more-
over, the destinations of each tuple may depend only on the
tuple content, the message received in the first round, the
server, and the round. We note that any multi-step MapRe-
duce program is tuple-based, because in any map function
the key of the intermediate value depends only on the input
tuple to the map function. Here, we prove that the number
of rounds required is, essentially, given by the depth of a
query plan for the query, where each operator is a subquery
that can be computed in one round for the given ε. For
example, to compute a length k chain query Lk, if ε = 0,
the optimal computation is a bushy join tree, where each
operator is L2 (a two-way join) and the optimal number of
rounds is log2 k. If ε = 1/2, then we can use L4 as opera-
tor (a four-way join), and the optimal number of rounds is
log4 k. More generally, we can show nearly matching upper
and lower bounds based on graph-theoretic properties of the
query such as the following:

Theorem 1.2. For space exponent ε, the number of rounds
required for any tuple-based MPC algorithm to compute any
tree-like conjunctive query q is at least dlogkε

(diam(q))e where
kε = 2b1/(1 − ε)c and diam(q) is the diameter of q. More-
over, for any connected conjunctive query q, this lower bound
is nearly matched (up to a difference of essentially one round)
by a tuple-based MPC algorithm with space exponent ε.

These are the first lower bounds that apply to multiple
rounds of MapReduce. Both lower bounds in Theorem 1.1
and Theorem 1.2 are stated in a strong form: we show that
any algorithm on the MPC model retrieves only a 1/pΩ(1)

fraction of the answers to the query in expectation, when
the inputs are drawn uniformly at random (the exponent
depends on the query and on ε); Yao’s Lemma [26] imme-
diately implies a lower bound for any randomized algorithm
over worst-case inputs. Notice that the fraction of answers
gets worse as the number of servers p increases. In other
words, the more parallelism we want, the worse an algo-
rithm performs, if the number of communication rounds is
bounded.

Related work in communication complexity.
The results we show belong to the study of communi-

cation complexity, for which there is a very large body of
existing research [18]. Communication complexity considers
the number of bits that need to be communicated between
cooperating agents in order to solve computational prob-
lems when the agents have unlimited computational power.
Our model is related to the so-called number-in-hand multi-
party communication complexity, in which there are multi-
ple agents and no shared information at the start of commu-
nication. This has already been shown to be important to
understanding the processing of massive data: Analysis of
number-in-hand (NIH) communication complexity has been
the main method for obtaining lower bounds on the space
required for data stream algorithms (e.g. [3]).

However, there is something very different about the re-
sults that we prove here. In almost all prior lower bounds,
there is at least one agent that has access to all communica-
tion between agents1. (Typically, this is either via a shared
blackboard to which all agents have access or a referee who

1Though private-messages models have been defined before,
we are aware of only two lines of work where lower bounds
make use of the fact that no single agent has access to all

receives all communication.) In this case, no problem on N
bits whose answer is M bits long can be shown to require
more than N +M bits of communication.

In our MPC model, all communication between servers
is private and we restrict the communication per processor
per step, rather than the total communication. Indeed, the
privacy of communication is essential to our lower bounds,
since we prove lower bounds that apply when the total com-
munication is much larger than N +M . (Our lower bounds
for some problems apply when the total communication is
as large as N1+δ.)

2. PRELIMINARIES

2.1 Massively Parallel Communication
We fix a parameter ε ∈ [0, 1], called the space exponent,

and define the MPC(ε) model as follows. The computation
is performed by p servers, called workers, connected by a
complete network of private channels. The input data has
size N bits, and is initially distributed evenly among the p
workers. The computation proceeds in rounds, where each
round consists of local computation at the workers inter-
leaved with global communication. The complexity is mea-
sured in the number of communication rounds. The servers
have unlimited computational power, but there is one im-
portant restriction: at each round, a worker may receive a
total of only O(N/p1−ε) bits of data from all other workers
combined. Our goal is to find lower and upper bounds on
the number of communication rounds.

The space exponent represents the degree of replication
during communication; in each round, the total amount of
data exchanged is O(pε) times the size of the input data.
When ε = 0, there is no replication, and we call this the
basic MPC model. The case ε = 1 is degenerate because
each server can receive the entire data, and any problem
can be solved in a single round. Similarly, for any fixed ε,
if we allow the computation to run for Θ(p1−ε) rounds, the
entire data can be sent to every server and the model is
again degenerate.

We denote Mr
uv the message sent by server u to server v

during round r and denote Mr
v = (Mr−1

v , (Mr
1v, . . . ,M

r
pv))

the concatenation of all messages sent to v up to round r.
Assuming O(1) rounds, each message Mr

v holds O(N/p1−ε)
bits. For our multi-round lower bounds in Section 4, we will
further restrict what the workers can encode in the messages
Mr
uv during rounds r ≥ 2.

2.2 Randomization
The MPC model allows randomization. The random bits

are available to all servers, and are computed independently
of the input data. The algorithm may fail to produce its out-
put with a small probability η > 0, independent of the input.
For example, we use randomization for load balancing, and

communication: (1) Results of [11, 14] use the assumption
that communication is both private and (multi-pass) one-
way, but unlike the bounds we prove here, their lower bounds
are smaller than the total input size; (2) Tiwari [24] de-
fined a distributed model of communication complexity in
networks in which in input is given to two processors that
communicate privately using other helper processors. How-
ever, this model is equivalent to ordinary public two-party
communication when the network allows direct private com-
munication between any two processors, as our model does.

abort the computation if the amount of data received dur-
ing a communication would exceed the O(N/p1−ε) limit, but
this will only happen with exponentially small probability.

To prove lower bounds for randomized algorithms, we use
Yao’s Lemma [26]. We first prove bounds for deterministic
algorithms, showing that any algorithm fails with probabil-
ity at least η over inputs chosen randomly from a distribu-
tion µ. This implies, by Yao’s Lemma, that every random-
ized algorithm with the same resource bounds will fail on
some input (in the support of µ) with probability at least η
over the algorithm’s random choices.

2.3 Conjunctive Queries
In this paper we consider a particular class of problems for

the MPC model, namely computing answers to conjunctive
queries over an input database. We fix an input vocabulary
S1, . . . , S`, where each relation Sj has a fixed arity rj ; we

denote r =
P`
j=1 rj . The input data consists of one relation

instance for each symbol. We denote n the largest number of
tuples in any relation Sj ; then, the entire database instance
can be encoded using N = O(n logn) bits, because ` = O(1)
and rj = O(1) for j = 1, . . . , `.

We consider full conjunctive queries (CQs) without self-
joins, denoted as follows:

q(x1, . . . , xk) = S1(x̄1), . . . , S`(x̄`) (1)

The query is full, meaning that every variable in the body
appears the head (for example q(x) = S(x, y) is not full),
and without self-joins, meaning that each relation name Sj
appears only once (for example q(x, y, z) = S(x, y), S(y, z)
has a self-join). The hypergraph of a query q is defined by in-
troducing one node for each variable in the body and one hy-
peredge for each set of variables that occur in a single atom.
We say that a conjunctive query is connected if the query
hypergraph is connected (for example, q(x, y) = R(x), S(y)
is not connected). We use vars(Sj) to denote the set of vari-
ables in the atom Sj , and atoms(xi) to denote the set of
atoms where xi occurs; k and ` denote the number of vari-
ables and atoms in q, as in (1). The connected components
of q are the maximal connected subqueries of q. Table 1
illustrates example queries used throughout this paper.

We consider two query evaluation problems. In Join-
Reporting, we require that all tuples in the relation de-
fined by q be produced. In Join-Witness, we require the
production of at least one tuple in the relation defined by
q, if one exists; Join-Witness is the verified version of the
natural decision problem Join-NonEmptiness.

Characteristic of a Query.
The characteristic of a conjunctive query q as in (1) is

defined as χ(q) = k+`−
P
j rj−c, where k is the number of

variables, ` is the number of atoms, rj is the arity of atom
Sj , and c is the number of connected components of q.

For a query q and a set of atoms M ⊆ atoms(q), define
q/M to be the query that results from contracting the edges
in the hypergraph of q. As an example, for the query L5 in
Table 1, L5/{S2, S4} = S1(x1, x2), S3(x2, x4), S5(x4, x6).

Lemma 2.1. The characteristic of a query q satisfies the
following properties:

(a) If q1, . . . , qc are the connected components of q, then
χ(q) =

Pc
i=1 χ(qi).

(b) For any M ⊆ atoms(q), χ(q/M) = χ(q)− χ(M).

(c) χ(q) ≤ 0.

(d) For any M ⊆ atoms(q), χ(q) ≤ χ(q/M).

Proof. Property (a) is immediate from the definition of
χ, since the connected components of q are disjoint with
respect to variables and atoms. Since q/M can be produced
by contracting according to each connected component of
M in turn, by property (a) and induction it suffices to show
that property (b) holds in the case that M is connected.
If a connected M has kM variables, `M atoms, and total
arity rM , then the query after contraction, q/M , will have
the same number of connected components, kM − 1 fewer
variables, and the terms for the number of atoms and total
arity will be reduced by `M − rM for a total reduction of
kM + `M − rM − 1 = χ(M). Thus, property (b) follows.

By property (a), it suffices to prove (c) when q is con-
nected. If q is a single atom then χ(q) ≤ 0, since the num-
ber of variables is at most the arity of the atom in q. We
reduce to this case by repeatedly contracting the atoms of
q until only one remains and showing that χ(q) ≤ χ(q/Sj):
Let m ≤ rj be the number of distinct variables in atom
Sj . Then, χ(q/Sj) = (`− 1) + (k −m+ 1)− (r − rj)− 1 =
χ(q)+(rj−m) ≥ χ(q). Property (d) also follows by the com-
bination of property (b) and property (c) applied to M .

Finally, let us call a query q tree-like if q is connected
and χ(q) = 0. For example, the query Lk is tree-like,
and so is any query over a binary vocabulary whose
graph is a tree. Over non-binary vocabularies, any tree-
like query is acyclic, but the converse does not hold:
q = S1(x0, x1, x2), S2(x1, x2, x3) is acyclic but not tree-like.
An important property of tree-like queries is that every
connected subquery will be also tree-like.

Vertex Cover and Edge Packing.
A fractional vertex cover of a query q is any feasible so-

lution of the LP shown on the left of Fig. 1. The vertex
cover associates a non-negative number ui to each variable
xi s.t. every atom Sj is “covered”,

P
i:xi∈vars(Sj) vi ≥ 1.

The dual LP corresponds to a fractional edge packing prob-
lem (also known as a fractional matching problem), which
associates non-negative numbers uj to each atom Sj . The
two LPs have the same optimal value of the objective func-
tion, known as the fractional covering number [6] of the hy-
pergraph associated with q and denoted by τ∗(q). Thus,
τ∗(q) = min

P
i vi = max

P
j uj . Additionally, if all in-

equalities are satisfied as equalities by a solution to the LP,
we say that the solution is tight.

For a simple example, a fractional vertex cover of the
query2 L3 = S1(x1, x2), S2(x2, x3), S3(x3, x4) is any solu-

2We drop the head variables when clear from the context.

Vertex Covering LP Edge Packing LP

∀j ∈ [`] :X
i:xi∈vars(Sj)

vi ≥ 1 (2)

∀i ∈ [k] : vi ≥ 0

∀i ∈ [k] :X
j:xi∈vars(Sj)

uj ≤ 1 (3)

∀j ∈ [`] : uj ≥ 0

minimize
Pk
i=1 vi maximize

P`
j=1 uj

Figure 1: The vertex covering LP of the hypergraph of a
query q, and its dual edge packing LP.

tion to v1 + v2 ≥ 1, v2 + v3 ≥ 1 and v3 + v4 ≥ 1; the optimal
is achieved by (v1, v2, v3, v4) = (0, 1, 1, 0), which is not tight.
An edge packing is a solution to u1 ≤ 1, u1 + u2 ≤ 1,
u2 + u3 ≤ 1 and u3 ≤ 1, and the optimal is achieved by
(1, 0, 1), which is tight.

The fractional edge packing should not be confused with
the fractional edge cover, which has been used recently in
several papers to prove bounds on query size and the running
time of a sequential algorithm for the query [4, 20]; for the
results in this paper we need the fractional packing. The
two notions coincide, however, when they are tight.

2.4 Input Servers
We assume that, at the beginning of the algorithm, each

relation Sj is stored on a separate server, called an input
server, which during the first round sends a message M1

ju to
every worker u. After the first round, the input servers are
no longer used in the computation. All lower bounds in this
paper assume that the relations Sj are given on separate
input servers. All upper bounds hold for either model.

The lower bounds for the model with separate input servers
carry over immediately to the standard MPC model, because
any algorithm in the standard model can be simulated in the
model with separate input servers. Indeed, the algorithm
must compute the output correctly for any initial distribu-
tion of the input data on the p servers: we simply choose to
distribute the input relations S1, . . . , S` such that the first
p/` servers receive S1, the next p/` servers receive S2, etc.,
then simulate the algorithm in the model with separate in-
put servers (see [17, proof of Proposition 3.5] for a detailed
discussion). Thus, it suffices to prove our lower bounds as-
suming that each input relation is stored on a separate input
server. In fact, this model is even more powerful, because
an input server has now access to the entire relation Sj ,
and can therefore perform some global computation on Sj ,
for example compute statistics, find outliers, etc., which are
common in practice.

2.5 Input Distribution
We find it useful to consider input databases of the follow-

ing form that we call a matching database: The domain of
the input database will be [n], for n > 0. In such a database
each relation Sj is an rj-dimensional matching, where rj is
its arity. In other words, Sj has exactly n tuples and each
of its columns contains exactly the values 1, 2, . . . , n; each
attribute of Sj is a key. For example, if Sj is binary, then
an instance of Sj is a permutation on [n]; if Sj is ternary
then an instance consists of n node-disjoint triangles. More-
over, the answer to a connected conjunctive query q on a
matching database is a table where each attribute is a key,
because we have assumed that q is full; in particular, the
output to q has at most n tuples. In our lower bounds we
assume that a matching database is randomly chosen with
uniform probability, for a fixed n.

Matching databases are database instances without skew.
By stating our lower bounds on matching databases we make
them even stronger, because they imply that a query cannot
be computed even in the absence of skew; of course, the
lower bounds also hold for arbitrary instances. Our upper
bounds, however, hold only on matching databases. Data
skew is a known problem in parallel processing, and requires
dedicated techniques. Lower and upper bounds accounting
for the presence of skew are discussed in [17].

2.6 Friedgut’s Inequality
Friedgut [10] introduces the following class of inequalities.

Each inequality is described by a hypergraph, which in our
paper corresponds to a query, so we will describe the in-
equality using query terminology. Fix a query q as in (1),
and let n > 0. For every atom Sj(x̄j) of arity rj , we intro-
duce a set of nrj variables wj(aj) ≥ 0, where aj ∈ [n]rj .
If a ∈ [n]r, we denote by aj the vector of size rj that re-
sults from projecting on the variables of the relation Sj . Let
u = (u1, . . . , u`) be a fractional edge cover for q. Then:

X
a∈[n]k

Ỳ
j=1

wj(aj) ≤
Ỳ
j=1

0@ X
aj∈[n]

rj

wj(aj)
1/uj

1Auj

(4)

We illustrate Friedgut’s inequality on C3 and L3:

C3(x, y, z) = S1(x, y), S2(y, z), S3(z, x)

L3(x, y, z, w) = S1(x, y), S2(y, z), S3(z, w) (5)

C3 has cover (1/2, 1/2, 1/2), and L3 has cover (1, 0, 1). Thus,
we obtain the following inequalities, where a, b, c stand for
w1, w2, w3 respectively:X
x,y,z∈[n]

axy · byz · czx ≤
s X
x,y∈[n]

a2
xy

X
y,z∈[n]

b2yz
X

z,x∈[n]

c2zx

X
x,y,z,w∈[n]

axy · byz · czw ≤
X

x,y∈[n]

axy · max
y,z∈[n]

byz ·
X

z,w∈[n]

czw

where we used the fact that limu→0(
P
b

1
u
yz)

u = max byz.
Friedgut’s inequalities immediately imply a well known

result developed in a series of papers [13, 4, 20] that gives
an upper bound on the size of a query answer as a function
on the cardinality of the relations. For example in the case
of C3, consider an instance S1, S2, S3, and set axy = 1 if
(x, y) ∈ S1, otherwise axy = 0 (and similarly for byz, czx).

We obtain then |C3| ≤
p
|S1| · |S2| · |S3|. Note that all these

results are expressed in terms of a fractional edge cover.
When we apply Friedgut’s inequality in Section 3.2 to a frac-
tional edge packing, we ensure that the packing is tight.

3. ONE COMMUNICATION STEP
Let the space exponent of a query q be the smallest ε ≥ 0

for which q can be computed using one communication step
in the MPC(ε) model. In this section, we prove Theorem 1.1,
which gives both a general lower bound on the space ex-
ponent for evaluating connected conjunctive queries and a
precise characterization of the space exponent for evaluating
them them over matching databases. The proof consists of
two parts: we show the optimal algorithm in 3.1, and then
present the matching lower bound in 3.2.

3.1 An Algorithm for One Round
We describe here an algorithm, which we call HyperCube

(HC), that computes a conjunctive query in one step. It uses
ideas that can be traced back to Ganguly [12] for parallel
processing of Datalog programs, and were also used by Afrati
and Ullman [2] to optimize joins in MapReduce, and by Suri
and Vassilvitskii [22] to count triangles.

Let q be a query as in (1). Associate to each variable xi
a real value ei ≥ 0, called the share exponent of xi, such
that

Pk
i=1 ei = 1. If p is the number of servers, define

pi = pei : these values are called shares [2]. We assume that

Conjunctive Query Expected Minimum Variable Shares Value Space
answer size Vertex Cover τ∗(q) Exponent

Ck(x1, . . . , xk) =
Vk
j=1 Sj(xj , x(j+1) mod k) 1 1

2
, . . . , 1

2
1
k
, . . . , 1

k
k/2 1− 2/k

Tk(z, x1, . . . , xk) =
Vk
j=1 Sj(z, xj) n 1, 0, . . . , 0 1, 0, . . . , 0 1 0

Lk(x0, x1, . . . , xk) =
Vk
j=1 Sj(xj−1, xj) n 0, 1, 0, 1, . . . 0, 1

dk/2e , 0,
1

dk/2e , . . . dk/2e 1− 1/dk/2e

Bk,m(x1, . . . , xk) =
V
I⊆[k],|I|=m SI(x̄I) nk−(m−1)(k

m) 1
m
, . . . , 1

m
1
k
, . . . , 1

k
k/m 1−m/k

Table 1: Running examples in this paper: Ck = cycle query, Lk = linear query, Tk = star query, and Bk,m = query with`
k
m

´
relations, where each relation contains a distinct set of m out of the k head variables. Assuming the inputs are random

permutation, the answer sizes represent exact values for Lk, Tk, and expected values for Ck, Bk,m.

the shares are integers. Thus, p =
Qk
i=1 pi, and each server

can be uniquely identified with a point in the k-dimensional
hypercube [p1]× · · · × [pk].

The algorithm uses k independently chosen random hash
functions hi : [n] → [pi], one for each variable xi. During
the communication step, the algorithm sends every tuple
Sj(aj) = Sj(ai1 , . . . , airj

) to all servers y ∈ [p1]× · · · × [pk]

such that him(aim) = yim for any 1 ≤ m ≤ rj . In other
words, the tuple Sj(aj) knows the server number along the
dimensions i1, . . . , irj , but does not know the server num-
ber along the other dimensions, and there it needs to be
replicated. After receiving the data, each server outputs all
query answers derivable from the received data. The algo-
rithm finds all answers, because each potential output tuple
(a1, . . . , ak) is known by the server y = (h1(a1), . . . , hk(ak)).

Example 3.1. We illustrate how to compute the query
C3(x1, x2, x3) = S1(x1, x2), S2(x2, x3), S3(x3, x1). Consider
the share exponents e1 = e2 = e3 = 1/3. Each of the p
servers is uniquely identified by a triple (y1, y2, y3), where

y1, y2, y3 ∈ [p1/3]. In the first communication round, the
input server storing S1 sends each tuple S1(a1, a2) to all

servers with index (h1(a1), h2(a2), y3), for all y3 ∈ [p1/3]:

notice that each tuple is replicated p1/3 times. The input
servers holding S2 and S3 proceed similarly with their tu-
ples. After round 1, any three tuples S1(a1, a2), S2(a2, a3),
S3(a3, a1) that contribute to the output tuple C3(a1, a2, a3)
will be seen by the server y = (h1(a1), h2(a2), h3(a3)): any
server that detects three matching tuples outputs them.

Proposition 3.2. Fix a fractional vertex cover v =
(v1, . . . , vk) for a connected conjunctive query q, and let
τ =

P
i vi. The HC algorithm with share exponents ei =

vi/τ computes q on any matching database in one round
in MPC(ε), where ε = 1 − 1/τ , with probability of failure
η ≤ exp(−O(n/pε)).

This proves the optimality claim of Theorem 1.1: choose a
vertex cover with value τ∗(q), the fractional covering number
of q. Proposition 3.2 shows that q can be computed in one
round in MPC(ε), with ε = 1− 1/τ∗.

Proof. Since v forms a fractional vertex cover, for every
relation symbol Sj we have

P
i:xi∈vars(Sj) ei ≥ 1/τ . There-

fore,
P
i:xi 6∈vars(Sj) ei ≤ 1− 1/τ . Every tuple Sj(aj) is repli-

cated
Q
i:xi 6∈vars(Sj) pi ≤ p

1−1/τ times. Thus, the total num-

ber of tuples that are received by all servers is O(n ·p1−1/τ).
We claim that these tuples are uniformly distributed among
the p servers: this proves the theorem, since then each server
receives O(n/p1/τ) tuples.

To prove the claim, we note that for each tuple t ∈ Sj ,
the probability over the random choices of the hash func-
tions h1, . . . , hk that the tuple is sent to server s is pre-
cisely

Q
i:xi∈vars(Sj) p

−1
i . Thus, the expected number of tu-

ples from Sj sent to s is n/
Q
i:xi∈Sj

pi ≤ n/p1−ε. Since Sj is

an rj-matching, different tuples are sent by the random hash
functions to independent destinations, since any two tuples
differ in every attribute. Using standard Chernoff bounds,
we derive that the probability that the actual number of tu-
ples per server deviates more than a constant factor from
the expected number is η ≤ exp(−O(n/p1−ε)).

3.2 A Lower Bound for One Round
For a fixed n, consider a probability distribution where

the input I is chosen randomly, with uniform probability
from all matching database instances. Let E[|q(I)|] denote
the expected number of answers to the query q. We prove
in this section:

Theorem 3.3. Let q be a connected conjunctive query,
let τ∗ be the fractional covering number of q, and ε <
1 − 1/τ∗. Then, any deterministic MPC(ε) algorithm that
runs in one communication round on p servers reports
O(E[|q(I)|]/pτ

∗(1−ε)−1) answers in expectation.

In particular, the theorem implies that the space exponent
of q is at least 1 − 1/τ∗. Before we prove the theorem, we
show how to extend it to randomized algorithms using Yao’s
principle. For this, we show a lemma that we also need later.

Lemma 3.4. The expected number of answers to connected
query q is E[|q(I)|] = n1+χ(q), where the expectation is over
a uniformly chosen matching database I.

Proof. For any relation Sj , and any tuple aj ∈ [n]rj ,
the probability that Sj contains aj is P(aj ∈ Sj) = n1−rj .
Given a tuple a ∈ [n]k of the same arity as the query answer,
let aj denote its projection on the variables in Sj . Then:

E[|q(I)|] =
P

a∈[n]k P(
V`
j=1(aj ∈ Sj))

=
P

a∈[n]k

Q`
j=1 P(aj ∈ Sj) =

P
a∈[n]k

Q`
j=1 n

1−rj = nk+`−r

Since query q is connected, k + ` − r = 1 + χ(q) and hence

E[|q(I)|] = n1+χ(q).

Theorem 3.3 and Lemma 3.4, together with Yao’s lemma,
imply the following lower bound for randomized algorithms.

Corollary 3.5. Let q be any connected conjunctive query.
Any one round randomized MPC(ε) algorithm with p = ω(1)
and ε < 1 − 1/τ∗(q) fails to compute q with probability

η = Ω(nχ(q)) = n−O(1).

Proof. Choose a matching database I input to q uni-
formly at random. Let a(I) denote the set of correct answers
returned by the algorithm on I: a(I) ⊆ q(I). Observe that
the algorithm fails on I iff |q(I)− a(I)| > 0.

Let γ = 1/pτ
∗(q)(1−ε)−1. Since p = ω(1) and ε < 1 −

1/τ∗(q), it follows that γ = o(1). By Theorem 3.3, for
any deterministic one round MPC(ε) algorithm we have
E[|a(I)|] = O(γ)E[|q(I)|] and hence, by Lemma 3.4,

E[|q(I)− a(I)|] = (1− o(1))E[|q(I)|] = (1− o(1))n1+χ(q)

However, we also have that

E[|q(I)− a(I)|] ≤ P[|q(I)− a(I)| > 0] ·maxI |q(I)− a(I)|.

Since |q(I) − a(I)| ≤ |q(I)| ≤ n for all I, we see that the
failure probability of the algorithm for randomly chosen I,
P[|q(I)− a(I)| > 0], is at least η = (1− o(1))nχ(q) which is

n−O(1) for any q. Yao’s lemma implies that every one round
randomized MPC(ε) algorithm will fail to compute q with
probability at least η on some matching database input.

In the rest of the section we prove Theorem 3.3, which
deals with one-round deterministic algorithms and random
matching databases I. Let us fix some server and let m(I)
denote the function specifying the message the server re-
ceives on input I. Intuitively, this server can only report
those tuples that it knows are in the input based on the
value of m(I). To make this notion precise, for any fixed
value m of m(I), define the set of tuples of a relation R of
arity r known by the server given message m as

Km(R) = {t ∈ [n]r | for all matching databases I,
m(I) = m⇒ t ∈ R(I)}

We will particularly apply this definition with R = Sj and
R = q. Clearly, an output tuple a ∈ Km(q) iff for every j,
aj ∈ Km(Sj), where aj denotes the projection of a on the
variables in the atom Sj .

We will first prove an upper bound for each |Km(Sj)| in
Section 3.2.1. Then in Section 3.2.2 we use this bound, along
with Friedgut’s inequality, to establish an upper bound for
|Km(q)| and hence prove Theorem 3.3.

3.2.1 Bounding the Knowledge of Each Relation
Fix a server, and an input relation Sj . We prove here:

Lemma 3.6. E[|Km(I)(Sj)|] = O(n/p1−ε) for random I.

Since Sj has exactly n tuples, the lemma says that any
server knows, in expectation, only a fraction f = O(1/p1−ε)
of tuples from Sj . While m = m(I) is the concatenation
of ` messages, one for each input relation, Km(Sj) depends
only on the part of the message corresponding to Sj , so we
can assume w.l.o.g. that m is a function only of Sj , denoted
by mj . For convenience, we also drop the index j and write
S = Sj ,r = rj , m = mj ; m(S) is now a function computed
on the single r-dimensional matching relation S.

Observe that for a randomly chosen matching database
I, S is a uniformly chosen r-dimensional matching. There
are precisely (n!)r−1 different r-dimensional matchings on
[n] and, since q is of fixed total arity, the number of bits
N necessary to represent the entire input I is Θ(log(n!)) =
Θ(n logn). Therefore, m(S) is at most O((n logn)/p1−ε)
bits long for all S.

Lemma 3.7. Suppose that for all r-dimensional match-
ings S, m(S) is at most f · (r − 1) log(n!) bits long. Then
E[|Km(S)(S)|] ≤ f · n, where the expectation is taken over
random choices of the matching S.

We observe that Lemma 3.6 is an immediate corollary of
Lemma 3.7 by setting f to be O(1/p1−ε).

Proof. Let m be a possible value for m(S). Since m
fixes precisely |Km(S)| tuples of S,

log |{S | m(S) = m}| ≤ (r − 1)
Pn−|Km(S)|
i=1 log i

≤ (1− |Km(S)|/n)(r − 1)
Pn
i=1 log i

= (1− |Km(S)|/n) log(n!)r−1. (6)

We can bound the value we want by considering the binary
entropy of the distribution S, H(S) = log(n!)r−1. By ap-
plying the chain rule for entropy, we have

H(S) = H(m(S)) +
P
mP(m(S) = m) ·H(S|m(S) = m)

≤ f ·H(S) +
P
mP(m(S) = m) ·H(S|m(S) = m)

≤ f ·H(S) +
P
mP(m(S) = m) · (1− |Km(S)|/n)H(S)

= f ·H(S) + (1−
P
mP(m(S) = m) |Km(S)|/n)H(S)

= f ·H(S) + (1−E[|Km(S)(S)|]/n)H(S) (7)

where the first inequality follows from the assumed upper
bound on |m(S)|, the second inequality follows by (6), and
the last two lines follow by definition. Dividing both sides of
(7) by H(S) and rearranging we obtain that E|Km(S)(S)|] ≤
f · n, as required.

3.2.2 Bounding the Knowledge of the Query
Here we conclude the proof of Theorem 3.3 using the

results in the previous section. Let us fix some server.
Lemma 3.6 implies that, for f = c/p1−ε for some
constant c and randomly chosen matching database I,
E[|Kmj(I)(Sj)|] = E[|Kmj(Sj)(Sj)|] ≤ f · n for all j ∈ [`].
We prove:

Lemma 3.8. E[|Km(I)(q)|] ≤ f τ
∗(q)n1+χ(q) for randomly

chosen matching database I.

This proves Theorem 3.3, since the total number of tuples
known by all p servers is bounded by:

p ·E[|Km(I)(q)|] ≤ p · f τ
∗(q)E[|q(I)|]

= p · cτ
∗(q) ·E[|q(I)|]/p(1−ε)τ∗(q)

which is the upper bound in Theorem 3.3 since c and τ∗(q)
are constants. In the rest of the section we prove Lemma 3.8.

We start with some notation. For aj ∈ [n]rj , let wj(aj)
denote the probability that the server knows the tuple aj .
In other words wj(aj) = P(aj ∈ Kmj(Sj)(Sj)), where the
probability is over the random choices of Sj .

Lemma 3.9. For any relation Sj:

(a) ∀aj ∈ [n]rj : wj(aj) ≤ n1−rj , and

(b)
P

aj∈[n]
rj wj(aj) ≤ fn.

Proof. To show (a), notice that wj(aj) ≤ P(aj ∈ Sj) =
n1−rj , while (b) follows from the fact

P
aj∈[n]

rj wj(aj) =

E[|Kmj(Sj)(Sj)|] ≤ fn.

Since the server receives a separate message for each re-
lation Sj , from a distinct input server, the events a1 ∈
Km1(S1), . . . ,a` ∈ Km`(S`) are independent, hence:

E[|Km(I)(q)|] =
X

a∈[n]k

P(a ∈ Km(I)(q)) =
X

a∈[n]k

Ỳ
j=1

wj(aj)

We now prove Lemma 3.8 using Friedgut’s inequality. Re-
call that in order to apply the inequality, we need to find a
fractional edge cover. Fix an optimal fractional edge pack-
ing u = (u1, . . . , u`) as in Fig. 1. By duality, we have thatP
j uj = τ∗, where τ∗ is the fractional covering number

(which is the value of the optimal fractional vertex cover,
and equal to the value of the optimal fractional edge pack-
ing). Given q, defined as in (1), consider the extended query,
which has a new unary atom for each variable xi:

q′(x1, . . . , xk) = S1(x̄1), . . . , S`(x̄`), T1(x1), . . . , Tk(xk)

For each new symbol Ti, define u′i = 1 −
P
j:xi∈vars(Sj) uj .

Since u is a packing, u′i ≥ 0. Let us define u′ = (u′1, . . . , u
′
k).

Lemma 3.10. (a) The assignment (u,u′) is both a tight
fractional edge packing and a tight fractional edge cover for
q′. (b)

P`
j=1 rjuj +

Pk
i=1 u

′
i = k

Proof. (a) is straightforward, since for every variable xi
we have u′i +

P
j:xi∈vars(Sj) uj = 1. Summing up:

k =
Pk
i=1(u′i +

P
j:xi∈vars(Sj) uj) =

Pk
i=1 u

′
i +
P`
j=1 rjuj

which proves (b).

We will apply Friedgut’s inequality to the extended query
q′ to prove Lemma 3.8. Set the variables w(−) used in
Friedgut’s inequality as follows:

wj(aj) =P(aj ∈ Kmj(Sj)(Sj)) for Sj , tuple aj ∈ [n]rj

w′i(a) =1 for Ti, value a ∈ [n]

Recall that, for a tuple a ∈ [n]k we use aj ∈ [n]rj for
its projection on the variables in Sj ; with some abuse, we
write ai ∈ [n] for the projection on the variable xi. Then,

interpreting (
P

a b
1/u
a)u as maxa ba for u = 0:

E[|Km(q)|] =
X

a∈[n]k

Ỳ
j=1

wj(aj) =
X

a∈[n]k

Ỳ
j=1

wj(aj)

kY
i=1

w′i(ai)

≤
Q`
j=1

“P
a∈[n]

rj wj(a)1/uj

”uj Qk
i=1

“P
a∈[n] w

′
i(a)1/u′i

”u′i
=
Q`
j=1

“P
a∈[n]

rj wj(a)1/uj

”uj Qk
i=1 n

u′i

Assume first that all uj > 0. By Lemma 3.9, we obtain:P
a∈[n]

rj wj(a)1/uj ≤ (n1−rj)1/uj−1P
a∈[n]

rj wj(a)

≤ n(1−rj)(1/uj−1)fn = fn(rj−rj/uj+1/uj)

Plugging this in the bound, we have shown that:

E[|Km(q)|] ≤
Q`
j=1(fn(rj−rj/uj+1/uj))uj

Qk
i=1 n

u′i

= f
P`

j=1 ujn(
P`

j=1 rjuj−r+`)n
Pk

i=1 u
′
i

= n(`−r)f
P`

j=1 ujn(
P`

j=1 rjuj+
Pk

i=1 u
′
i)

= n`+k−rfτ
∗(q) = n1+χ(q)fτ

∗(q) (8)

If some uj = 0, then replace each uj with uj+δ (still an edge
cover). Now we have

P
j rjuj +

P
i u
′
i = k + rδ, hence an

extra factor nrδ in (8), which → 1 when δ → 0. Lemma 3.8

follows from (8) and E[|q(I)|] = n1+χ(q).

3.3 Extensions
Proposition 3.2 and Theorem 3.3 imply that, over match-

ing databases, the space exponent of a query q is 1− 1/τ∗,
where τ∗ is its fractional covering number. Table 1 illus-
trates the space exponent for various families of conjunctive
queries. We now discuss a few extensions and corollaries
whose proofs are given in the full paper: As a corollary of
Theorem 3.3 we can characterize the queries with space ex-
ponent zero, i.e. those that can be computed in a single
round without any replication.

Corollary 3.11. A query q has covering number τ∗(q) =
1 iff there exists a variable shared by all atoms.

Thus, a query can be computed in one round on MPC(0)
iff it has a variable occurring in all atoms. The corollary
should be contrasted with the results in [17], which proved
that a query is computable in one round iff it is tall-flat.
Any connected tall-flat query has a variable occurring in all
atoms, but the converse is not true in general. The algorithm
in [17] works for any input data, including skewed inputs,
while here we restrict to matching databases. For example,
S1(x, y), S2(x, y), S3(x, z) can be computed in one round if
all inputs are permutations, but it is not tall-flat, and hence
it cannot be computed in one round on general input data.

Theorem 3.3 tells us that a query q can report at most a
1/pτ

∗(q)(1−ε)−1 fraction of answers. We show that there is
an algorithm achieving this for matching databases:

Proposition 3.12. Given q and ε < 1 − 1/τ∗(q), there

exists an algorithm that reports Θ(E[|q(I)|]/pτ
∗(q)(1−ε)−1)

answers in expectation using one round in the MPC(ε) model.

Note that the algorithm is forced to run in one round, in
an MPC(ε) model strictly weaker than its space exponent,
hence it cannot find all the answers: the proposition says
that the algorithm can find an expected number of answers
that matches Theorem 3.3.

So far, our lower bounds were for the Join-Reporting
problem. We can extend the lower bounds to the Join-
Witness problem. For this, we choose unary relations R(w)
and T (z) to include each element from [n] independently
with probability 1/

√
n, and derive:

Proposition 3.13. For ε < 1/2, there exists no one-
round MPC(ε) algorithm that solves Join-Witness for the
query q(w, x, y, z) = R(w), S1(w, x), S2(x, y), S3(y, z), T (z).

4. MULTIPLE COMMUNICATION STEPS
In this section we consider a restricted version of the

MPC(ε) model, called the tuple-based MPC(ε) model, which
can simulate multi-round MapReduce for database queries.
We will establish both upper and lower bounds on the num-
ber of rounds needed to compute any connected query q in
this tuple-based MPC(ε) model, proving Theorem 1.2.

4.1 An Algorithm for Multiple Rounds
Given an ε ≥ 0, let Γ1

ε denote the class of connected
queries q for which τ∗(q) ≤ 1/(1−ε); these are precisely the

queries that can be computed in one round in the MPC(ε)
model on matching databases. We extend this definition in-
ductively to larger numbers of rounds: Given Γrε for some
r ≥ 1, define Γr+1

ε to be the set of all connected queries q
constructed as follows. Let q1, . . . , qm ∈ Γrε be m queries,
and let q0 ∈ Γ1

ε be a query over a different vocabulary
V1, . . . , Vm, such that |vars(qj)| = arity(Vj) for all j ∈ [m].
Then, the query q = q0[q1/V1, . . . , qm/Vm], obtained by sub-
stituting each view Vj in q0 with its definition qj , is in Γr+1

ε .
In other words, Γrε consists of queries that have a query plan
of depth r, where each operator is a query computable in
one step. The following proposition is straightforward.

Proposition 4.1. Every query in Γrε can be computed by
an MPC(ε) algorithm in r rounds on any matching database.

Example 4.2. Let ε = 1/2. The query Lk in Table 1 for
k = 16 has a query plan of depth r = 2. The first step
computes in parallel four queries, v1 = S1, S2, S3, S4, . . . ,
v4 = S13, S14, S15, S16. Each is isomorphic to L4, therefore
τ∗(q1) = · · · = τ∗(q4) = 2 and each can be computed in one
step. The second step computes the query q0 = V1, V2, V3, V4,
which is also isomorphic to L4. We can generalize this ap-
proach for any Lk: for any ε ≥ 0, let kε be the largest integer
such that τ∗(Lkε) ≤ 1/(1− ε): kε = 2b1/(1− ε)c. Then, for
any k ≥ kε, Lk can be computed using Lkε as a building block
at each round: the plan will have a depth of dlog k/ log kεe.

We also consider the query SPk =
Vk
i=1 Ri(z, xi), Si(xi, yi).

Since τ∗(SPk) = k, the space exponent for one round is
1 − 1/k. However, SPk has a query plan of depth 2 for
MPC(0), by computing the joins qi = Ri(z, xi), Si(xi, yi) in
the first round and in the second round joining all qi on the
common variable z. Thus, if we insist in answering SPk in
one round, we need a huge replication O(p1−1/k), but we can
compute it in two rounds with replication O(1).

We next present an upper bound on the number of rounds
needed to compute any query. Let rad(q) = minu maxv d(u, v)
denote the radius of a query q, where d(u, v) denotes the dis-
tance between two nodes in the hypergraph. For example,
rad(Lk) = dk/2e and rad(Ck) = bk/2c.

Lemma 4.3. Fix ε ≥ 0, let kε = 2b1/(1 − ε)c, and let q
be any connected query. Let r(q) = dlog(rad(q))/ log kεe+ 1
if q is tree-like, and let r(q) = dlog(rad(q) + 1)/ log kεe + 1
otherwise. Then, q can be computed in r(q) rounds on any
matching database input by repeated application of the HC
algorithm in the MPC(ε) model.

Proof. By definition of rad(q), there exists some node
v ∈ vars(q), such that the maximum distance of v to any
other node in the hypergraph of q is at most rad(q). If q
is tree-like then we can decompose q into a set of at most
|atoms(q)|rad(q) (possibly overlapping) paths P of length ≤
rad(q), each having v as one endpoint. Since it is essen-
tially isomorphic to L`, a path of length ` ≤ rad(q) can
be computed in at most dlog(rad(q))/ log kεe rounds using
the query plan from Proposition 4.1 together with repeated
use of the one-round HC algorithm for paths of length kε
as shown in Proposition 3.2 for τ = 1/(1 − ε). Moreover,
all the paths in P can be computed in parallel, because |P|
is a constant depending only on q. Since every path will
contain variable v, we can compute the join of all the paths
in one final round without any replication. The only differ-
ence for general connected queries is that q may also contain

q ε r r = f(ε)
query space exponent rounds for ε = 0 raounds/space tradeoff

Ck 1− 2/k dlog ke ∼ log k
log(2/(1−ε))

Lk 1− 1
dk/2e dlog ke ∼ log k

log(2/(1−ε))
Tk 0 1 NA
SPk 1− 1/k 2 NA

Table 2: The tradeoff between space and communication
rounds for several queries.

atoms that join vertices at distance rad(q) from v that are
not on any of the paths of length rad(q) from v: these can
be covered using paths of length rad(q) + 1 from v.

As an application of this proposition, Table 2 shows the
number of rounds required by different types of queries.

4.2 Lower Bounds for Multiple Rounds
Our lower bound results for multiple rounds are restricted

in two ways: they apply only to an MPC model where com-
munication at rounds ≥ 2 is of a restricted form, and they
match the upper bounds only for a restricted class of queries.

4.2.1 Tuple-Based MPC
Recall that M1

u = (M1
1u, . . . ,M

1
`u), where M1

ju denotes the
message sent during round 1 by the input server for Sj to
the worker u. Let I be the input database instance, and q
be the query we want to compute. A join tuple is any tuple
in q′(I), where q′ is any connected subquery of q.

The tuple-based MPC(ε) model imposes the following two
restrictions during rounds r ≥ 2, for every worker u: (a) the
message Mr

uv sent to v is a set of join tuples, and (b) for
every join tuple t, the worker u decides whether to include
t in Mr

uv based only on t, u, v, r and M1
ju, for all j s.t. t

contains a base tuple in Sj .
The restricted model still allows unrestricted communica-

tion during the first round; the information M1
u received by

server u in the first round is available throughout the com-
putation. However, during the following rounds, server u
can only send messages consisting of join tuples, and, more-
over, the destination of these join tuples can depend only on
the tuple itself and on M1

u. Since a join tuple is represented
using Θ(logn) bits, each server receives O(n/p1−ε) join tu-
ples at each round. We now describe the lower bound for
multiple rounds in the tuple-based MPC model.

4.2.2 A Lower Bound
We give here a general lower bound for connected, con-

junctive queries, and show how to apply it to Lk, to tree-like
queries, and to Ck; these results prove Theorem 1.2. We
postpone the proof to the next subsection.

Definition 4.4. Let q be a connected, conjunctive query.
A set M ⊆ atoms(q) is ε-good for q if it satisfies:

1. Every subquery of q that is in Γ1
ε contains at most one

atom in M . (Γ1
ε defined in Sec. 4.2.1)

2. χ(M) = 0, where M = atoms(q) − M . (Hence by
Lemma 2.1, χ(q/M) = χ(q). This condition is equiva-
lent to each connected component of M being tree-like.)

An (ε, r)-plan M is a sequence M1, . . . ,Mr, with M0 =
atoms(q) ⊃ M1 ⊃ · · ·Mr such that (a) for all j ∈ [r], Mj+1

is ε-good for q/M j where M j = atoms(q) − Mj, and (b)
q/Mr /∈ Γ1

ε.

Theorem 4.5. If q has a (ε, r)-plan then every random-
ized algorithm running in r + 1 rounds on the tuple-based
MPC(ε) model with p = ω(1) processors fails to compute q

with probability Ω(nχ(q)).

We prove the theorem in the next section. Here, we show
how to apply it to three cases. Assume p = ω(1), and recall
that kε = 2b1/(1− ε)c (Example 4.2). First, consider Lk.

Lemma 4.6. Any tuple-based MPC(ε) algorithm that com-
putes Lk needs at least dlog k/ log kεe rounds.

Proof. We show inductively how to produce an (ε, r)-
plan for Lk with r = dlog k/ log kεe − 1. The subqueries
that are in Γ1

ε are precisely Lk0 for k0 ≤ kε, hence any set of
atoms M that consists of every kε-th atom in L` is ε-good for
L` for any ` ≥ kε. LetM1 be such a set starting with the first
atom. Then Lk/M1 is isomorphic to Ldk/kεe. For j = 2, .., r,
choose Mj to consist of every kε-th atom starting at the first
atom in Lk/M j−1. Finally, Lk/M j−1 will be isomorphic to
a path query of length L` for some ` ≥ kε + 1 and hence is
not in Γ1

ε . Thus M1, . . . ,Mr is the desired (ε, r)-plan and
the lower bound follows from Theorem 4.5.

Combined with Example 4.2, it implies that Lk requires
precisely dlog k/ log kεe rounds on the tuple-based MPC(ε).

Second, we give a lower bound for tree-like queries, and
for that we use a simple observation:

Proposition 4.7. If q is a tree-like query, and q′ is any
connected subquery of q, q′ needs at least as many rounds as
q in the tuple-based MPC(ε) model.

Proof. Given any tuple-based MPC(ε) algorithm A for
computing q in r rounds we construct a tuple-based MPC(ε)
algorithm A′ that computes q′ in r rounds. A′ will interpret
each instance over q′ as part of an instance for q by using
the relations in q′ and using the identity permutation (Sj =
{(1, 1, . . .), (2, 2, . . .), . . .}) for each relation in q \ q′. Then,
A′ runs exactly as A for r rounds; after the final round, A′

projects out for every tuple all the variables not in q′. The
correctness of A′ follows from the fact that q is tree-like.

Define diam(q), the diameter of a query q, to be the
longest distance between any two nodes in the hypergraph
of q. In general, rad(q) ≤ diam(q) ≤ 2 rad(q). For example,
rad(Lk) = bk/2c, diam(Lk) = k and rad(Ck) = diam(Ck) =
bk/2c. Lemma 4.6 and Proposition 4.7 imply:

Corollary 4.8. Any tuple-based MPC(ε) algorithm that
computes a tree-like query q needs at least dlogkε

(diam(q))e
rounds.

Let us compare the lower bound rlow = dlogkε
(diam(q))e

and the upper bound rup = dlogkε
(rad(q))e+1 (Lemma 4.3):

diam(q) ≤ 2rad(q) implies rlow ≤ rup, while rad(q) ≤
diam(q) implies rup ≤ rlow + 1. The gap between the lower
bound and the upper bound is at most 1, proving Theo-
rem 1.2. When ε < 1/2, these bounds are matching, since
kε = 2 and 2rad(q)− 1 ≤ diam(q) for tree-like queries. The
tradeoff between the space exponent ε and the number of
rounds r for tree-like queries is r · log 2

1−ε ≈ log(rad(q)).
Third, we study one instance of a non tree-like query:

Lemma 4.9. Any tuple-based MPC(ε) algorithm that com-
putes Ck needs at least dlog(k/(mε+ 1))/ log kεe+ 1 rounds,
where mε = b2/(1− ε)c.

Proof. Observe that any set M of atoms that are (at
least) kε apart along any cycle C` is ε-good for C` and C`/M
is isomorphic to Cb`/kεc. If k ≥ krε(mε + 1), we can re-
peatedly choose such ε-good sets to construct an (ε, r)-plan
M1, . . . ,Mr such that the final contracted query Ck/Mr con-
tains a cycle C`′ with `′ ≥ mε + 1 (and therefore cannot be
computed in 1 round by any MPC(ε) algorithm). The result
now follows from Theorem 4.5.

Here, too, we have a gap of 1 between this lower bound
and the upper bound in Lemma 4.3. Consider C5 and ε = 0;
rad(C5) = diam(C5) = 2, kε = mε = 2. The lower bound is
blog 5/3c+ 1 = 2 rounds, the upper bound is dlog 3e+ 1 = 3
round. The exact number of rounds for C5 is open.

As a final application, we show how to apply Lemma 4.6
to show that transitive closure requires many rounds (the
proof is included in the full version of the paper).

Corollary 4.10. For any fixed ε < 1, there is no p-
server algorithm in the tuple-based MPC(ε) model that uses
o(log p) rounds and computes the transitive closure of an
arbitrary input graph.

4.2.3 Proof of Theorem 4.5
Given an (ε, r)-planM (Definition 4.4) for a query q, de-

fine τ∗(M) to be the minimum of τ∗(q/Mr), and the mini-
mum of τ∗(q′), where q′ ranges over all connected subqueries
of q/M j−1, j ∈ [r], such that q′ 6∈ Γ1

ε. Since every q′ satisfies
τ∗(q′)(1− ε) > 1 (by q′ 6∈ Γ1

ε), and τ∗(q/Mr)(1− ε) > 1 (by
the definition of goodness), we have τ∗(M)(1− ε) > 1.

Theorem 4.11. If q has an (ε, r)-plan M then any de-
terministic tuple-based MPC(ε) algorithm running in r + 1

rounds reports O(E(|q(I)|)/pτ
∗(M)(1−ε)−1) correct answers

in expectation over uniformly chosen matching database I.

The argument in Corollary 3.5 extends immediately to
this case, implying that every randomized tuple-based MPC(ε)
algorithm with p = ω(1) and r+1 rounds will fail to compute

q with probability Ω(nγ(q)). This proves Theorem 4.5.
The rest of this section gives the proof of this theorem.

The intuition is this. Consider a ε-good set M ; then any
matching database i consists of two parts, i = (iM , iM),
where iM are the relations for atoms in M , and iM are the
other relations. We show that, for a fixed instance iM , the al-

gorithm A can be used to compute q/M(iM) in r+1 rounds;
however, the first round is almost useless, because the algo-
rithm can discover only a tiny number of join tuples with
two or more atoms Sj ∈ M , since every subquery q′ of q
that has two M -atoms is not in Γ1

ε. This shows that the al-
gorithm computes q/M(iM) in only r rounds, and we repeat
the argument until a one-round algorithm remains.

First, we need some notation. For a connected subquery q′

of q, q′(I) denotes as usual the answer to q′ on an instance
I. Whenever atoms(q′) ⊆ atoms(q′′), then we say that a
tuple t′′ ∈ q′′(I) contains a tuple t′ ∈ q′(I), if t′ is equal to
the projection of t′′ on the variables of q′; if A ⊆ q′′(I), B ⊆
q′(I), then AnB, called the semijoin, denotes the subset of
tuples t′′ ∈ A that contain some tuple t′ ∈ B.

Let A be a deterministic algorithm with r + 1 rounds,
k ∈ [r+ 1] a round number, u a server, and q′ a subquery of
q. For a matching database input i, define mA,u,k(i) to be
the vector of messages received by server u during the first
k rounds of the execution of A on input i. Define mA,k(i) =
(m1, . . . ,mp), where mu = mA,u,k(i) for all u ∈ [p], and:

KA,u,k
m (q′) ={t′ ∈ [n]vars(q′) | for all matching databases i,

mA,u,k(i) = m⇒ t′ ∈ q′(i)}

KA,k
m (q′) =

S
uK

A,u,k
mu

(q′) A(i) = KA,r+1
mA,r+1(i)(q).

KA,u,k
mA,u,k(i)(q

′) and KA,k
mA,k(i)(q

′) denote the set of join tuples

from q′ known at round k by server u, and by all servers,
respectively, on input i. A(i) is w.l.o.g. the final answer of
A on input i. Define

JA,q(i) =
S
{KA,1

mA,1(i)(q
′) | q′ connected subquery of q}

JA,qε (i) =
S
{KA,1

mA,1(i)(q
′) | q′ /∈ Γ1

ε connected subquery of q}

JA,qε (i) is precisely the set of join tuples known after the
first round, but which correspond to subqueries that are
themselves not computable in one round; thus, the number
of tuples in JA,qε (i) will be small. Next, we need two lemmas.

Lemma 4.12. Let q be a query, and M be any ε-good set
for q. If A is an algorithm with r+ 1 rounds for q, then for
any matching database iM over the atoms of M , there exists

an algorithm A′ with r rounds for q/M such that, for every
matching database iM defined over the atoms of M :

|A(iM , iM)| ≤ |q(iM , iM) n JA,qε (iM , iM)|+ |A′(iM)|.

In other words, the algorithm returns no more answers
than the (very few) tuples in J , plus what another algorithm
A′ (to be defined) computes for q/M in one less rounds.

Proof. The proof requires two constructions.
1. Contraction. Call q/M the contracted query. While

the original query q takes as input the complete database
i = (iM , iM), the input to the contracted query is only iM .
We show how to use the algorithm A for q to derive an
algorithm, denoted AM , for q/M .

For each connected component C of M , choose a repre-
sentative variable zc ∈ vars(C); also denote SC the result
of applying the query C to iM ; Sc is a matching, because
C is tree-like. Denote σ̄ = {σx | x ∈ vars(q)}, where, for
every variable x ∈ vars(q), σx is the following permutation
on [n]: if x 6∈ vars(M) then σx = the identity; otherwise
σx = Πxzc(SC), for the unique connected component s.t.
x ∈ vars(C). We think of σ̄ as permuting the domain of
each attribute x ∈ vars(q). Then σ̄(q(i)) = q(σ̄(i)), and
σ̄(iM) = idM the identity matching database (where each

relation in M is {(1, 1, . . .), (2, 2, . . .), . . .}), and therefore:

q/M(iM) =σ̄−1(Πvars(q/M)(q(σ̄(iM), idM)))

(We assume vars(q/M) ⊆ vars(q); for that, when we con-
tract a set of nodes of the hypergraph, we replace them
with one of the nodes in the set.)

The algorithm AM for q/M(iM) is this. First, each input
server for Sj ∈M replaces Sj with σ̄(Sj) (since iM is fixed,
it is known to all servers, hence, so is σ̄); next, run A un-
changed, substituting all relations Sj ∈M with the identity;
finally, apply σ̄−1 to the answers and return them. We have:

AM (iM) = σ̄−1(Πvars(q/M)(A(σ̄(iM), idM))) (9)

2. Retraction. Next, we transform AM into a new algo-
rithm RAM called the retraction of AM , as follows:

(a) During round 1 of RAM , each input server for Sj sends
(in addition to the messages sent by AM) every tuple in t ∈

Sj to all servers u that eventually receive t. In other words,
the input server sends t to every u for which there exists
k ∈ [r+ 1] such that t ∈ KAM ,u,k

mAM ,u,k(IM)(Sj). This is possible

because of the restrictions in the tuple-based MPC(ε) model:
all destinations of t depend only on Sj , and hence can be
computed by the input server. Note that this may increase
the total number of bits received in the first round by a
factor of r, which is O(1) in our setting. RAM will not send
any atomic tuples during rounds k ≥ 2. (b) In round 2, RAM

sends no tuples. (c) In rounds k ≥ 3, RAM sends a tuple t
from u to v if server u knows t at round k, and algorithm
AM sends t from u to v at round k.

It follows that, for each round k, and for each subquery q′

of q/M with at least two atoms, K
RAM

,u,k

m(i) (q′) ⊆ KAM ,u,k
m(i) (q′):

in other words, RAM knows a subset of the non-atomic tu-

ples known by AM . Moreover, let JAM
+ (iM) be the set of

non-atomic tuples known by AM after round 1, JAM
+ (iM) =S

{KRAM
,u,1

m(i) (q′) | q′ has at least two atoms}: these are the

tuples that we refused to sent in round 2. Then:

AM (iM) ⊆ (q/M(iM) n JAM
+) ∪RAM (iM) (10)

Since RAM wastes one round, we can compress it to an al-
gorithm A′ with only r rounds. To prove the lemma, we con-
vert (10) into a statement about A. (9) already showed that

AM (iM) is related to A(iM , iM). Now we show how JAM
+ is

related to JA,qε (i): JAM
+ (iM) ⊆ σ−1(Πvars(q/M)(J

A,q
ε (σ̄(i))))

because, by the definition of ε-goodness, if a subquery q′ of
q has two atoms in M , then q′ 6∈ Γ1

ε. (10) becomes:

AM (iM) ⊆ (q/M(iM) n Πvars(q/M)(J
A,q
ε (i))) ∪ σ̄−1(A′(iM))

The lemma follows from q/M(iM)nΠvars(q/M)(J
A,q
ε (i)) ⊆

Πvars(q/M)(q(i) n JA,qε (i)) and |AM (iM)| = |A(iM , iM)|, by

(9).

Lemma 4.13. Let q be a conjunctive query, and q′ a sub-
query; if i is a database instance for q, we write i′ for its
restriction to the relations occurring in q′. Let B be any al-
gorithm for q′ (meaning that, for every matching database i′,
B(i′) ⊆ q′(i′)), and assume that E[|B(I ′)|] ≤ γ · E[|q′(I ′)|].
Then, E[|q(I) nB(I ′)|] ≤ γE[|q(I)|] where I is a uniformly
chosen matching database.

While, in general, q′ may return many more answers than q,
the lemma says that, if B returns only a fraction of q′, then
q nB returns only the same fraction of q.

Proof. Let ȳ = (y1, . . . , yk) be the variables occurring in
q′. For any ā ∈ [n]k, let σȳ=ā(q(i)) denote the subset of tu-
ples t ∈ q(i) whose projection on ȳ equals ā. By symmetry,
the quantity E[|σȳ=ā(q(I))|] is independent of ā, and there-
fore equals E[|q(I)|]/nk. Notice that σȳ=ā(B(i′)) is either ∅
or {ā}. We have:

E[|q(I) nB(I ′)|] =
P
ā∈[n]kE[|σȳ=ā(q(I)) n σȳ=ā(B(I ′))|]

=
P
ā∈[n]kE[|σȳ=ā(q(I))|] ·P(ā ∈ B(I ′))

=E[|q(I)|] ·
P
ā∈[n]kP(ā ∈ B(I ′))/nk = E[|q(I)|] ·E[|B(I ′)|]/nk

Repeating the same calculations for q′ instead of B,

E[|q(I) n q′(I ′)|] =E[|q(I)|]E[|q′(I ′)|]/nk

The lemma follows immediately, by using the fact that, by
definition, q(i) n q′(i′) = q(i).

Finally, we prove Theorem 4.11.

Proof of Theorem 4.11. Given the (ε, r)-plan atoms(q)

= M0 ⊃ . . . ⊃ Mr, define M̂k = Mk −Mk−1, for k ≥ 1.
We build up iMr

by iteratively choosing matching databases

iM̂k
= Mk−Mk−1 for k = 1, . . . , r and applying Lemma 4.12

with q replaced by q/Mk−1 and M replaced by Mk to obtain

algorithms Ak = Ak(i
M̂1

,...,i
M̂k

) for q/M̂1 · · · M̂k such that

the following inequality holds for every choice of matching
databases given by iMr and iMr

= (iM̂1
, . . . , iM̂r

):

|A(iMr , iMr
)| = |A(iMr , iM̂1

, . . . , iM̂r
)|

≤ |q(iMr , iMr
) n JA,qε (iMr , iM̂1

, . . . , iM̂r
)|

+ |q(iMr , iMr
) n JA

1,q/M̂1
ε (iMr , iM̂2

, . . . , iM̂r
)|

+ . . .+ |q(iMr , iMr
) n J

Ar−1,q/M̂1···M̂r−1
ε (iMr , iM̂r

)|
+ |Ar(iMr)| (11)

We now average (11) over a uniformly chosen match-
ing database I and upper bound each of the resulting
terms: For all k ∈ [r] we have χ(q/Mk) = χ(q) (see
Definition 4.4), and hence, by Lemma 3.4, we have
E[|q(I)|] = E[|(q/Mk)(IMk)|]. By definition, we have
τ∗(q/Mr) ≥ τ∗(M) and hence by Theorem 3.3,

E[|Ar(IMr)|] = O(E[|(q/Mr)(IMr)|]/pτ
∗(M)(1−ε)−1)

= O(E[|q(I)|]/pτ
∗(M)(1−ε)−1)

Note that IMk−1 = (IMr , IM̂k
, . . . , IM̂r

) and consider the ex-

pected number of tuples in J = J
Ak−1,q/M̂1···M̂k−1
ε (IMk−1).

The algorithm Ak−1 = Ak−1
I
Mk−1

itself depends on the choice

of IMk−1
; still, we show that J has a small number of tuples.

Every subquery q′ of q/M̂1 · · · M̂k−1 that is not in Γ1
ε (hence

contributes to J) has τ∗(q′) ≥ τ∗(M). By Theorem 3.3, for
each fixing IMk−1

= iMk−1
, the expected number of tuples

produced for subquery q′ by Bq′ , where Bq′ is the portion of

the first round ofAk−1
i
Mk−1

that produces tuples for q′, satisfies

E[|Bq′(IMk−1)|] = O(E[|q′(IMk−1)|]/pτ
∗(M)(1−ε)−1). We now

apply Lemma 4.13 to derive

E[|q(I) nBq′(IMk−1)|] = E[|(q/Mk−1)(IMk−1) nBq′(IMk−1)|]

= O(E[|(q/Mk−1)(IMk−1)|]/pτ
∗(M)(1−ε)−1)

= O(E[|q(I)|]/pτ
∗(M)(1−ε)−1).

Averaging over all choices of IMk−1
= iMk−1

and summing

over the constant number of different queries q′ we obtain

E[|q(I)nJA
k−1,q/M̂1···M̂k−1

ε (IMk−1)|]

= O(E[|q(I)|]/pτ
∗(M)(1−ε)−1).

Combining the bounds for the r+ 1 terms in (11) we obtain

that E[|A(I)|] = O(rE[|q(I)|]/pτ
∗(M)(1−ε)−1).

5. CONCLUSION
We have introduced powerful models for capturing trade-

offs between rounds and amount of communication required
for parallel computation of relational queries. For one round
on the most general model we have shown that queries are

characterized by τ∗ which determines the space exponent
ε = 1− 1/τ∗ that governs the replication rate as a function
of the number of processors. For multiple rounds we derived
a strong lower bound tradeoff between the number of rounds
r and the replication rate of r · log 2/(1 − ε) ≈ log(rad(q))
for more restricted tuple-based communication. For both,
we showed matching or nearly matching upper bounds given
by simple and natural algorithms.

6. REFERENCES
[1] F. N. Afrati, A. D. Sarma, S. Salihoglu, and J. D. Ullman.

Upper and lower bounds on the cost of a map-reduce
computation. CoRR, abs/1206.4377, 2012.

[2] F. N. Afrati and J. D. Ullman. Optimizing joins in a
map-reduce environment. In EDBT, pages 99–110, 2010.

[3] N. Alon, Y. Matias, and M. Szegedy. The space complexity of
approximating the frequency moments. JCSS, 58(1):137–147,
1999.

[4] A. Atserias, M. Grohe, and D. Marx. Size bounds and query
plans for relational joins. In FOCS, pages 739–748, 2008.

[5] S. Chaudhuri. What next?: a half-dozen data management
research goals for big data and the cloud. In PODS, pages 1–4,
2012.

[6] F. R. K. Chung, Z. Füredi, M. R. Garey, and R. L. Graham.
On the fractional covering number of hypergraphs. SIAM J.
Discrete Math., 1(1):45–49, 1988.

[7] J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large clusters. In OSDI, pages 137–150, 2004.

[8] EMC Corporation. Data science revealed: A data-driven
glimpse into the burgeoning new field. http://www.emc.com/
collateral/about/news/emc-data-science-study-wp.pdf.

[9] J. Feldman, S. Muthukrishnan, A. Sidiropoulos, C. Stein, and
Z. Svitkina. On distributing symmetric streaming
computations. ACM Transactions on Algorithms, 6(4), 2010.

[10] E. Friedgut. Hypergraphs, entropy, and inequalities. American
Mathematical Monthly, pages 749–760, 2004.

[11] A. Gál and P. Gopalan. Lower bounds on streaming algorithms
for approximating the length of the longest increasing
subsequence. In FOCS, pages 294–304, 2007.

[12] S. Ganguly, A. Silberschatz, and S. Tsur. Parallel bottom-up
processing of datalog queries. J. Log. Program.,
14(1&2):101–126, 1992.

[13] M. Grohe and D. Marx. Constraint solving via fractional edge
covers. In SODA, pages 289–298, 2006.

[14] S. Guha and Z. Huang. Revisiting the direct sum theorem and
space lower bounds in random order streams. In ICALP,
volume 5555 of LNCS, pages 513–524. Springer, 2009.

[15] Hadoop. http://hadoop.apache.org/.

[16] H. J. Karloff, S. Suri, and S. Vassilvitskii. A model of
computation for mapreduce. In SODA, pages 938–948, 2010.

[17] P. Koutris and D. Suciu. Parallel evaluation of conjunctive
queries. In PODS, pages 223–234, 2011.

[18] E. Kushilevitz and N. Nisan. Communication Complexity.
Cambridge University Press, Cambridge, England ; New York,
1997.

[19] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar,
M. Tolton, and T. Vassilakis. Dremel: Interactive analysis of
web-scale datasets. PVLDB, 3(1):330–339, 2010.

[20] H. Q. Ngo, E. Porat, C. Ré, and A. Rudra. Worst-case optimal
join algorithms: [extended abstract]. In PODS, pages 37–48,
2012.

[21] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins.
Pig latin: a not-so-foreign language for data processing. In
SIGMOD Conference, pages 1099–1110, 2008.

[22] S. Suri and S. Vassilvitskii. Counting triangles and the curse of
the last reducer. In WWW, pages 607–614, 2011.

[23] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
S. Anthony, H. Liu, P. Wyckoff, and R. Murthy. Hive - a
warehousing solution over a map-reduce framework. PVLDB,
2(2):1626–1629, 2009.

[24] P. Tiwari. Lower bounds on communication complexity in
distributed computer networks. JACM, 34(4):921–938, Oct.
1987.

[25] J. D. Ullman. Designing good mapreduce algorithms. ACM
Crossroads, 19(1):30–34, 2012.

[26] A. C. Yao. Lower bounds by probabilistic arguments. In FOCS,
pages 420–428, Tucson, AZ, 1983.

http://www.emc.com/collateral/about/news/emc-data-science-study-wp.pdf
http://www.emc.com/collateral/about/news/emc-data-science-study-wp.pdf
http://hadoop.apache.org/

	Introduction
	Preliminaries
	Massively Parallel Communication
	Randomization
	Conjunctive Queries
	Input Servers
	Input Distribution
	Friedgut's Inequality

	One Communication Step
	An Algorithm for One Round
	A Lower Bound for One Round
	Bounding the Knowledge of Each Relation
	Bounding the Knowledge of the Query

	Extensions

	Multiple Communication Steps
	An Algorithm for Multiple Rounds
	Lower Bounds for Multiple Rounds
	Tuple-Based MPC
	A Lower Bound
	Proof of Theorem 4.5

	Conclusion
	References

