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ABSTRACT
Cardinality estimation is the problem of estimating the number of
tuples returned by a query; it is a fundamentally important task in
data management, used in query optimization, progress estimation,
and resource provisioning. We study cardinality estimation in a
principled framework: given a set of statistical assertions about the
number of tuples returned by a fixed set of queries, predict the num-
ber of tuples returned by a new query. We model this problem using
the probability space, over possible worlds, that satisfies all pro-
vided statistical assertions and maximizes entropy. We call this the
Entropy Maximization model for statistics (MaxEnt). In this paper
we develop the mathematical techniques needed to use the MaxEnt
model for predicting the cardinality of conjunctive queries.
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Theory

Keywords
Cardinality Estimation, Database Theory, Maximum Entropy, Dis-
tinct Value Estimation

1. INTRODUCTION
Cardinality estimation is the process of estimating the number of

tuples returned by a query. In relational database query optimiza-
tion, cardinality estimates are key statistics used by the optimizer to
choose an (expected) lowest cost plan. As a result of the importance
of the problem, there are many sources of statistical information
available to the engine, e.g., query feedback records [6,31] and dis-
tinct value counts [3], and many models to capture some portion of
the available statistical information, e.g., histograms [17, 23], sam-
ples [12], and sketches [2, 26]; but on any given cardinality estima-
tion task, each method may return a different (and so, conflicting)
estimate. Consider the following cardinality estimation task:
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“Suppose one is given a binary relation R(A, B) along with es-
timates for the number of distinct values in R.A, R.B, and for
the number of tuples in R. Given a query q, how many tuples
should one expect to be returned by q?”

Each of the preceding methods is able to answer the above question
with varying degrees of accuracy; nevertheless, the optimizer still
needs to make a single estimate, and so, the task of the optimizer
is then to choose a single (best) estimate. Although the preceding
methods are able to produce an estimate, none is able to say that it is
the best estimate (even for our simple motivating example above).
In this paper, our goal is to understand the question raised by this
observation: Given some set of statistical information, what is the
best cardinality estimate that one can make? Building on the prin-
ciple of entropy maximization, we are able to answer this question
in special cases (including the above example). Our hope is that the
techniques that we use to solve these special cases will provide a
starting point for a comprehensive theory of cardinality estimation.

Conceptually, our approach to cardinality estimation has two
phases: we first build a consistent probabilistic model that incorpo-
rates all available statistical information, and then we use this prob-
abilistic model to estimate the cardinality of a query q. The stan-
dard model used in cardinality estimation is the frequency model [30].
For example, this model can express that the frequency of the value
a1 in R.A is f1, and the frequency of another value a2 in R.A is
f2. The frequency model is a probability space over a set of pos-
sible tuples. For example, histograms are based on the frequency
model. This model, however, cannot express cardinality statistics,
such as ]R.A = 2000 (the number of distinct values in A is 2000).
To capture these, we use a model where the probability space is
over the set of possible instances of R, also called possible worlds.
To make our discussion precise, we consider a language that al-
lows us to make statistical assertions which are pairs (v, d) where
v is a view (first order query) and d > 0 is a real number. An
assertion is written ]v = d, and its informal meaning is that “the
estimated number of distinct tuples returned by v is d”. A statis-
tical program, Σ = (v̄, d̄), is a set of statistical assertions, possibly
with some constraints. In our language, our motivating question
is modeled as a simple statistical program: ]R = dR, ]R.A = dA,
and ]R.B = dB. A statistical program defines the statistical in-
formation available to the cardinality estimator when it makes its
prediction. We give a semantics to this program following prior
work [16, 19, 30]: our chief desideratum is that our semantic for
statistical programs should take into consideration all of the pro-
vided statistical information and nothing else. This is the essence
of our study: we want to understand what we can conclude from
a given set of statistical information without making ad hoc as-
sumptions. Although the preceding desideratum may seem vague
and non-technical, as we explain in §2, mathematically this can be
made precise using the entropy maximization principle. In prior



work [16], we showed that this principle allows us to give a seman-
tics to any consistent set of statistical estimates.1

Operationally, given a statistical program Σ, the entropy maxi-
mization principle tells us that we are not looking for an arbitrary
probability distribution function, but one with a prescribed form.
For an arbitrary discrete probability distribution over M possible
worlds one needs to specify M − 1 numbers; in the case of a binary
relation R(A, B) over a domain of size N, there are M = 2N2

possi-
ble worlds. In contrast, a maximum entropy distribution (ME)
over a program Σ containing t statistical assertions is completely
specified by a tuple of t parameters, denoted ᾱ. In our motivating
question, for example, the maximum entropy distribution is com-
pletely determined by three parameters: one for each statistical as-
sertion in Σ. This raises two immediate technical challenges for
cardinality estimation: Given a statistical program Σ, how do we
compute the parameters ᾱ? We call this the model computation
problem. Then, given the parameters ᾱ and a query q, how does
one estimate the number of tuples returned by q? We call this the
prediction problem. In this work, we completely solve this problem
for many special cases, including binary relations where q is a full
query (i.e., a conjunctive query without projection).

Our first technical result is an explicit, closed-form formula for
the expected size of a conjunctive query without projection for a
large class of programs called hierarchical normal form programs
(HNF programs). The formula expresses the expected size of the
query in terms of moments of the underlying ME distribution:
the number of moments and their degree depends on the query, and
the size of the formula for a query q is O(|q|). As a corollary, we
give a formula for computing the expected size of any conjunc-
tive query (with projection) that uses a number of moments that
depends on the size of the domain. Next, we show how to extend
these results to more statistical programs. For that, we introduce
a general technique called normalization that transforms arbitrary
statistical programs into normal form programs. A large class of
statistical programs are normalized into HNF programs, where we
can use our estimation techniques. We solve our motivating ques-
tion with an application of this technique: to make predictions in
this model we normalize it first into an HNF program, then express
the expected size of any projection-free query in terms of moments.
By combining these two techniques, we solve size estimation for
projection-free queries on a large class of models.

To support prediction, we need to compute both the parameters
of the ME distribution and the moments of the ME distri-
bution efficiently. The first problem is model computation: given
the observed statistics, compute the parameters of the ME dis-
tribution that corresponds to those statistics. This is, in general,
a very difficult problem and is intimately related to the problem
of learning in statistical relational models [32]. We show that for
chain programs the parameters can be computed exactly, for hy-
pergraph programs and binary relational programs the parameters
can be computed asymptotically (as the domain size N grows to in-
finity), and for general relational programs the parameters can be
computed numerically. For the last two methods we have observed
empirically that the approximations error is quite low even for rel-
atively small values of N (say 300), which makes these approxi-
mations useful in practice (especially as input to a numeric solving
method). The second problem is: once we have the parameters of
the model, compute any given moment. Once the parameters are
known, any moment can be computed in time NO(t), where t is the
number of parameters of the model, but in some applications this

1Intuitively, a program is consistent if there is at least one proba-
bility distribution that satisfies it (see §2 for more detail).

may be too costly. We give explicit closed formulas for approxi-
mating the moments, allowing them to be computed in O(t) time.2

Thus, combining with our previous solution for prediction, we can
estimate the expected output size of a projection-free conjunctive
query q in time O(|q|).

Our main tool in deriving asymptotic approximation results is a
novel approximation technique, called a peak approximation that
approximates the ME distribution with a convex sum of sim-
pler distributions. In some cases, the peak approximation is very
strong: all finite moments of the ME distribution are closely
approximated by the peak approximation. A classical result in
probability theory states that, if two finite, discrete distributions
agree on all finite moments then they are the same distribution [29,
pg. 35]. And so, if our approximation were not asymptotic then the
peak approximation would not be an approximation – it would be
the actual ME distribution.
Outline In §2, we discuss the basics of the ME model and
explain our first technical contribution, normalization. In §3, we
address prediction by showing how to estimate the size of a full
query in terms of the moments of an ME model. Then, we
discuss the model computation problem and solve several special
cases using a novel technique, the peak approximation. In addi-
tion, we provide source code for Sage programs3 that demonstrate
both the rapid convergence of our asymptotic claims and a proof
of concept that our techniques can be implemented efficiently. We
discuss related work (§5) and finally conclude (§6).

2. THE MAXENT MODEL FOR STATISTI-
CAL PROGRAMS

We introduce basic notations then review the ME. CQ de-
notes the class of conjunctive queries over a relational schema R1,
. . ., Rm. A full conjunctive query is a conjunctive query that con-
tains no variables. A projection query is a query that contains a
single subgoal without repeated variables. For example, q(x) D
R(x, y) is a projection query, while q(x) D R(x, x) is not. We
also denote projection queries using a named perspective [1], e.g.,
Ri(A1, . . . , At) then Ri.A1A2 denotes the projection of Ri onto the
attributes A1A2. To specify statistics for range values, as in a his-
togram, one needs arithmetic predicates such as x < y. To simplify
presentation, our queries do not contain arithmetic predicates. In
Appendix A.6, we extend our results to handle arithmetic predi-
cates.

Let Γ be a set of full inclusion constraints, i.e., statements of the
form ∀x̄.Ri(x̄) ⇒ R j(x̄), Ri and R j are relation names, and Ri(x̄)
contains all variables in x̄; equivalently, Ri.X ⊆ R j, where X is a set
of attributes of Ri.

2.1 Background: The MaxEnt Model
For a fixed, finite domain D and constraints Γ we denote I(Γ) the

set of all instances over D that satisfy Γ; the set of all instances over
D is I(∅), which we abbreviate I. A probability distribution on I(Γ)
is a set of numbers p̄ = (pI)I∈I(Γ) in [0, 1] that sum up to 1. We use
the notations pI and P[I] interchangeably in this paper.

A statistical program is a triple Σ = (Γ, v̄, d̄), where Γ is a set of
constraints, v̄ = (v1, . . . , vs) and each vi is a projection query, and
(d1, . . . , ds) are positive real numbers. A pair (vi, di) is a statistical
assertion that we write informally as #vi = di; in the simplest case it
can just assert the cardinality of a relation, #Ri = di. A probability
distribution on I(Γ) satisfies a statistical program Σ if Ep̄[|vi|] = di,

2We assume here the unit cost model [22, pg. 40], i.e., arithmetic
operations are constant cost.
3Sage is a popular open-source mathematical framework [27].



Figure 1: A graph that plots the domain size (on x-axis) versus
E[#R.AC] (y-axis) for the program R(A, B,C): #R = 200, #R.A =
20, #R.B = 30, #R.C = 40.

for all i = 1, . . . , s. Here E p̄[|vi|] denotes the expected value of
the size of the view vi, i.e.,

∑
I∈I(Γ) |vi(I)|pI . We will also allow the

domain size N to grow to infinity. For fixed values d̄ we say that
a sequence of probability distributions ( p̄(N))N>0 satisfies Σ = (v̄, d̄)
asymptotically if limN→∞ Ep̄(N) [|vi|] = di, for i = 1, . . . , s.

Given a program Σ, we want to determine the most “natural”
probability distribution p̄ that satisfies Σ and use it to estimate query
cardinalities. In general, there may not exist any probability distri-
bution that satisfies Σ; in this case, we say that Σ is unsatisfiable.
We say that a program Σ = (v̄, d̄) is satisfiable if there exists a
distribution p̄ such that for all i, Ep̄[|vi|] = di and unsatisfiable oth-
erwise.4 On the other hand, there may exist many solutions. To
choose a canonical one, we apply the principle of Maximum En-
tropy (ME).

D 2.1. A probability distribution p̄ = (pI)I∈I(Γ) is a M-
E distribution associated to Σ if the following two conditions
hold: (1) p̄ satisfies Σ, and (2) it has the maximum entropy among
all distributions that satisfy Σ, where the entropy of p̄ is H(p̄) =
−

∑
I∈I(Γ) pI log pI .

We refer to a ME distribution as the ME model, since,
as we later show, it is uniquely defined. For a simple illustra-
tion, consider the following program on the relation R(A, B,C):
#R = 200, #R.A = 20, #R.B = 30, #R.C = 40. Thus, we know
the cardinality of R and the number of distinct values of each of the
attributes A, B,C. We want to estimate #R.AB, i.e., the number of
distinct values of pairs AB. Clearly this number can be anywhere
between 30 and 200, but currently there does not exists a principled
approach for query optimizers to estimate the number of distinct
pairs AB from the other four statistics. The ME model gives
such a principled approach. According to this model, R is a random
instance over a large domain D of size N, according to a probabil-
ity distribution described by the probabilities pI , for I ⊆ D3. The
distribution pI is defined precisely: it satisfies the four statistical
assertions above, and is such that the entropy is maximized. There-
fore, the estimate we seek also has a well-defined semantics, as
Ep̄[#R.AB] =

∑
I⊆D3 pI |I.AB|. This estimate will certainly be be-

tween 30 and 200; it will depend on N, which is an undesirable
property, but a sensible thing to do is to let N grow to infinity, and
compute the limit of E p̄[#R.AB]. In Figure 1, we plot Ep̄[#R.AB]
as a function of the domain size (N). Interestingly, it very quickly
goes to 200, even for small values of N. Thus, the ME model
offers a principled and uniform approach to query size estimation.

To describe the general form of a ME distribution, we need
some definitions. Fix a program Σ = (Γ, v̄, d̄), and so a set of con-
straints Γ and views v̄ = (v1, . . . , vs).
4Using a compactness argument, we show in Appendix A.2 that if
a program is satisfiable, there is at least one distribution that maxi-
mizes entropy.

D 2.2. The partition function for Σ = (Γ, v̄, d̄) is the
following polynomial T with s variables x̄ = (x1, . . . , xs):

T Σ(x̄) =
∑
I∈I(Γ)

x|v1(I)|
1 · · · x|vs(I)|

s

Let ᾱ = (α1, . . . , αs) be s positive real numbers. The probability
distribution associated to (Σ, ᾱ) is:

pI = ωα
|v1(I)|
1 · · ·α|vs(I)|

s (1)

where ω = 1/T Σ(ᾱ).

We write T instead of T Σ when Γ, v̄ are clear from the context
(notice that T does not depend on d̄). The partition function can be
written more compactly as:

T (x̄) =
∑

k1 ,...,ks

CΓ(N, k1, . . . , ks)xk1
1 · · · x

ks
s

where CΓ(N, k1, . . . , ks) denotes the number of instances I over a
domain of size N that satisfy Γ and for which |vi(I)| = ki, for all
i = 1, . . . , s.

The following is a key characterization of ME distributions.

T 2.3. [15, page 355] Let Σ = (v̄, d̄) be a statistical
program. For any probability distribution p̄ that satisfies the statis-
tics Σ the following holds: p̄ is a ME distribution iff there ex-
ists parameters ᾱ s.t. p̄ is given by the Equation (1) (equivalently:
p̄ is associated to (Σ, ᾱ)).

We refer to Jaynes [15, page 355] for a full proof; the “only if”
part of the proof is both simple and enlightening, and we include
it in Appendix A.1 for completeness. To justify the statement “the
ME model”, we need some notation: we say that a tuple of
m views v̄ is affinely dependent over a set of instances I(Γ) if there
exist m + 1 real numbers c̄, d, not all zero, such that:

∀I ∈ I(Γ).
∑

j=1,...,s

|v j(I)|c j = d

We say v̄ is affinely independent over I(Γ) if no such c̄, d exist. We
now justify the term “the MaxEnt Model”:

T 2.4. Let Σ = (Γ, v̄, d̄) be a satisfiable statistical pro-
gram where v̄ is affinely independent over I(Γ), then there is a
unique tuple of parameters ᾱ that satisfies Σ and maximizes en-
tropy.

For completeness we include a full proof in Appendix A.2. From
now on, for any program Σ = (Γ, v̄, d̄) that we consider, we assume
that v̄ is affinely independent over I(Γ). We verify this assumption
for the programs that we consider in Appendix A.3. We illustrate
with examples:

Example 2.5 The Binomial-Model Consider a relation R(A, B) and
the statistical assertion #R = d. The partition function is the bino-
mial, T (x) =

∑
k=0,N2

(
N2

k

)
xk = (1 + x)N2

, and the ME model
turns out to be the probability model that randomly inserts each tu-
ple in R independently, with probability p = d/N2. We need to
check that this is a ME distribution: given an instance I of size
k, P[I] = pk(1 − p)N2−k, which we rewrite as P[I] = ωαk. Here
α = p/(1 − p) is the odds of a tuple, and ω = (1 − p)N2

= P[I = ∅].
This is indeed a ME distribution by Theorem 2.3. Asymptotic
query evaluation on a generalization of this distribution to multiple
tables was studied in Dalvi et al. [8]. �



In this example, α is the odds of a particular tuple. In general,
the ME parameters may not have a simple probabilistic inter-
pretation.

We define a normal form for statistical program.

D 2.6. Σ is in normal form (NF) if all statistical asser-
tions are on base tables; otherwise, it is in non-normal form (NNF).

For illustration, consider the relation R(A1, A2). The program
#R = 20, #R.A1 = 10, and #R.A2 = 5 where Γ = ∅ is in NNF. Con-
sider three relation names S (A1, A2), R1(A1), R2(A2). The program
with constraints S .Ai ⊆ Ri for i = 1, 2 and statistical assertions
#S = 20, #R1 = 10, #R2 = 5 is in NF.

We will show that any statistical program can be translated into
a statistical program in normal form, but first we illustrate some
important statistical programs.

2.2 Important Programs
We describe two classes of programs that are central to this pa-

per: relational programs and hypergraph programs.

2.2.1 Relational Statistical Programs

D 2.7. Fix a single relation name R(A1, . . . , Am). A re-
lational program is a program Σ = (v̄, d̄) where every statistical
assertion is of the form #R.X = d for X ⊆ {A1, . . . , Am}.

There are no constraints in a relational program. Relational pro-
grams are in NNF.

A relational program is called hierarchical if for any two sets
of attributes X, Y occurring in statistical assertions, the following
condition holds:

X ∩ Y = ∅ or X ⊆ Y or Y ⊆ X

A relational program is called simple it consists of m+1 assertions:
#R.Ai = di for i = 1, . . . ,m, and5 #R = dR. Clearly, a simple
program is also hierarchical. We always order the parameters and
assume w.l.o.g. d1 ≤ d2 ≤ . . . dm ≤ dR. Our motivating example in
the introduction is a simple relational program of arity 2.

We give now the partition function for a simple relational pro-
gram. Consider m sets, A1, . . . , Am, such that |Ai| = ki for i =
1, . . . ,m. Denote by r(k̄, l) = r(k1, . . . , km, l) the number of relations
R ⊆ A1 × · · · × Am such that |R| = l and |R.Ai| = ki for i = 1, . . . , k.

P 2.8. The partition function for a simple relational
program ΣR of arity m is:

T ΣR (ᾱ, γ) =
∑
k̄,l

(
N
k̄

)
αk̄r(k̄, l)γl

Here,
(

N
k̄

)
αk̄ is a short hand for

∏
i=1,...,m

(
N
ki

)
αki

i . Note that the bi-
nomial coefficient ensures that T has only finitely many non-zero
terms (finite support).

The function r(k̄, l) is difficult to compute. One can show, using
the inclusion/exclusion principle, that, for m = 2:

r(k1, k2, l) =
∑

j1 = 0, k1

j2 = 0, k2

(−1) j1+ j2

(
k1

j1

)(
k2

j2

)(
(k1 − j1)(k2 − j2)

l

)

This generalizes to arbitrary m. To the best of our knowledge, there
is no simple closed form for r: we will circumvent computing r
using normalization.
5#R is equivalent to #R.A1A2 . . . Am.

2.2.2 Hypergraph Statistical Programs

D 2.9. Fix a set of relation names R1,R2, . . . ,Rm. A
hypergraph program consists of Σ,Γ, where Σ has one statistical
assertion #Ri = di for every relation name Ri, and Γ consists of
inclusion constraints of the form Ri.X ⊆ R j, where X is a subset of
the attributes of Ri.

A hypergraph program is in NF. If there are no constraints, then
a hypergraph program consists of m independent Binomial models.
The addition of constraints changes the model considerably.

We consider two important special cases of hypergraph programs
in this paper. The first is a chain program. Fix m relation names:
R1(A1, . . . , Am), R2(A2, . . . , Am), . . ., Rm(Am). A chain program of
size m, ΣCm, is a hypergraph program where the set of constraints
are: Ri−1.AiAi+1 . . . Am ⊆ Ri, for i = 2, . . . ,m. For example, ΣC2

is the following program on R1(A2, A1), and R2(A2): #R1 = d1,
#R2 = d2, and R1.A2 ⊆ R2.

P 2.10. (Chain Partition Function) Let ΣCm be a chain
program of size m ≥ 1. Denote the parameters of ΣCm as α1, . . . , αm.
Then its partition function satisfies the recursion:

T ΣC1 (α1) = (1 + α1)N

T ΣC j+1 (α1, . . . , α j+1) =
(
1 + α j+1T ΣC j (α1, . . . , α j)

)N

for j = 1, 2, . . . ,m − 1.

The partition function T ΣCm is sometimes referred to as a cascad-
ing binomial [8].

Example 2.11 For ΣC2, the partition function on a domain of size
N is:

T ΣC2 (ᾱ) = (1 + α2(1 + α1)N)N

Given d̄ = (d1, d2), we need to find the parameters α1, α2 for which
the probability distribution defined by T ΣC2 has E[|R1|] = d1 and
E[|R2|] = d2. We show in Appendix A.4. that the solutions are
α1 =

d1
d2N−d1

and α2 =
d2

N−d2
(1 + α1)−N .

The second special case is the following. A simple hypergraph
program of size m is a hypergraph program over S (A1, . . . , Am),
R1(A1),. . . , Rm(Am), where the constraints are S .Ai ⊆ Ri for i =
1, . . . ,m. We denote by ΣHm a simple hypergraph program of size
m, and will refer to it, with some abuse, as a hypergraph program.
Its partition function is:

P 2.12 (H P F). Given a hy-
pergraph program ΣHm let ᾱ be a tuple of m parameters (one for
each Ri) and γ be the parameter associated with the assertion on
S . Then, the partition function is given by:

T ΣHm (ᾱ, γ) =
∑

k̄

t(ᾱ, γ; k̄) where t(ᾱ, γ; k̄) =
(
N
k̄

)
ᾱk̄(1 + γ)

∏
i ki

We call t(ᾱ; k̄) a term function.

Here
(

N
k̄

)
denotes

∏
i

(
N
ki

)
, and ᾱk̄ denotes

∏
i α

ki
i . Note that the

term function is simpler than that in Prop. 2.8.
This partition function corresponds to a simple random process:

select random values for Ri from the domain using a Binomial dis-
tribution, then we select a (random) subset of edges (hyperedges)
from their cross product using another Binomial distribution.



Example 2.13 The hypergraph program ΣH2 is over three relations,
S (A1, A2), R1(A1), and R(A2), two constraints S .A1 ⊆ R1, S .A2 ⊆

R2, and three statistical assertions: #R1 = d1, #R2 = d2, #S = dS .
Denoting α1, α2, and γ the parameters of the ME model, we
have:

T ΣH2 (α1, α2, γ) =
∑
k1 ,k2

(
N
k1

)(
N
k2

)
α

k1
1 α

k2
2 (1 + γ)k1k2

This expression is much simpler than that in Prop. 2.8, but it still
does not have a closed form. To compute moments of this distri-
bution (needed for expected values) one needs sums of N2 terms.
The difficulty comes from (1+ γ)k1k2 : when k1k2γ = o(1), this term
is O(1) and the partition function behaves like a product of two
Binomials, but when k1k2γ = Ω(1) it behaves differently.

In the full paper, we generalize hypergraphs to define hierarchi-
cal normal form programs; these programs play the role of hyper-
graphs for (non-simple) hierarchical relational programs.

2.3 Normalization
We give here a general, and non-obvious procedure for convert-

ing any NNF statistical program Σ into an NF program, with addi-
tional inclusion constraints; in fact, this theorem is the reason why
we consider inclusion constraints as part of our statistical programs.

Theorem 2.14 below shows one step of the normalization pro-
cess: how to replace a statistical assertion on a projection with a
statistical assertion on a base table, plus one additional inclusion
constraint. Repeating this process normalizes Σ.

We describe the notation in the theorem. Recall that R̄ = (R1, . . .,
Rm). Let v̄ be a set of s projection views, and assume that vs is not
a base relation. Thus, the statistic #vs = ds is in NNF. Let Q be a
new relational symbol of the same arity as vs, and set R̄′ = R̄∪ {Q},
Γ′ = Γ ∪ {vs ⊆ Q}. Replace the statistical assertion #vs = ds with
#Q = d′s (where the number d′s is computed as described below).
Denote a = arity(Q). Denote w̄ the set of views obtained from v̄ by
replacing vs with Q.

Let’s examine the ME distributions for (Γ, v̄) and for (Γ′, w̄).
Both have the same number of parameters (s). The former has
m relations as outcomes: R1, . . . ,Rm; the latter has m + 1 out-
comes R1, . . . ,Rm,Q. Consider a ME distribution for the lat-
ter, and examine what happens if we compute the marginals over
R1, . . . ,Rm: it turns out that the marginal is another ME distri-
bution. More precisely:

T 2.14 (N). Consider a ME distribu-
tion for w̄, with parameters β1, . . . , βs and outcomes R1, . . . ,Rm,Q.
Then the marginal distribution over R1, . . . ,Rm is a ME distri-
bution, with parameters given by αi = βi for i = 1, . . . , s − 1, and
αs =

βs
1+βs

. In addition, the following relations hold between the
partition functions T for (Γ, v̄) and U for (Γ′, w̄):

T (ᾱ) =
U(β̄)

(1 + βs)Na (2)

Finally, the following relationships holds between the expected sizes
of the views in the statistical programs:

ET [|vs|] = Naαs + (1 − αs)EU [|Q|] (3)
ET [|vi|] = EU [|wi|] for i = 1, . . . , s − 1

The last equation tells us how to set the expected sized d′s of Q
to obtain the same distributions, namely d′s = (ds − Naαs)/(1 − αs).

Example 2.15 The A,R-Model (Cascading Binomials) Consider
two statistical assertions on R(A, B): #R = d1 and #R.A = d2. This

is not normalized. We use Theorem 2.14 to normalize it. For that,
add a new relation symbol Q(A), the constraint R.A ⊆ Q, and make
the following two statistical assertions, |Q| = c, |R| = d1; the new
constant c to be determined shortly. Example 2.11 gives us the so-
lution to the normalized statistic, namely β1 = d1/(cN − d1) and
β2 = c/(N − c)(1 + β1)−N . We use these to solve the original, non-
normalized model: α2 = β2/(1 + β2), α1 = β1. Next, we use The-
orem 2.14 to obtain: c = Nα2 + (1 − α2)d2. When N → ∞ this
equation becomes c = ce−d2/c + d2, which yields a unique c for any
(d1, d2). See Appendix A.5 for an explicit computation of c in terms
of d1, d2.

Example 2.16 To appreciate the power of normalization, we will
illustrate on the NNF program on R(A, B): #R.A = d1, #R.B = d1,
and #R = d. Let α1, α2, γ be the associated parameters of M-
E. Its partition function T (α1, α2, γ) is a complicated expression
given by Prop.2.8. The NF Program has three relations R1(A1),
R2(A2) and R(A1, A2), statistics #R1 = c1, #R2 = c2, #R = c, and
constraints R.A1 ⊆ R1, R.A2 ⊆ R2. Its partition is U(β1, β2, γ) =∑

k1 ,k2

(
N
k1

)(
N
k2

)
β

k1
1 β

k2
2 (1 + γ)k1k2 (see Example 2.13). After applying

the normalization theorem twice, we obtain the following identity:

T (α1, α1, γ) = (1 + β1)−N(1 + β2)−NU(β1, β2, γ)

where αi = βi/(1 + βi) for i = 1, 2. Moreover, di = Nαi + (1 − αi)ci

for i = 1, 2 and d = c. This translation allows us to do predictions
for the NNF program by reduction to the (more manageable) NF
hypergraph program. This justifies the normalization theorem, and
our interest in hypergraph programs.

As an application of the Normalization theorem we give a non-
trivial result both for simple hypergraph, and for simple relational
programs. Given a statistical program Σ = (v̄, d̄), consider the func-
tion F(ᾱ) = d̄ in Theorem 2.4: F maps parameters ᾱ to statis-
tics d̄. We say that F is i, j-increasing if ∂Fi/∂α j > 0. It is well
known that, for any ME distribution, F is i, i-increasing [15,
pg. 359], and that this fails in general for i , j: furthermore, F is
i, j-increasing iff it is j, i-increasing.

T 2.17. For both simple hypergraph programs and sim-
ple relational programs, F is i, j-increasing, for all i, j.

In the full paper, we prove this for hypergraphs directly, by ex-
ploiting the special shape of the partition function, then use the
normalization theorem to extend it to relational programs.

2.4 Problem Definitions
We study two problems in this paper. One is the model compu-

tation problem: given a statistical program Σ = (Γ, v̄, d̄), find the
parameters ᾱ for the ME model such that ᾱ satisfies Σ. The
other is the prediction problem, given the parameters of a model
and a query q(x̄), compute E[|q(x̄)|] in the ME distribution.
We first discuss the prediction problem.

3. PREDICTION
In this section, we describe how to estimate the size of a projection-

free conjunctive query q on a hypergraph program. Then using nor-
malization, we show how to estimate the expected size of a query
on a relational program. Throughout this section we assume that
the parameters of the model are given: we discuss in the next sec-
tion how to compute these parameters given a statistical program.

3.1 Evaluating Full Queries
Our technique is to rewrite E[|q(x̄)|] in terms of the moments of

the ME distribution. We first reduce computing E[|q(x̄)|] to



computing P[q′] for several Boolean queries q′. Then, we provide
an explicit, exact formula for P[q′] in terms of moments of the
ME distribution.

3.1.1 From Cardinalities to Probabilities
We start from the observation:

E[|q(x̄)|] =
∑
c̄∈Dt

P[q(x̄/c̄)]

where q(x̄/c̄) means substituting xi with ci for i = 1, . . . , t, where
t is the number of head variables in q. The ME model is in-
variant under permutations f : D → D of the domain: for any
instance I, P[I] = P[ f (I)]. Therefore, P[q(x̄/c̄)] is the same for all
constants c̄ up to a permutation. We exploit this in order to simplify
the formula above, as illustrated by this example:

Example 3.1 If q(x, y, z) = R(x, y),R(y, z), x , y, y , z, x , z then:∑
c1 ,c2 ,c3

P[q(c1, c2, c3)] = 〈N〉(3)P[q(a1, a2, a3)]

where 〈N〉(k) = N(N − 1) · · · (N − k+ 1) is the falling factorial. Here
a1, a2, a3 are three fixed (but arbitrary) constants, and q(a1, a2, a3) =
R(a1, a2),R(a2, a3).

In general, let C be the set of all constants appearing in q and in
any definition in v̄, and let A = {a1, . . . , at} be distinct constants.
Consider all substitutions θ : {x1, . . . , xt} → A∪C: call θ, θ1 equiv-
alent if there exists a permutation f : A → A s.t.6 θ1 = f ◦ θ.
Call θ canonical if for any other equivalent substitutions θ1, ∃i s.t.
∀ j = 1, . . . , i − 1, θ(x j) = θ1(x j), and θ(xi) = ak, θ1(xi) = al and
k < l. Let Θ be the set of canonical substitutions.

P 3.2. With the notations above:

E[|q(x̄)|] =
∑
θ∈Θ

〈N − |C|〉(|θ(x̄)∩A|)P[q(θ(x̄))]

The number of terms in the sum is ≤ (|C| + t)t; it depends only
on the query, not the domain. Thus, the size estimation problem
for q(x̄) reduces to computing the probability of several Boolean
queries. From now on we will consider only Boolean queries in
this section.

3.1.2 Query Answering on Simple Programs
A full query is a Boolean query without variables; e.g. q =

R(a, b),R(a, d). We give here an explicit equation for PΣ[q], over
the ME distribution given by a program Σ, for the case when
Σ is either a simple hypergraph program, or a simple relational
program. Note that, in probabilistic databases [9], computing the
probability of q for a full query is trivial, because all tuples are as-
sumed to be either independent or factored into independent sets.
ME models, however, are not independent, and cannot be de-
composed into simple independent factors. As a result, computing
PΣ[q] is non-trivial. Computing PΣ[q] intimately relies on the com-
binatorics of the underlying ME distribution, and so, we are
only able to compute PΣ[q] directly for hierarchical NF programs.

Simple Hypergraph Programs We start with the case of a sim-
ple hypergraph program Σ over S (A1, . . . , Am) and Ri(Ai) for i =
1, . . . ,m; recall the constraints S .Ai ⊆ Ri, i = 1, . . . ,m. Let q =
g1, g2, . . . be a full conjunctive query: each gi is a grounded tuple.
Denote:

q.Ai = {a | (S (c̄) ∈ q and ci = a) or ∃ j. Ri(a) = g j}

ui = |q.Ai|

us = |{g | g ∈ q, g = S (c̄)}|
6We extend f to C ∪ A→ C ∪ A by defining it to be the identity on
C.

Denote 〈X〉(k) = X(X − 1) · · · (X − k + 1), the k-falling factorial.
Given the probability space PΣ, we write Ai for the random variable
|Ri.Ai|. Then E[〈Ai〉(u)] denotes the expected value of the u-falling
factorial of Ai; it can be computed directly as

∑
k̄〈ki〉(u)t(ᾱ, γ, k̄) in

time O(Nm) (see Prop 2.12), and we give more effective methods in
the next section.

T 3.3. Let ΣHm be a hypergraph program of size m over
a domain of size N. Then, following equation holds:

PΣ[q] =
(
γ

1 + γ

)uS

E

 ∏
i=1,...,m

〈Ai〉(ui)

〈N〉(ui)


This theorem allows us to reduce query answering to moment

computation. Thus, if we can compute moments of the ME
distribution (and know the parameter γ), we can estimate query
cardinalities. We extend this result to hierarchical NF programs in
the full paper.

Example 3.4 Let q = S (a, b), S (a, b′),R1(a′),R2(b′′). Then q.A1 =

{a, a′} and q.A2 = {b, b′, b′′}, u1 = 2, u2 = 3, us = |{S (a, b), S (a, b′)}| =
2. We have:

PΣ[q] =

(
γ

1 + γ

)2 E[A1(A1 − 1)A2(A2 − 1)(A2 − 2)]
N2(N − 1)2(N − 2)

Example 3.5 Given a binary relation R(A, B), the fanout Xa of a
node a is the number of tuples (a, b) ∈ R. Let X denote the ex-
pected fanout over all nodes a. Computing the expected fanout is
an important problem in optimization. By linearity of expectation
we have E[Xa] = (N−1)P[R(a, b′) | R(a, b)], and Bayes’ Rule gives
us:

E[X] = (N − 1)
P[R(a, b),R(a, b′)]

P[R(a, b)]
=
γ

1 + γ
E[A · B · (B − 1)]

E[A · B]

Theorem 3.3 gives us an identity between #S and the expectation
of the product

∏
i Ai. Consider the query q = S (a, b); obviously,

E[|S |] = N2P[q] by linearity of expectation. We also have P[q] =
γ

1+γE[A1A2]N−2 and so E[S ] = γ

1+γE[A1A2].
Simple Relational Programs Next, we discuss the case when
ΣR is a simple relational program: R(A1, . . . , Am), with statistics
#R.Ai = di for i = 1, . . . ,m, #R = d, and no constraints. Let αi,
i = 1, . . . ,m and γ be its parameters. A full query q consists of
a set of atoms of the form R(c̄). Construct a new hypergraph pro-
gram ΣH , by normalizing ΣR: it has schema R(A1, . . . , Am), Q1(A1),
. . . ,Qm(Am), constraints R.Ai ⊆ Qi, i = 1, . . . ,m, and parameters
βi = αi/(1 − αi), i = 1, . . . ,m. The ME distribution given by
ΣH is a probability space with outcomes R,Q1, . . . ,Qm; from Theo-
rem 2.14 (applied m times) it follows that the marginal distribution
of R is precisely the ME distribution for the ΣR-program. This
discussion implies:

C 3.6. PΣR [q] = PΣH [q].

In other worlds, we can simply compute a query probability or a
cardinality estimate in the NNF model ΣR by simply computing the
same query in the NF model ΣH . When doing so, we must ensure
to translate the parameters αi to βi correctly, as in Theorem 2.14.
Initially, we found the formula for PΣ[q] where Σ was a simple
relational program (NNF program); this formula was a complicated
inclusion-exclusion formula, and it was a pleasant surprise that the
formula reduced to a closed-form equation via normalization.



Figure 2: A graph of ln t(k, l) for the Hypergraph program with
]R.A = 2 ]R.B = 4), ]R = 10 and N = 99. For readability, we
plot ln f (k, l) where f (k, l) = max{t(k, l), e−10}. Almost all mass
comes from the two peaks.

General Conjunctive Queries For a full query q, P[q] can be
computed in terms of one particular moment, of a degree that de-
pends on the query q. For general conjunctive query, one can com-
pute P[q] in terms of O(Nv) moments, where v is the number of
existential variables in the query. We only illustrate here the main
idea, by using an example: q = R(a, x, c), where x is an existen-
tially quantified variable. Since q ≡

∨
b∈D R(a, b, c), we obtain the

following:

P[q] =
∑

B⊆D:B={b1 ,...,bk}

(−1)k+1P[R(a, b1, c), . . . ,R(a, bk, c)]

=
∑
k≥1

(
N
k

) (
γ

1 + γ

)k E[A · 〈B〉(k)C]
N2 · 〈N〉(k)

Each moment above can be computed in time O(N3), and there
are O(N) moments to compute. In practice, however, one may stop
when k � N. For example, when computing Figure 1, taking k = 3,
the error ε satisfied |ε| ≤ 10−10.

4. MODEL COMPUTATION
We first discuss the peak approximation and then use it to solve

the model computation problem for hypergraphs and binary rela-
tional programs.

4.1 Peak Approximations
The peak approximation writes a ME distribution as a con-

vex sum of simpler distributions using two key pieces of intuition:
first, in many cases, almost all of the mass in the partition function
comes from relatively few terms. Second, around each peak, the
function behaves like a simpler function (here, a product of bino-
mials).

To make this intuition more concrete, consider the following hy-
pergraph program: ]R1.A1 = 2, ]R2.A2 = 4 and ]S = 10 on a
domain of size N = 99. In Figure 2, we plot t(k1, k2) the associated
term function: k1 is on the x axis, and k2 is on the y axis, and on the
z-axis is ln t(x, y). Most of the mass of t(k, l) is concentrated around
t(2, 4), i.e., around the expected values given in the program, and
some slightly smaller mass is concentrated around t(99, 99). The
idea of the peak approximation is to locally approximate the term
function t in the neighborhood of (2, 4) and (99, 99) with simpler
functions.

The formal setting that we consider in this section is: we are
given a hypergraph program ΣH of size m with relations R1 . . . ,Rm

and S , and our goal is to approximate its ME distribution with
a convex sum of products of binomials. We now describe how we
approximate the term function of ΣH (tΣH , simply t). Let c̄ be a tuple
of m constants and denote P(c̄) =

∏
i=1,...,m ci. For i = 1, . . . ,m, we

define a function fi:

fi(ki;αi, γ; ci) =
(
N
ki

)
αki

i (1 + γ)
ki
ci

P(c̄)

We think of each ci as a fixed constant, and so each fi is a term func-
tion for a binomial: to see this, sum over ki,

∑
ki

fi(ki;αi, γ; ci) =
(1+α(1+γ)P(c̄)/ci )N . Then, we define our (local) approximate about
c̄ using a function f̃ defined as follows:

f̃ (k̄; ᾱ, γ; c̄) = (1 + γ)(1−m)P(c̄) ×
∏
i=1

fi(ki, αi, γ; ci)

It is interesting to compare f̃ with t from Prop. 2.12: we see that
the leading (1 + γ)(1−m)P(c̄) term essentially compensates for over
counting. In particular, if k̄ = c̄, then t(k̄; ᾱ) = f̃ (k̄, ᾱ; c̄), i.e., there
is no error in approximating t with f̃ at c̄, which provides some
intuition as to why f̃ is a good local approximate to t near c̄.

To specify the general peak approximation, we choose several
different values for c̄, say c̄(1), c̄(2), . . . , and then we approximate t
around each such c̄ as above. Fix a set Peaks =

{
c̄(1), . . . , c̄(s)

}
of

s of such tuples (later, we take Peaks to be the local maxima of t).
We define the peak approximation for t, denoted t̃, as:

t̃(k̄; ᾱ, γ) =
∑

c̄∈Peaks

f̃ (k̄, ᾱ, γ; c̄)

The partition function associated to the peak approximation, T̃ is
obtained by summing t̃ over k̄:

T̃ (ᾱ, γ) =
∑

c̄∈Peaks

(1 + γ)(1−m)P(c̄) ×
∏

i=1,...,m

(
1 + αi(1 + γ)

ki
ci

P(c̄)
)N

(4)

Notice that T̃ has a much simpler form than the original T : it is
a mixture of binomial distributions. This simpler form makes it
easy to find the local maxima of t̃ analytical, and as we show later,
compute all of the moments of T̃ analytically. We call T̃ the peak
approximation for T defined by Peaks. Our technique is to replace
the complicated ME distribution T with the simpler partition
function T̃ . In the next section, we show how to find Peaks and so
specify T̃ .

4.2 Finding the Peaks
Fix a hypergraph program Σ. We take Peaks to be the set of

local maxima for the term function tΣ. Intuitively, this is where
T Σ’s mass is concentrated, so it makes sense to locally approxi-
mate t near the peaks. One concern is that the size of Peaks could
grow with the domain size, N, which would make our approxima-
tion undesirable; below, we show a surprising fact: for hypergraph
programs, |Peaks| ≤ 2.

T 4.1 (N  P). Let t be the term function
for any hypergraph program ΣH . Then, for any fixed ᾱ such that
αi > 0, for i = 1, . . . ,m, t(α, k̄) has at most 2 local maxima (in k̄)
and so |Peaks(T Σ)| ≤ 2.

We prove this theorem in several steps: a local maxima of t(ᾱ; k̄)
function is at critical point; we observe that, by the mean value
theorem [25, pg. 108], to find such critical points it suffices to find
values of k̄ such that t(k̄) = t(k̄ + e(i)) for i = 1, . . . ,m where e(i) is



the unit vector in direction i (also known as a variational deriva-
tive [15]). This yields a system of equations. We then show that
all solutions of this system of equations are the zeros of a single
equation in a single variable; then, we show that this function has
at most 3 zeros by showing that the third derivative of this function
has a constant sign. We conclude that at most 2 solutions can be lo-
cal maxima. We call T̃ the peak approximation for T where Peaks
is the set of local maxima of t. Denote this set Peaks =

{
c̄(1), c̄(2)

}
.

We give a sufficient condition under which, informally, the peaks
approximation will be a good approximation to the hypergraph par-
tition function. The lemma is unfortunately technical and requires
three conditions, which informally say: (1) that the error around
each peak is small enough, (2) the peaks are far enough apart, and
(3) that the peaks are not in the middle of the space.

L 4.2. Fix a hypergraph program Σ. Let N = 1, 2, . . . , and
let TN denote the partition function for Σ on a domain of size. For
for each N, let T̃N be the peak approximation for TN and c̄(i,N) for
i = 1, 2 denote the local maxima of tN . Assuming that (1) ln(1 +
γ)Nm−2 = o(1) and (2) min

∣∣∣∣c(1,N)
i − c(2,N)

j

∣∣∣∣ ≥ N−ε for some ε > 0,

and (3) ∃i s.t. min {ci,N − ci} = O(N1−τ) for some τ > 0. Then, for
any tuple s̄ of m positive numbers:

lim
N→∞

ETN [
∏

i=1,...,m〈Ai〉(si)]
ET̃N [

∏
i=1,...,m〈Ai〉(si)]

= 1

We prove this lemma by showing two more general statements:
The first informally says that the peaks are a best local, linear ap-
proximation (in the exponent), and we use this to write the error
in a closed form. The second result is a variation of the standard
Chernoff Bound [20], which informally says that binomial distri-
butions are very sharply concentrated. The proof of this sufficient
condition then boils down to a calculation that combines these two
statements. Next, we use this sufficient condition to verify asymp-
totic solutions for several statistical programs.

4.3 Model Computation Solutions
We give exact solutions for chain programs, and asymptotic so-

lutions for simple hypergraph programs and simple binary (arity 2)
relational programs.
Chain Programs In this section, we abbreviate the chain partition
function TCi(α1, . . . , αi) as T 〈i〉. We show:

P 4.3. Given a chain program Σ of size m, then for
j = 1, . . . ,m

E[R j] =
∏

i= j,...,m

N
αiT 〈i−1〉

1 + αiT 〈i−1〉

Under the convention that T 〈0〉 = 1.

We now give an O(m) time algorithm to solve the model compu-
tation problem by observing the following identity:

d j

d j+1
=

E[R j]
E[R j+1]

= N
α jT 〈 j−1〉

1 + α jT 〈 j−1〉

The recursive procedure starts with T 〈0〉 = 1 in the base case; recur-
sively, we compute the value T 〈i〉 and all moments. We observe that
this uses no asymptotic approximations. Summarizing, we have
shown:

T 4.4. Given a chain program Σ of arity m the above
algorithm solves the model computation problem in time O(m) for
any domain size.

Hypergraph Programs We solve hypergraph programs of any ar-
ity. We show:

T 4.5. Consider a hypergraph programs of arity m ≥ 2,
where (without loss) 0 < d1 ≤ d2 ≤ · · · ≤ dm < dR = O(1) then the
following parameters are an asymptotic solution:

αi = diN−1 and γ = gN1−m + N−m

(
δ + ln

dR

Ng

)
where g = −

∑
i=1,...,m ln αi

1+αi
, and we set δ = g2/2−(d1+d2) if m = 2

and δ = 0 if m > 2.

The strange looking δ term is due to the fact that (1) w = Θ(ln n)
and (2) ln(1 + x) = x + x2

2 + . . . , and so when m = 2 the first
term in γ is Õ(N−1) and so when squared interferes with the second
term. The technical key to the proof is the following lemma that
computes the set Peaks.

L 4.6. With the parameters and notation of Theorem 4.5,

Peaks =
{
d̄ + δ(1), c̄(2) + δ(2)

}
where c̄(2) = (N − d2,N − d1) if m = 2 and c̄(2) = (N, . . . ,N) oth-
erwise; and δ̄(i) is a vector such that max j |δ j| = O(N−1) Moreover,
define wi = T̃ (ᾱ, γ)−1 ∑

k̄ f̃ (k̄, α, γ; c̄(i)) for i = 1, 2 then w2 =
dR
Ng

and w1 = 1 − w2.

Observe that the conditions of Lemma 4.2 are satisfied, so we
may use the peaks instead of the ME to calculate the mo-
ments. Then, it is straightforward to calculate the moments and
verify the claims of the theorem: E[Ai] = di · w1 + N · w2 → di

and E[R] = 0 · w1 + Nm γ

1+γ · w2 = dR + o(1). Anecdotally, we have
implemented this in Sage and verified that it converges for small N
(on the order of hundreds) for a broad range of programs.

Binary Relations. Our solution for binary relations combines nor-
malization and the peaks approach, but there is a subtle twist: con-
sider the solutions from Theorem 4.5, we observe that if we set the
moments of the hypergraph to any constant, normalization tells us
that the moments of R.Ai tend to zero:

ER[Ai] = (1 + α)EH[Ai] − Nα ≈ di − di → 0

Here ER denotes the moment for the relational program and EH

denotes the hypergraph program. In fact, binary relations require
subtle balancing:

T 4.7. Given dA ≤ dB ≤ dR for the relational program
Σ over R(A, B). Then, the tuple of parameters (α1, α2, γ) defined as
follows is an asymptotic solution for Σ: Let α1

1+α1
= aN−1, α2

1+α2
=

bg−1
1 and γ = g1N−1 + g2N−2 where

a = (dA + 1)/(eb − 1), b = db/da and g1 = −W−1(−αb)

g2 = g2
1/2 + (1 + β) ln(1 + β)

dG − dB

N ln g1

Here, W−1 denotes the value of the Lambert W function over the
non-principal (but real-valued) branch.7 Then, ᾱ is an asymptotic
solution for Σ.

The proof uses normalization to transform the program into a
hypergraph program, and then use a peaked approximation (with
non-constant moments) instead of the ME distribution (via
Lemma 4.2). For programs with non-binary relations, we are able
to solve these programs using numeric techniques.
7The Lambert function is defined by W(v) = u implies that v = ueu.
See Corless et al. [7].



4.4 Moment Computation to Answer Queries
We give a closed-form solution for moments of the peak approx-

imation:

T 4.8. Let T̃ be a peak approximation (Eq. 4) defined
by Peaks with parameters α1, . . . , αm, γ. Then, for any s̄ ∈ Nm the
following equation holds:

E

 ∏
i=1,...,m

〈Ai〉(si)

 = ∑
c̄∈Peaks

∏
i=1,...,m

N
αsi

i (1 + γ)siP(c̄)/ci

1 + αsi
i (1 + γ)siP(c̄)/ci

w(c̄)

where w(c̄) =
∑

k̄ t(k̄;ᾱ,γ,c̄)∑
d̄∈peaks

∑
k̄ t(k̄;ᾱ,γ,d̄) and N is the size of the domain.

Combining Theorem 4.8 with Theorem 3.3, we can approximate
any full query in O(|q|)-time using the peak approximation.

5. RELATED WORK
The first body of related work is in cardinality estimation. As

noted above, while a variety of synopses structures have been pro-
posed for cardinality estimation [2, 10, 13, 21], they have all fo-
cused on various sub-classes of queries and deriving estimates for
arbitrary query expressions has involved ad hoc steps such as the
independence and containment assumptions which result in large
estimation errors [14]). In contrast, we ask the question: given
some statistical information, what is the best estimate that one can
make?

The ME model has been applied in prior work to the prob-
lem of cardinality estimation [19, 30]. However, the focus was re-
stricted to queries that consist of conjunctive selection predicates
over single tables. In contrast, we explore a full-fledged ME
model that can incorporate statistics involving arbitrary first-order
expressions. In our previous work [16], we introduced the ME
model over possible worlds for computing statistics, and solved it
in a very limited setting, when the ME distribution is a random
graph. We left open the ME models for cardinality estimation
that are not random graphs, such as the models we solve in this
paper. In another work [17], we discussed a ME model for
set/bag semantics: we did not discuss bag semantics in this pa-
per. Also prior art did not address query estimation. The ME
principle also underlies the graphical model approach, notably the
model of probabilistic relational model of Getoor et al. [11]. Fi-
nally, we observe that entropy maximization is a well-established
principle in statistics for handling incomplete information [15].

Probabilistic databases [4,9,18,33] focus on efficient query eval-
uation over a probabilistic database, in which probabilities are spec-
ifies with tuples. Our focus is on computing the parameters of a dif-
ferent type of models. The maximum entropy principle underlies
graphical models, and so it is interesting future work to explore how
the techniques in this paper apply to inference and learning in such
approaches, e.g., Sen et al. [28] and Markov Logic Networks [24].

6. CONCLUSION
In this paper we propose to model database statistics using max-

imum entropy probability distributions. This model is attractive
because any query has a well defined size estimate, all statistics act
as a whole, and the model extends smoothly when new statistics
are added. As part of our technical development we described three
techniques: normalization, query answering via moments, and peak
approximations that we believe are of both theoretical and practical
interest for solving statistical programs. The next step for our work
is to implement a prototype cardinality estimator using the theoret-
ical underpinnings laid out in this paper. We believe that the peak
approximation may have broader applications.
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APPENDIX
A. CALCULATION HELPERS

We observe that moments can be written as appropriate deriva-
tive operators on a partition function:

P A.1. Let T Σ be a partition function for Σ = (v̄, d̄)
with parameters αv for v ∈ v̄, then we have:

T Σ(ᾱ) × E[|v|k] =
(
αv
∂

∂αv

)k

T Σ(ᾱ)

where (αv
∂
∂αv

)k denotes applying the operator αv
∂
∂αv

k times, and

T Σ(ᾱ) × E[〈|v|〉(k)] = αk
v
∂k

∂kαv
T Σ(ᾱ)

The proof is straightforward: apply the operators directly to the
partition function, T Σ, in compact form and use linearity of the
derivative operator. Since ME distributions are polynomials,
computing derivatives is straightforward (but possibly expensive).

A.1 Proof of Theorem 2.3
The “only if” direction is very simple to derive by using the La-

grange multipliers for solving:

F0 =
∑
I∈I

pI − 1 = 0 (5)

∀i = 1, . . . , s : Fi =
∑
I∈I

|vi(I)|pI − di = 0 (6)

H = maximum, where H =
∑
I∈I

pI log pI (7)

According to that method, one has to introduce s + 1 additional
unknowns, λ, λ1, . . . , λs: an ME distribution is a solution to a
system of |I| + s + 1 equations consisting of Eq. (5), (6), and the
following |I| equations:

∀I ∈ I :
∂(H −

∑
i=0,s λiGi)
∂pI

= log pI − (λ0 +
∑
i=1,s

λi|vi(I)|) = 0

This implies pI = exp(λ0+
∑

i=1,s λi|vi(I)|), and the claim follows
by denoting ω = exp(λ0), and αi = exp(λi), i = 1, . . . , s.

A.2 Proof of Theorem 2.4
In this section, we reprove some foklore statements; for a variant

of these results see Wainwright and Jordan [32, §3.2].
Fix a domain size N. Given a program Σ = (Γ, v̄, d̄) over a space

of instances I(Γ), let P(Γ) denote all probability distributions over
I(Γ). The set P(Γ) is a closed, bounded subset of R|I(Γ)|, thus it is
compact. Moreover, P(Γ) is convex.

We say that Σ is satisfiable if there exists p̄ ∈ P(Γ) such that
F(p̄) = d̄. A hypergraph program ΣH = (v̄, d̄) is consistent over a
domain of size N if d̄ is in the convex hull of the following vectors:
(c̄, z) where z =

∏
i=1,m ci where c̄ ∈ {0, . . . ,N}m.

Let H denote the entropy, i.e., H(p̄) = −
∑

I∈Inst p̄I log p̄I . H is
a continuous, real-valued function. Moreover −H(p̄) is a convex
function since its Hessian is only non-zero on the diagonal, ∂

∂pI

2
−

H(p̄) = p−1
I and all other (mixed) second derivatives are 0. This

shows that −H it is positive definite on the interior of P(Γ), which
is equivalent to convexity [5, pg. 65].

Given a set of views v̄ define E : P→ Rt by E(p̄) = c̄ where

c̄ j =
∑
I∈Inst

p̄I

∣∣∣v j(I)
∣∣∣

P A.2. The set E−1(d̄) is compact.

P. We observe that E is continuous. Hence, E−1(d̄) is a
closed set. Since P(Γ) is compact, this means that E−1(d̄) is a closed
subset of a compact set, and so compact.

Thus, the entropy H takes a maximum value on the set. Formally,

sup
p̄∈E−1(d)

H(p̄) = H(q̄)

for some q̄ ∈ E−1(d̄), which proves that there is at least one maxi-
mum entropy probability distribution.

A.3 Uniqueness

P A.3. Given a satisfiable statistical program Σ, then
there is a unique probability distribution that satisfies Σ.

P. Consider the negative entropy function −H(p̄). By com-
pactness and continuity of −H, −H(p̄) attains a minimum value on
P(Γ) provided P(Γ) is not empty (which since Σ is satisfiable it is
not). By convexity of P(Γ) and −H(p̄), there is a single point that
obtains a minimum value. Thus, there is a unique minimal value of
the negative entropy, and hence a single distribution with maximum
entropy.

Given a set of |v̄| parameters, ᾱ, let P be the function that maps
ᾱ to a probability distributions pα over I(Γ) defined by

pα(I) =
1
Z

∏
i=1,m

α|vi(I)|
i where Z =

∑
J∈I(Γ)

∏
i=1,m

α|vi(J)|
i



We now give a sufficient condition for P to be injective. We say
that a set of views v̄ where |v̄| = m is affinely dependent over I(Γ) if
there exist real numbers c̄ and a value d such that (1) ci are not all
zero and (2) the following holds:

∀I ∈ I(Γ).
∑
j=1,m

|v j(I)|c j = d

If no such (c̄, d) exists, we say that the views are affinely indepen-
dent.

P A.4. Fix a set I(Γ). If v̄ is affinely independent over
I(Γ) then, P mapping α to pα is injective.

P. Suppose not, then there exists ᾱ, β̄ such that P(ᾱ) = P(β̄).
This implies that for each I, log pα(I) − log pβ(I) = 0 so that:

log(Z) − log(Z′) =
∑
j=1,m

|v j(I)|(logα j − log β j)

But then, define c j = logα j − log β j and d = log(Z) − log(Z′),
then (c̄, d) is a tuple of constants violating the affine independence
condition, a contradiction.

Now we are ready to show:

T A.5. If Σ = (Γ, v̄, d̄) and v̄ is affinely independent over
I(Γ) and Σ is satisfiable then there is a unique solution ᾱ that max-
imizes entropy.

P. Suppose not, then there are two solutions and both are
of the form P(ᾱ) and P(β̄), but this means that P(ᾱ) = P(β̄) by
Prop A.3. On the other hand, since v̄ is affinely independent (by
assumption) we have that P is injective (Prop A.4), and so ᾱ = β̄, a
contradiction.

R A.1. The reverse direction of Prop. A.4 holds.

Chains, Hypergraphs, and Relations are Affinely Inde-
pendent

P A.6. A set of vectors is {x(i)}i=1,...,m is affinely inde-
pendent over RN if and only if {y( j)} j=1,...,m where y( j) = (x( j), 1) is
linearly independent over RN+1.

Fix a tuple of views v̄. Denote by τv̄ : I → Nm+1 as τ(I) = t̄
where ti = |vi(I)| for i = 1,m and τm+1 = 1. We denote the unit
vector in direction i as e(i).

P A.7. A chain program Σ of size m ≥ 2 is affinely
independent for domain sizes N ≥ 1.

P. Let Ik = {R1(ā), . . . ,Ri(ā)} so that τ(Ik) = x(k) where
x(k)

j = 1 if j = {1, . . . , k} ∪ {m + 1} and x(k)
j = 0 otherwise. The set

{x(k)}k=0,m is a set of m + 1 linearly independent vectors.

P A.8. A hypergraph program of size m − 1 where
m ≥ 2 is affinely independent for for any I(Γ) where the domain
size is N ≥ 1.

P. Let Ii = {Ri(a)} then τ(Ii) = e(i) + e(m+2) and Im+1 =

{Ri(a), S (ā)} then τ(Ii) = 1 which is linearly independent. More-
over, τ(∅) = e(m+1). It is straightforward that this is a linearly inde-
pendent set.

P A.9. A relational program of size m− 1 where m ≥
2 is affinely independent over domains of size N ≥ 2.

P. The vectors are x(i) = 1 + e(i) + e(m+1) for i = 1,m − 1 (a
world with two tuples that differ on one attribute) and x(m) = 1 (a
world with one tuple) and x(m+1) = e(m+1) (the empty world).

A.4 Calculations for Example 2.11
Recall the example: Continuing with ΣC2, the partition function

on a domain of size N is then:

T ΣC2 (ᾱ) = (1 + α2(1 + α1)N)N

Given d̄ = (d1, d2), we observe that by setting ᾱ as follows is a
solution to ΣC2: set α1 =

d1
d2N−d1

and α2 =
d2

N−d2
(1 + α1)−N .

Now, we observe z = x
1+x =⇒

z
1−z = x so that:

E[A2] =
T
α 2

∂

∂α2
T ΣC2 = N

α2(1 + α1)N

1 + α2(1 + α1)N = d2

E[A1] = E[A2]N
α1

1 + α1
= d1

A.5 Calculations for Example 2.15
We have β1 =

d1
cN−d1

and β2 =
c

N−c (1 + β1)−N which implies that
α1 = β1 and α2 =

c
(N−c)(1+β1)N+c .

Now, we solve the following equation for large N:

c = Nα2 + (1 − α2)d2

Now,

lim
N→∞

Nα2 = lim
N→∞

c(1 + β1)−N 1
1 + N−1c(1 − (1 + β)−N)

→ ce−d1/c

Thus, we are left with:

c = ce−d1/c + d2

Let v = 1/c which leaves e−d1v = 1 − d2v now we apply the
substitution t = d1v + d1

d2
so that v = d−1

1 (t − d1
d2

) and

e−(t−
d1
d2

)
=

d2

d1
t

tet =
d1

d2
e−

d1
d2

t = W
(

d1

d2
e−

d1
d2

)

v =

W
(

d1
d2

e−
d1
d2

)
d1

−
1
d2

Notice W is a function for positive reals, and W (xe−x) = x occurs
only at x = 0, thus v > 0 for all d1, d2 > 0. This implies that 1/v = c
is a well-defined.

A.6 Extension: Bucketization
An arithmetic predicate, or range predicate, has the form x op c,

where op ∈ {<,≤, >,≥} and c is a constant; we denote by P≤ the
set of project queries with range predicates. We introduce range
predicates like x < c, both in the constraints and in the statistical
assertions. To extend the asymptotic analysis, we assume that all
constants are expressed as fractions of the domain size N, e.g., in
Ex. A.10 we have v1(x, y) D R(x, y), x < 0.25N.

Example A.10 Overlapping Ranges Consider two views8:

v1(x, y) D R(x, y), x < .60N and v2(x, y) D R(x, y), .25N ≤ x

and the statistical program #v1 = d1, #v2 = d2. Assuming N = 100,
the views partition the domain into three buckets, D1 = [1, 24],
8We represent range predicates as fractions of N so we can allow
N to go to infinity.



D2 = [25, 59], D3 = [60, 100], of sizes N1,N2,N3. Here we want to
say that we observe d1 tuples in D1 ∪ D2 and d2 tuples in D2 ∪ D3.
The ME model gives us a precise distribution that represents
only these observations and nothing more. The partition function
is (1 + x1)N1 (1 + x1 x2)N2 (1 + x2)N3 , and the ME distribution
has the form P[I] = ωαk1

1 α
k2
2 , where k1 = |I ∩ (D1 ∪ D2)| and

k2 = |I ∩ (D2 ∪ D3)|.
Suppose we assert the number of tuples in each bucket, say d1 =

550, d2 = 126, d3 = 772, then we can compute the ME dis-
tribution by finding the right parameters α1, α2, α3; one can check
that these values are αi = di/(NiN − di), for i = 1, 3. Note that the
statistics Σ resemble superficially a histogram with three buckets
D1,D2,D3: both the histogram and Σ make statements about the
number of tuples in the three buckets. But histograms do not de-
fine a probability distribution, and therefore questions like “what is
the estimated size of the query q(x, z) D R(x, y),R(z, y) ?” has no
meaning over histograms. Instead, it has a well defined meaning
for the ME distribution associated to Σ.

Let R̄ = R1, . . . ,Rm be a relational schema, and consider a sta-
tistical program Σ, Γ with range queries, over the schema R̄. We
translate it into a bucketized statistical program Σ0, Γ0, over a new
schema R̄0, as follows. First, use all the constants that occur in the
constraints or in the statistical assertions to partition the domain
into b buckets, D = D1 ∪ D2 ∪ . . . ∪ Db. Then define as follows:

• For each relation name R j of arity a define ba new relation
symbols, Ri1 ···ia

j = Rī
j, where i1, . . . , ia ∈ [b]; then R̄0 is the

schema consisting of all relation names Ri1 ···ia
j .

• For each conjunctive query q with range predicates, denote
buckets(q) = {qī | ī ∈ [b]|Vars(q)|} the set of queries obtained
by associating each variable in q to a unique bucket, and anno-
tating the relations accordingly. Each query in buckets(q) is
a conjunctive query over the schema R̄0, without range predi-
cates, and q is logically equivalent to their union.

• Let BV =
⋃
{buckets(v) | (v, d) ∈ Σ} (we include in BV

queries up to logical equivalence), and let cu denote a con-
stant for each u ∈ BV , s.t. for each statistical assertion #v = d
in Σ the following holds∑

u∈buckets(v)

cu = d (8)

Denote Σ0 the set of statistical assertions #u = cu, u ∈ BV .

• For each inclusion constraint w⇒ R in Γ, create b|Vars(w)| new
inclusion constraints, of the form w j̄ ⇒ Rī; call Γ0 the set of
new inclusion constraints.

Then the following holds:

P A.11. Let Σ0,Γ0 be the bucketized program for Σ,Γ.
Let β̄ = (βk) be the ME model of the bucketized program. Con-
sider some parameters ᾱ = (α j). Suppose that for every statistical
assertion #v j = d j in Σ condition (8) holds, and the following con-
dition holds for every query uk ∈ BV:

βk =
∏

j:uk∈buckets(v j)

α j (9)

Then ᾱ is a solution to the ME model for Σ,Γ.

This gives us a general procedure for solving the MEmodel
for programs with range predicates: introduce new unknowns cī

j
and add Equations (8) and (9), then solve the ME model for
the bucketized program under these new constraints.

Example A.12 Recall Example A.10. we are given two statistics
#σA≤0.60N(R) = d1, and #σA≥0.25N(R) = d2. The domain D is parti-
tioned into three domains, D1 = [1, 0.25N), D2 = [0.25N, 0.60N),
and D3 = [0.60N,N], and we denote N1,N2,N3 their sizes. The
bucketization procedure is this. Define a new schema R1,R2,R3,
with the statistics #R1 = c1, #R2 = c2, #R3 = c3, then solve it,
subject to the Equations (9):

β1 = α1

β2 = α1α2

β3 = α2

We can solve for R1,R2,R3, since each Ri is given by a binomial
distribution with tuple probability βi/(1 + βi) = ci/Ni. Now use
Equations (8), c1 + c2 = d1 and c2 + c3 = d2 to obtain:

N1
α1

1 + α1
+ N2

α1α2

1 + α1α2
= d1

N3
α2

1 + α2
+ N2

α1α2

1 + α1α2
= d2

Solving this gives us the MEmodel. Consistent histograms [30]
had a similar goal of using ME to capture statistics on overlap-
ping intervals, but use a different, simpler probabilistic model based
on frequencies.


