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ABSTRACT
Recent works on bounding the output size of a conjunctive
query with functional dependencies and degree bounds have
shown a deep connection between fundamental questions in
information theory and database theory. We prove analo-
gous output bounds for disjunctive datalog rules, and answer
several open questions regarding the tightness and looseness
of these bounds along the way. The bounds are intimately
related to Shannon-type information inequalities. We de-
vise the notion of a “proof sequence” of a specific class of
Shannon-type information inequalities called “Shannon flow
inequalities”. We then show how a proof sequence can be
used as symbolic instructions to guide an algorithm called
PANDA, which answers disjunctive datalog rules within the
size bound predicted. We show that PANDA can be used
as a black-box to devise algorithms matching precisely the
fractional hypertree width and the submodular width run-
times for aggregate and conjunctive queries with functional
dependencies and degree bounds.

Our results improve upon known results in three ways.
First, our bounds and algorithms are for the much more gen-
eral class of disjunctive datalog rules, of which conjunctive
queries are a special case. Second, the runtime of PANDA
matches precisely the submodular width bound, while the
previous algorithm by Marx has a runtime that is polyno-
mial in this bound. Third, our bounds and algorithms work
for queries with input cardinality bounds, functional depen-
dencies, and degree bounds.

Overall, our results showed a deep connection between
three seemingly unrelated lines of research; and, our results
on proof sequences for Shannon flow inequalities might be
of independent interest.

Keywords
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1. INTRODUCTION
In this paper we answer four major questions that resulted

from four different research threads, and establish new con-
nections between those threads.

1.1 Size Bound for Full Conjunctive Queries
Grohe and Marx [30], Atserias, Grohe, and Marx [13],

and Gottlob, Lee, Valiant and Valiant [27] developed a deep
connection between the output size bound of a conjunc-
tive query with (or without) functional dependencies (FD)
and information theory. Our first problem is to extend
this bound to degree constraints, and to study whether the
bound is tight.

We associate a full conjunctive query Q to a hypergraph
H = ([n], E), E ⊆ 2[n]. The query’s variables are Ai, i ∈ [n].
Its atoms are RF , F ∈ E . The query is:

Q(A[n]) :-
∧
F∈E

RF (AF ), (1)

where AJ denotes the set {Aj | j ∈ J}, for J ⊆ [n]. Our
goal is to compute an upper bound on the output size, when
the input database satisfies a set of degree constraints. De-

fine degF (AY |AX)
def
= maxt |ΠAY (σAX=t(RF ))|; then, a de-

gree constraint is an assertion of the form degF (AY |AX) ≤
NY |X , for X ⊂ Y ⊆ F , A cardinality constraint is an asser-
tion of the form |RF | ≤ NF , for some F ∈ E ; it is exactly

the degree constraint degF (AF |∅) ≤ NF |∅
def
= NF . A func-

tional dependency AX → AY is a degree constraint with
NX∪Y |X = 1. Thus, degree constraints strictly generalize
both cardinality constraints and FDs.

The first output size upper bound was pioneered in [13,30],
who established a tight bound, for cardinality constraints
only, known today as the AGM bound. Extensions to FDs
and degree constraints were discussed in [27] and [3], re-
spectively, who left open the question whether these bounds
are tight. Handling queries with degree constraints has a
strong practical motivation. Armbrust et al. [10–12], de-
scribed a new approach to query evaluation, called scale-
independent query processing, which guarantees a fixed run-
time even when the size of the database increases without
bound; this guarantee is provided by asking developers to
write explicit degree constraints, then using heuristics to
derive upper bounds on the query output. Thus, improved
upper bounds on the size of the query answer have immedi-
ate applications to scale-independent query processing. Sev-
eral complexity results on the associated decision problem
(“is the output size of the query bounded?”) were considered
in [15–17].
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Our first question is whether the upper bounds for FDs
or degree constraints are tight. To set the technical con-
text for this question, we briefly describe how the bound
was derived. Fix an input database D and consider the
joint distribution on random variables A[n] where each out-
put tuple t ∈ Q(D) is selected uniformly with probability
1/|Q(D)|. Let h(AS) denote the marginal entropy on the
variables AS . Then1, by uniformity h(A[n]) = log |Q(D)|,
and h(AY |AX) ≤ logNY |X for every degree constraint. A

function h : 2A[n] → R+ is said to be entropic if there is a
joint distribution on A[n] such that h(AS) is the marginal
entropy on AS , S ⊆ [n]. The entropic bound of a query
is log |Q| ≤ maxh h(A[n]), where h ranges over all entropic
functions satisfying the given constraints. Recently, Gogacz
and Toruńczyk [25] showed that the entropic bound is tight
even in the presence of FDs. However, they did not address
general degree constraints.

The problem with the entropic bound is that we do not
know how to compute it (except for the special case when
all degree constraints are cardinality constraints), because
the entropic cone is characterized by infinitely many non-
Shannon-type inequalities [33, 38]. To overcome this limita-
tion, Gottlob et al. [27] replace entropic functions (which
are difficult) with polymatroids (which are easier). A poly-

matroid is a set function h : 2[n] → R+ that is non-negative,
monotone, and submodular, with h(∅) = 0 (see Sec 2). Ev-
ery entropic function h is also a polymatroid, if we write
h(S) for h(AS). (We will use h(S) and h(AS) interchange-
ably in this paper, depending on context.) Linear inequal-
ities satisfied by all polymatroids are called Shannon-type
inequalities [38]. The polymatroid bound of a full conjunc-
tive query is log |Q| ≤ maxh h(A[n]), where h ranges over all
polymatroids satisfying the given constraints. The polyma-
troid bound, while at least as large as the entropic bound,
is known to be tight for cardinality constraints, because the
AGM bound is a polymatroid bound for cardinality con-
straints (see Prop. B.1) and it is tight [13]. The polymatroid
bound is also tight for cardinality constraints with certain
sets of FDs [3]. We ask whether it is tight in more general
settings:

Question 1. Is the polymatroid bound tight for general
degree constraints? Or, at least for queries with both cardi-
nality and FD constraints?

Example 1.1. Consider the query:

Q(A1, A2, A3, A4) :- R12(A1, A2), R23(A2, A3),

R34(A3, A4), R41(A4, A1) (2)

Assuming all input relations have size ≤ N , then (a) the
AGM bound is |Q| ≤ N2, (b) if we add the degree con-
straints deg12(A1A2|A1) ≤ D and deg12(A1A2|A2) ≤ D for

some integer D ≤
√
N then |Q| ≤ D · N3/2, and (c) if

we replace the degree constraints with FDs A1 → A2 and
A2 → A1 the bound reduces further to |Q| ≤ N3/2. These
bounds can be proven using only Shannon inequalities, thus
they are polymatroid bounds. They are also asymptotically
tight (see [4]).

Answer 1. The polymatroid bound is not tight! By adding
a variable to a non-Shannon inequality by Zhang-Yeung [39]
and constructing accordingly a database instance, we prove
in Appendix A the following.
1All logs are in base 2, unless otherwise stated.

Theorem 1.2. For any integer s > 0, there exists a query Q
of size Θ(s), with cardinality and FD constraints, such that
the ratio between the polymatroid bound and the entropic
bound is ≥ Ns, where N is the size of the database.

1.2 Size Bound for Disjunctive Datalog Rules
Disjunctive datalog [9, 21] is a powerful extension of dat-

alog. In this paper we are interested in a single disjunctive-
datalog rule:

P :
∨
B∈B

TB(AB) :-
∧
F∈E

RF (AF ) (3)

The body is similar to that of a conjunctive query, while
the head is a disjunction of output predicates TB , which we
call targets. Given a database instance D, a model of P
is a tuple T = (TB)B∈B of relations, one for each target,
such that the logical implication indicated by the rule holds.
More precisely, for any tuple t, if πF (t) ∈ RF for every
input relation RF , then there exists a target TB ∈ T such
that πB(t) ∈ TB . We write T |= P to denote the fact that
T is a model. Define the size of a model to be maxB |TB |,
and define the output size of P to be the minimum size over
all models:

|P (D)| def
= min

T:T|=P
max
B∈B
|TB | (4)

Our second question is to find an output size upper bound
for a disjunctive datalog rule. If the rule has a single target
then it becomes a conjunctive query: a model is any superset
of the answer, and the output size is the standard size of the
query’s answer. We thus expect the upper bound to come in
two flavors, entropic and polymatroid, as for full conjunctive
queries.

Question 2. Find the entropic and polymatroid output size
bounds of a disjunctive datalog rule, under given cardinality
constraints, and more generally under degree constraints.
Determine if it is tight.

Example 1.3. Consider the disjunctive datalog rule:

P : T123(A1, A2, A3) ∨ T234(A2, A3, A4) :-

R12(A1, A2), R23(A2, A3), R34(A3, A4), R41(A4, A1)

A model of size N3 can be obtained by populating the target
T123 with all triples obtained from the active domain, but
we will show that |P (D)| ≤ N3/2, ∀D.

Answer 2. To describe the answer to the second ques-
tion, we recall some standard notations [38]. We identify

set-functions h : 2[n] → R+ with vectors in R2n

+ , and we
use both h(AS) and h(S) to denote hS , where A1, A2, . . .
are (random) variables. (The reason being, h(AS) is more
apt for marginal entropies, and h(S) is more apt for poly-

matroids.) The sets Γ∗n ⊂ Γ
∗
n ⊂ Γn ⊂ R2n

+ denote the set
of entropic functions, its topological closure, and the set of
polymatroids. We encode degree constraints by a set DC
of triples (X,Y,NY |X), specifying degF (AY |AX) ≤ NY |X .
Define

HDC
def
=

h |
∧

(X,Y,NY |X )∈DC

h(Y |X) ≤ logNY |X

 (5)

to be the collection of set functions satisfying those con-

straints, where h(Y |X)
def
= h(Y )−h(X). Fix a closed subset



F ⊆ R2n

+ . Define the log-size-bound of a disjunctive datalog
rule P w.r.t. F to be the quantity:

LogSizeBoundF (P )
def
= max

h∈F
min
B∈B

h(B). (6)

The following is our second result, whose proof can be found
Appendix A and [4].

Theorem 1.4. Let P be any disjunctive datalog rule (3),
and DC be given degree constraints.

(i) For any database instance D satisfying all constraints
in DC, the following holds:

log |P (D)| ≤ LogSizeBoundΓ
∗
n∩HDC(P )︸ ︷︷ ︸

entropic bound

(7)

≤ LogSizeBoundΓn∩HDC(P )︸ ︷︷ ︸
polymatroid bound

(8)

(ii) The entropic bound above is asymptotically tight.

Eq.(7) and (8) generalize the entropic and polymatroid
bounds from full conjunctive queries to arbitrary disjunc-
tive datalog rules (see Prop. B.1). The tightness result (ii)
generalizes the main result in [25], which states that the
entropic bound is asymptotically tight for full conjunctive
queries under FDs.

1.3 Worst-case Optimal Algorithms
A worst-case optimal algorithm is an algorithm for com-

puting a query in time bounded by its size bound. Such
algorithms are known for full conjunctive queries under car-
dinality constraints [1, 34, 35, 37] and FDs [3]. Our next
problem is finding a worst-case optimal algorithm for a dis-
junctive datalog rule P , under degree constraints. More
precisely, given an input database D satisfying the given
constraints, compute a model T in time no larger than the
worst-case bound for |P (D)| under those constraints. Notice
that we allow the algorithm to compute any model. A con-
junctive query Q is a single-target disjunctive datalog rule
PQ. If Q is full, then from any model T of PQ we can answer
Q by semijoin-reducing T with each input relation. Thus,
any algorithm evaluating disjunctive rules can also be used
to answer a full conjunctive query. However, this does not
hold for non-full queries. For example, if Q is Boolean, then
PQ has a single target T∅(), and can be answered trivially
by simply returning T∅ = {()}, since this is always a model,
but this does not help us answer Q. Our third problem is:

Question 3. Design a worst-case optimal algorithm for dis-
junctive datalog rules under degree constraints.

Answer 3. Details are presented in Sections 3 and 4. We
summarize the ideas here. We present an algorithm called
PANDA (Proof-Assisted eNtropic Degree-Aware), which com-
putes a model of a disjunctive datalog rule P within the run-
time predicted by the bound (8). PANDA is derived using a
novel principle that we introduced in [3]. First, one has to
provide “evidence”, called proof sequence, that the polyma-
troid bound is correct. Second, each step in the sequence is
interpreted as a relational operator (one of: join, horizontal
partition, union), leading to a model of P .

The polymatroid bound (8) is difficult to handle. While
the feasible region Γn ∩ HDC is polyhedral, the objective
of (6) is non-linear. We start by proving in Lemma 3.2 that

it is equivalent to a linear program: there exist constants
λB ≥ 0, for B ∈ B for which:

max
h∈Γn∩HDC

min
B∈B

h(B) = max
h∈Γn∩HDC

∑
B∈B

λBh(B) (9)

The RHS of (9) is simpler to deal with. To prove an upper
bound for it, one has to prove an inequality of the following
form, which we call a Shannon-flow inequality:∑

B∈B

λB · h(B) ≤
∑

(X,Y,NY |X )∈DC

δY |X · h(Y |X) (10)

This is a (vast) generalization of Shearer’s lemma [18]. The
inequality (10) implies log |P | ≤

∑
δY |X logNY |X , and we

show in the paper how to choose the coefficients δY |X such
that the last expression is precisely (8). Thus, the first task
is to prove (i.e. provide evidence for) the inequality (10).

A key technical result in the paper is Theorem 3.8 which,
stated informally, says that Eq.(10) can be proved using a
sequence of rules of one of the following four types, where
X ⊆ Y :

Submodularity h(Y |X)→ h(Y ∪ Z|X ∪ Z)

Monotonicity h(Y )→ h(X),

Composition h(X) + h(Y |X)→ h(Y ),

Decomposition h(Y )→ h(X) + h(Y |X).

To explain the theorem, assume for the sake of discussion
that all coefficients in (10) are natural numbers. Then both
sides can be seen as bags of terms, and the theorem says
that there exists a sequence of rewritings that transform the
bag on the RHS to the bag on the LHS. Obviously, if such a
sequence exists, then Eq.(10) holds, because each rewriting
replaces a term (or sum of two terms) with a smaller or equal
term (or sum of two terms). The converse statement is non-
obvious. For example in our prior work [3] we found that,
without the decomposition rule, the remaining three rules
are not complete: there exists a Shannon-flow inequality
without a proof sequence.

Finally, PANDA consists of interpreting each step in the
proof sequence as a relational operation, leading to:

Theorem 1.5. PANDA computes a model of a disjunctive
datalog rule P under degree constraints DC in time

Õ

N + poly(logN) ·
∏

(X,Y,NY |X )∈DC

N
δY |X
Y |X

 ,

where
∑

(X,Y,NY |X )∈DC

δY |X logNY |X = LogSizeBoundΓn∩HDC(P ).

1.4 Towards Optimal Algorithms
What is an optimal runtime to compute a given conjunc-

tive query? A common belief is that its cost is of the form
Õ(Nd+ |output|), where N is the size of the input database,
Nd represents the “intrinsic” cost of the query, and |output|
is the unavoidable cost of reporting the output.2 Worst-case
optimal algorithms are not optimal in this sense. They are
only good for inputs whose intrinsic cost is about the same

2In this paper, the big-O notation is in data-complexity, hid-
ing a factor that is query-dependent and data-independent.
The big-Õ hides a single log-factor in data-complexity.



R12(A1, A2), R23(A2, A3)

R34(A3, A4), R41(A4, A1)

Tree Decomposition 1

R23(A2, A3), R34(A3, A4)

R41(A4, A1), R12(A1, A2)

Tree Decomposition 2

Figure 1: Two tree decompositions for the query in
Example 1.1. Normally, each tree node is labeled
with a set of variables, e.g. χ(t) = {A1, A2, A3}; for
convenience we also show the atoms contained in
those variables, i.e. R12(A1, A2), R23(A2, A3).

as the worst-case output size. As described below, there
are algorithms whose runtimes are more output-sensitive.
If the query is Boolean, then the output size is always 1,
and the cost is totally dominated by the intrinsic cost of the
query; for simplicity we discuss here only Boolean queries,
but our discussion extends to other conjunctive and aggre-
gate queries [2]. Thus, an optimal algorithm should com-

pute a Boolean query in time Õ(Nd), with an exponent d
as small as possible. Generalizing to degree constraints, it

should compute the query in time Õ(
∏
N
δY |X
Y |X ), where NY |X

are the degree bounds, and the product is minimized.
In search of a yardstick for optimality, we borrow from

the long history of research on fixed-parameter tractability.
A class C of Boolean conjunctive queries (equivalently, CSP
instances) is fixed-parameter tractable (FPT, with parameter
H, the query’s hypergraph) if there is an algorithm solving
every C-instance in time f(|H|) ·Nd for some fixed constant
d, where f is any computable function, and N is the data
size. In a beautiful paper, Marx [32] showed that C is FPT
iff it has a bounded submodular width. His results suggest
to us using the submodular width, subw(Q), as a yardstick
for optimality. In order to prove that bounded submodular
width implies FPT, Marx described a query evaluation algo-
rithm that runs in time O(poly(N subw(Q))).3 We define an

algorithm to be optimal if its runtime is Õ(N subw(Q)). While
no lower bounds are known to date to rule out faster algo-
rithms for a specific query, Marx’s dichotomy theorem ruled
out faster algorithms for any recursively enumerable class of
queries (see [4, 32]). Our fourth problem is:

Question 4. Design an algorithm evaluating a Boolean con-
junctive query Q in Õ(N subw(Q))-time. Extend the notion of
submodular width, and the algorithm, to handle arbitrary
degree constraints, to full conjunctive and aggregate queries.

We briefly review the notion of submodular width, and
its relationship to other width notions. Note that all known
width parameters considered only cardinality constraints.
A polymatroid h is edge-dominated if h(F ) ≤ 1,∀F ∈ E .
Edge domination is a normalized version of cardinality con-

straints. The submodular width is defined to be subw(Q)
def
=

maxh min(T,χ) maxt∈V (T ) h(χ(t)), where h ranges over edge-
dominated polymatroids, and (T, χ) over tree decomposi-
tions of Q (see Defn. 2.2). Prior notions of width such as
tree-width [23], generalized- [28] and fractional- hypertree

3It is not clear what the exact runtime of Marx’s algorithm
is. His theorem states that it is O(poly(N subw(Q))). Our best
interpretation of Lemma 4.3 and Lemma 4.5 of [32] is that

Marx’s algorithm runs in time at least O(N2·subw(Q)).

width [30] (see [26] for a nice survey) are defined by first
defining the width of a tree decomposition, then choosing
the decomposition that minimizes this width. Thus, there
is always a best tree decomposition (T, χ), and a query eval-
uation algorithm runs on that (T, χ); e.g., the fractional

hypertree width is fhtw(Q)
def
= min(T,χ) maxt∈V (T ) ρ

∗(χ(t)),
where ρ∗ is the fractional edge cover number of the set
χ(t). In the submodular width, we are allowed to choose
the tree T after we see the polymatroid h. Marx showed
that subw(Q) ≤ fhtw(Q), for all Q, and there are classes of
queries for which the gap is unbounded. (See also a simple
example in [4].)

Example 1.6. Fig. 1 shows the only non-trivial tree decom-
positions of the query Q in Example 1.1. Each tree has a
fhtw of 2, hence fhtw(Q) = 2. In contrast, we will show later
that subw(Q) = 3/2. For the Boolean version of the query,

an algorithm with runtime O(N subw(Q)) will match the best

known O(N3/2)-time algorithm for detecting a 4-cycle in a
graph with N edges described by Alon et al. [8].

Answer 4. Our answer is presented in Section 5. Briefly,
we generalize the notion of submodular width subw(Q) to
account for arbitrary degree constraints, and call it degree-
aware submodular width, da-subw(Q). In fact, we describe
a very general framework that captures virtually all previ-
ously defined width-parameters, and extends them to degree
constraints. We then show how to use PANDA to compute a
query in time whose exponent is da-subw(Q), using the same
earlier principle: from a proof of the bound of da-subw(Q),
we derive an algorithm that computes Q in that bound:

Theorem 1.7. PANDA computes any full, Boolean con-
junctive, or aggregate query Q in time Õ(N + poly(logN) ·
2da-subw(Q) + |output|).

2. BACKGROUND
Throughout the paper, we use the following convention.

The non-negative reals, rationals, and integers are denoted
by R+,Q+, and N respectively. Uppercase Ai denotes a vari-
able/attribute, and lowercase ai denotes a value in the dis-
crete domain Dom(Ai) of the variable. For any subset S ⊆
[n], define AS = (Ai)i∈S , aS = (ai)i∈S ∈

∏
i∈S Dom(Ai).

In particular, AS is a tuple of variables and aS is a tuple
of specific values with support S. Occasionally we use tS to
denote a tuple with support S.

We will work on multi-hypergraphs H = ([n], E) (i.e. a
hyperedge may occur multiple times in E). A function f :

2[n] → R+ is called a (non-negative) set function on H. A
set function f on H is modular if f(S) =

∑
v∈S f({v}) for

all S ⊆ [n], is monotone if f(X) ≤ f(Y ) whenever X ⊆ Y ,
is subadditive if f(X ∪Y ) ≤ f(X) + f(Y ) for all X,Y ⊆ [n],
and is submodular if f(X∪Y )+f(X∩Y ) ≤ f(X)+f(Y ) for
all X,Y ⊆ [n]. Unless specified otherwise, we will only con-
sider non-negative and monotone set functions f for which
f(∅) = 0; this assumption will be implicit in the entire pa-
per. Let Mn, SAn, and Γn denote the set of all (non-negative
and monotone) modular, subadditive, and submodular set
functions on [n], respectively.

Definition 2.1. Given a hypergraph H = ([n], E), define
the following two set functions:

ED
def
= {h | h : 2[n] → R+, h(F ) ≤ 1, ∀F ∈ E} (11)



VD
def
= {h | h : 2[n] → R+, h({v}) ≤ 1,∀v ∈ [n]} (12)

ED stands for edge-dominated and VD stands for vertex-
dominated.

Given a set function h and a scalar s, we will use s · h to
denote h scaled by s. (Specifically, we will be interested in
logN · ED and logN · VD.)

For any two finite sets S and T , let ST denote the collec-
tion of all maps f : T → S. Such a map f is also viewed
as a vector whose coordinates are indexed by members of T
and whose coordinate values are members of S.

For the sake of clarity, this section focuses on a full con-
junctive query Q(A[n]) =

∧
F∈E RF (AF ), whose hypergraph

is H = ([n], E), as discussed in Section 1. For each F ∈ E , let

NF
def
= |RF |, where NF ∈ N ∪ {∞}. We set NF = ∞ if RF

is not a materialized predicate, a negation of a predicate, or
if its size is not known. Throughout this paper, let

N = max
F∈E,|RF |<∞

NF . (13)

(The full version [4] explains how we deal with Boolean,
count, or aggregate queries. )

2.1 Queries without FDs nor degree-bounds
Bounds on the worst-case output size. Bounding

the worst-case output size |Q| of a natural join query Q is a
well-studied problem. There is a hierarchy of such bounds.

A trivial bound is the vertex bound |Q| ≤ VB(Q)
def
= Nn.

A slightly less trivial bound is the integral edge cover bound,
described as follows. Define the edge cover polytope

EC
def
=

λ | λ ∈ RE+,
∑
F∈E
v∈F

λF ≥ 1, ∀v ∈ [n]

 .

The integral edge cover bound is

log |Q| ≤ ρ(Q, (NF )F∈E)
def
= log

(∏
F∈E

NλF
F

)
(14)

where λ = argmin
{∑

F∈E λF logNF | λ ∈ EC ∩ {0, 1}E
}

. This
bound is dependent on the input relations’ sizes. Often,
to state a bound that is independent of the input size, re-
searchers use a cruder approximation of the bound: ρ(Q) =
ρ(Q, (NF = 1)F∈E), which is called the integral edge cover
number of H.

Building on earlier works [7, 18, 24, 29], Atserias, Grohe,
and Marx [13] observed that the rational relaxation of (14)
still holds, leading to the AGM-bound:

log |Q| ≤ log AGM(Q, (NF )F∈E)
def
= log

(∏
F∈E

NλF
F

)
(15)

where λ = argmin
{∑

F∈E λF logNF | λ ∈ EC
}

. The relax-

ation ρ∗(Q)
def
= log AGM(Q, (NF = 1)F∈E) is called the frac-

tional edge cover number.
One remarkable property of the AGM-bound is that it is

asymptotically tight. There are known algorithms [1,34,35,

37] with runtime Õ(AGM(Q)): they are worst-case optimal.

Tree decompositions and their widths. Tree decom-
positions capture conditional independence among variables
in a query, facilitating dynamic-programming. We refer the

reader to the recent survey by Gottlob et al. [26] for more de-
tails on historical contexts, technical descriptions, and open
problems thereof. We are necessarily brief in this section.

Definition 2.2. A tree decomposition of a hypergraph H =
([n], E) is a pair (T, χ), where T is a tree and χ : V (T )→ 2[n]

maps each node t of the tree to a subset χ(t) of vertices such
that (1) Every hyperedge F ∈ E is a subset of some χ(t),
t ∈ V (T ), (2) For every vertex v ∈ [n], the set {t | v ∈
χ(t)} is a non-empty (connected) sub-tree of T . Somewhat
confusingly, the sets χ(t) are often called the bags of the tree
decomposition.

The common method of defining width parameters is the
framework introduced by Adler [5]. Let H = ([n], E) be a

hypergraph. Let g : 2[n] → R+ be a function that assigns a
non-negative real number to each subset of [n]. Then, the
g-width of a tree decomposition (T, χ) is maxt∈V (T ) g(χ(t)).
The g-width of H is the minimum g-width over all tree de-
compositions of H. Note that the g-width of a hypergraph
is a minimax function.

For any subset of vertices B ⊆ [n], define s(B) = |B| −
1, ρ(B) the integral edge cover number of the set B using
edges in H, and ρ∗(B) the fractional edge cover number.
Then, the treewidth of H, denoted by tw(H), is the s-width
of H. The generalized hypertree width of H, denoted by
ghtw(H) is the ρ-width of H. And, the fractional hypertree
width of H, denoted by fhtw(H), is the ρ∗-width of H. Very
recently, Fischl et al. [22] showed that, checking whether
a given hypergraph has a fractional hypertree width or a
generalized hypertree width at most 2 is NP-hard, settling
two important open questions.

The above three width parameters are based on the same
idea: we decompose the query into sub-queries in a dynamic-
programming algorithm, and the runtime is dominated by
the worst bag size bound of the tree decomposition. It is
known [2,6,14,19] that a vast number of problems in graphi-
cal model inference, database query computation, constraint
satisfaction, and logic can be solved using this strategy.
However, this tree-decomposition-first strategy has a draw-
back that once we stick with a tree decomposition we are
forced to suffer the worst-case instance for that tree decom-
position. Marx [31,32] had a wonderful observation: we can
partition the data first, and then use a different tree decom-
position for each part of the data, then we can in some cases
significantly improve the runtime. This idea leads to the
notions of adaptive width and submodular width of a query,
where in essence data partitioning and query decomposition
are used in an interleaving way.

Definition 2.3. Recall the notion of edge domination from
Defn. 11. Then, the adaptive width adw(H) of H and the
submodular width subw(H) of H are defined by

adw(H)
def
= max

f∈ED∩Mn

min
(T,χ)

max
t∈V (T )

f(χ(t)), (16)

subw(H)
def
= max

f∈ED∩Γn

min
(T,χ)

max
t∈V (T )

f(χ(t)). (17)

2.2 FD and degree constraints
The above series of bounds and width parameters were

based on a single class of statistics on the input relations:
their sizes. In practice we very often encounter queries with
functional dependency (FD) and degree bound information.
The FDs come from two main sources: primary keys and



builtin predicates (such as A1 + A2 = A3). The degree
constraints come from more refined statistics of the input
(materialized) predicates.

Definition 2.4. A degree constraint is a triple (X,Y,NY |X)
where X ⊂ Y ⊆ [n] and NY |X ∈ N ∪ {∞}. A relation
RF is said to guard the degree constraint (X,Y,NY |X) if
X ⊂ Y ⊆ F and for every tuple tX we have

degRF
(Y |tX)

def
= |ΠY (σAX=tX (RF )| ≤ NY |X . (18)

The quantity on the left hand side is called the degree of tX
with respect to Y in relation RF . Note that a relation may
guard multiple degree constraints.

To avoid writing log2 in many places, define nY |X
def
=

log2 NY |X . We use DC to denote a set of degree constraints.
A cardinality constraint is a triple (∅, F,NF ). We use CC to
denote a set of cardinality constraints. Similar to HDC de-
fined by (5), let HCC denote the set of functions h satisfying
cardinality constraints CC.

For example, consider an input relation R(A1, A2, A3) sat-
isfying the following conditions: for every value a1 in the
active domain of A1, there are at most D different values
a2 ∈ Dom(A2) such that (a1, a2) ∈ ΠA1A2(R). Then, R
guards the degree constraint ({A1}, {A1, A2}, D).

The output size of Q(A[n]) can be bounded by

log2 |Q| ≤ max
h∈HDC∩Γ̄∗n

h([n])︸ ︷︷ ︸
DAEB(Q)

≤ max
h∈HDC∩Γn

h([n])︸ ︷︷ ︸
DAPB(Q)

(19)

(DAEB and DAPB are “degree-aware” entropic and poly-
matroid bounds, respectively. Note that (19) is a special
case of (7) and (8).) The CSMA algorithm from [3] can
solve a join query Q with known degree constraints in time
Õ(N + poly(logN) · 2DAPB(Q)).

3. SHANNON FLOW INEQUALITIES
The PANDA algorithm is built on the notion of a “proof

sequence” for a class of Shannon-type inequalities called the
Shannon flow inequalities.

Definition 3.1. Let B ⊆ 2[n] denote a collection of subsets
of [n]. Let C ⊆ 2[n]× 2[n] denote a collection of pairs (X,Y )
such that ∅ 6= X ⊂ Y ⊆ [n]. Let λB = (λF )F∈B ∈ QB+
and δC = (δY |X)(X,Y )∈C ∈ QC+ denote two vectors of non-
negative rationals. For any polymatroid h, let h(Y |X) de-
note h(Y )− h(X).4 If the following inequality∑

B∈B

λB · h(B) ≤
∑

(X,Y )∈C

δY |X · h(Y |X) (20)

holds for all h ∈ Γn (i.e. for all polymatroids), then it is
called a Shannon flow inequality. The set B is called the set
of targets of the flow inequality.

Section 3.1 motivates the study of these inequalities. Sec-
tion 3.2 explains why they are called “flow” inequalities.

3.1 Motivations
Fix a disjunctive datalog rule P of the form (3) with degree

constraints DC. Abusing notations, we write (X,Y ) ∈ DC

4The quantity h(Y |X) is the polymatroid-analog of the con-
ditional entropy H[Y |X] = H[Y ]−H[X].

whenever (X,Y,NY |X) ∈ DC. In particular the set DC
can play the role of the generic set C in the definition of
Shannon flow inequality. To explain where the Shannon
flow inequalities come from, we study the (log) polymatroid
bound (8) for P , which was defined by (6) with F chosen to
be Γn∩HDC. Appendix C.1 contains the proof of the follow-
ing reformulation: the maximin optimization problem (6)
(with F = Γn∩HDC) has precisely the same objective value
as a linear program.

Lemma 3.2. There exists a non-negative vector λ = (λB)B∈B,
with ‖λ‖1 = 1, such that

LogSizeBoundΓn∩HDC(P ) = max
h∈Γn∩HDC

∑
B∈B

λB · h(B). (21)

This linear program along with Farkas lemma give rise to
Shannon flow inequalities. We first need the dual LP of (21).
Associate a dual variable δY |X to each degree constraint, a
variable σI,J to each submodularity constraint, and a vari-

able µX,Y to each monotonicity constraint. For any Z ∈ 2[n],
define the quantity

inflow(Z)
def
=

∑
X:(X,Z)∈DC

δZ|X −
∑

Y :(Z,Y )∈DC

δY |Z +
∑
I⊥J

I∩J=Z

σI,J

+
∑
I⊥J

I∪J=Z

σI,J −
∑

J:J⊥Z
σZ,J −

∑
X:X⊂Z

µX,Z +
∑

Y :Z⊂Y
µZ,Y .

Here, I ⊥ J means I 6⊆ J and J 6⊆ I. Note that the function
inflow : 2[n] → Q+ is also a function of the dual variables
(δ,σ,µ). However, we do not explicitly write down this
dependency to avoid heavy-loading notations. The dual of
the RHS of (21) is

min
∑

(X,Y )∈DC nY |X · δY |X (22)

s.t. inflow(B) ≥ λB , ∀B ∈ B
inflow(Z) ≥ 0, ∅ 6= Z ⊆ [n].

(δ,σ,µ) ≥ 0.

(Recall that nY |X
def
= log2 NY |X .) Let h∗ = (h∗Z)Z⊆[n] de-

note an optimal solution to (21), then its objective value
h∗([n]) is the same as the objective value of (22) due to
strong duality. In particular, let (δ∗,σ∗,µ∗) denote an opti-
mal solution to (22), then

∑
B∈B λB ·h

∗(B) =
∑

(X,Y )∈DC δ
∗
Y |X ·

nY |X . One way to characterize any dual feasible solution
(δ,σ,µ), is to use Farkas’ lemma [36], which in our context
takes the following form (see Appendix C.1 for a proof):

Proposition 3.3. Given λ and δ, the inequality∑
B∈B

λB · h(B) ≤
∑

(X,Y )∈DC

δY |X · h(Y |X) (23)

is a Shannon flow inequality if and only if there exist σ and
µ such that (δ,σ,µ) is feasible to the dual LP (22).

3.2 Proof sequences
A key observation from Abo Khamis et al. [3] was that

we can turn a proof of a special case of inequality (23) into
an algorithm. The proof has to be performed in a sequen-
tial manner; and this brings us to the concept of a proof
sequence. In this paper, we refine the proof sequence no-
tion from [3] in four significant ways. First, the definition



of the proof sequence is different, allowing for a simpler al-
gorithm (PANDA) than CSMA in [3]. Second, in [3] we left
open whether proof sequences are a complete proof system,
even for special Shannon-flow inequalities; the CSMA algo-
rithm used a specific workaround to achieve optimality even
without proving completeness of proof sequences. Our most
important contribution here is to prove completeness of our
new proof sequence. Third, we are able to bound the length
of the proof sequence to be polynomial in the size of the
linear program (22), as opposed to the doubly exponential
length in [3]. Fourth, new technical ideas are introduced
so that we can construct proof sequences for the much more
general Shannon flow inequality (23) (as opposed to the spe-
cial case of “output inequality” in [3]).

Definition 3.4. Let P ⊆ 2[n] × 2[n] denote the set of all
pairs (X,Y ) such that ∅ ⊆ X ⊂ Y ⊆ [n]. A vector f ∈ RP+
has coordinates indexed by pairs (X,Y ) ∈ P. We denote
the corresponding coordinate value of f by f(Y |X). The
vector f is called a conditional polymatroid iff there exists a
polymatroid h such that f(Y |X) = h(Y ) − h(X); and, we
say h defines the conditional polymatroid f . Abusing no-
tation somewhat, the conditional polymatroid defined by
the polymatroid h is denoted by h. In particular, h =
(h(Y |X))(X,Y )∈P . If h is a polymatroid then h(∅) = 0, in
which case we write h(Y ) instead of h(Y |∅).

To formally define the notion of a proof sequence, we
rewrite the Shannon flow inequality (20) as an inequality
on conditional polymatroids in the QP+ space. We extend
the vectors λB ∈ QB+ and δC ∈ QC+ to become vectors λ, δ
in the QP+ space in the obvious way:

λ(Y |X)
def
=

{
λB(B) when Y = B,X = ∅
0 otherwise.

δ(Y |X)
def
=

{
δC(Y |X) when (X,Y ) ∈ C
0 otherwise.

Then, inequality (20) can be written simply as 〈λ,h〉 ≤
〈δ,h〉. Note the crucial fact that, even though λ ∈ QP+, for
it to be part of a Shannon flow inequality only the entries
λB|∅ can be positive. We will often write λB instead of
λB|∅. These assumptions are implicit henceforth. Prop. 3.3
can now be written simply as:

Proposition 3.5. Given any λ, δ ∈ QP+, where λY |X > 0
implies X = ∅, the inequality 〈λ,h〉 ≤ 〈δ,h〉 is a Shannon
flow inequality if and only if there exist σ and µ such that
(δ,σ,µ) satisfy the constraints

inflow(Z) ≥ λZ , ∅ 6= Z ⊆ [n] and (δ,σ,µ) ≥ 0 (24)

The conditional polymatroids satisfy four basic laws:

h(I ∪ J |J)− h(I|I ∩ J) ≤ 0, I ⊥ J (submodularity)

−h(Y |∅) + h(X|∅) ≤ 0, X ⊂ Y (monotonicity)

h(Y |∅)− h(Y |X)− h(X|∅) ≤ 0, X ⊂ Y (composition)

−h(Y |∅) + h(Y |X) + h(X|∅) ≤ 0, X ⊂ Y (decomposition)

For every I ⊥ J , define a vector sI,J ∈ QP+, and for every
X ⊂ Y , define three vectors mX,Y , cX,Y ,dY,X ∈ QP+ such
that the laws above can be written correspondingly in dot-
product form:

〈sI,J ,h〉 ≤ 0, I ⊥ J (submodularity) (25)

〈mX,Y ,h〉 ≤ 0, X ⊂ Y (monotonicity) (26)

〈cX,Y ,h〉 ≤ 0, X ⊂ Y (composition) (27)

〈dY,X ,h〉 ≤ 0, X ⊂ Y (decomposition) (28)

Definition 3.6. A proof sequence of a Shannon flow inequal-
ity 〈λ,h〉 ≤ 〈δ,h〉, is a sequence (w1f1, . . . , w`f`) satisfying
the following: (1) fi ∈ { sI,J , mX,Y , cX,Y , dY,X} for all
i ∈ [`]. The fi are called proof steps. (2) wi ∈ R+, i ∈ [`]
are the corresponding weights of the proof steps. (3) All the

vectors δ0
def
= δ, δ1, . . . , δ` defined by δi = δi−1 + wi · fi,

i ∈ [`] are non-negative. (4) Furthermore, δ` ≥ λ.

Note that 〈δi−1,h〉 ≥ 〈δi,h〉 for every conditional poly-
matroid h, and every i ∈ [`]. The proof step sI,J is called a
submodularity step, mX,Y a monotonicity step, dY,X a de-
composition step, and cX,Y a composition step.

Definition 3.7. Let 〈λ,h〉 ≤ 〈δ,h〉 be a Shannon flow
inequality. From Prop. 3.3 there exists (σ,µ) such that
(δ,σ,µ) belongs to the polyhedron (24). We call (σ,µ) a
witness for the Shannon flow inequality.

We present here one construction of a proof sequence for
a Shannon flow inequality. See [4] for more advanced con-
structions of shorter sequences.

Theorem 3.8. Let 〈λ,h〉 ≤ 〈δ,h〉 be a Shannon flow in-
equality with witness (σ,µ). There exists a proof sequence
for the inequality 〈λ,h〉 ≤ 〈δ,h〉 with length at most D(3‖σ‖1+
‖δ‖1 + ‖µ‖1), where D is the minimum common denomina-
tor of all entries in (λ, δ,σ,µ).

Proof. We induct on the quantity

`(λ, δ,σ,µ)
def
= D (‖λ‖1 + 2‖σ‖1 + ‖δ‖1 + ‖µ‖1) ,

which is an integer. The base case is when ‖λ‖1 = 0, which is
trivial because the inequality has a proof sequence of length
0. In the inductive step, assume ‖λ‖1 > 0, meaning there
must be some B ⊆ [n] for which λB > 0. We will produce
a Shannon flow inequality 〈λ′,h〉 ≤ 〈δ′,h〉 witnessed by
(σ′,µ′) such that `(λ′, δ′,σ′,µ′) < `(λ, δ,σ,µ). From the
induction hypothesis we obtain a proof sequence ProofSeq′

for 〈λ′,h〉 ≤ 〈δ′,h〉. Finally the proof sequence ProofSeq for
〈λ,h〉 ≤ 〈δ,h〉 is constructed from ProofSeq′ by appending
to the beginning one or two proof steps.

From Prop. 3.5, we know
∑
∅6=W⊆[n] inflow(W ) ≥ λB > 0.

Consequently, there must exist Z 6= ∅ for which δZ|∅ > 0;
otherwise, all variables δY |X , σI,J , µX,Y contribute a non-

positive amount to the sum
∑
∅6=W⊆[n] inflow(W ). Let w

def
=

1/D, and fix an arbitrary Z 6= ∅ where δZ|∅ > 0. We
initially set (λ′, δ′,σ′,µ′) = (λ, δ,σ,µ); then we modify
(λ′, δ′,σ′,µ′) slightly depending on the cases below.

Case 1: λZ > 0. Reduce both λ′Z and δ′Z|∅ by w. From

Prop. 3.5, we can verify that 〈λ′,h〉 ≤ 〈δ′,h〉 is a Shannon
flow inequality witnessed by (σ′,µ′) = (σ,µ). By induction
hypothesis, 〈λ′,h〉 ≤ 〈δ′,h〉 has a proof sequence ProofSeq′

of length at most D(3‖σ‖1 + ‖δ′‖1 + ‖µ‖1). Furthermore,
the ProofSeq′ is also a proof sequence for 〈λ,h〉 ≤ 〈δ,h〉.

Case 2: λZ = 0 and inflow(Z) > 0. Reduce δ′Z|∅ by w.

Then, from Prop. 3.5, we can verify that 〈λ,h〉 ≤ 〈δ′,h〉 is a
Shannon flow inequality witnessed by (σ,µ). The inductive
step is now identical to that of Case 1.

Case 3: inflow(Z) = 0. Since δZ|∅ > 0, there must be
some dual variable that is contributing a negative amount



to inflow(Z). In particular, one of the following three cases
must hold:

(1) There is some X ⊂ Z such that µX,Z ≥ w. Define δ′ =
δ+w ·mX,Z and reduce µ′X,Z by w. Note that ‖δ′‖1 = ‖δ‖1,
‖µ′‖1 = ‖µ‖1 − w, and 〈λ,h〉 ≤ 〈δ′,h〉 is a Shannon flow
inequality. witnessed by (σ,µ′). By induction hypothesis,
〈λ,h〉 ≤ 〈δ′,h〉 has a proof sequence ProofSeq′ of length at
most D(3‖σ‖1 + ‖δ′‖1 + ‖µ′‖1). It follows that ProofSeq =
(w ·mX,Z ,ProofSeq′) is a proof sequence for 〈λ,h〉 ≤ 〈δ,h〉
of length at most D(3‖σ‖1 + ‖δ‖1 + ‖µ‖1).

(2) There is some Y ⊃ Z such that δY |Z ≥ w. Define δ′ =
δ+w ·cZ,Y . Note that ‖δ′‖1 = ‖δ‖1−w and 〈λ,h〉 ≤ 〈δ′,h〉
is a Shannon flow inequality witnessed by (σ,µ). From the
proof sequence ProofSeq′ for 〈λ,h〉 ≤ 〈δ′,h〉 we obtain the
proof sequence ProofSeq = (w · cZ,Y ,ProofSeq′) for 〈λ,h〉 ≤
〈δ,h〉 of the desired length.

(3) There is some J ⊥ Z such that σZ,J ≥ w. Define
δ′ = δ+w ·dZ,Z∩J +w · sZ,J , and reduce σ′Z,J by w. In this
case, ‖δ′‖1 = ‖δ‖1 + w, ‖σ′‖1 = ‖σ‖1 − w, and 〈λ,h〉 ≤
〈δ′,h〉 is a Shannon flow inequality witnessed by (σ′,µ).
By induction hypothesis, 〈λ,h〉 ≤ 〈δ′,h〉 has a proof se-
quence ProofSeq′ of length at mostD(3‖σ′‖1+‖δ′‖1+‖µ‖1).
It follows that ProofSeq = (w · dZ,Z∩J , w · sZ,J ,ProofSeq′)
is a proof sequence for 〈λ,h〉 ≤ 〈δ,h〉 of length at most
D(3‖σ‖1 + ‖δ‖1 + ‖µ‖1).

The PANDA algorithm needs another technical lemma.
(See Appendix C.2 for its proof.)

Lemma 3.9. Let 〈λ,h〉 ≤ 〈δ,h〉 be a Shannon flow inequal-
ity with witness (σ,µ). Let D be a common denominator of
all entries in (λ, δ,σ,µ), and w = 1/D. Suppose ‖λ‖1 > 0
and δY |∅ > 0. Then, there are two vectors λ′, δ′ satisfying
the following conditions:

(a) 〈λ′,h〉 ≤ 〈δ′,h〉 is a Shannon flow inequality (with
witness (σ′,µ′)).

(b) λ′ ≤ λ and δ′ ≤ δ (component-wise comparisons).

(c) ‖λ′‖1 ≥ ‖λ‖1 − w and δ′Y |∅ ≤ δY |∅ − w.

(d) D is a common denominator of all entries in the vector
(λ′, δ′,σ′,µ′).

4. THE PANDA ALGORITHM
This section presents an algorithm called PANDA that

computes a model of a disjunctive datalog rule P in time
predicted by its polymatroid bound (defined by (8)):

Õ(N + poly(logN) · 2LogSizeBoundΓn∩HDC(P )).

(Recall the definition of N in (13).) The main result of this
section is Theorem 1.5, whose proof is in Appendix D. We
start with a simple example illustrating how one might turn
a proof sequence into an algorithm.

Example 4.1. We illustrate PANDA on the disjunctive rule
P in Example 1.3. First we prove |P | ≤ N3/2. This follows
from

log |P | ≤ min(h(A1A2A3), h(A2A3A4))

≤ 1

2
(h(A1A2A3) + h(A2A3A4)),

and from this Shannon-flow inequality:

h(A1A2A3) + h(A2A3A4) ≤ h(A1A2) + h(A2A3) + h(A3A4)

The inequality implies log |P | ≤ 3
2

logN , because each of
h(A1A2), h(A2A3), h(A3A4) is ≤ logN . It remains to prove
the Shannon-flow inequality above, and for that we use this
proof sequence:

h(A1A2) + h(A2A3) + h(A3A4)
(1)→

h(A1A2) + h(A2A3) + [h(A4|A3) + h(A3)]
(2)→

h(A1A2|A3) + h(A2A3) + [h(A4|A2A3) + h(A3)] =[
h(A1A2|A3) + h(A3)

]
+
[
h(A2A3) + h(A4|A2A3)

] (3)→
h(A1A2A3) + h(A2A3A4)

PANDA interprets these steps as relational operators. (1) is
a decomposition step: we partition R34(A3, A4) horizontally
into R′3(A3) and R′34(A3, A4), where R′3 contains all values
a3 that are “heavy hitters”, meaning that |σA3=a3(R34)| ≥√
N , and R′34 consists of all pairs (a3, a4) with a3 being

“light hitters”. (2) are two submodularity steps: PANDA
does nothing, but keeps track that the term h(A1A2|A3)
refers to R12(A1, A2) and h(A4|A2A3) refers to R′34(A3, A4).
(3) are two composition steps, interpreted as joins. PANDA
computes the first target T123(A1, A2, A3) = R12(A1, A2) 1

R′3(A3), and the second target T234(A2, A3, A4) = R23(A2, A3) 1

R′34(A3, A4). Both joins take time Õ(N3/2), because |R′3| ≤√
N and degR′34

(A3A4|A3) ≤
√
N .

The above example has the nice property that the two
terms h(A4|A3) and h(A3) resulting from the decomposi-
tion (1) diverged, i.e. were used in different targets. This
allowed PANDA to place each tuple from R34 in either R′3
or R′34: no need to place in both, since these relations are
not joined later. However, we could neither prove nor dis-
prove the divergence property in general. Instead, PANDA
conservatively places each tuple in both relations, yet it must
ensure |R′3(A3)| · degR′34

(A3A4|A3) ≤ |R34|. For that it cre-

ates logN bins, with tuples whose degree is in [2i, 2i+1), for
i = 0, . . . , blogNc, and processes each bin separately. This
needs to be repeated at each non-divergent decomposition
step, hence the additional poly(logN) factor in the runtime.

In general, PANDA takes as input the collection of in-
put relations R, the degree constraints DC, a Shannon flow
inequality and its proof sequence. The Shannon flow in-
equality is constructed by solving the optimization prob-
lem (6) where F is Γn ∩ HDC. From Lemma 3.2, we can
find a vector λB with ‖λ‖1 = 1 such that the problem
has the same optimal objective value as the linear program
maxh∈Γn∩HDC〈λ,h〉. Recall from Section 3.2 that, when we
extend λB to the (conditional polymatroid) space λ ∈ QP+,
only the entries λB|∅ for B ∈ B can be positive. Let (δ,σ,µ)
denote an optimal dual solution to this LP, then by strong
duality∑

(X,Y )∈DC

nY |X · δY |X = LogSizeBoundΓn∩HDC(P ) (29)

Moreover, from Proposition 3.3 we know 〈λ,h〉 ≤ 〈δ,h〉 is
a Shannon flow inequality. For inductive purposes, we will
assume a slightly more general condition that the guiding
Shannon flow inequality satisfies 0 < ‖λ‖1 ≤ 1. From The-
orem 3.8, we obtain a proof sequence for the Shannon flow



inequality. Also for inductive purposes, the following invari-
ant is maintained throughout:

Definition 4.2 (Degree-support invariant). The guiding
Shannon flow inequality is promised to satisfy the follow-
ing invariant: if δY |X > 0 then there exist Z ⊆ X, W ⊆ Y
such that W − Z = Y −X and (Z,W,NW |Z) ∈ DC. (Note
that, if X = ∅ then W = Y and Z = ∅.) The degree con-
straint (Z,W,NW |Z) is said to support the positive δY |X .
(If there are multiple constraints (Z,W,NW |Z) supporting
δY |X , then the one with the minimum NW |Z is always cho-
sen to be the constraint that supports δY |X , where ties are
broken arbitrarily.)

Invariant 4.2 is certainly satisfied at the very beginning.
A very high-level description of the algorithm is as follows.
Recall from Definition 3.6 that a proof sequence ProofSeq is
a series of proof steps, which are used by PANDA as “sym-
bolic instructions”. For each instruction, PANDA does some
computation, spawns a number of subproblem(s) all of which
are disjunctive datalog rules, and creates new (intermediate)
relations to become input of the subproblems if necessary.

The output of the ith subproblem is a set of tables T
(i)
B for

B ∈ B. The overall output is the set of tables TB =
⋃
i T

(i)
B ,

B ∈ B; namely for each B ∈ B we take the union of the
corresponding tables from the subproblems’s outputs. The
number of subproblems will be shown to be polylogarithmic
in the input size.

We now walk the reader step-by-step through the algo-
rithm. Define a “budget” quantity of

OBJ
def
=
∑

(X,Y )

n(δY |X), (30)

where

n(δY |X)
def
=


δY |X · nW |Z if δY |X > 0 and

(Z,W,NW |X) supports it

0 if δY |X = 0.

From (29), OBJ = LogSizeBoundΓn∩HDC(P ). We assume

that the input size is within the budget, i.e. N ≤ 2OBJ.
(We will see later how to enforce this assumption when it
is not satisfied.) We will keep every step of the algorithm

to run within the budget of Õ(2OBJ). Specifically, we will
keep every intermediate relation the algorithm computes of
size ≤ 2OBJ. In the base case, the algorithm stops as soon
as there is a relation R ∈ R with attribute set AB where
B ∈ B, in which case R is a target relation. Otherwise,
the algorithm takes steps which are modeled after the proof
steps. Let f be the first proof step (instruction) with weight
w, i.e. ProofSeq = (w·f ,ProofSeq′) where ProofSeq′ contains
the rest of the instructions.

Case 1: f = sI,J is a submodularity step. By definition
of proof sequence, δ+w · sI,J ≥ 0, and thus δI|I∩J ≥ w > 0.
Let (Z,W,NW |Z) ∈ DC be the degree constraint supporting
δI|I∩J ; then Z ⊆ I ∩J , W ⊆ I, and W −Z = I− I ∩J . The
algorithm proceeds by setting δ′ = δ + w · sI,J . Note that
δ′I∪J|J is now positive, and so it needs a supporting degree
constraint. From the fact that W−Z = I−I∩J = I∪J−J ,
(Z,W,NW |Z) can support δ′I∪J|J . Since f was the next step

in the proof sequence, 〈λ,h〉 ≤ 〈δ′,h〉 is a Shannon flow
inequality with proof sequence ProofSeq′.

Case 2: f = mX,Y is a monotonicity step. By definition
of proof sequence, δ+w ·mX,Y ≥ 0, and thus δY |∅ ≥ w > 0.

Let (∅, Y,NY |∅) ∈ DC be the degree constraint supporting
δY |∅, and R ∈ R be a guard for this degree constraint
(hence |ΠY (R)| ≤ NY |∅). Then, we proceed by setting
δ′ = δ + w · mX,Y . Note that δ′X|∅ is positive, and so it
needs a supporting degree constraint, which is the newly
added degree constraint (∅, X,NX|∅), guarded by R, where

NX|∅
def
= |ΠX(R)| ≤ |R| ≤ 2OBJ.

Case 3: f = dY,X is a decomposition step with weight w.
From δ+w·dY,X ≥ 0, it follows that δY |∅ ≥ w > 0. From the
guarantee that δY |∅ has a supporting degree constraint, it
follows that there is a relation R ∈ R guarding (∅, Y,NY |∅),
which means |ΠY (R)| ≤ NY |∅. We showed in [3] that R
can be partitioned into at most (k = 2 log2 |R| ≤ 2 · OBJ)

sub-tables R(1), . . . , R(k) such that N
(j)

Y |XN
(j)

X|∅ ≤ NY |∅, for

all j ∈ [k], where

N
(j)

Y |X
def
= max

tX∈ΠX (R(j))
degR(j)(Y |tX), (31)

N
(j)

X|∅
def
= |ΠX(R(j))|.

(See (18) in Definition 2.4.) For each of these sub-tables R(j)

of R, we create a subproblem with the same input tables but
with R replaced by R(j). The jth subproblem has degree
constraints DC(j) where

DC(j) = DC ∪
{

(∅, X,N (j)

X|∅), (X,Y,N
(j)

Y |X)
}
.

The table R(j) guards both of the new degree constraints.
Set δ = δ+w ·dY,X . The jth subproblem is on the Shannon
flow inequality 〈λ,h〉 ≤ 〈δ,h〉 with proof sequence ProofSeq′.

Case 4: f = cX,Y is a composition step with weight w.
By definition of proof sequence, δ + w · cX,Y ≥ 0, and thus
δY |X ≥ w > 0 and δX|∅ ≥ w > 0. From the facts that δY |X
and δX|∅ have supports, there must be two sets Z ⊆ X and
W ⊆ Y for which W − Z = Y − X and (Z,W,NW |Z) ∈
DC which is guarded by an input relation R; and an input
relation S for which |ΠX(S)| ≤ NX|∅. Note that X ∪ (W −
Z) = X ∪ (Y −X) = Y . We consider two cases:

(Case 4a) If NX|∅ · NW |Z ≤ 2OBJ, then we can compute

the table T (AY )
def
= ΠX(S) 1 ΠW (R) by going over all

tuples in ΠX(S) and expanding them using matching tuples

in ΠW (R). The runtime of the join is Õ(NX|∅ · NW |Z) =

Õ(2OBJ), and the size of T is ≤ 2OBJ. The Shannon flow
inequality is modified by setting δ = δ+w·cX,Y , with the the
proof sequence ProofSeq′, and the set of degree constraints

is extended by adding the constraint (∅, Y,NY |∅
def
= |T |),

guarded by T .
(Case 4b) If NX|∅ · NW |Z > 2OBJ, then we will not per-

form this join. Instead, we restart the subproblem with a
fresh inequality. In particular, set δ = δ + w · cX,Y . Now
we have δY |∅ ≥ w. We restart the problem with the in-
equality 〈λ′,h〉 ≤ 〈δ′,h〉 satisfying the conditions stated in
Lemma 3.9. We show in the proof of Theorem 1.5 (in Ap-
pendix D) that in this case ‖λ‖1 > w, and the new inequality
is a Shannon flow inequality with a smaller upper bound on
the proof sequence length.

5. DEGREE-AWARE WIDTH PARAMETERS

5.1 Minimax and maximin widths
We slightly reformulate existing width parameters under

a common framework. Recall from Section 2 that there are



two classes of width parameters: the first class captures the
class of algorithms which seek the best tree decomposition
with the worst bag runtime, while the second class captures
the class of algorithms which adapt the tree decomposition
to the instance at hand. In the definitions below, the max-
imin width notion is from Marx [31,32].

Definition 5.1. Let F denote a topologically closed class
of non-negative set functions on [n]. The F-minimax width
and F-maximin width of a query Q are defined by

MinimaxwidthF (Q)
def
= min

(T,χ)
max
t∈V (T )

max
h∈F

h(χ(t)), (32)

MaximinwidthF (Q)
def
= max

h∈F
min
(T,χ)

max
t∈V (T )

h(χ(t)). (33)

These width notions are used by specializing F to capture
two aspects of the input. The first aspect is either the en-
tropic functions or some relaxation, coming from the chain
of inclusion Mn ⊂ Γ

∗
n ⊂ Γn ⊂ SAn. The second aspect mod-

els the granularity level of statistics we know from the input
database instance, with the following inclusion chain

HDC ⊂ HCC ⊂ ED · logN ⊂ VD · logN. (34)

Note that the bounds in the constraints HDC are not nor-
malized as in the sets ED or VD in the traditional width
parameters. This is because normalizing makes it less gen-
eral than it can be, and it does not make practical sense to
assume that all degree bounds are the same! (For example,
the FD-based degree bounds are always 0, while the relation-
size-based degree bounds are log2 NF .) Consequently, we
used the log2 N scaled up versions of the traditional width
parameters to compare with our new width parameters.

From these specializations, the minimax and maximin widths
capture all width parameters we discussed in Section 2, sum-
marized in the following proposition. (See [4] for the proof.)

Proposition 5.2. Let Q be a conjunctive query with no
FDs whose hypergraph is H = ([n], E). Then the followings
hold (Recall notation from Section 2):

1 + tw(H) = MinimaxwidthF∩VD(Q)

= MaximinwidthF∩VD(Q)

∀F ∈ {Mn,Γ
∗
n,Γn, SAn} (35)

ghtw(H) = MinimaxwidthSAn∩ED(Q)

= MaximinwidthSAn∩ED(Q) (36)

fhtw(H) = MinimaxwidthF∩ED(Q)

∀F ∈ {Mn,Γ
∗
n,Γn} (37)

subw(H) = MaximinwidthΓn∩ED(Q) (38)

adw(H) = MaximinwidthMn∩ED(Q). (39)

While SAn yields too large of an upperbound, and Mn

only yields a lowerbound, depending on the constraints we
want to impose, some parts of the hierarchy collapse. The
following observation is straightforward:

Lemma 5.3. If G ⊆ F are two classes of functions,

MinimaxwidthG(H) ≤ MinimaxwidthF (H)

MaximinwidthG(H) ≤ MaximinwidthF (H).

For a fixed class F of functions, we have

MaximinwidthF (H) ≤ MinimaxwidthF (H).

5.2 New width parameters
Using the maximin and minimax formalism, we extend

the traditional width parameters to handle general degree
constraints. As shown by Theorem 1.2 we know that there
is a gap between the polymatroid bound and the entropic
bound; and hence it is natural to use Γ

∗
n itself instead of

some approximation of it.

Definition 5.4. We define the following width parameters
for queries Q with degree constraints DC. The first two pa-
rameters are generalizations of fhtw and subw under degree
constraints, and the last two are their entropic versions:

da-fhtw(Q)
def
= MinimaxwidthΓn∩HDC(Q) (40)

da-subw(Q)
def
= MaximinwidthΓn∩HDC(Q) (41)

eda-fhtw(Q)
def
= MinimaxwidthΓ

∗
n∩HDC(Q) (42)

eda-subw(Q)
def
= MaximinwidthΓ

∗
n∩HDC(Q). (43)

(da stands for“degree-aware”, and eda for“entropic degree-
aware”.) The following relationships hold between these four
quantities.

Proposition 5.5. For any query Q with degree constraints

eda-subw(Q) ≤ eda-fhtw(Q)≤ ≤

da-subw(Q) ≤ da-fhtw(Q).

The quantities eda-fhtw(Q) and da-subw(Q) are not compa-
rable. The gap between the two sides of any of the above four
inequalities can be made arbitrarily large by some input.

Due to the fact that every non-negative modular set func-
tion is entropic, we have

Corollary 5.6. When Q has only edge domination con-
straints ED (i.e. no FD nor proper degree bounds), we have
adw(Q) ≤ eda-subw(Q).

Following Marx [31, 32], for these queries da-subw(Q) =
subw(Q) = O(adw4(Q)) = O(eda-subw4(Q)). Thus, when
there is no FD nor proper degree bounds, if a class of queries
has bounded eda-subw, then it has bounded da-subw. It is
open whether or not the same relationship holds when Q has
FDs and/or degree bounds.

We have mentioned quite a few known and proved new
bounds in this paper. The bounds can be summarized sys-
tematically as follows. Each bound is identified by coor-
dinates (X,Y, Z). The X-axis represents the entropy ap-
proximation that is being used: one starts from the desired
target Γ

∗
n, then relaxes it to Γn and SAn. The inclusion

chain is Γ
∗
n ⊂ Γn ⊂ SAn. The Y -axis represents the con-

straints we can extract from the input database instance,
where we can go from bounding domain sizes, relation sizes,
to incorporating more refined degree bounds and functional
dependencies. One chain of inclusion was given by (34). The
Z-axis represents the level of sophistication of the query plan
that is being considered in this bound. The simplest query
plan just joins everything together without computing any
tree decomposition – or, equivalently, this is the plan that
uses the trivial tree decomposition with one bag containing
all attributes. (Recall the bounds DAEB(Q) and DAPB(Q)
from (19).) Then, one can get more sophisticated with
computing a tree decomposition before computing the bags.
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Figure 2: A hierarchy of bounds

And, lastly the query plan can also be adaptive to the input
instance, yielding the submodular-width style of complexity.
The bounds are summarized in Figure 2. If bound A has co-
ordinates (X1, Y1, Z1) that are smaller than the coordinates
(X2, Y2, Z2) of bound B (i.e. X1 ≤ X2∧Y1 ≤ Y2∧Z1 ≤ Z2),
then bound A ≤ bound B.

5.3 Achieving degree-aware width parameters
With increasing levels of complexity, the corollaries be-

low explain how PANDA can be used to evaluate a (full
or Boolean) conjunctive query achieving the degree-aware
polymatroid size bound defined in (19), the degree-aware
version of the fractional hypertree width defined in (40),
and the degree-aware version of the submodular width de-
fined in (41). Then, going beyond conjunctive queries, we
show that PANDA can be used to solve aggregate queries by
combining PANDA with the FAQ framework. The missing
proofs can be found in the full version [4].

We start with two straightforward corollaries.

Corollary 5.7. A full or Boolean conjunctive query Q with
degree constraints can be solved by PANDA in time

Õ(N + poly(logN) · 2DAPB(Q)).

Corollary 5.8. A full or Boolean conjunctive query Q with
degree constraints can be solved by PANDA in time

Õ(N + poly(logN) · 2da-fhtw(Q) + |output|).

The third corollary is on achieving the the degree-aware
submodular width. Unlike the first two corollaries, proving
this requires a couple of new ideas. In order to compute
da-subw, even in a bruteforce manner, we need an auxiliary
lemma, which is somewhat related to Neumann’s minimax
theorem [20].

Lemma 5.9. Let A and B be two finite sets, and f : A ×
B → R be any function. Let BA denote the set of all maps
from A to B. Then, the following holds:

min
a∈A

max
b∈B

f(a, b) = max
β∈BA

min
a∈A

f(a, β(a)).

Intuitively, on the LHS we select for each a ∈ A a neigh-
bor b for which f(a, b) is maximized; call such neighbor a’s
“representative”. Then, we select the a with the least-weight
representative. On the RHS, we have a “representative se-
lector” β; we pick the a-value with the least-weight selected
representative, and then maximize over all selectors.

Corollary 5.10. A full or Boolean conjunctive query Q with
degree constraints DC can be solved by PANDA in time

Õ(N + poly(logN) · 2da-subw(Q) + |output|).
Proof. We first apply Lemma 5.9 to reformulate (41). To
this end, we need a few notations. Let M be the set of
all maps β : TD → 2[n], such that β(T, χ) = χ(t) for some
t ∈ V (T ). In English, β is a “bag selector” map that picks
out a bag from each tree decomposition (T, χ). Let B be
the collection of images of all β ∈M, i.e.

B = {B | B = image(β) for some β ∈M}. (44)

Using Lemma 5.9, we can rewrite (41) as follows.

da-subw(H) = max
h∈Γn∩HDC

min
(T,χ)∈TD

max
t∈V (T )

h(χ(t))

(Lemma 5.9) = max
h∈Γn∩HDC

max
β∈M

min
(T,χ)

h(β(T, χ))

= max
h∈Γn∩HDC

max
β∈M

min
B∈image(β)

h(B)

= max
β∈M

max
h∈Γn∩HDC

min
B∈image(β)

h(B)

= max
B∈B

max
h∈Γn∩HDC

min
B∈B

h(B)

(Lemma 3.2) = max
B∈B

max
h∈Γn∩HDC

{∑
B∈B

λBh(B)

}
︸ ︷︷ ︸

Linear program (21)

(45)

In (45), for a fixed B ∈ B the inner max is exactly LP (21)
whose dual is (22). In particular, to compute the da-subw(Q),
we can solve a collection of linear programs and take the
maximum solution among them. Since there is a different
linear program for each valid choice of B, the total number
of linear programs is ≤ 22n

.
In order to compute Q in the desired time, we mimic this

strategy in the algorithm. For each B ∈ B, we solve the
LP (21). Let (δ∗,σ∗,µ∗) denote a dual optimal solution.
From Proposition 3.3, 〈λ,h〉 ≤ 〈δ∗,h〉 is a Shannon flow
inequality. On this input PANDA computes a tuple TB =
(TB)B∈B of tables such that, for every a ∈ Q there exists a
B ∈ B for which ΠB(a) ∈ TB .

Let M = |B| and suppose B = {B1, . . . ,BM}. We prove
the following claims:

Claim 1: for every (B1, . . . , BM ) ∈
∏M
i=1 Bi, there is a

tree decomposition (T, χ) ∈ TD(Q) such that, for every tree
node t ∈ V (T ), χ(t) = Bj for some j ∈ [M ]. Breaking ties
arbitrarily, we call this tree decomposition the tree decom-
position (of Q) associated with the tuple (B1, . . . , BM ).

Claim 2: for any tuple (B1, . . . , BM ) ∈
∏M
i=1 Bi with

associated tree decomposition (T, χ), define

J(B1, . . . , BM )
def
=1t∈V (T ) Tχ(t).

Then,

Q ⊆

 ⋃
(B1,...,BM )∈

∏M
i=1 Bi

1
M
j=1 TBj

 (46)



⊆

 ⋃
(B1,...,BM )∈

∏M
i=1 Bi

J(B1, . . . , BM )

 . (47)

Assuming the claims, the query can be computed by running
Yannakakis algorithm to compute all the relations J(B1, . . . , BM )

within a runtime of Õ(2da-subw(Q) + |J(B1, . . . , BM )∩Q|). If
we apply Yannakakis’s algorithm straight up on J(B1, . . . , BM ),

then we can attain the runtime Õ(2da-subw(Q)+|J(B1, . . . , BM )|),
because every table TBj has size bounded by 2da-subw(Q). To

reduce the runtime to Õ(2da-subw(Q) + |J(B1, . . . , BM ) ∩Q|),
we semijoin-reduce every table TBj with every input rela-

tion. There are
∏M
i=1 |Bi| such problems, which is a query-

complexity quantity.
We next prove Claim 1. Fix a tuple (B1, . . . , BM ) ∈∏M
i=1 Bi. Suppose to the contrary that for every tree de-

composition (T, χ) there is a tree node t ∈ V (T ) such that
χ(t) 6= Bj for every j ∈ [M ]. Call the bag χ(t) a missed
bag of the tree decomposition. Consider a bag selector
β : TD(Q) → 2[n] where β(T, χ) is exactly the missed bag
of the tree decomposition (T, χ). Note that by definition of
B we have image(β) = Bk for some k ∈ [M ]. This is a con-
tradiction because Bk must then be the missed bag of some
tree decomposition, but it is not missed anymore.

Finally, we prove Claim 2. Consider an output tuple
a ∈ Q. For each j ∈ [M ], let Bj denote the bag for which
ΠBj (a) ∈ TBj . Then, obviously a ∈ J(B1, . . . , BM ). This
proves the first inclusion in (47). The second inclusion is
obvious because the join J(B1, . . . , BM ) drops some tables
from the join 1Mj=1 TBj .

Example 5.11. We illustrate how PANDA computes the
query Q in Example 1.1 in time Õ(N subw(Q)). We use Marx’
original definition of submodular width which, recall, cor-
responds to using base N for the logarithm, hence the ex-
pression N subw(Q) instead of our 2da-subw(Q). We prove first
that subw(Q) ≤ 3/2. Since Q has two tree decompositions,
shown in Fig. 1, we need to prove:

min( max(h(A1A2A3), h(A3A4A1)),

max(h(A2A3A4), h(A4A1A2))) ≤ 3/2

where h is any edge-dominated polymatroid h. (The first
max corresponds to the first tree, the second max to the sec-
ond tree.) Using the distributivity law of min over max, we
convert the inequality from min(max) ≤ 3/2 into max(min) ≤
3/2, which is equivalent to the conjunction of four inequali-
ties:

min(h(A1A2A3), h(A2A3A4)) ≤ 3/2

min(h(A1A2A3), h(A4A1A2)) ≤ 3/2

min(h(A3A4A1), h(A2A3A4)) ≤ 3/2

min(h(A3A4A1), h(A4A1A2)) ≤ 3/2

The first inequality follows from h(A1A2A3)+h(A2A3A4) ≤
h(A1A2)+h(A2A3)+h(A3A4) (Example 4.1) and the latter
is ≤ 3 because h is edge-dominated. The others are similar.
This concludes subw(Q) ≤ 3/2.

At this point PANDA converts each of the four Shannon-
flow inequalities that it has just proven, into a disjunctive
datalog rule. For example, the first inequality becomes pre-
cisely the disjunctive datalog rule P in Example 1.3. Then,
it evaluates each of these four rules, obtaining four tar-
get relations T123, T234, T341, T412 (since each target occurs

in two rules, PANDA takes their union; it also semi-joins
each target with the input relations, to remove spurious tu-
ples, e.g. it semi-joins T123 with R12 and R23). Each of

the four targets has size ≤ N3/2 and the runtime so far is
Õ(N3/2). Finally, PANDA runs Yannakakis’ algorithm for
acyclic queries on the first tree (in essence, joining T123 with
T341) then separately on the second tree, and returns the
union of the two results. We need to prove that it returns
the correct output, and for that we use the following sub-
tle argument. Let a = (a1, a2, a3, a4) be any tuple. We
show that, if πF (a) ∈ RF for every input relation RF , then
at least one of the two trees contains (the projection of)
a in both its targets. Suppose the contrary: some tuple a
fails this property. For example, π123(a) 6∈ T123 in the first
tree, and π412(a) 6∈ T412 in the second tree. That implies
that T123 ∨ T412 is not a model of the disjunctive datalog
rule corresponding to the second inequality above, contra-
diction. Thus, each tuple a is fully included in some tree,
and by taking the union PANDA returns all answers to Q.

Our final corollary concerns aggregate queries. By an ag-
gregate query we mean a FAQ-query under one semiring
(also called SumProd or FAQ-SS, see [2, 6]).

Corollary 5.12. An FAQ-SS query Q without free variables
and with degree constraints DC can be solved by PANDA in
time

Õ(N + poly(logN) · 2da-subw(Q) + |output|).
The last two corollaries prove Theorem 1.7. It is possi-

ble to handle FAQ-SS queries with free variables and degree
constraints using our framework and algorithm; however,
the result is slightly messy to state and explain, and thus
we skip stating this simple observation here.

6. CONCLUDING REMARKS
Our negative answer to question 1 leads to a natural ques-

tion: can we design an algorithm whose runtime matches the
entropic bound under the presence of FDs or degree con-
straints? Worst-case optimal join algorithms [1, 34, 35, 37]
were able to achieve this when there are no FDs. And, as
shown in [3] there are classes of queries with FDs for which
the answer is positive (using the chain algorithm). A natural
direction is to extend the class of queries with FDs where
the entropic bound can be met, beyond what was shown
in [3]. Along the same line, the next natural open ques-
tion is to design algorithms to evaluate disjunctive datalog
queries matching the bound LogSizeBoundΓ̄∗n∩HDC(P ). From

there, the possibility of achieving eda-subw and/or eda-fhtw
is within reach. We already have an example where PANDA
was able to achieve eda-subw and eda-fhtw: the 4-cycle exam-
ple. In general, the inner-most column of Figure 2 contains
open algorithmic questions: we do not know of algorithms
meeting bounds involving both Γ

∗
n and HDC. Another big

open question is to remove the polylog factor from the run-
time of PANDA.
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APPENDIX
A. MISSING DETAILS FROM SECTION 1

ABXY C4

AX3 BX3 XY3 AY3 BY3
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Figure 3: A polymatroid h (shown in green).

Proof of Theorem 1.2. Consider the following query:

Q(A,B,X, Y,C) :- K(A,B,X, Y,C),

R(X,Y ), S(A,X), T (A, Y ), U(B,X), V (B, Y ),W (C)

with given cardinality constraints |R|, |S|, |T |, |U |, |V | ≤ N3,
|W | ≤ N2 (none on K), and the following keys in K: AB,
AXY , BXY , AC, XC, Y C. We show that the entropic
bound is ≤ N43/11 while the polymatroid bound is N4. This
statement follows from two claims. First, the following non-
Shannon inequality holds for all entropic functions:

11h(ABXY C) ≤ 3h(XY ) + 3h(AX) + 3h(AY ) + h(BX)

+h(BY )+5h(C)+(h(ABXY C|AB)+4h(ABXY C|AXY )

+h(ABXY C|BXY ))+(h(ABXY C|AC)+2h(ABXY C|XC)

+ 2h(ABXY C|Y C)). (48)

The first claim implies 11 log |Q| ≤ 11 logN3 + 5 logN2 =
43 logN . Second, there exists a polymatroid h satisfying
all cardinality and FD constraints such that h(ABXY C) =

4 logN . The two claims show a ratio of N1/11 between the
two bounds.

We now prove the first claim. Let I(X; Y|Z) := H(XZ)+
H(YZ) −H(XYZ) −H(Z) denote the conditional mutual
information between random variables X and Y conditioned
on random variables Z. In a breakthrough paper in informa-
tion theory, Zhang and Yeung [39] proved that Γ

∗
4 ( Γ4 by

proving that the following inequality is a non-Shannon-type
inequality (see [38, Th.15.7]):

2I(X;Y ) ≤ I(A;B) + I(A;XY ) + 3I(X;Y |A) + I(X;Y |B).

We expand and rearrange it, obtaining

h(AB) + 4h(AXY ) + h(BXY ) ≤ 3h(XY ) + 3h(AX)

+ 3h(AY ) + h(BX) + h(BY )− (h(A) + 2h(X) + 2h(Y ))

Add h(ABXY C|AB)+4h(ABXY C|AXY )+h(ABXY C|BXY )
to both sides:

6h(ABXY C) ≤ 3h(XY )+3h(AX)+3h(AY )+h(BX)+h(BY )

− (h(A) + 2h(X) + 2h(Y )) + (h(ABXY C|AB)+

4h(ABXY C|AXY ) + h(ABXY C|BXY )) (49)

From these three Shannon-type inequalities h(A)+h(C) ≥
h(AC), h(X) + h(C) ≥ h(XC), and h(Y ) + h(C) ≥ h(Y C)
we derive the following:

5h(ABXY C) ≤ h(A) + 2h(X) + 2h(Y ) + 5h(C)+

(h(ABXY C|AC)+2h(ABXY C|XC)+2h(ABXY C|Y C))
(50)

By adding Eq.(49) and (50) we obtain (48).
The second claim is shown in Fig. 3. The figure shows a

polymatroid h on the five variables A,B,X, Y,C. For each

missing set of variables Z, h(Z)
def
= h(Z+), where Z+ is

the smallest set shown in the figure that contains Z: in
other words, the figure shows the closed sets of a closure

on {A,B,X, Y,C}. For example, h(AB)
def
= h(AB+) =

h(ABXY C) = 4, etc. One can check that h satisfies all car-
dinality constraints and functional dependencies (using base
N for the logarithm): for example h(XY ) = 3, h(AX) = 3,
and AB → XY C (because h(AB) = h(ABXY C)) etc.

Finally, to construct a query Q with an amplified gap
between the two bounds, consider a query Q which is a cross-
product of 11s independent copies of ZY.

Due to space limitation, We prove only the first part of
Theorem 1.4, leaving the second part in the full version [4].

Proof of part (i) of Theorem 1.4. Since Γ
∗
n ⊆ Γn, the sec-

ond inequality is trivial. To show the first inequality, let T
denote the set of all tuples t satisfying the body of P ; con-
struct a set T of tuples as follows. We scan though tuples
t ∈ T one at a time, and either add t to T or ignore t.
To decide whether to add t to T , we also keep a collection
of tables T = (TB)B∈B. These tables shall form a model
of the disjunctive datalog rule P . Initially T and all the
TB are empty. Consider the next tuple t taken from T . If
ΠB(t) ∈ TB for any B ∈ B, then we ignore t. Otherwise,
we add ΠB(t) to TB for every B ∈ B, and add t to T . In
the end, obviously the collection (TB)B∈B is a model of the
disjunctive datalog rule. Furthermore, by construction the
tuples t ∈ T satisfy the property that: for every two differ-
ent tuples t, t′ ∈ T , every B ∈ B, we have ΠB(t) 6= ΠB(t′)
and both ΠB(t) and ΠB(t′) are in TB .



Now, construct a joint probability distribution on n vari-
ables by picking uniformly a tuple from T . Let h denote the
entropy function of this distribution, then, from the above
property

log2 |T | = h([n]) = h(B), ∀B ∈ B. (51)

Furthermore, h ∈ Γ
∗
n by definition, and h ∈ HDC because

T was a set of tuples satisfying all input degree constraints.
Consequently,

min
(TB)B∈B

max
B∈B

log2 |TB | ≤ max
B∈B

log2 |TB |

(due to (51)) = max
B∈B

h(B)

(due to (51)) = min
B∈B

h(B)

(because h̄ ∈ Γ
∗
n ∩ HDC) ≤ max

h∈Γ
∗
n∩HDC

min
B∈B

h(B)

= LogSizeBoundΓ
∗
n∩HDC(P ).

B. MISSING DETAILS FROM SECTION 2
Here we revisit known output size bounds for conjunctive

queries without FDs nor degree bounds, and we reformulate
them from the perspective of our framework. Recall that
a full conjunctive query is a special case of a disjunctive
datalog rule: It is a disjunctive datalog rule with only one
target B = [n]. Hence for a full conjunctive query Q, the
log-size-bound given by (6) simplifies to

LogSizeBoundF (Q)
def
= max

h∈F
h([n]).

The full version [4] proves the following simple proposi-
tion which recaps the major known bounds under one um-
brella. Since the proposition is restricted to full conjunc-
tive queries rather than the more general disjunctive dat-
alog rules, it makes stronger claims about size bounds: In
particular, some bounds collapse part of the hierarchy of
function classes: Mn ⊂ Γ

∗
n ⊂ Γn ⊂ SAn. (Review notation

in Section 2.)

Proposition B.1. Let Q be a full conjunctive query with no
FDs whose hypergraph is H = ([n], E). Then the followings
hold:

log2 VB(Q) = LogSizeBoundF∩(VD·logN)(Q),

∀F ∈ {Mn,Γ
∗
n,Γn, SAn} (52)

ρ(Q, (NF )F∈E) = LogSizeBoundSAn∩HCC(Q) (53)

ρ∗(Q) · log2 N = LogSizeBoundF∩(ED·logN)(Q),

∀F ∈ {Mn,Γ
∗
n,Γn} (54)

log2 AGM(Q) = LogSizeBoundF∩HCC(Q),

∀F ∈ {Mn,Γ
∗
n,Γn} (55)

The top part of Figure 2 depicts all the bounds in Propo-
sition B.1. Regarding the AGM-bound, the fact that the
size bound on Γn is equal to the size bound on Mn al-
lows us to compute the bound efficiently (polynomial time
in query complexity). By contrast, computing the integral
edge cover bound is NP-hard in query complexity, despite
being the worse bound: over the more relaxed function class
SAn. From the above proposition and the chains of inclu-
sion Mn ⊂ Γ

∗
n ⊂ Γn ⊂ SAn and HCC ⊂ VD · logN , we have

VB(Q) ≥ 2ρ(Q,(NF )F∈E ) ≥ AGM(Q) for any Q.

C. MISSING DETAILS FROM SECTION 3

C.1 Details from Section 3.1
The bound LogSizeBoundΓn∩HDC(P ) is the optimal objec-

tive value of the following optimization problem:

max minB∈B h(B) (56)

s.t. h(Y )− h(X) ≤ nY |X , (X,Y,NY |X) ∈ DC

h(I ∪ J |J)− h(I|I ∩ J) ≤ 0, I ⊥ J
h(Y )− h(X) ≥ 0, ∅ 6= X ⊂ Y ⊆ [n]

h(Z) ≥ 0, ∅ 6= Z ⊆ [n].

(Recall that implicitly we have h(∅) = 0, and that nY |X
def
=

log2 NY |X .) Here, X ⊥ Y means X 6⊆ Y and Y 6⊆ X. The
optimization problem above is not easy to handle. Lemma 3.2
allows us to reformulate it into an LP. Lemma 3.2 is a special
case of the following lemma.

Lemma C.1 (A generalization of Lemma 3.2). Let A ∈
Q`×m,b ∈ R`, and C ∈ Qm×p+ be a matrix with columns
c1, . . . , cp. Consider the following maximin optimization
problem:

max{min
k∈[p]

cTk x | Ax ≤ b,x ≥ 0} (57)

If problem (57)’s objective value is positive and bounded,
then there exists a vector λ ∈ Qp+ satisfying the following
conditions:

(a) ‖λ‖1 = 1

(b) The problem (57) has the same optimal objective value
as the following linear program:

max{(Cλ)Tx | Ax ≤ b,x ≥ 0} (58)

Proof of Lemma C.1. The dual of (58) can be written as

min{bTy | ATy ≥ Cλ,y ≥ 0} (59)

Let 1p ∈ Rp be the all-1 vector. The LP (57) can be rewrit-
ten as

max{w | Ax ≤ b,1pw −CTx ≤ 0,x ≥ 0, w ≥ 0} (60)

The dual of (60) is

min{bTy | ATy ≥ Cz,1Tp z ≥ 1,y ≥ 0, z ≥ 0} (61)

Let (w∗,x∗) and (z∗,y∗) be a pair of primal-optimal and
dual-optimal solutions to (60) and (61). Define λ = z∗.
To show that (57) is equivalent to (58), we show that (60) is
equivalent to (58). In particular, we claim that x∗ and y∗ are
a pair of primal-optimal and dual-optimal solution to (60)
and (59), and that the objective values of (58) and (60)
are identical. The fact that x∗ and y∗ are feasible to (58)
and (59) is trivial. We are left to verify that they have the
same objective value. Due to complementary slackness of
the (60) and (61) pair, note that w∗ > 0 implies 1Tp z∗ = 1

and (1Tp w
∗ −CTx∗)T z∗ = 0. It follows that bTy∗ = w∗ =

(1Tp z∗) ·w∗ = (CTx∗)T · z∗ = (Cz∗)T ·x∗ = (Cλ)T ·x∗.

Proof of Proposition 3.3. The proposition is a simple conse-
quence of Farkas’ lemma. There are many variants of Farkas’
lemma [36]. We use a version whose proof we also reproduce
here because the proof is very short.

Let A ∈ Rm×n be a matrix and c ∈ Rn be a vector.
Let P = {x | Ax ≤ 0,x ≥ 0} be a polyhedron and D =



{y | ATy ≥ c,y ≥ 0} be a dual polyhedron. Then, a
variant of Farkas’ lemma states that D is non-empty if and
only if there is no x ∈ P such that cTx > 0. To see
this, note that the system {cTx > 0,x ∈ P} is infeasible
iff max{cTx | x ∈ P} = 0, which by strong duality is equiv-
alent to min{0Ty | y ∈ D} is feasible, which is the same as
D is non-empty.

Now, to see why the above variant of Farkas’ lemma im-
plies Proposition 3.3, we note that (23) holds for all poly-
matroids iff {(λB − δDC)Th > 0 | h ∈ Γn} is infeasible; now
we are in the exact setting of the above variant of Farkas’
lemma and the rest follows trivially.

C.2 Details from Section 3.2

Definition C.2 (Tight witness). A witness is said to be
tight if inflow(Z) = λZ for all Z.

We remark that, if inflow(Z) > λZ , we can always increase
µ∅,Z by the amount inflow(Z)− λZ so that inflow(Z) = λZ .
In particular, it is easy to turn any witness into a tight
witness. The proof of Lemma 3.9 below follows the same
strategy as in the proof of Theorem 3.8, but with some subtle
differences.

Proof of Lemma 3.9. W.L.O.G. we can assume that (σ,µ)
is a tight witness. We construct (λ′, δ′,σ′,µ′) from (λ, δ,σ,µ)
as follows. Initially we set (λ′, δ′,σ′,µ′) = (λ, δ,σ,µ). Let
inflow′(Z) denote the quantity inflow(Z) measured on the
vector (λ′, δ′,σ′,µ′). Due to tightness of the witness, at
this point inflow′(Z)− λ′Z = 0 for every Z.

Now, we start disturbing the flow balance equations start-
ing from Z = Y by setting δ′Z|∅ = δ′Z|∅ − w which means

inflow′(Z) was reduced by w. Note that Z is the only point
for which inflow′(Z) − λ′Z 6= 0 (it is negative). If λ′Z > 0,
then we simply reduce λ′Z by w and terminate. If λ′Z = 0,
then either (1) there is some X ⊂ Z such that µ′X,Z ≥ w, (2)
there is some Y ⊃ Z such that δ′Y |Z ≥ w, or (3) there is some

J ⊥ Z such that σ′Z,J ≥ w. Cases (1) and (2) are handled
in a similar way to the proof of Theorem 3.8 while case (3)
is handled differently. In particular, if (1) holds, then we re-
duce µ′X,Z by w and set Z = X. If (2) holds, then we reduce
δ′Y |Z by w and set Z = Y . If (3) holds, then we reduce σ′Z,J
by w, increase µ′Z∩J,J by w, and set Z = Z ∪ J . In all three
cases, (the new) Z is the only point where inflow′(Z) − λ′Z
has a deficit, and the process continues if the new Z is not
∅.

The above process terminates because every time we move
Z to a new deficit point, the quantity 2‖σ‖1 + ‖δ‖1 + ‖µ‖1
is reduced by w. When the process terminates, all quanti-
ties inflow′(Z) − λ′(Z) = 0 and thus 〈λ′,h〉 ≤ 〈δ′,h〉 is a
Shannon flow inequality witnessed by (σ′,µ′) by Proposi-
tion 3.5. Property (b) holds because we only reduce the σ′

and δ′ entries. Properties (c) and (d) hold trivially.

D. MISSING DETAILS FROM SECTION 4

Proof of Theorem 1.5. Consider an input proof sequence of
length ` ≤ D(3‖σ‖1 +‖δ‖1 +‖µ‖1), thanks to Theorem 3.8.
If we do not hit Case 4b, then there will be at most ` steps in
the algorithm, where each step either takes Õ(2OBJ) time or

spawns O(OBJ) subproblems, for a total of Õ(poly(OBJ) ·
2OBJ)-time. A subproblem will terminate at producing a

relation T (AB) for some B ∈ B because the proof sequence
will, by definition, reach a point where δB|∅ ≥ w > 0 for
some B ∈ B.

The worst case is obtained when the algorithm branches
as far as possible only to have to restart at Case 4b with a
slightly shorter proof sequence of length at most D(3‖σ‖1 +
‖δ‖1 + ‖µ‖1) − 1. Thus, overall the exponent of OBJ (in
poly(OBJ)) will be ≤ 1

2
D2(3‖σ‖1 + ‖δ‖1 + ‖µ‖1)2. (Note

that this constant is data-independent because the opti-
mal dual solution (δ,σ,µ) can be taken to be an extreme
point of the dual polyhedron (24), whose constraints are
only on the input query.) Since OBJ equals the polyma-
troid bound LogSizeBoundΓn∩HDC(P ), which is bounded by
the vertex bound log(Nn), and n is a constant in data
complexity, we have OBJ = O(logN), and the runtime is

Õ(poly(logN) · 2LogSizeBoundΓn∩HDC(P )), as desired.
The last bit we have to verify is that every subproblem has

a proof sequence that can eventually reach δB|∅ ≥ w for some
B ∈ B. Since we start with a proof sequence and in Cases
1, 2, 3, and 4a we continue with the remaining steps of the
input proof sequence, the only case where we have to worry
about proving the existence of a proof sequence reaching
δB|∅ ≥ w is Case 4b. In this case we restart with inequality
〈λ′,h〉 ≤ 〈δ′,h〉. Lemma 3.9 guarantees that λ′B > 0 im-
plies λB > 0. Hence, we will be done if we can show that
‖λ′‖1 > 0. To this end, we show that the algorithm main-
tains another invariant, that for every subproblem it always
holds that ∑

(X,Y )

n(δY |X) ≤ ‖λ‖1 · OBJ. (62)

We call the quantity
∑

(X,Y ) n(δY |X) the “potential” of the
subproblem at that point in time. At the initial iteration,
the potential of the input problem was exactly the budget.
When Case 1 applies, the potential is unchanged because
δI|I∩J was reduced by w, δI∪J|J was increased by w, and
they have the same support. When Case 2 applies, the
potential does not increase because we subtracted w · nY |∅
from the potential and added w · nX|∅ ≤ w · nY |∅ instead.
Similarly in Case 3, we subtracted w · nY |∅ from the po-

tential, and added w · (n
(j)

X|∅ + n
(j)

Y |X) ≤ w · nY |∅ to the

potential. In Case 4a, we subtracted w · (nX|∅ + nW |Z)
and added at most the same amount to the potential. In
Case 4b, since δ′ ≤ δ and δ′Y |∅ = δY |∅ − w, the potential
is reduced by strictly more than w · OBJ because we sub-
tracted w · (nX|∅ + nW |Z) > w · OBJ from the potential.
Since ‖λ‖1 was reduced by at most w, invariant (62) still
holds. This also proves that ‖λ‖1 > w, because the resid-
ual potential, which is non-negative, is strictly smaller than
(‖λ‖1 − w)OBJ ≤ ‖λ′‖1OBJ.

Finally, we get back to the assumption that N ≤ 2OBJ and
how to enforce it in case it is not initially satisfied. Suppose

there is an input relation T (AY ) where nY |∅
def
= log2 |T | >

OBJ. If δY |∅ = 0, then T does not contribute to the bound
nor the proof sequence and can be ignored. If δY |∅ > 0,
then we could have replaced the original inequality with a
new one 〈λ′,h〉 ≤ 〈δ′,h〉 satisfying the conditions stated in
Lemma 3.9, in the same way we handled Case 4b above.
However, since the new inequality has OBJ′ < OBJ and
OBJ is already the optimal (i.e. lowest) bound possible, this
scenario is impossible.
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