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ABSTRACT

XPath is a simple language for navigating an XML doc-
ument and selecting a set of element nodes. XPath
expressions are used to query XML data, describe key
constraints, express transformations, and reference el-
ements in remote documents. This paper studies the
containment and equivalence problems for a fragment
of the XPath query language, with applications in all
these contexts.

In particular, we study a class of XPath queries that
contain branching, label wildcards and can express de-
scendant relationships between nodes. Prior work has
shown that languages which combine any two of these
three features have efficient containment algorithms.
However, we show that for the combination of features,
containment is coNP-complete. We provide a sound and
complete EXPTIME algorithm for containment, and
study parameterized PTIME special cases. While we
identify two parameterized classes of queries for which
containment can be decided efficiently, we also show
that even with some bounded parameters, containment
is coNP-complete. In response to these negative results,
we describe a sound algorithm which is efficient for all
queries, but may return false negatives in some cases.

1. INTRODUCTION

XPath is a simple language for navigating an XML tree
and returning a set of answer nodes. XPath expressions
are ubiquitous in XML applications. They are used
in XQuery [4] to bind variables; in XML Schema [27]
to define keys; in XLink [9] and XPointer [8] to refer-
ence elements in external documents; in XSLT as match
expressions, and in content-based packet routing [21].
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Figure 1: A simple tree pattern

Instances of the containment problem for XPath ex-
pressions occur in each these applications, and others.
For example, inference of keys described by XPath ex-
pressions reduces to containment, and optimization of
XPath expressions can be accomplished using an algo-
rithm for containment.

The focus of this paper is the complexity of the contain-
ment problem for a simple fragment of XPath which
is used frequently in practice. This fragment consists
of: node tests, the child axis (/), the descendant axis
(//), wildcards (*), and qualifiers (or branches, denoted
[...1). Isolating the three most important features, we
call this class of queries XP{[1*//} It is a rather robust
subset of XPath: many applications use only expres-
sions in this fragment. Further restrictions, on the other
hand, seem impractical since each of the constructs
mentioned occur often. An expression in XP{l*/} js
best represented as a tree pattern. For example, the
expression a// * [b//d][c] is represented by the tree pat-
tern pictured in Figure 1 where double-lines represent
descendant edges, * is a label wildcard, and = marks
the return node. Starting at the root, this pattern first
checks if the root node is labeled a. If not it returns the
empty set; otherwise it returns all its descendants that
have both a b-child with a d-descendant, and a c-child.



For a given expression p and input tree t, we denote by
p(t) the set of nodes in ¢ returned by the evaluation of p.
Two expressions p,p' are contained (denoted p C p') if
Vt.p(t) C p'(t). Two expressions are equivalent if p C p'
and p' C p. We show in Section 2 that these two prob-
lems are mutually reducible, and focus our attention on
the containment problem.

Our first result is that the containment problem for
XP %/} expressions is co-NP complete. This is rather
surprising in light of prior results on the complexity
of XPath containment, which have shown that for any
combination of two of the constructs *, // and [...]
the containment problem is in PTIME. In the absence
of descendant edges (XP{[1*}) a PTIME containment
algorithm follows from classic results on acyclic conjunc-
tive queries [28]. Without label wildcards, the fragment
XPUL/} was recently found to have a polynomial time
containment algorithm [1]. And for XP{*//} patterns
do not have branching, and are therefore closely related
to a fragment of regular string expressions. A result
in [17] shows that the containment problem for this frag-
ment is also in PTIME. We show that containment is
coNP-complete if branching, label wildcards, and de-
scendant edges are considered together.

The high complexity of containment creates a new chal-
lenge: find practical algorithms for checking contain-
ment. We pursue two goals: (i) to find an efficient,
sound algorithm, and show that it is complete in par-
ticular cases of practical interest; and (ii) to find a sound
and complete algorithm and show that it is efficient
in particular cases of practical interest. We answer (i)
by describing a simple algorithm which always runs in
PTIME and proving that it is complete when the con-
taining query has no branching.

Our second class of results deal with problem (ii), which
is more difficult than (i). It is not hard to describe a
sound and complete algorithm that runs in exponen-
tial time, but the challenge consists in improving it to
run in PTIME in non-trivial special cases. In particu-
lar we considered special cases inspired by the known
PTIME results: (a) bound the number of //’s by a con-
stant, (b) bound the number of *’s by a constant, and
(c) bound the number of branches by a constant. We
give a positive answer to (a): our exponential time al-
gorithm runs in PTIME whenever the number of //’s
in p is bounded by some number k (k will be the de-
gree of the polynomial describing the running time).
We give negative answers to (b) and (c). For (b), we
show that the containment of XP{[l*//} expressions is
coNP-complete even when p has no #’s and p' contains
only two %'s. For (c), we show that the containment
of XP{lb*//} expressions is coNP-complete even when
p has five branches and p’ has three branches. As our
answer to problem (ii), we describe a containment al-
gorithm based on alternating tree automata which runs
in exponential time in general, but runs in PTIME in
some special cases of practical interest, including when

the number of //’s in p is restricted.

The organization of the paper is as follows. The next
section contains the definition of tree patterns, their se-
mantics and evaluation, and the relationship between
tree patterns and XPath expressions. Section 3 is an
overview of the main results of the paper. Sections
4 and 5 discuss ways of reasoning about containment:
canonical models and pattern homomorphisms, respec-
tively. Section 6 presents the proof of coNP-hardness
for containment of XP{[1*//} patterns. Section 7 gives
an overview of a sound and complete algorithm using
tree automata. In Section 8 we provide a brief discus-
sion of assorted issues including disjunction in patterns,
connections to computation tree logic, and the special
case when the alphabet is bounded. Section 9 discusses
related work, and Section 10 concludes.

2. DEFINITIONS AND BACKGROUND

‘We model XML documents as trees over an infinite al-
phabet. A tree is an unordered, unranked finite struc-
ture with nodes labeled by symbols from ¥. (Although
XML documents form ordered trees, our fragment of
XPath ignores order, so we disregard it in our definition
of trees.) The set of all trees is Ts. We study a fragment
of XPath, denoted XP{ll:*//}, consisting of expressions
given by the following grammar where n is an element
name and . means the current node:

g—q/q | affa | alal | » | =]. (1)

Attributes and text values are handled similarly to ele-
ments and are omitted from the discussion. The “cur-
rent node” is needed in contexts like a/b/[.//c], and can
otherwise be eliminated, e.g. a/./b is equivalent to a/b.

Given an expression ¢ € XPI*//} and tree t € Tk,
q(t) denotes a set of nodes in t. We adopt the formal
semantics (omitted from this abstract) given in [24],
fixing the root as context node. Two XPUI*/} ex
pressions are contained if their result sets are contained
for every tree. Two expressions are equivalent if their
result sets are equal.

Tree Patterns We also use an alternative, and
slightly more general representation of expressions in
XPULS/Y a5 tree patterns. A pattern p is an unordered
tree over alphabet ¥ U {*} with a distinguished subset
of edges called descendant edges, and a k-tuple of nodes
called the result tuple, for some k£ > 0. The arity of
the result tuple, k, is called the arity of p, and the pat-
tern is called boolean if k is zero. Descendant edges are
shown in diagrams with double lines, and other edges
are called child edges. Asusual, for a node z, DEGREE(x)
is the number of its children, and LABEL(z) is its label.
For a pattern p, the nodes of p are NODES(p), and its
root is ROOT(p). The set of all tree patterns is denoted
pill=//}

We define the subclasses XP{ll*} xplll//} xpi//}



and P} P/} ple//} by restricting to only two of
the three features, label wildcard (), descendant edge
(//), and branching ([]). For example P{l:*} denotes
the set of tree patterns including branching and label
wildcards without descendant edges.

Given a tree pattern p with arity k£ and a tree t € Ty,
p(t) denotes a k-ary relation on the nodes of ¢t de-
fined as follows. First, we define an embedding from
p to t to be a function e : NODES(p) — NODES(t)
which is root preserving, respects node labels, and re-
spects edge relationships. Formally this means that
(1) e(rooT(p)) = ROOT(t), (2) for each z € NODES(p),
LABEL(z) = * or LABEL(z) = LABEL(e(z)), and (3) for
each z,y € NODES(p), if (z,y) is child edge in p then
(e(x),e(y)) is an edge in ¢, and if (z,y) is a descendant
edge in p then e(y) is a proper descendant of e(z).

An example of an embedding is pictured in Fig-
ure 2(a,b). Denoting (z1,x2,... xx) the return nodes
in p, we define:

p(t) = {(e(21),.- -,

An embedding need not be an injective function — there
may be two nodes in the pattern mapped to the same
node of the input tree. Even two distinct return nodes
may be mapped to the same node under an embedding.
Furthermore, sibling nodes in a pattern are not ordered
so there are no order-based restrictions to embeddings.

e(zr)) | e is an embedding from p to ¢}

Evaluation of a pattern p on a tree t is efficient. For
each 7 € (NODES(t))* one can check in O(|p||t|?) time
whether there exists an embedding that maps the re-
sult tuple to . The algorithm proceeds bottom-up on
the nodes p and ¢ building a table with one entry for
each pair of nodes (z,y), z € t and y € p: entry (z,y)
contains true iff there exists an embedding from the sub-
pattern rooted at y to the subtree rooted at x that is
compatible with mapping the result tuple to . There
are [p||t| entries in the table and we need O(|t|) steps to
compute each entry, because of the presence of descen-
dant edges in p.

Other Notions of Pattern Matching The study of
tree pattern matching problems has a long history which
has focused primarily on the problem of evaluation of
patterns, not containment. Nevertheless, it is illuminat-
ing to consider the differences between the semantics of
our patterns and other matching problems.

Two pattern matching problems are especially related
to ours. The first, sometimes called classical tree pat-
tern matching, involves a more restrictive embedding
[13]. This pattern matching problem is equivalent to a
boolean pattern without descendant edges if we require
that an embedding respect the order of siblings in the
pattern nodes. (It follows that the matching function
would then be injective.) There is an obvious algorithm
which solves this problem in O(mn) time. Improving
this bound was a long-time open problem, first solved

in [15] to attain a bound of O(nm® " polylog(m)). To
our knowledge, the best algorithm is O(nlog®m)[7].

The second related problem was defined in [14] as un-
ordered tree inclusion. The simplest statement of the
problem is: given a pattern and input tree, can the
pattern tree be obtained from the input tree by node
deletions. It turns out that this problem is equivalent
to evaluating a pattern in our formalism where all edges
are descendant edges, but with a different definition of
embedding. The embedding v is required to be injective,
and in addition, £ and y are ancestors in p if and only
if v(z) and v(y) are ancestors in ¢. This is a stronger
requirement than ours and prevents, for instance, two
siblings from mapping over a path in ¢ that shares an
edge. These subtle differences result in an increased
evaluation complexity and it is shown in [14] that un-
ordered tree inclusion is NP-complete.

From XPath to Tree Patterns Every expression
in XP{1*//} can be translated into a tree pattern of
arity one with the same semantics, and, conversely,
each pattern of arity one can be translated into an
XP{%//} expression. Figure 2(b) illustrates a pattern
in PU*/} with arity one, which is equivalent to the
XPill=/} expression alal//*[bl//c. The contain-
ment problems for XP{1*//} and for P{UI*//} are thus
equivalent. While not present in XPath, patterns of
higher arity are of great interest to us because they
capture multiple variable bindings, which occur for
example in the FOR clauses of XQuery [4]. For the study
of containment, however, arity is not an important
consideration, as we explain next.

Boolean Patterns In the case of a pattern with
arity zero, p(t) evaluates to the empty-tuple if there
exists an embedding from p to t. Otherwise, p(t) is the
empty-set. We therefore view such patterns as boolean,
and say p(t) is true if an embedding exists and false
otherwise. For boolean patterns, containment reduces
to implication: p C p' if and only if Vt.p(t) — p'(t).

For the purpose of the containment problem, it suffices
to limit our discussion to boolean patterns, as the next
proposition claims:

Proposition 1. There is a translation of k-ary patterns
over alphabet X, to boolean patterns over alphabet ¥ U
{z1,22,... xx} such that for any k-ary patterns p,p’,
and their translations p,p’, p C p’ if and only if p C p'.

Figure 3 shows a pattern p of arity 3, and the boolean
pattern p which is its translation. The full version
[16] of this abstract includes the formal proof of
Proposition 1.

Containment and Equivalence  The containment
and equivalence problems are mutually reducible in
polynomial time. Equivalence is simply two-way con-
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Figure 2: (a) tree instance ¢; (b) pattern p and an embedding from p to t; (c) canonical model in m*(p)

(described in Section 4).

Figure 3: A tree pattern p of arity 3, with result
nodes marked, and its translation to a boolean
pattern p, used in Proposition 1.

tainment. In addition, given two boolean patterns p and
p', and an algorithm for equivalence, we can decide con-
tainment. First form a new tree pattern P from p and
p' by fusing their roots. If containment is to hold, either
LABEL(ROOT(p)) = LABEL(ROOT(p')) or for some a € %,
LABEL(ROOT(p)) = a while LABEL(ROOT(p')) = *. In
the former case, LABEL(ROOT(P)) is their common la-
bel; in the latter LABEL(ROOT(P)) = a. Pattern P is
a boolean pattern such that P(t) is true if and only if
p(t) A p'(t) is true, for any input tree t. Then it follows
that p C p’ if and only if p is equivalent to P. We discuss
only containment in the remainder of the paper.

3. MAIN RESULTS

This section summarizes the main results of the pa-
per. Theorem 1 states that the containment problem
for P/ is coNP-complete. Although we present
other coNP-completeness results below that imply this
result, the proof of Theorem 1 is provided in Section 6
because it offers the best intuition into the complexity
of containment.

Theorem 1 (coNP completeness). Given two pat-
terns p € PUM/Y qnd p' e plll=//}, deciding p C p' is
coNP-complete.

Searching for practical solutions, we investigate two di-
rections: (1) find an efficient containment algorithm
that is always sound, but not necessarily complete, and
(2) find a sound and complete algorithm that is in EX-
PTIME in general, but is provably efficient in special
cases. We will give an algorithm answering (1) in Sec-
tion 5, and summarize its properties here:

Proposition 2 (Incomplete algorithm). There ez-
ists a sound but incomplete algorithm that, given pat-
terns p,p’ € P/} decides p C p' in O(|p|?|p'|) time.
Ifp' € P/} then the algorithm is complete.

The answer to (2) is more complex. Recall that for
the restricted classes P{L/7/} pill*} pix//} there are
PTIME algorithms. Ideally we would like to extend
these to run in polynomial time in these cases, to de-
grade gracefully as we introduce a few instances of
the missing feature, and to become exponential for
P/} For example, the algorithm should run in
PTIME when we impose some bound on, say, the num-
ber of x’s. Unfortunately, for two of the three features
in PU%//} this is not possible, as shown in the next
two theorems. Technically, these are the most difficult
results in the paper; their proofs are included in [16].

Theorem 2 (coNP - bounded wildcard). Given
two patterns p € PUL/Y qnd p' € P/} where p'
has at most 2 label wildcards, deciding p C p' is coNP-
complete.

Theorem 3 (coNP - bounded branching). Given
two patterns p € PULS/IY gnd p' e PU/Y  yhere p
has at most 5 branches and p' has at most 8 branches,
deciding p C p' is coNP-complete.

Given these additional lower bounds, we give the best
possible answer to (2) by providing a sound and com-
plete EXPTIME algorithm in Section 7. The main prop-
erties of that algorithm are summarized in the next two
theorems. Let d be the number of descendant edges



in p, and let w' be one plus the longest number of
x-nodes in p' forming a path consisting exclusively of
child edges. (For example if p' =a/*/*//*/*/b/* then
w'=2+1=3.)

Theorem 4 (Parameterized PTIME). For patterns
p,p € P/} 1y C oyl can be decided in O(|p||p'| (w' +
1)@y time.

Further, let d' and s’ be the number of descendant edges
and label wildcards in p', respectively, and for a € %,
define degree, (p') to be the sum of the degrees of all a-
labeled nodes in p'. Also, let r be the maximum degree
of a node in p.

Theorem 5 (Parameterized PTIME). For patterns
p,p' € P and ¢ = mazqaex{degree,(p')}, then
| 2(s’+d’+c')r

p Cp' can be decided in O( |p ) time.

Importantly, the time bounds of Theorems 4 and 5 are
both achieved by the same algorithm, described in Sec-
tion 7. Theorem 4 says that this algorithm runs in
PTIME for P{U*} and degrades gracefully when de-
scendant edges are introduced. We know from Theo-
rem 2 that something similar is not possible for %’s, but
Theorem 5 comes close by imposing extra limitations in
addition to those on the number of *’s.

4. CANONICAL MODELS

One way to reason about containment is by way of
canonical models. To begin with, the models of a
boolean pattern p are the trees of Tx on which p eval-
uates to true: Mod(p) = {t € Tx | p(¢) is true}. Con-
tainment of boolean patterns can be re-stated in terms
of models:

Proposition 3. For any (boolean) tree patterns p and
P, p Cp' if and only if Mod(p) C Mod(p').

The set of canonical models of p, denoted m(p), is a sub-
set of Mod(p) consisting of trees with the same shape
as p. We first define a canonical model for a pattern
p without descendant edges. In this case, a canonical
model is obtained from p by replacing each % with some
symbol from . The set of all such canonical models,
denoted m(p), is an infinite set since X is infinite. Sup-
pose now that p has d descendant edges, r1,72,... 74,
and let u1 > 0,...,uq > 0 be d integers. We define
plu1,us, ... ug] to be the pattern (without descendant
edges) obtained by replacing each edge r; with a chain
of u; new x-labeled nodes. Then, define:

m(p) = U{m(p[m,...,ud]) |u1 >0,...,uq >0} (2)

Figure 2(c) shows a canonical model of p in Figure 2(b)
(which is a canonical model of p[0,2]). We prove the
following criterion for containment in the full version
of this paper:

Proposition 4. For any tree patterns p and p', p C p’
if and only if m(p) C Mod(p')

Figure 4: Two tree patterns p,p’ and a homo-
morphism from p' to p, proving p C p'.

This does not, however, imply a decision procedure for
containment because m(p) is infinite: we have infinitely
many choices for each u;, and we have infinitely many
choices from X for each * replacement. To address the
latter we fix a symbol z € ¥ that does not occur' in p or
p', and, for any tree pattern q without descendant edges
denote m*(q) the canonical model obtained by replacing
each * is replaced with z. To address the former, we
impose some upper bound n on the u;’s in Equation
(2), defining:

mi(p) = | J{m* (plus, .-

yugl) |ur < ny... ug <n}

Recall from Section 3 that we defined w' to be one plus
the length of longest sequence of *’s connected by child
edges in p'.

Proposition 5. For any tree patterns p and p', the
following are equivalent: (1) p C p', (2) my(p) C
Mod(p'), (8) mZ,(p) C Mod(p').

The proof is provided in [16]. The proposition implies
that containment for P{1*//} is in coNP, as required
for Theorems 1,2, and 3: indeed, in order to check p &
p' it suffices to guess d numbers ui, ..., uq, construct
the tree t = m*(p[ua,...,u;]), then check that p'(t) is
false. The proposition also gives an upper bound on the
containment problem slightly worse than that stated in
Theorem 4. It suffices to enumerate all canonical models
t € mZ,(p) and check p'(t) in time O(|t|* |p']). There
are < (w' + 1)% canonical models in m?,(p), and each
has a size bounded by [t| < (w' + 1)|p|, resulting in an
evaluation complexity of O(|p|” [p'|(w" + 1)(*?). The
algorithm in Sec. 7 improves this upper bound.

5. PATTERN HOMOMORPHISMS

We can also reason about containment using ho-
momorphisms between patterns, which are the
basis of algorithms for the PTIME fragments

1See Section 8 for comments on the case when ¥ is finite.



pie//y plll=} pUL//} - and for the incomplete algo-
rithm in Proposition 2. When, for a given class of
queries, the existence of a homomorphism is a necessary
and sufficient condition of containment, there is gener-
ally a polynomial time decision procedure. Therefore,
we also explain in this section where the homomorphism
technique breaks down for containment of P{l*//} pat-
terns.

A homomorphism is a function h NODES(p') —
NODES(p) between two patterns p’ and p. The condi-
tions on a homomorphism are extensions of those for an
embedding (Section 2). A homomorphism A must be
root-preserving, respect node labels, and obey edge con-
straints. More precisely: (1) h(rRoOT(p')) = ROOT(p),
(2) for each x € NODES(p'), LABEL(z) = * or LABEL(z) =
LABEL(h(z)), and (3) for each x,y € NODES(p), if (z,y)
is a child edge in p’ then (h(z),h(y)) must be a child
edge in p; if (x,y) is a descendant edge in p' then
(h(z), h(y)) must be a path in p of length > 0, which
may include child edges and/or descendant edges. We
define the length of a path to be the number of inter-
mediate nodes: that is, for a path of length 0, h(x) is
the parent of h(y).

The existence of a homomorphism is always a sufficient
condition for containment because if e is an embedding
from p to some tree ¢, then e o h is also an embedding
from p' to t (so that Mod(p) C Mod(p')). Moreover one
can check in O(|p|?|p'|) whether there exists a homomor-
phism from p' to p,” which gives a sufficient condition
for p C p' verifiable in polynomial time. Figure 4 con-
tains two tree patterns p,p’ and a homomorphism that
implies containment.

In the case of P{U»*} and P{UM//} the existence of a ho-
momorphism is also a necessary condition for contain-
ment. This follows from the fact that for any pattern
p in either P} or PUL/Y there is a single canon-
ical model ¢ such that, for any p', p C p' iff p'(¢) is
true. For patterns in P{[1*} this is immediate since
m?(p), contains a single tree. In the case of P/}
it is sufficient to consider the unique canonical model
of plui,us,... ug] for each u; = 1. In either case, if
p C p', then there exists an embedding e : p' — ¢, and
this implies a homomorphism p' — p. This technique
forms the basis of the PTIME algorithms for P{U*} and
P73 in |28, 26, 1].

However, when both * and // are allowed in tree pat-
terns, the existence of a homomorphism is no longer
a necessary condition. The tree patterns in Figure 5
(a) corresponding to p=a/*//b, p'=a//*/b illustrate
this. Although p,p’ are equivalent, there is no homo-
morphism from p’ to p because there is no destination
for the wildcard in p'.

In the case of linear queries in P/} [17] shows that

2This time bound generalizes the time bound for eval-
uation of a boolean pattern on a tree (Section 2).

(a (b)

Figure 5: (a) Two equivalent queries p,p' with no
homomorphism from p' to p; (b) same queries
represented differently, and a homomorphism
between them.

containment can still be decided in PTIME by combin-
ing adjacent //’s and *’s in p’ into single units, then
searching for a homomorphism. In our example this
removes the problematic middle node, as shown in Fig-
ure 5 (b), making a homomorphism possible. In general,
we replace each // in p' with //°, then apply the fol-
lowing rules repeatedly:

nrxl —
A/ 3)
gt =

For example, p' = a//*/*/b/*/c//d rewrites to a//?
b/*/c//°d. Given this new representation, the defini-
tion of a homomorphism h : p' — p is modified to re-
quire that an edge //™ be mapped to a path of length
> n. The result stated in [17] is that p C p' iff there
exists a homomorphism from p’' to p. The full version
of this abstract contains and expands the proof of that
result.

It is easy to extend this notion of a homomorphism to
P/} " \which results in the algorithm in Figure 6(a).
The algorithm is clearly sound, since whenever there
exists a homomorphism from p' to p, then p C p'. Its
running time is O(|p|?|p’|) (since Step 1 can be done
in linear time), thus proving half of Prop 2. The sec-
ond half says that this algorithm is complete when p' is
linear: we prove this in [16].

But, in general, the algorithm in Fig. 6 (a) is incomplete.
Consider the two patterns p,p’ in Figure 6 (b); here
there exists no homomorphism from p to p', but p C p'.
To show this we have to reason by cases. Let t be a
canonical model of p and consider the middle branch in
t: the ¢ — d paths can be either of length 0, or of length
> 0. In the first case we define the embedding p' — ¢
as shown by the top choice in the figure: to the 2nd
and 3rd branch in ¢. In the second case we define the
embedding p' — t as shown by the bottom choice: to
the 1st and 2nd branch. Thus, to check containment we
need to “reason by cases”.



Algorithm CheckContainment I
Input: p,p’
Output: true if p C p’
Method
Step 1 Apply re-writings (3)
to p'
Step 2 Find homomorphism
from p’ to p
if found then return true
else return false

(@)

O
(=) 0\0—@

fuy

=0 >=

Figure 6: A sound, but incomplete algorithm (a), and an example where it is incomplete (b).

6. PROOF OF CONP-HARDNESS

In this section we complete the proof of Theorem 1,
that containment is coNP-complete for tree patterns in
P/} by reducing the complement of satisfiability
to the containment problem. Recall that we argued in
Section 4 that containment of P/} patterns is in
coNP.

To simplify the later construction, we prove a prelimi-
nary result. Define containment of a boolean pattern p
in a union of patterns as follows: p C p1 U---U pg holds
if, for all trees t, p(t) — p1(t) V p2(t) V- - V pi ().

Lemma 1. Given patterns p and pi1,p2,... P in
P/} there emist patterns q,q in PU*/Y such that
p Cp1U---Upx if and only if ¢ C q'. Furthermore,
q and q' are polynomial in the sizes of p,p1,p2,--- Pk,
and q and q' have no more label wildcards than those
present in p,P1,P2,. .. Pk-

Proof We assume w.l.0.g. that all patterns p, p1,...,px
have the roots labeled with the same symbol a € X:
if not, we transform the patterns into p',p,...,p} by
adding another root node labeled a to each pattern, and
wehave p Cp1U...Upg iff p' CpiU...UDpL.

The construction of g and ¢’ is shown in Figure 7. Pat-
tern ¢’ consists of a spine of the k subtrees p1,p2,... Pk
connected to a root node by a descendant edge. Pattern
p consists of a longer spine, at the center of which sits
a subtree equal to pattern p. The pattern subtree V,
which is repeated in ¢, has no wildcards and no descen-
dant edges, and is chosen so that for any j, V' C p;. This
can be achieved by fusing the (common) roots of the p;
subtrees (this is possible because their roots have the
same label), and replacing all label wildcards in the p;
with an arbitrary letter, and all descendant edges with
child edges.

With this construction, the canonical models of ¢ are

completely determined by a choice of canonical model
for ¢’s subtree p: for each t € m(q) we denote t, € m(p)
the subtree corresponding to p (see Fig. 7).

We assume first that p C p1 U - U pg, and show that
for every t € m(q), we have ¢'(t) is true, which proves
g C ¢'. Given t € m(q), clearly p(tp) is true, hence
pi(tp) is true, for some ¢ = 1,..., k. We prove that ¢’ (t)
is true by constructing an embedding e : ¢’ — t with the
following properties. First, e maps the subpattern p; to
tp: this is possible since p;(tp) is true. Second, e maps
every other p; to a corresponding V: this is possible
since V' C p;, and there enough V’s both above ¢, and
below t, (namely k — 1 both above and below). Finally,
it maps the root of ¢’ to the root of ¢.

Conversely, we assume q C ¢’ and show that V¢, € m(p),
p1(tp) V -+ V pi(tp): it is easy to check that the latter
implies p C p1 U--- U pg. Let t, € m(p), and denote
with ¢ its extension to a tree t € m(q), by adding the
spine and k — 1 copies of V above and below ¢, in an
obvious way. We have ¢'(t) is true, hence there exists
an embedding e : ¢ — t. This embedding must map
the spine in ¢’ to the spine in ¢. Let x be the spine
node in ¢ that is right above t,. At least one spine
node in ¢’ must be mapped to x: this is because there
are only k — 1 spine nodes above z, only k£ — 1 spine
nodes below, and the spine in ¢’ has k£ nodes and no
descendant edges: hence e cannot avoid mapping some
node y into z. Let p; be the pattern below y: it follows
that p;(tp) is true. O

We now prove that containment is coNP hard. Let
1 be a 3-CNF formula with n propositional variables
Y1,Y2,--- Yn, and k clauses ci1,ca, ... cx. We construct
patterns A, C4,...,Cy, pictured in Figure 8, such that
1) is not satisfiable iff A C C; U---U C. Tree pattern
A is constructed so that its canonical models, m(A),
encode truth assignments to the n variables of 1. Tree



k-1 nodes

Figure T:
q if and only if pCp1 U---Upy

pattern C; is constructed so that the following property
holds:

(*) For every t € m(A), C;i(t) is true iff the truth as-
signment encoded by ¢ makes the clause c; false.

Property (*) is sufficient to prove coNP hardness be-
cause of the following equivalences and of Lemma 1:
(ACC1U---UCg) <= (for every t € m(A) there ex-
ists ¢ s.t. Cji(t) is true) <= (for every truth assignment
there exists  s.t. ¢; is false under that assignment) <=
(v is not satisfiable). In the remainder of the proof we
show how to construct A,C4,...,C) such as to satisfy
property (*).

Pattern A has one branch for each variable y; in 9, and
we use a unique element of the alphabet a; for each
variable. Consider a canonical model ¢t € m(Y;) (see
Fig. 8). If ¢t has one b-child under its a;-labeled root,
then we consider this canonical model true with respect
to y;. If t contains one or more added nodes, then we
say t makes y; false. Under this interpretation of true
and false, each canonical model of A corresponds to a
truth assignment to the variables of 1, and all truth
assignments are represented by some canonical model.

Next we define a tree pattern C; for each clause of .
We only illustrate on an example: the general case fol-
lows immediately. Suppose clause ¢; = (~y; Vyr V y1).
Pattern tree C; is pictured in Figure 8, and consists of
a root node with three subtrees, one for each term ap-
pearing in ¢;. A variable like y; that appears negated in
¢; results in a branch consisting of subtree T'(y;). Vari-
able y, which does not appear negated in c¢;, results in
a branch containing F(y). This construction enforces
property (*).

k-1 nodes

Patterns ¢ and ¢ from Lemma 1,

k nodes

constructed from p,pi,p2,... pr so that g C

7. ALGORITHM FOR CONTAINMENT

We describe here a sound and complete algorithm for
checking containment of two tree patterns, whose run-
ning time has upper bounds given by both Theorem 4
and Theorem 5. The algorithm reduces the tree pat-
tern containment problem to the containment problem
for regular tree languages. Tree patterns are defined in
terms of unranked, unordered trees, while tree automata
compute on ranked, ordered trees: part of the difficulty
in designing the algorithm consists of translating be-
tween these two formalisms, a process we call ranking.
Also, several non-obvious techniques are needed in order
to achieve the upper bounds of Theorems 4 and 5.

Background on Tree Automata Tree automata are
defined on ranked trees. An alphabet of rank r is a finite
set (2 partitioned into QoUQ1 U...UQ,; a symbol a € €2,
is said to have rank k = 0,...,r. A ranked tree is an or-
dered tree s.t. for every node z, if LABEL(x) € Q) then
= has exactly k children. We denote with Ty the set of
ranked trees. A finite tree automaton, FTA, A, has a
set of states, STATES(A), and transitions of the form
(q1,---,qx;a) — q, where q1,...,qx,q € STATES(A)
and a € Q. The FTA is deterministic if whenever
(q1,---,9r;a) — g and (g1, ...,qr;a) — ¢' then ¢ =¢":
DFTA abbreviates a deterministic finite tree automaton.
Given an FTA A and an input tree ¢, a computation of
A on t proceeds bottom up, assigning to each node z in
t a set of states such that, if LABEL(z) = a, =’s children
are assigned the states g1, . . ., gr respectively, and there
exists a transition (qi,...,qk;a) — ¢, then z is assigned
the state ¢: if A is deterministic, then each node is as-
signed at most one state. The automaton accepts t if
the root is assigned some state from a given set of ter-
minal states; lang(A) denotes the set of trees accepted
by A, and is called a regular tree language.
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Figure 8: The canonical models of A encode truth assignments to the literals yi1,%,... y» of 7 based
on the lengths of the branches. Tree pattern C; is constructed from clause ¢; = (-y; V yx V ~y1).

Given an FTA A with n states, one can construct an
equivalent DFTA det(A) with at most 2" states. Ax A’
denotes the standard product automaton of two FTA’s
(definition omitted from this abstract): lang(A x A') =
lang(A)Nlang(A'). If A’ is deterministic, then one can
check lang(A) C lang(A’) in time O(|A||A']), where | A|
(and similarly |A'|) denotes the number of states in A
plus the number of transitions in A (the latter may be
exponential in the number of states)[19].

An alternating finite tree automaton, AFTA A, has
transitions of the form (q1,...,qx;a) > ¢, k=0,...,r,
and transitions of the form A(qi,...,qm) — ¢, m > 0:
we call the latter an AND-transition. Given an input
tree, t, a computation of A on t proceeds by assigning
states to tree nodes, like in an FTA, with the following
addition: if a node z is assigned the states gi,...,qm
and there exists a tramnsition A(qi,...,gm) — ¢, then
x is also assigned the state q. A accepts t if ¢’s root
contains a terminal state. The definition of an AFTA is
adapted from word automata [5].

Given an AFTA with n states there exists an equiva-
lent DFTA det(A) with at most 2" states. Thus, the
additional AND-transitions do not increase the cost of
determinizing the automaton.

Ranking Trees Recall that ¥ is an infinite, unranked
alphabet. Given a pattern p, recall from Sec. 4 that we
chose a symbol z € ¥ s.t. z does not occur in p, in order
to define the set of canonical models m?(p). We now
construct a finite, ranked alphabet ,, an unranking
function U, : Tép — Ts, and a regular tree language

Rega, C Tg, s.t. Up(Rega,) = m*(p).

Let NoDES(p) = {z1,...,%n}, and let EDGES;(p) =
{e1,...,eq} be all the descendant edges. Define Q, =
NODES(p) U EDGES//(p). The rank is defined as follows:
for every & € NODES(p), its rank in Q,, is DEGREE(z); for
every e € EDGES/(p), its rank in Q, is 1. We now define
an unranking function u, : Qp — 3. For £ € NODES(p),
if LABEL(z) = a € X, then wu,(z) = a; else (when
LABEL(z) = x) up(z) = 2. For e € EDGES;(p),
up(e) = z. We extend u, to a function u, : Tép - TS,
where Ty denotes the set of ordered, unranked trees
labeled with . Finally, we define U, : Tgfp — T as

follows: U,(t) is up(t) without the order. Now we can
define Regq, as follows. We fix an order on the nodes in
p, and define Regg to be the set m*(p) in which every
canonical model is ordered according to the order in p.
Then, define Regq, = u, ' (Reg%).

We illustrate with the tree pattern in Fig. 9 (a). The
label symbols in p are r,a,b and the wildcard *, and
its nodes are denoted 71, a1, a2, b1,b2,b3,21. Then Q, =
{1"1, ai,az, bl, bz, b3, 21,22, Z3}, with bl, by of arity 0, a2
of arity 2, and the rest of arity 1.

The Algorithm We can now describe the algorithm:

Algorithm: CheckContainment II
Input: tree patterns p,p’
Output: true if p C p'; false otherwise.
Method:
Step 1: construct the DFTA A accepting Rega,
Step 2: construct the AFTA A’
accepting U, ' (Mod(p"))
Step 3: compute the AFTA B= A x A’
(the product automaton).
Step 4: compute the DFTA C = det(B).
Step 5: if lang(A) C lang(C) then return true,
else return false.

Before discussing the details, we prove that the algo-
rithm is sound and complete. This follows from the
proposition below, which is an immediate consequence
of Proposition 5 and the fact that U,(Regq,) = m*(p).

Proposition 6. For any patterns p,p', p C p' iff
Regqa, C U, "(Mod(p')).

Algorithm Details The automaton in Step 1 is deter-
ministic and defined as follows: STATES(A) = NODES(p),
for each node € NODES(p) with children z1,..., 2k, A
has a transition (z1,...,Tr;x) — =, and for every de-
scendant edge e from node z to node y, A has a transi-
tion (y;e) — y. The set of terminal states is {ROOT(p)}.
Thus A has n states and n+d transitions. It is so simple
because we constructed the ranked alphabet , based
on p’s structure, and we ordered the trees in Regq, ac-
cording to the fixed order in p. For an illustration, the
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Figure 9: (a) a tree pattern p, (b) the DFTA A, (c) a pattern p', and (d) a fragment of its AFTA A'.

automaton A corresponding to the tree pattern in Fig. 9
(a) is shown in (b). It has 7 states and 7+ 2 transitions.

The automaton in Step 2, A’, is more complex, since
it needs to accept trees matched by p', but ranked and
ordered according to p. We also need A’ to have polyno-
mial size in p’, and this is not possible with FTA’s when
p' has branches. The problem is illustrated by the fol-
lowing example: p' = a[b1][b2] ... [bn], where the symbol
a has arity n in p. In an input tree ¢t a node labeled a
may have the children b1,...,b, in any order, and A’
must enumerate all n! orderings of by,...,b,, resulting
in n! transitions.

Our solution is to make A’ an AFTA. For a node
in p' with several subpatterns, A’ will check that
each subpattern matches independently, then use an
AND-transition to verify that all subpatterns matched.
More precisely, denoting NODES(p'), EDGES(p') the set
of nodes, and edges in p', we define STATES(A') =
NODES(p') U EDGES(p') U {go}, and the transitions are
the following:

e (qo,-..,q0;a) — qo, for every a € Q.

e (qo,...,q0;a) — x, for every leaf node z €
NODES(p') and every symbol a € Q, s.t. up(a) =
LABEL(Z) or LABEL(Z) = *.

e (g0,---,90,9,90,---,q0;a) — e, for every node y
with incoming edge e, and for every a € Q, s.t.
up(a) = LABEL(z) or LABEL(z) = *. If ¢ has arity
k, then there are k such transitions, one for each
position of y in the sequence of k states.

e (g0,---,90,€,90,-..,90;a) — e for every descen-
dant edge e, and every a € 2,. If a has arity
k, then there are k such transitions, one for each
position of e.

e Ale1,...,er) — x, for every node x with outgoing
edges e1,...,ex, k> 1.

The set of terminal states is {R0OT(p')}. Hence, A’ has
2n' states, and 2n’ X |[Q,| < 2n' x 2n transitions.

Fig. 9 (c) shows a pattern p' and (d) shows a fragment
of A'. Here A’ has 8 states (go is not shown), and the
figure sketches some transitions. For example the tran-
sitions into g4 are: (gs;a1) — q4, (g6, q0; a2) — g4, and
(g0, g6; a2) — qa, because a1 is unary and a2 is binary.

Step 3 is an optimization. We could have skipped
this step and computed C = det(A’) directly, then
checked lang(A) C lang(C). But det(A x A') has a
subset of the states of A x det(A'), since A is deter-
ministic, and, in some cases, det(A x A’) has only poly-
nomially many states while det(A') has exponentially
many. For an illustration, if p = a/b1/b2/ ... /b, and
p = al.//b1][.//b2] .. -[.//bn], then det(A') has exponen-
tial size (it needs to allow for all orderings of b1, ..., by),
while det(A x A') has polynomially many states, since
only 1 such ordering is present. This optimization is
essential for both Theorem 4 and 5.

Finally, Step 4 and Step 5 are self-explanatory.

Theorems 4 and 5 follow from a careful analysis of the
number of states in C' = det(A x A’). Their proofs are
omitted from this abstract.

8. DISCUSSION

This section briefly covers additional topics of interest.

Disjunction It is easy to extend our discussion to pat-
terns with disjunction. It turns out, however, that with
disjunction, P and XP behave differently. We extend P
to POT} allowing pattern trees with or nodes of degree
two. A tree t is accepted by p if (1) there exists a choice
of “left” or “right” for each or-node in p, which trans-
forms p into a pattern g without or-nodes, and (2) q(t)
is true. If no branches other than OR nodes are allowed,
then containment for two patterns in P{°T} can be re-
duced in PTIME to the containment of two patterns



in P, by a simple application of Lemma 1. However,
when branches are allowed, a minor modification to the
proof of Theorem 1 shows that containment for P{11-:01}
patterns is coNP-complete. On the other hand we can
extend the grammar for XPath, Eq.(1), with ¢ :=¢q | q,
and denote with XP{!} this extended language. XP{I}
is exponentially more concise than P{OT} because for
example (a1 | b1)/(a2 | b2)/ ... /(an | bn) requires a tree
pattern of exponential size in POt} For XP{!} con-
tainment is coNP-complete even if we disallow all three
features [ |, *, //, which follows from the complexity of
containment for regular languages restricted to union
and concatentation [12].

Evaluation on graphs In addition to the tree struc-
ture, an XML document has a graph structure defined
by node ids and references. XPath can traverse this
graph structure. This is captured in our formalism by
interpreting tree patterns on graphs rather than trees.
All results in this paper apply directly to an exten-
sion of boolean patterns evaluated on graphs. Namely,
for a graph g, p(g) is true if there exists an embed-
ding e : p — g, and we have Vg.p(g) = p'(g) iff
Vt.p(t) = p'(t). In other words the containment prob-
lem on graphs is the same as that on trees. To see this,
let unfold(g) be the (possibly infinite) tree unfolding of
some graph g. Then, for any pattern p, the following
are equivalent: (1) p(g) is true, (2) p(unfold(g)) is true,
(3) 3t C unfold(g), t finite and p(t) is true.

Computation Tree Logic (CTL) Tree patterns can
be expressed in a certain fragment of CTL [23] consist-
ing of true, * = a, conjunction, “eventually true” for-
mulas EF¢, and “successively true” formulas EX¢. De-
fined properly, this fra;ment is completely equivalent to
tree patterns in pillx7 }, and the containment problem
becomes the implication problem for this fragment. All
coNP completeness results in this paper apply to this
fragment of CTL as well, showing that in this fragment
the implication problem is coNP-complete.

Finite Alphabet Throughout the paper we assumed
that our alphabet X is infinite. While this is the only
scenario of interest in practice (since the alphabet de-
notes XML tags), the case when ¥ is finite is inter-
esting from a theoretical standpoint. All co-NP com-
pleteness results in this paper hold if | ¥ |= 2 (the
idea is that symbols from a larger alphabet can be en-
coded with chains, if we have at least two symbols).
But most decision procedures, including those that pre-
ceded our work, fail. For instance, when p=a/a//b/b
and p'=a//a/b//b, then p C p' if © = {a,b} but p Z p’
when ¥ = {a,b,c}. Thus the homomorphism criterion
in [1] no longer holds for a finite alphabet.

9. RELATED WORK

The classes of patterns that include descendant edges
(P07} and P{I*//}) can be expressed in datalog with
recursion, for which containment is undecidable in gen-
eral [20]. In [25] the author showed, using chase tech-

niques, that the datalog fragment needed for P{ll*//}
has a decidable containment problem. Containment for
P{L/7} was shown to be in PTIME in [1]. Queries
in PUM*} can be viewed as conjunctive queries over
tree structures. In general, containment for conjunctive
queries is NP-complete [6], however for acyclic conjunc-
tive queries containment is in PTIME (28], from which it
follows that P{*} containment is solvable in PTIME.
This bound for P{*} was also noted in [26].

Linear queries in P/} are a special case of regular
expressions on strings, for which there is a PSPACE-
complete containment algorithm in general [22]. For
the fragment of regular string expressions in P/} a
linear-time containment algorithm is claimed in [17], al-
though the proof was not published. A PTIME algo-
rithm for linear patterns in P/} was provided in [2].

On a graph-based data model, the authors of [11]
showed that for a restricted language without wildcard,
similar to P/} containment is NP-complete. In [3]
the authors study tree two-way regular path queries on
a graph model. In addition to a more general data
model, these queries are more expressive than ours be-
cause they allow general regular path expressions and
inverse. A PSPACE upper bound for containment is
shown for this class of queries. Finally, the authors
of [10] prove containment results for a host of XPath-
related languages. One closely-related result applies
to an extension of P{:*//} which includes binding of
variables and equality testing, for which containment is
shown to be IT5-hard.

10. CONCLUSION

We have studied the complexity of containment and
equivalence for an important core fragment of XPath.
Many XML applications could benefit from a practical
decision procedure for containment of such expressions.
‘We show this fragment of XPath has an intractable con-
tainment problem in general, and our results provide
intuition into the factors that contribute to its high
complexity. Nevertheless, we show that in some sig-
nificant special cases, containment can be decided effi-
ciently, and we provide an algorithm that does so.

One direction for future work is to extend this frag-
ment of XPath with additional features, although it is
clear that it will be even more challenging to prove ef-
ficient special cases of the problem. Another direction
is to study containment of XPath expressions over sets
of documents conforming to constraints or schema re-
strictions. Preliminary work shows that sufficiently ex-
pressive constraints make this problem intractable for
XPath fragments that otherwise have efficient contain-
ment problems.
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