
Relationship Privacy: Output Perturbation
for Queries with Joins∗

Vibhor Rastogi †

CSE, University of Washington
Seattle, WA, USA, 98105-2350

vibhor@cs.washington.edu

Michael Hay
CS, UMass Amherst

Amherst, MA, USA, 01003-9264

mhay@cs.umass.edu

Gerome Miklau
CS, UMass Amherst

Amherst, MA, USA, 01003-9264

miklau@cs.umass.edu

Dan Suciu
CSE, University of Washington

Seattle, WA, USA, 98105-2350

suciu@cs.washington.edu

ABSTRACT
We study privacy-preserving query answering over data con-
taining relationships. A social network is a prime example of
such data, where the nodes represent individuals and edges
represent relationships. Nearly all interesting queries over
social networks involve joins, and for such queries, existing
output perturbation algorithms severely distort query an-
swers. We propose an algorithm that significantly improves
utility over competing techniques, typically reducing the er-
ror bound from polynomial in the number of nodes to poly-
logarithmic. The algorithm is, to the best of our knowledge,
the first to answer such queries with acceptable accuracy,
even for worst-case inputs.

The improved utility is achieved by relaxing the privacy
condition. Instead of ensuring strict differential privacy, we
guarantee a weaker (but still quite practical) condition based
on adversarial privacy. To explain precisely the nature of
our relaxation in privacy, we provide a new result that char-
acterizes the relationship between ǫ-indistinguishability (a
variant of the differential privacy definition) and adversarial
privacy, which is of independent interest: an algorithm is
ǫ-indistinguishable iff it is private for a particular class of
adversaries (defined precisely herein). Our perturbation al-
gorithm guarantees privacy against adversaries in this class
whose prior distribution is numerically bounded.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Statistical databases; G.3 [Probability and statistics]:
Distribution functions

∗Supported in part by the National Science Foundation un-
der the grant IIS-0627585
†Supported in part by the National Science Foundation un-
der the grant IIS-0415193

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’09, June 29–July 2, 2009, Providence, Rhode Island, USA.
Copyright 2009 ACM 978-1-60558-553-6 /09/06 ...$5.00.

General Terms
Algorithms, Security, Theory

Keywords
private data analysis, privacy preserving data mining, out-
put perturbation, sensitivity, social networks, join queries

1. INTRODUCTION
The significant advances in privacy-preserving query an-

swering have focused primarily on datasets describing prop-
erties of independent entities, but not relationships. Queries
over data containing relationships typically involve joins.
For such queries many existing techniques cannot be ap-
plied, and others yield severely distorted answers. We are
driven to consider data with relationships by the compelling
application of social network analysis.

Application: Analysis of private social networks
A social network is a graph representing a set of entities and
relationships between them. We model a social network as
a simple directed graph, described by a relationship table
R(u, v). Figure 1 shows a simple social network, (a), and its
relationship table, (b). Each edge of the graph G occurs as
a tuple in R.

Social network analysis is a rapidly growing discipline fo-
cused on the structure and function of networks. Many of
the most interesting social network analyses involve topo-
logical properties of the graph, which require self-joins on
the relationship table. We list a number of such queries in
Fig. 1(c), each of which counts the occurrence in the graph
of some pattern or structure. For example, the clustering co-
efficient [15] of a graph is the likelihood that a friend of one’s
friend is also a friend. The clustering coefficient can be com-
puted from two of the counting queries shown in the figure:
∆ (the number of triangles) and ∨ (the number of two-length
paths). Analysts also commonly count the occurrence of in-
teresting patterns (sometimes called motif analysis) and the
distribution of path lengths in the graph. Queries ci, di,v,
Ki, and hi,j are examples of such queries.

The collection and release of social network data is highly
constrained by privacy concerns. Relationships in a social
network are often sensitive, as they may represent personal
contacts, flows in information, collaborations, employment

Node 1 Node 2
Alice Bob
Bob Carol
Bob Dave
Ed Bob
Ed Dave

Greg Dave
Ed Greg

∆ : # of triangles in G
∨ : # of 2-length paths in G
ci : # of cycles of length i in G
di,v : # of nodes at distance i from v
Ki : # of i-node cliques
hi,j : # of matches for conn. subgraph

h with i nodes and j edges

(a) Social Network G (b) Relationship table R (c) Social network queries

Figure 1: An example social network represented as a directed graph and edge table, along with selected
social network queries.

relationships, etc. Our goal is to permit accurate social net-
work analysis while protecting against the threat of edge
disclosure.

Researchers have begun to investigate threats against so-
cial networks [1, 11] and a number of anonymization schemes
have been proposed [11, 12, 20, 21, 22, 3]. These techniques
do not, however, provide quantitative guarantees of privacy
and utility. Existing query-answering techniques that do
provide guarantees are difficult to adapt to data contain-
ing relationships. Rastogi et al. [17] publish a randomized
version of a database that supports accurate estimates of
counting queries, but does not support joins. Dwork et al.
[5] propose an output perturbation mechanism that can be
used to answer queries with joins, however the noise added
is unacceptably high for some join queries, such as those in
Fig. 1(c).

To address the shortcomings of existing techniques we
make the following three contributions:

◮ We propose an output perturbation algorithm, similar
to the differentially private algorithm of Dwork et al [5].
For a large subclass of conjunctive queries with disequal-
ity, we show that the algorithm meets a strong information-
theoretic standard of adversarial privacy that bounds the
worst-case change in the adversary’s belief about tuples in
the database.

◮ We show that the algorithm significantly improves util-
ity over competing techniques. In particular, for social net-
work queries, such as those in Fig. 1(c), the algorithm im-
proves the error bound from polynomial in the number of
nodes to polylogarithmic. This algorithm is (to the best of
our knowledge) the first to answer such queries with accept-
able accuracy, even for worst-case inputs.

◮ The improved utility is achieved by relaxing the pri-
vacy condition. To provide insight into the relaxation in
privacy, we characterize the class of adversaries that mech-
anisms satisfying ǫ-indistinguishability (a variant of the dif-
ferential privacy definition) protect against. This result is of
independent interest, as it describes a fundamental connec-
tion between two widely studied notions of differential [5, 4]
and adversarial [6, 14, 17, 7] privacy.

We note that all our results apply to arbitrary relational
databases, and are not restricted only to social networks.
The next section provides an overview of all the main results
in the paper. Section 3 provides technical details for the
privacy and equivalence results. In Sections 4 and 5 we
explain extensions and discuss related work.

2. MAIN RESULTS
In this section we describe our two main results and their

significance. We postpone several technical details to Sec. 3.
All the proofs are omitted to the full version of the paper [9].

2.1 Background
Each of the social network queries in Fig. 1(c) can be rep-

resented as a counting conjunctive query with disequality,
expressed in CQ(6=). In this paper the value of a conjunc-
tive query is defined to be a number, namely the number of
satisfying assignments for the variables in the query head.
For example, the query

∆(x, y, z) = R(x, y)R(y, z)R(z, x), x 6= y, y 6= z, z 6= x

returns the number of triples x, y, z that form a triangle in
the graph.

In the general case, we let R1, R2, . . . , Rl be the relations
in the database. We assume that each attribute of the re-
lations takes values from the same domain D and denote
m = |D| the size of the domain. In practice one chooses D
as the active domain of the database, for instance in Fig 1(b)
D is the set of all nodes in the graph, and m the number of
such nodes. We denote by Tupi = Darity(Ri) the set of all
possible tuples in the relation Ri and Tup = ∪iTupi the set
of all possible tuples in the database. A database instance
I ⊆ Tup is an instantiation of the relations Ri, where |I| is
the number of tuples in the database.

2.2 Algorithm
Algorithm 2.1 takes as input the database instance I and

a query and returns an output A(I). Our goal is to pro-
vide both privacy—A(I) should not disclose specific tuples
in I—and utility—A(I) should be a good estimate of the
true query answer, q(I). For simplicity, we assume a sin-
gle query: the generalization to multiple queries is discussed
in Sec 4.3. The algorithm also takes as input two privacy
parameters γ and ǫ.

On a request for a query q, the algorithm does one of
two things: with some probability, it ignores the database
and outputs a random number chosen uniformly from the
range of q (Step 3). This event occurs with probability p/γ,
where p (defined in Step 2) is a function of the query q
and m, and is typically small, while γ is the first privacy
parameter. Otherwise (Step 4) the algorithm returns the
query answer after adding random noise sampled from a
Laplace distribution with mean 0 and standard deviation

λ/ǫ, where λ (defined in Step 2) is a function of the query
and m, and ǫ is the second privacy parameter.

Algorithm 2.1 Output perturbation (Inputs: query q,

database I, privacy parameters γ, ǫ)

1: Let g be the number of subgoals in query q and v the
number of variables.

2: Set λ = (8(v + 1)g2 log m)g−1 and p = g/m.
3: With probability p/γ, output A(I) chosen uniformly at

random from {0, 1, . . . , mv}.
4: Otherwise (with probability 1 − p/γ), output A(I) as

A(I) = q(I) + Lap(λ/ǫ)

Dwork et. al. [5] introduced a perturbation algorithm
that, for a given query q adds a Laplacian noise λ/ǫ and
guarantees ǫ-indistinguishability. The λ for that algorithm
is determined by the global sensitivity of the query, which
roughly denotes the worst-case change in the query answer
on changing one tuple in any possible database instance.

The key difference in our algorithm is the choice of λ.
Returning a completely random response with small proba-
bility in Step 3, along with the relaxed notion of adversar-
ial privacy, allows us to choose a much smaller value for λ
in Step 4, and as a consequence, our algorithm has much
better utility. Roughly speaking, λ for our algorithm is de-
termined by the adversary’s prior expectation of the query
sensitivity instead of the worst-case sensitivity over all pos-
sible database instances. See Sec. 3.2 for the formal details.

For example, given any query in Fig. 1(c) the random
noise that our algorithm adds results in quite acceptable
utility, while the amount of noise needed to ensure ǫ-indist-
inguishability renders them useless to a data analyst (we do
a detailed comparison in Sec 2.4).

The novelty in our approach relies in the privacy analy-
sis. Instead of guaranteeing ǫ-indistinguishability, we guar-
antee a somewhat weaker adversarial privacy: while these
two paradigms to privacy are quite distinct, and hard to
compare, we will show in Sec 2.5 a remarkable connection
between the two definitions. Using this connection we are
able to claim that our algorithm guarantees adversarial pri-
vacy against the same adversaries as ǫ-indistinguishability,
as long as they are bounded quantitatively. We explain this
below, but first we discuss briefly the utility of the algorithm.

2.2.1 Utility
Our definition of utility is based on how close the output

A(I) is to the actual answer q(I).

Definition 2.1 ((Σ, Γ)-usefulness). An algorithm A
is called (Σ, Γ)-useful w.r.t query q if for all inputs I:

Pr [|q(I) − A(I)| ≥ Σ] ≤ Γ

m

Here the probability Pr is computed solely on the random
coin tosses of the algorithm A

We prove in the full version [9] the following theorem.

Theorem 2.2 (Utility). Let q be any query with g
subgoals. Then Algorithm 2.1 is (Σ, Γ)-useful w.r.t q for
Σ = O(logg m/ǫ) and Γ = O(1/γ).

Example Let us fix the privacy parameters ǫ and γ as
constants independent of m. Consider again the query ∆
that counts the number of triangles in R. Then, g, the num-
ber of subgoals of ∆ is 3 and hence the Algorithm 2.1 guar-
antees (Σ, Γ)-usefulness for Σ = O(log3 m) and Γ = O(1).
This means that the algorithm outputs a response with er-
ror O(log3 m), except with probability O(1/m). Recall that
m is the number of nodes in R.

2.3 Adversarial Privacy
In the adversarial definition of privacy an adversary is a

probability distribution: it defines the adversary’s prior be-
lief. An algorithm is private if the a posteriori distribution
(after seeing the algorithm’s output) is close to the prior.
Moreover, this property should hold for any reasonable ad-
versary.

In our setting, the adversary’s prior knowledge is a proba-
bility distribution P on database instances. We denote P (I)
the probability of an instance I, and P (t) marginal probabil-
ity of a tuple, P (t) =

∑
I:t∈I P (I). After seeing the output

O = A(I) of the algorithm, the adversary changes his be-
lief to the a posteriori P (t | O). Privacy means that the a
posteriori should be close to the prior.

Since we do not know P (only the attacker knows it) we
consider an entire class of distributions P: the adversary can
be any P ∈ P.

Definition 2.3 (Adversarial Privacy). An algorithm
A is (ǫ, γ)-adversarially private w.r.t. P iff for all outputs
O of A, tuples t ∈ Tup and prior distributions P ∈ P the
following holds:

P (t | O) ≤ eǫP (t) + γ

Note that for a fixed O, the probability P (t|O) depends on
the prior P and the definition of A, but not on the coin
tosses (randomness) of any particular run of A. We empha-
size that the privacy guarantee is given for every output O
and thus for every input instance I, and is not an average-
case guarantee.

If an algorithm is (ǫ, 0)-adversarially private, then we sim-
ply say that it is ǫ-adversarially private. Related definitions
in the literature include (ρ1, ρ2) breach [6], (d, γ)-privacy [17],
and SafeΠ [7]. Like the latter, we do not protect against
negative leakages (but see Sec. 4.3), which is acceptable in
many, but not all applications.

The main difficulty in applying adversarial privacy is choos-
ing the class of adversaries P. If one chooses P to be the set
of all possible adversaries, then no algorithm can be both
useful and adversarially private. Paraphrasing an example
from Dwork [4], suppose a malicious adversary doesn’t know
how many friends Alice has, but knows that Alice has a
number of friends that is exactly 0.01% of the total number
of triangles in the data. Then, if an algorithm returns the
total number of triangles, a significant amount of informa-
tion has been leaked. We cannot hope to protect adversarial
privacy against such an omnipotent adversary, and the com-
mon practice is for a security manager to assume a weaker
threat. The ability to adjust the threat model, hence the
class of adversaries P, is of key importance in practice, yet
no principled way to define the class P has been proposed
in the literature.

In this paper we propose a principled definition of the
power of the adversary, as quantitative restrictions of the

class PTLM (defined formally in Sec. 2.5). The importance
of the class PTLM is that adversarial privacy with respect
to this class is precisely ǫ-indistinguishability [5] (reviewed
in Sec. 2.5). In other words, ǫ-indistinguishability can be de-
scribed precisely in terms of a particular class of adversaries,
namely PTLM adversaries, which justifies our choice. Once
we have this yardstick, we introduce the following quantita-
tive restrictions on adversaries:

Definition 2.4 ((δ, k)-bounded). Let δ ∈ [0, 1] and
k ∈ N. An adversary P is (δ, k)-bounded if (i) At most
k tuples have marginal probability P [t] = 1, and (ii) For
all other tuples t ∈ Tup the marginal probability P [t] is less
than δ.

Algorithm 2.1 guarantees privacy for all queries in a cer-
tain subset of CQ(6=), which we call stable queries. We post-
pone the formal definition of stable queries until Sec. 3.1,
but show here that the following important class of queries
is stable.

Proposition 2.5 (Subgraph query stability). Let q
be the query that counts the number of occurrences of a sub-
graph h in G. If h is connected (in the traditional graph-
theoretic sense), then q is stable.

All queries in Fig. 1(c) with the exception of di,v corre-
spond to queries that count connected subgraphs, and hence
are stable. The class of stable queries is in fact much more
general and includes the query di,v as well. We can now
state our first main result (the proof technique is in Sec.
3.2):

Theorem 2.6 (Privacy). Let δ = log m/m and k =
log m be the parameters bounding the adversary’s power.
Then if the input query q is stable, Algorithm 2.1 ensures
(ǫ, γ)-adversarial privacy w.r.t any (δ, k)-bounded PTLM
adversary.

Finally, we comment on choosing the parameters for bound-
ing the adversary quantitatively. In many applications, as-
suming a (δ, k) bound on the adversary is quite reasonable.
For example, in online social networking applications, users
can only access a limited subgraph of the actual social net-
work. Facebook allows users to know only their friends, and
the friends of their friends. Thus, a bound of k = log m is a
reasonable assumption on the power of the adversary. An-
other example is the active attackers considered in [1] that
can create an arbitrary subgraph of k = O(

√
log m) edges.

For edges other than the k known edges, we assume an upper
bound of δ = log m/m, which is also appropriate for sparse
networks observed in practice in social networks [15]. The
value is not critical for the functioning of our algorithm and
we consider larger δ in Sec. 4.3.

2.4 Discussion
To put our results in perspective, we compare Algorithm 2.1

to the algorithm of Dwork et al. [5] (call it DMNS) in terms
of both privacy and utility.

These algorithms are modeled on different notions of pri-
vacy, but our equivalence result (Section 2.5) allows us to re-
late them more easily. DMNS is ǫ-indistinguishable, which is
equivalent to (ǫ, 0)-adversarial privacy w.r.t. any adversary
in the PTLM class. In contrast, Algorithm 2.1 only pro-
tects against a subclass of PTLM , namely those that are

(δ, k)-bounded. It also tolerates slightly more disclosure: it
is (ǫ, γ)-adversarially private where γ > 0. To compare util-
ity, we fix ǫ to be the same and γ some positive constant.

In terms of utility, both algorithms offer guarantees that
depend on the particular query. We compare the social net-
work queries in Figure 1(c) in terms of (Σ, Γ)-usefulness. We
fix Γ = O(1)—thus, both algorithms have a O(1/m) prob-
ability of returning a useless output—and compare Σ, the
bound on error. For Algorithm 2.1, the bound on the error
follows from Theorem 2.2. For DMNS, the bound comes
from the fact that its error is distributed exponentially with
mean GSq/ǫ, where GSq is the global sensitivity of q. Global
sensitivity is formally defined in Section 3.1, but intuitively
it is the worst-case change in the query answer given the
change of a single tuple in any possible database instance.

Table 1 compares the error bounds of the two algorithms.
As additional context, it also shows a lower bound on the
error of an optimal ǫ-indistinguishable algorithm, denoted
OPTind—this bound is derived in the full version [9]. In or-
der to achieve ǫ-indistinguishability for the example queries,
one needs to introduce error rates that are linear or polyno-
mial in m (the number of nodes in the graph), which makes
them useless for social network analysts. By contrast our
algorithm guarantees error bounds that are polylogarithmic
in m. (The di,v query has a range of {0, . . . , m}, so the only
practically useful algorithm is Algorithm 2.1 for small i. For
Ki, Algorithm 2.1 is useful for small i, but no algorithm is
useful for large i.)

Table 1: The error bound (Σ) of Algorithm 2.1 com-
pared with ǫ-indistinguishable alternatives for the
queries of Figure 1(c). Recall that m = the number
of nodes in the graph.

Σ
Query OPTind DMNS [5] Algorithm 2.1

∆ Ω(m) Θ(m log m/ǫ) Θ(log3 m/ǫ)
∨ Ω(m) Θ(m log m/ǫ) Θ(log2 m/ǫ)
ci Ω(mi−2) Θ(mi−2 log m/ǫ) Θ(logi m/ǫ)

di,v Ω(m) Θ(m log m/ǫ) Θ(logi m/ǫ)

Ki Ω(mi−2) Θ(mi−2 log m/ǫ) Θ(logi2 m/ǫ)
hi,j Ω(mi−2) Θ(mi−2 log m/ǫ) Θ(logj m/ǫ)

Note that all of these queries have joins. If a query does
not have joins—such as count the number of edges in the
graph—it has low global sensitivity and DMNS has a similar
error rate (but better constants). However, these examples
illustrate that joins can lead to high global sensitivity and
Algorithm 2.1 can guarantee much more accurate answers
than a ǫ-indistinguishable algorithm.

Queries with high global sensitivity were also considered
by Nissim et al. [16], who propose adding noise proportional
to a smooth upper bound on the local sensitivity (i.e., sen-
sitivity of the instance rather than worst-case global sensi-
tivity). A direct comparison with our approach is difficult
because while the smooth bounds were derived for a few spe-
cific queries (e.g., median), it is not known how to compute
them in general, nor in particular, for the social network
queries we consider here. (See Section 5.2 for further discus-
sion.)

2.5 Adversarial Privacy vs. Indistinguishabil-
ity

In this section, we state our second main result, which
states that ǫ-indistinguishability is the same as ǫ-adversarial
privacy w.r.t. PTLM adversaries. Indistinguishability was
defined in [5] and we review it briefly. Consider a random-
ized algorithm A that, on a given input instance I, returns a
randomized answer A(I). Given an answer O, Pr(A(I) = O)
denotes the probability (over the random coin tosses of A)
that the algorithm returns exactly O on input I.

For simplicity, we denote I + t the instance obtained by
adding a tuple t which is not in I to the set I.

Definition 2.7 (ǫ-indistinguishability). An algorithm
A is ǫ-indistinguishable iff forall instances I and I ′ that that
differ on a single tuple (i.e. |I| = |I ′| and there exist tuples
t, t′ such that I + t = I ′ + t′), and for any output O, the
following holds:

Pr[A(I ′) = O] ≤ eǫPr[A(I) = O] (1)

A related notion is that of ǫ-differential privacy [4], which
guarantees condition (1) forall I and I ′ such that one con-
tains an additional tuple compared to the other (i.e. there
exists a tuple t such that either I + t = I ′ or I ′ + t = I).
The distinction between these two notions of privacy is some-
times blurred in the literature and the term differential pri-
vacy is used to denote indistinguishability. However, we
use the term indistinguishability throughout the paper, since
this is the precise definition for which our main results apply.

Indistinguishability does not mention an adversary, but
was shown to protect against informed adversaries [5], who
know all but one tuple in the database. However, the in-
formed adversaries do not have tuple correlations. Against
adversaries with arbitrary correlations (such as“Alice’s height
is 5 inches shorter than the average”[4]), ǫ-indistinguishability
does not guarantee adversarial privacy. An important ques-
tion is: for which adversaries does ǫ-indistinguishability guar-
antee adversarial privacy?

Our result shows that ǫ-indistinguishability corresponds
precisely to ǫ-adversarial privacy for a certain PTLM class.
The class PTLM has never been defined before and requires
us to provide the following background on log-submodular
and planar distributions.

While well known in probability theory [2], log-submodular
(LM) distributions have been considered only recently in the
context of data privacy in [7].

Definition 2.8 (Log-submodularity). A probability
distribution P is log-submodular (denoted LM) if forall in-
stances I, I ′ the following condition holds:

P (I)P (I ′) ≥ P (I ∩ I ′)P (I ∪ I ′) (2)

To understand the intuition behind a log-submodular dis-
tribution, recall that a distribution P is called tuple-independent
if for any two tuples t1, t2, P (t1, t2) = P (t1)P (t2); we write
IND for the class of all tuple-independent distributions.
One can check that P is tuple independent iff for any two
instances1 P (I)P (I ′) = P (I ∩ I ′)P (I ∪ I ′). Hence, IND ⊆
LM . Most prior work on adversarial data privacy, includ-
ing our own [14, 17] has considered only tuple-independent

1By direct expansion all four probabilities, e.g. Pr(I) =∏
t∈I P (t) · ∏t 6∈I(1 − P (t)), etc.

adversaries. The LM adversaries, considered first in [7], are
more powerful since they allow correlations. However, they
turn out to be too powerful to capture ǫ-indistinguishability
because, as we explain next, they are not closed under marginal-
ization.

Marginalization Let Q ⊆ Tup be any set of tuples.
Given an algorithm A, its marginalization w.r.t. Q is AQ(I) =
A(I ∩ Q). Thus, AQ just ignores the tuples outside the set
Q. One can easily check that if A is ǫ-indistinguishable and
Q is a fixed set, then AQ is also ǫ-indistinguishable. Thus,
if ǫ-indistinguishability is to be captured by some class of
adversaries, that class must be closed under the operation
of marginalization, defined as follows:

Definition 2.9 (Marginal distribution). Let P be
any probability distribution over possible databases. Then
the marginal distribution over Q, denoted as PQ, is a proba-
bility distribution over the subsets S of Q defined as PQ(S) =∑

I:I∩Q=S P (I).

LM distributions are not closed under marginalization,
hence they cannot capture ǫ-indistinguishability. This justi-
fies our definition of total log-submodular distributions.

Definition 2.10 (Total log-submodularity). A prob-
ability distribution P is total log-submodular (T LM) if for
every set Q ⊆ Tup, the marginal distribution PQ is log-
submodular. Formally:

∀Q, ∀S, S′ ⊆ Q, PQ(S)PQ(S′) ≥ PQ(S ∩ S′)PQ(S ∪ S′)

The T LM class contains IND and all distributions with
negative correlations. Intuitively, by negative correlations
we mean that P (t1|t2) ≤ P (t1) for all tuples t1, t2. We
formalize the notion of negative correlations in Sec. 3.3.

Planarity Finally, our last definition is motivated by the
following observation. It is implicit in the definition of ǫ-
indistinguishability that the size of the database is made
public. To see that, consider the following algorithm A:
given an instance I, the algorithm returns the cardinality
of I. A is trivially ǫ-indistinguishable, for every ǫ > 0. In
terms of adversarial privacy, this means that the adversary
knows the size of the database. The corresponding notion
in probability theory is called planarity [18].

Definition 2.11 (Planar distributions). A distribu-
tion P is planar if there exists a number n such that forall I
if |I| 6= n then P (I) = 0. We call n the “size of the database”
for the distribution P .

We denote by PTLM the class of planar, T LM adver-
saries. At last, we show our second main result: a complete
equivalence of ǫ-indistinguishability and adversarial privacy
w.r.t PTLM adversaries. The proof technique is in Sec. 3.3.

Theorem 2.12 (Equivalence). Let A be any algorithm
and ǫ > 0 be any parameter. Then the following two state-
ments are equivalent (i) A is ǫ-indistinguishable, (ii) A is
ǫ-adversarially private w.r.t PTLM adversaries.

This equivalence result has interesting implications for
both privacy definitions. In Sec 4, we propose a relaxation of
ǫ-indistinguishability and also show how adversarial privacy
provides protection of boolean properties and resistance to
some positive correlations.

2(a) Triangles 2(b) length 2 paths

Figure 2: Graphs showing high sensitivity

3. TECHNICAL RESULTS
In this section, we define and characterize the class of sta-

ble queries, which are queries that Algorithm 2.1 protects
privacy for. We also explain the technical results behind our
two main results: the privacy Theorem 2.6 and the equiva-
lence result (Theorem 2.12).

3.1 Stable Queries
The intuition behind the definition of stable queries is

based on the the notion of local sensitivity. This notion
was defined in [16] and denotes the maximum change in the
query answer on changing any one tuple of the particular
input instance.

Definition 3.1 (LSq [16]). The local sensitivity of a
query q on instance I is the smallest number LSq(I) such
that for all database instances I ′ that differ on a single tuple
with I (i.e. |I| = |I ′| and there exist tuples t, t′ such that
I + t = I ′ + t′),

|q(I) − q(I ′)| ≤ LSq(I)

Global sensitivity [5] is the worst-case local sensitivity over
all possible instances on the domain. Dwork et al. [5] pro-
pose an algorithm that guarantees good utility for all queries
with low global sensitivity.

The queries listed in Fig 1(c), however, have high global
sensitivity. For instance, the global sensitivity of ∆ defined
in Figure 1(c) is m − 2, where m is the number of nodes in
G. This is illustrated by the graph shown in Figure 2(a).
Suppose the graph contains the edge (Alice, Bob), but does
not contain the edge (Bob, Alice). Then the number of tri-
angles in the graph is 0. If we change the edge (Alice, Bob)
to the edge (Bob, Alice), the number of triangles becomes
m− 2, showing that the sensitivity of ∆ is m− 2. Similarly,
Figure 2(b) illustrates the high global sensitivity of ∨.

Stable queries are those that have low local sensitivity in
expectation, where the expectation is computed over database
instances drawn from adversary’s prior distribution. Since
we do not know the adversary’s prior, we give a syntactic
criteria for queries that guarantee low expected local sensi-
tivity based only on the quantitative bounds δ, k of the ad-
versary (see Def. 2.4). We define two notions: dense queries,
which are queries that have low expected value w.r.t. adver-
sary’s prior distribution, and the derivative set of a query q,
which contains queries that upper bound the local sensitiv-
ity of q. Roughly speaking, a stable query is a query whose
derivative set contains only dense queries.

Dense queries Denote goals(q) the set of subgoals in
the query q. Also denote vars(q) (const(q)) the set of vari-
ables (constants) in q. We define the density of q the ratio

|goals(q)|
|vars(q)|

. We say a query is dense if its density and the

density of all of its possible homomorphic images (defined
below) is greater than one.

Definition 3.2 (Homomorphism). A homomorphism
is a function h : vars(q) → vars(q) ∪ const(q) that maps
each variable in vars(q) to either a variable in vars(q) or a
constant in const(q) while ensuring that the inequality con-
straints of the query are satisfied.

For a homomorphism h, denote qh the query obtained by
replacing, for all variables x ∈ vars(q), each occurrence of
x in q by the symbol h(x). qh is called the h-homomorphic
image of q. We can now define dense queries formally.

Definition 3.3 (Dense query). Let H denote the set
of all homomorphisms for a query q. We say q is dense
if all the homomorphic images of q (i.e. queries in the set
{qh|h ∈ H}) have density ≥ 1.

Examples The query ∆ of Fig 1(c) is dense. It has a
density of 1 and all of its homomorphic images have higher
densities. The query ∨, defined as R(x, y)R(y, z), x 6= y, y 6=
z, z 6= x, is not dense as its density is 2/3. The query
q(x, y, z) : −R(x, y, z)R(x, z, y)R(x, y, y) is not dense, even
though its density is 1. This is because its homomorphic
image qh(x, z) : −R(x, z, z) (for h(y) = z) has density 1/2.

Derivative Now we define the notion of derivative used
for stable queries. Define a set of new constants dummy
with |dummy| = |vars(q)| and the set D0 = dummy ∪
const(q). Let x = {x1, . . . , xl} be any l variables of q and
a = {a1, . . . , al} be any l constants from D0. Denote q[x/a]
the query obtained by substituting all occurrences of vari-
able xi in q by the constant ai for all i = {1, . . . , l}.

Definition 3.4 (Derivative). Let g be a subgoal of q
with l variables x = {x1, . . . , xl} and let a = {a1, . . . , al} be
a set of l constants. The derivative of q w.r.t. (g,a), denoted
as ∂q

∂(g,a)
, is the query obtained by removing the subgoal g

from the query q[x/a].

Intuitively, the query ∂q

∂(g,a)
represents the change in the

answer to q if the tuple a = {a1, . . . , al} is added in the rela-
tion g. For instance, ∂∆

∂(R(x,y),(a,b))
is the query R(b, z)R(z, a),

which measures the change in the number of triangles on
adding the edge R(a, b). Next we define the derivative set
which contains all possible derivatives of the query.

Definition 3.5 (Derivative set). The derivative set
of q, denoted as ∂1(q), is the set of queries { ∂q

∂(g,a)
|g ∈

goals(q),a ∈ D
|vars(g)|
0 }.

Due to technical reasons, we also need to define higher
order derivate sets. The ith order derivative set of q, de-
noted as ∂i(q), is recursively defined as the set of derivate
queries of the (i− 1)th order derivative set. That is ∂i(q) =
∪q′∈∂i−1(q)∂

1(q′). We can now define stable queries.

Definition 3.6 (stable). A query q is stable if for all
i ≥ 1 and queries q′ ∈ ∂i(q), q′ is dense.

Examples Any single subgoal query is automatically sta-
ble. Proposition 2.5 proves the stability of a large class of
queries. di,v defined as q(xi) : −R(v, x1)R(x1, x2) . . . , R(xi−1, xi),
is also stable. This is because all derivatives of di,v are dense.

Checking for stable queries The query complexity for
checking whether a query is stable is in coNP. To see this,
note that a witness for showing a query is not stable is simply
a derivative query and a homomorphism for the derivative.
Checking whether the homomorphic image of the derivative
has density < 1 can then be done in polynomial time.

Despite the high query complexity, stability is a property
of the query and does not depend on the data. This is an ad-
vantage compared to some techniques, such as the approach
of Nissim et al. [16], that must look at the data to determine
how to answer the query. (See Section 5 for more discussion
of related work.)

3.2 Proof of Privacy (Theorem 2.6)
The proof relies on the property that the local sensitiv-

ity of a query is bounded w.h.p. according to the adver-
sary’s prior distribution. A similar notion was also consid-
ered in [10]. Denote P (LSq > λ) =

∑
I:LSq(I)>λ P (I), the

probability that the local sensitivity of q is greater than λ
according to adversary’s prior distribution P . Next we show
the value of λ that makes this probability small for all sta-
ble queries.

Proposition 3.7 (Result-1). Let δ = log m/m and
k = log m. Let P be any (δ, k)-bounded PTLM adversary
and q be a stable query with g subgoals and v variables. Then
for λ = 8(v + 1)g2 log m, we have

P (LSq > λ) ≤ g

mv+1

The proof of Proposition 3.7 is in the full version [9]. It
uses new and non-trivial concentration results, which are
also discussed in the full version. The concentration results
extend those shown by Vu et. al. [19] for tuple-independent
distributions to PTLM distributions. These results may be
of independent interest as they work for a general class of
queries and probability distributions.

Next we show the following privacy result for Algorithm 2.1.
Its proof appears in the full version and exploits the connec-
tion between ǫ-indistinguishability and adversarial privacy
w.r.t. PTLM adversaries.

Proposition 3.8 (Result-2). Let P be any PTLM ad-
versary and let q be any query with v variables. Let ǫ, γ be
the privacy parameters and let λ, p be the parameters used in
Steps 3 and 4 of Algorithm 2.1. If P (LSq > λ) ≤ p

mv , then
Algorithm 2.1 guarantees (ǫ, γ)-adversarial privacy w.r.t. P
while answering q.

Result-1 (Prop. 3.7) shows that if P is a (δ, k)-bounded
PTLM adversary, then any stable query q satisfies P (LSq >
λ) ≤ p

mv for λ = 8(v + 1)g2 log m and p = g/m. Now these
are the values that have been used in steps 3 and 4 of the Al-
gorithm 2.1. Thus we can apply Result-2 (Prop. 3.8) on the
adversary P and query q and obtain that (ǫ, γ)-adversarial
privacy w.r.t P is preserved while answering q by Algo-
rithm 2.1. Since this holds for any (δ, k)-bounded PTLM P
and stable query q, we get the privacy result of Theorem 2.6.

3.3 Proof of the Equivalence (Theorem 2.12)
In this section, we explain the technique behind the proof

of Theorem 2.12. We treat each tuple t ∈ Tup as a boolean
variable, which is true iff t belongs to the actual database
instance. We also define boolean formulas over these boolean

variables. For example the formula (t1∨t2) states that either
t1 or t2 belongs to the database. We denote vars(b) the
set of variables that occur in a formula b. A formula m is
monotone if switching any variable t from false to true does
not change its value from true to false. For example, the
formula m = t1 ∨ t2 is monotone.

Our proof proceeds by establishing a connection between
the PTLM class and a class of distributions, called CNA,
which only have negative correlations among tuples. Many
notions of negative correlations exist in the literature and
our proof exploits the relationship among them. We discuss
them in the full version [9]. Here we just define the most
important one.

Definition 3.9 (NA). A distribution P is said to be
negatively associated (NA) if for all tuples t and monotone
formulas m s.t. t /∈ vars(m), P [t ∧ m] ≤ P [t]P [m].

For a distribution P , denote Pt the distribution obtained
by conditioning P on tuple t (i.e. for all I, Pt(I) = P (I|t)).
Similarly define P¬t. A class of distributions P is said to
be closed under conditioning if for all distributions P ∈ P
and all tuples t, the distributions Pt and P¬t also belong
to P. One can show that the PTLM class is closed under
conditioning. Define CNA to be the largest subclass of NA
distributions that is closed under conditioning. Next we
show an equivalence relationship between PTLM and CNA.

Proposition 3.10 (Neg. correlations). Let P be a
planar distribution. Then the following two statements are
equivalent. (i) P is CNA, (ii) P is PTLM

The proof of the proposition appears in the full version.
The proof is based on the main lemma (lemma 3.2) of [8],
which establishes a connection between balanced matroids (see [8])
and CNA distributions. To complete the proof of Theo-
rem 2.12, it suffices to prove the following proposition.

Proposition 3.11 (Equivalence-2). Let A be any al-
gorithm and ǫ > 0 be any parameter. Then the following
statements are equivalent (i) A is ǫ-indistinguishable, (ii) A
is ǫ-adversarially private w.r.t. planar CNA adversaries.

The proof appears in the full version. We give here a brief
comment. The proof of (ii) ⇒ (i) is simple and works by
considering an extreme adversary P who knows all but one
tuple in the database. The proof of (i) ⇒ (ii) is harder and
uses an expansion property of balanced matroids.

Further we conjuncture that the planar CNA class is max-
imal among all classes for which ǫ-indistinguishability is ǫ-
adversarial privacy. For this we would ideally like to prove
that for every adversary P that is not planar CNA, there ex-
ists an ǫ-indistinguishable algorithm that is not ǫ-adversarially
private w.r.t P . Since we restrict ourselves to classes that
are planar and closed under conditioning, we would like to
prove this result for any adversary P which is not NA.

Next we state a result (proof is in the full version) that
makes progress in this direction. We consider an adver-
sary P which is not NA, and thus P [t ∧ m] ≥ P [t]P [m] for
some tuple t and monotone formula m. However we fur-
ther assume that P [t ∧ m] ≥ P [t]P [m] + P [t]2. With this
additional assumption on P , we show the existence of an
ǫ-indistinguishable algorithm that is not ǫ-adversarially pri-
vate w.r.t P .

Theorem 3.12 (Maximal). Let P be any adversary.
Suppose there exists a tuple t and monotone formula m such
that t /∈ vars(m) and P [t ∧ m] ≥ P [t]P [m] + P [t]2. Then
there exists an ǫ > 0 and an ǫ-indistinguishable algorithm
that is not ǫ-adversarially private w.r.t P .

4. EXTENSIONS
As shown in Section 2.5, ǫ-indistinguishability is precisely

adversarial privacy w.r.t PTLM adversaries. This result
has some interesting implications and we discuss two in this
section. We then discuss some extensions to Algorithm 2.1.

4.1 Relaxation of Indistinguishability
From the equivalence result of theorem 2.12, we know

that ǫ-indistinguishability implies adversarial privacy w.r.t
PTLM adversaries. Below we give a sufficient condition
that implies adversarial privacy w.r.t (δ, k)-bounded PTLM
adversaries. This sufficient condition is expressed as a prop-
erty of the algorithm, similar to ǫ-indistinguishability, and
can be thought of as its relaxation. We believe that this
relaxation can support algorithms with better utility than
ǫ-indistinguishability, especially in the input perturbation
setting where perturbed data is to be published.

To give the relaxation, we define the notion of ǫ-distin-
guishable tuples. Let t, t′ be two tuples. Given an instance
I that contains t but not t′, denote I(t, t′) the instance ob-
tained by replacing t in I by t′.

Definition 4.1 (ǫ-distinguishable tuple). An algo-
rithm A makes a tuple t′ ǫ-distinguishable w.r.t tuple t if
there exist an instance I that contains t but not t′, and an
output O of the algorithm A for which Pr[O|I] ≥ eǫPr[O|I(t, t′)].

Thus for an algorithm A that is not ǫ-indistinguishable,
ǫ-distinguishable tuples are those for which A fails to guar-
antee ǫ-indistinguishability.

Definition 4.2 (Relaxed Indistinguishability). Let
l be any positive integer. An algorithm A is (l, eǫ)-relaxed
indistinguishable if for every tuple t there are at most l ǫ-
distinguishable tuples.

If l = 0, then the relaxed definition above is same as ǫ-
indistinguishability. If l = |Tup|, then the relaxed definition
gives no privacy guarantee. Larger the l, the weaker is the
relaxed definition.

Theorem 4.3 (Bounded adversarial privacy). Let
0 < r < 1 be any number and let A be (1−δ

δ
(1− r)− 1, reǫ)-

relaxed indistinguishable. Then A is also ǫ-adversarially pri-
vate w.r.t (δ, k)-bounded PTLM adversaries.

Theorem 4.3, proved in the full version [9], gives a jus-
tification for relaxed indistinguishability. It states that the
relaxation is sufficient to guarantee adversarial privacy w.r.t
(δ, k)-bounded PTLM adversaries. Furthermore, since ad-
versarial privacy is a worst-case guarantee made on all pos-
sible inputs I and algorithm’s outputs, so is this relaxation.
Thus it is different from the average-case relaxations consid-
ered in the past (such as (ǫ, δ)-semantic privacy [10]).

4.2 Some Properties of Adversarial Privacy
We mention here some properties of adversarial privacy

that follow from its relationship with ǫ-indistinguishability.

4.2.1 Protecting Boolean Properties
The adversarial privacy definition 2.3 is stated to protect

against tuple disclosures. However, in some cases, we would
like to protect general boolean properties such as“Does John
have a social security number (ssn) starting with the digits
541?”. We explain here how adversarial privacy protects all
monotone boolean properties2, which as defined in Sec. 3.3
are boolean formulas with only positive dependence on tu-
ples.

For example, consider the relation R(name, ssn). Suppose
a PTLM adversary P is interested in the ssn of John and
knows that one tuple of the form R(John, *) exists in the
database. Then adversarial privacy w.r.t P implies that the
posterior of P will be bounded for a property like R(John, 541*)
discussed above. This, in fact, holds for any monotone
boolean property over the set of tuples of the form R(John, *).
Formally, we can show the following.

Proposition 4.4 (Boolean properties). Let A be any
ǫ-adversarially private algorithm w.r.t PTLM . Let T be any
set of tuples and P be any PTLM adversary that knows ex-
actly one tuple in T belongs to the database (P (|T ∩ I| =
1) = 1). Then for any monotone boolean property m over
tuples in T and for all outputs O of A, P (m|O) ≤ eǫP (m).

4.2.2 Protecting against Positive Correlations
As mentioned in Sec. 2.5, the PTLM class contains distri-

butions with only negative correlations among tuples. Thus
adversarial privacy w.r.t PTLM seems to protect against
adversaries with only negative correlations.

However, we can show that protection against negative
correlations automatically guarantees protection against ad-
versaries with limited positive correlations albeit with a weaker
privacy parameter. We will define below a class PTLMk

that contains distributions for which any tuple can have pos-
itive correlations with at most k−1 other tuples, but should
have negative correlations with all other tuples. Then we
shall show that ǫ-adversarial privacy w.r.t PTLM adver-
saries implies kǫ-adversarial privacy w.r.t PTLMk adver-
saries. To define PTLMk, we first need to consider the
following superclass of LM distributions.

Definition 4.5 (LMk). A probability distribution P is
LMk if forall instances I, I ′ such that |I \ I ′| and |I \ I ′| are
both greater than k the following condition holds:

P (I)P (I ′) ≥ P (I ∩ I ′)P (I ∪ I ′)

Thus LM1 is precisely the LM class. Further LMk−1 ⊆
LMk for all k. Now similar to T LM and PTLM define the
classes: T LMk to be the set of distributions which are LMK

under every possible marginalization, and PTLMk to be the
set of planar T LMk distribution. Obviously, PTLMk−1 ⊆
PTLMk for all k and PTLM1 = PTLM . Next we show
the following result.

Proposition 4.6 (Positive correlations). Let A be
any ǫ-adversarially private algorithm w.r.t PTLM . Then A
is kǫ-adversarially private algorithm w.r.t PTLMk adver-
saries.

2The monotonicity condition is because adversarial privacy
protects against only positive leakage and allows negative
leakage.

Note that the parameter ǫ appears as eǫ in the privacy
definition (see Def. 2.3). Thus kǫ is actually exponentially
worse than ǫ in terms of the privacy guarantee, and Propo-
sition 4.6 makes practical sense only if we apply it for small
k. The proof of Proposition 4.6 appears in the full version
and exploits the collusion resistance behavior of ǫ-indisti-
nguishability.

4.3 Extensions to Algorithm 2.1
Multiple queries Algorithm 2.1 as stated before can an-

swer only a single query. Now we show how it can be ex-
tended to answer a sequence of queries. Consider a sequence
of input queries q1, . . . , ql. As in Step 2 of the algorithm 2.1,
we compute the parameters λ and p. The parameter p is
computed as before. However, a separate λi is computed for
each qi as (8g2

i (v + 1) log m)gi−1. Here gi is the number of
subgoals in qi and v is the total number of variables in all
queries. After this the algorithm is same as algorithm 2.1. It
decides with probability p/γ to ignore the database and give
a completely random answer to each query. Otherwise, with
probability 1− p/γ, it returns Ai(I) = qi(I)+Lap(λi/ǫ) for
each query qi.

The algorithm has the same privacy guarantee, but a
slightly worse utility guarantee. The algorithm guarantees
(Σi, Γi)-usefulness for Σi = O(l loggi m/ǫ). This Σi is l times
worse than the Σ guaranteed in theorem 2.2, where l is the
number of queries answered.

Larger δ In section 2, we chose δ = log m/m. Here we
note that a larger δ with value mα(log m

m
) can be used while

guarantying the same privacy and the same utility for any
query q. The α can be as large as 1− density(qh), where qh

is the homomorphic image of q with the largest density.
Negative leakage So far we have considered protection

against positive leakage only. Negative leakage, which allows
one to infer the absence of a tuple (i.e P (¬t|O) ≫ P (¬t)), is
allowed under our adversarial privacy definition 2.3. Nonethe-
less it is possible to extend Algorithm 2.1 to protect against
negative leakage as well. This extension guarantees that:
P (¬t|O) ≤ eǫP (¬t) + γ. The extension works for a subclass
of stable queries, and does so by using a larger λ (the noise
parameter). The value of λ has to be O(logg(m)) rather
than O(logg−1(m)) used in Algorithm 2.1.

We explain now the query class for which the extension
works. Recall that stable queries are those that have dense
derivate queries. The extension works for queries that are
both stable and dense. ∆ is such a query. However, ∨ is
not as it is stable, but not dense. In general, if q is a query
that counts the number of occurrences of a subgraph h and
h is a connected graph with cycles then q is both stable and
dense.

5. DISCUSSION & RELATED WORK
In this section we recap our contributions, review related

work, and note open questions.

5.1 Recap
We have described an output perturbation mechanism

(Algorithm 2.1) that guarantees utility for all input databases
and answers a large class of queries much more accurately
than competing techniques. In particular, for a number of
high sensitivity social network queries, the accuracy bounds
improve from polynomial in the number of nodes to polylog-
arithmic (Table 1). We have shown in the full version of the

paper that any ǫ-indistinguishable algorithm that provides
utility for all inputs must add noise that is proportional to
the global sensitivity. Thus to achieve our utility results, we
must relax the privacy standard.

Our relaxed privacy condition is based on adversarial pri-
vacy, which requires that the posterior distribution be bound-
ed by the prior. For all queries that are stable —a class that
includes a number of practically important queries—the ad-
versaries we consider believe (with high probability) that
the query has low local sensitivity, as formalized by Propo-
sition 3.7. The adversary’s belief that the local sensitivity
is low, say no more than λ, means that we can return ac-
curate answers—with noise proportional to λ rather than
the global sensitivity—and still ensure privacy (Proposition
3.8). Even when the input has high local sensitivity, pri-
vacy is preserved because of the novel step of the algorithm
that returns a uniformly random answer. The probability of
this event is rare, but it is just large enough to thwart the
adversary (see details of proof in the full version).

Our first main result (Theorem 2.6) shows that for CQ(6=)
queries that are stable, the algorithm guarantees (ǫ, γ)-adver-
sarial privacy w.r.t. (δ, k)-bounded PTLM adversaries. Query
stability is a syntactic property that we show is related to the
expected local sensitivity for this class of adversaries. Our
second main result (Thm 2.12) justifies the choice of adver-
sary and makes an important connection between the two
notions of privacy: the PTLM adversaries are precisely the
class of adversaries for which any ǫ-indistinguishable mech-
anism will provide adversarial privacy. This clarifies the
relaxation of privacy we consider since our algorithm guar-
antees privacy only against PTLM adversaries whose prior
distribution is numerically bounded by (δ, k).

We believe the equivalence between adversarial privacy
and ǫ-indistinguishability will be of independent interest and
could be a fruitful source of new insights. For example, in
Sec. 4.1 we use this connection to develop a relaxed ver-
sion of ǫ-indistinguishability (which is independent of any
assumptions about the adversary).

5.2 Related Differential Privacy Results
Ours is not the only approach to accurately answering

high sensitivity queries. Nissim et al. [16] recently proposed
an output perturbation algorithm that adds instance-based
noise. The noise depends on the local sensitivity, but to
avoid leaking information about the instance, the noise must
follow a smooth upper-bound of the local sensitivity. The
hope is that for many database instances (e.g. social net-
works that occur in practice), a smooth sensitivity bound
can be found that is substantially lower than the global sen-
sitivity.

Smooth sensitivity is a different, and complementary, strat-
egy to what we propose here. For queries with high global
sensitivity, one cannot guarantee both utility for worst-case
inputs and privacy against a worst-case adversary (i.e., ǫ-
indistinguishability). Nissim et al. attack the problem by
relaxing the utility guarantee, motivated by the premise that
for typical inputs, local sensitivity is low. We attack the
problem by considering weaker (but realistic) adversaries,
motivated by the premise that in practice adversaries will
not have near-complete knowledge of the input. To date,
relatively little is known about the smooth sensitivity of
functions of interest. The authors show how to compute
the smooth sensitivity for two specific functions (median,

minimum spanning tree) and propose a sampling technique
that can be applied to others. Nevertheless, the smooth
sensitivity of stable queries such as hi,j may be difficult to
compute. In addition, the utility bounds for smooth sen-
sitivity depend on the particular instance and we are not
aware of any general analysis that characterizes the set of
inputs for which accurate results are possible. Therefore we
cannot compare these techniques directly with the results in
Table 1.

Ganta et al. [10] define a very different notion of adversar-
ial privacy than we consider here. Roughly, the definition
says an algorithm is private if for all adversaries, the ad-
versary’s posterior belief does not change much given the
change of a single tuple in the database. Privacy is defined
as a posterior-to-posterior comparison, rather than prior-to-
posterior comparison, although they also show a relationship
with differential privacy.

Other Related Work Existing adversarial privacy tech-
niques [6, 17] are designed for tabular data and do not
yield accurate query answers for social network data (or for
queries with joins more generally).

The private analysis of social networks and other graph
data has recently begun to receive attention. The insuffi-
ciency of simple anonymization (by removing node names)
has been demonstrated: Backstrom et al. [1] proposed a
number of attacks on online social networks, and Hay et
al. [11] performed a systematic assessment of the threats
of structural attacks. A number of anonymization algo-
rithms have been proposed. Each publishes a transformed
graph that provides anonymity by creating structurally sim-
ilar groups [11, 22, 12, 3]. The empirical evaluation of utility
looks promising, but no formal guarantees are shown. The
primary distinction with the present work is the privacy con-
dition on the output: anonymous data can still leak secret
information (e.g., see [13]); whereas our techniques formally
bound the information disclosure. Finally, Ying and Wu [20]
show that randomly perturbing the graph can provide a no-
tion of adversarial privacy, but empirical results show the
utility of the data diminishes rapidly with increased privacy.

5.3 Open Questions and Future Work
Precisely characterizing the relationship between query

structure and global sensitivity is an interesting open prob-
lem. Our algorithm adds noise less than the global sensitiv-
ity for a number of important queries, but is not guaranteed
to do so for all queries. An improved algorithm could set λ
to the minimum of GSq and the current quantity. In addi-
tion, some queries of interest (e.g. di,v, Ki) have poor utility
when i, the number of joins, is large. Acceptable utility for
large i currently requires additional restrictions on the ad-
versary, but initial results suggest these restrictions may be
avoidable.

6. REFERENCES
[1] L. Backstrom, C. Dwork, and J. M. Kleinberg.

Wherefore art thou R3579X?: Anonymized social
networks, hidden patterns, and structural

steganography. In WWW, 2007.

[2] H. W. Block, T. H. Savits, and M. Shaked. Some
concepts of negative dependence. In Ann. of Prob.,
1982.

[3] A. Campan and T. M. Truta. A clustering approach
for data and structural anonymity in social networks.
In PinKDD, 2008.

[4] C. Dwork. Differential privacy. In ICALP, 2006.

[5] C. Dwork, F. McSherry, K. Nissim, and A. Smith.
Calibrating noise to sensitivity in private data
analysis. In TCC, 2006.

[6] A. Evfimievski, J. Gehrke, and R. Srikant. Limiting
privacy breaches in privacy preserving data mining. In
PODS, 2003.

[7] A. V. Evfimievski, R. Fagin, and D. P. Woodruff.
Epistemic privacy. In PODS, 2008.

[8] T. Feder and M. Mihail. Balanced matroids. In STOC,
1992.

[9] Full version:
http://www.cs.washington.edu/homes/vibhor/relationship_privacy.pdf.

[10] S. Ganta, S. Kasiviswanathan, and A. Smith.
Composition attacks and auxiliary information in data
privacy. In KDD, 2008.

[11] M. Hay, G. Miklau, D. Jensen, D. Towsley, and
P. Weis. Resisting structural re-identification in
anonymized social networks. In VLDB, 2008.

[12] K. Liu and E. Terzi. Towards identity anonymization
on graphs. In SIGMOD, 2008.

[13] A. Machanavajjhala, J. Gehrke, D. Kifer, and
M. Venkitasubramaniam. l-diversity: Privacy beyond
k-anonymity. In ICDE, 2006.

[14] G. Miklau and D. Suciu. A formal analysis of
information disclosure in data exchange. In SIGMOD,
2004.

[15] M. Newman. The structure and function of complex
networks. SIREV: SIAM Review, 2003.

[16] K. Nissim, S. Raskhodnikova, and A. Smith. Smooth
sensitivity and sampling in private data analysis. In
STOC, 2007.

[17] V. Rastogi, D. Suciu, and S. Hong. The boundary
between privacy and utility in data publishing. In
VLDB, 2007.

[18] J. G. Shanthikumar and H.-W. Koo. On uniform
conditional stochastic order conditioned on planar
regions. In Ann. of Probab., 1990.

[19] V. Vu. Concentration of non-lipschitz functions and
applications. RSA, 2002.

[20] X. Ying and X. Wu. Randomizing social networks: a
spectrum preserving approach. In SIAM, 2007.

[21] E. Zheleva and L. Getoor. Preserving the privacy of
sensitive relationships in graph data. In PinKDD,
2007.

[22] B. Zhou and J. Pei. Preserving privacy in social
networks against neighborhood attacks. In ICDE,
2008.

