
Management of Probabilistic Data
Foundations and Challenges ∗

Nilesh Dalvi
University of Washington

Seattle, WA
nilesh@cs.washington.edu

Dan Suciu
University of Washington

Seattle, WA
suciu@cs.washington.edu

ABSTRACT
Many applications today need to manage large data sets
with uncertainties. In this paper we describe the founda-
tions of managing data where the uncertainties are quanti-
fied as probabilities. We review the basic definitions of the
probabilistic data model, present some fundamental theoret-
ical result for query evaluation on probabilistic databases,
and discuss several challenges, open problems, and research
directions.

Categories and Subject Descriptors
F.4.1 [Mathematical Logic]; G.3 [Probability and statis-
tics]; H.2.5 [Heterogeneous databases]

General Terms
Algorithms, Management, Theory

Keywords
probabilistic databases, query processing

1. UNCERTAINTIES IN THE FUTURE
We know well how to manage data that is determinis-

tic. Databases were invented to support applications like
banking, payroll, accounting, inventory, all of which require
a precise semantics of the data. In the future we need
to learn how to manage data that is imprecise, or uncer-
tain, and that contains an explicit representation of the un-
certainty. While data management has gone through sev-
eral “paradigm shifts” in the past (NF2, OO databases,
semistructured data), this one is arguably more fundamen-
tal: the foundations of the new paradigm no longer lie solely

∗This research was supported in part by Suciu’s NSF CA-
REER grant IIS-0092955, NSF grants IIS-0415193, IIS-
0627585, IIS-0513877, IIS-0428168, and a gift from Mi-
crosoft.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’07,June 11–14, 2007, Beijing, China.
Copyright 2007 ACM 978-1-59593-685-1/07/0006 ...$5.00.

in Logic and finite model theory, but also in probabilistic in-
ference [17], probability logic [2], and degrees of belief [8].

One can find evidence in many areas that such a paradigm
shift is needed. We mention here two such areas.

Data Integration A central research topic for many years
(see Halevy et al. [46]), data integration has reached the
point where it needs to cope explicitly with uncertainties [82].
Precise data mappings and schema mappings are increas-
ingly hard to build on a large scale. As an example, in a re-
cent paper in the journal Nature Reviews Genetics, Philippi
and Kohler [66] discuss the difficulties in integrating life-
science databases, and the biggest obstacle they identify is
imprecision in the data. Data mappings are difficult be-
cause there is no uniform conceptualization of the data, and
in the databases themselves are incomplete (e.g. missing
functional annotations), or uncertain (e.g. due to automatic,
non-curated annotation). The common practice today is for
a life-science researcher to manage uncertainties manually:
they query one data source, say with a keyword, rank the
answers manually based on their quality or relevance to the
query, then feed the answers as queries into the next data
source, ranking those results etc. To do this automatically, a
system needs to represent and manipulate the uncertainties
explicitly, and use them to rank the data items. Represent-
ing uncertainties explicitly is a cheap, perhaps temporary
substitute for more precise integration, say one based on
ontologies, a form of pay as you go data integration [35, 45,
61].

Novel Data We face increasingly large volumes of data
generated by non-traditional means, which is almost always
imprecise. Google base [84], Flickr [83], the ESP game [79],
and the Mechanical Turk [85] are examples of data generated
by the masses, who are often free to deviate from the rep-
resentation guidelines suggested by the system. Large scale
information extraction systems [33, 31, 53] extract data au-
tomatically from text, and this data is always imprecise.
What may soon overtake any other kind of data in volume
is data from the physical world, which originates from cheap
sensors, cameras, RFID tags. There is emerging work to
make this data available on a World-Wide Sensor Web [11,
32]. Sensor data is imprecise by its very nature and has
already been modeled probabilistically [29, 30]. RFID de-
ployments have high error rates, e.g. [54] reports read rates
in the 60 - 70% range, and the high-level data compounded
from such readings is also best modeled probabilistically [60,
14, 56].

The techniques that will allow us to manage data with
uncertainties need to be grounded in a formalism that com-

Inference AI Databases

Deterministic Theorem prover Query evaluation
Pro- Exact Hardness [16] PTIME for safe
babi- Algorithms [17] queries (Th. 3.9)
lis- Approx Hardness [18] PTIME for conjunc-
tic Algorithms [63] tive queries (Th. 3.4)

Figure 1: Inference (deterministic and probabilistic)
in AI and in Databases

bines logic with some measure of the uncertainty. The AI
community has already gone through a transition from logic
to logic with uncertainty, and it is natural to expect data
management to follow a similar path; after all, we are both
modeling data and knowledge.

A Paradigm for Managing Uncertainties
We describe here a general paradigm for data with uncer-
tainties. We make no assumptions about the source or the
nature of the uncertainties: it could be that the data in the
real world is uncertain and the database simply records this
uncertainty, or it could be that the real data is deterministic
but our knowledge about it is uncertain for various reasons.
The model simply assumes that the data is uncertain.

The AI community has considered several approaches to
representing uncertainties, e.g. rule-based systems, Dempster-
Shafer, fuzzy sets, but by 1987 the probability model has
been dominant [48]. We only consider here modeling un-
certainties as probabilities. Thus, in our model the data is
probabilistic, where the probabilities are internal measures
of the imprecision in the data. Users formulate queries us-
ing a standard query language, as if the data were precise.
The system computes the answers, and for each answer com-
putes an output probability score representing its confidence
in that answer. These scores are then indicated somehow to
the user, for example by returning them explicitly, or by
ranking the answers in decreasing order of their scores, or
by indicating the scores using some color code.

The central problem discussed in this paper is the follow-
ing: given a boolean query q on a probabilistic database
PDB, compute the probability of q on PDB, in notation
P(q). We consider only Boolean queries, because the prob-
ability of an answer a to a non-Boolean query q(x) can be
obtained by evaluating the boolean query q[a/x] (substitute
a for x). Our interest is in studying the data complexity [77]:
fix q and study the complexity of computing P(q) as a func-
tion of the size of the probabilistic database PDB. We start
by establishing a simple connection to the problem of com-
puting the probability of a boolean expression Φ, P(Φ). This
has been studied in the literature: it is #P-complete [75] and
DNF formulas admit a FPTRAS (fully poly-time random-
ized approximation scheme) [55]. It follows that for every
fixed query q computing P(q) is in #P, and for every fixed
conjunctive query q, computing P(q) admits a FPTRAS. We
then study the data complexity for specific queries q, and
show that the set of conjunctive queries without self-joins
has a dichotomy: q is either in PTIME (and then we call
it safe) or is #P-hard (and we call it unsafe), and, more-
over, deciding between the two cases can be done in PTIME
in the size of q. Thus, a query processor can examine q
and, either evaluate it exactly, when q is safe, or evaluate it
approximatively, when it is unsafe.

While probabilistic databases have a long history, there
has been no systematic study of the query evaluation prob-
lem. Early systems have avoided addressing the full query
evaluation problem by either restricting the queries [9], or
using an exponential-time evaluation algorithm [36], or re-
lying on a weaker semantics based on intervals [59].

Probabilistic Inference v.s. Query Evaluation
A problem related to query evaluation studied by the AI
community is inference in probabilistic networks1. Proba-
bilistic inference remains very expensive to this date [58].
There is an important distinction between probabilistic in-
ference in AI and query evaluation over probabilistic data,
which mirrors the distinction between inference in knowl-
edge bases and query evaluation in data bases. In AI there is
no separation between the query and the data, and the com-
plexity of the inference problem is formulated in terms of the
size of the probabilistic network Φ: both exact inference [16]
and approximate inference [18] are hard. In database we
have two inputs, the query q and the probabilistic database
PDB, and the system combines them at runtime to gener-
ate a probabilistic network ΦPDB

q . The complexity is mea-
sured by fixing q and varying PDB: the latter is large, but
usually has a simple probabilistic structure. As we saw,
there are important tractable cases: for every conjunctive
query approximate inference is tractable [40], and for every
safe conjunctive query exact inference is tractable (Sec. 3).
Thus, query evaluation on probabilistic databases is distinct
from inference in probabilistic networks, in the same way in
which query processing in relational databases is distinct
from logical inference in knowledge bases, see Fig. 1.

Two Applications
We briefly illustrate how uncertainty in the data can be
modeled with probabilities in two applications. We refer
the reader to [38, 74] for more examples.

In fuzzy object matching the problem is to reconcile ob-
jects from two collections that have used different naming
conventions. This is a central problem in data cleaning and
data integration, and has also been called record linkage, de-
duplication, or merge-purge [34, 3, 13, 37, 43, 49, 15, 80, 7].
The basic approach is to compute a similarity score between
pairs of objects, usually by first computing string similarity
scores on their attributes, then combining these scores into
a global score for the pair of objects. Next, this score is
compared with a threshold, and each pair of objects is clas-
sified into a match, a non-match, and a maybe-match [3]. Ré
et al. [68] propose to convert these scores into probabilities2

and store them directly in a probabilistic database. There is
no more need for a threshold: instead all potential matches
are stored together with their probabilities, then used during
query processing to rank the answers. Fig 2 (a) illustrates a
small fragment of such a match table between movie titles
from IMDB and reviews for DVD products from Amazon.

An information extraction system processes a collection
of text documents and populates a user-defined schema [71].
All approaches to extraction are imprecise, and usually asso-
ciate a probability to each extraction. Gupta and Sarawagi [44]

1The term probabilistic network is used in AI to denote a
graph whose nodes represent random variables and whose
edges represent correlations [17]. Examples are: boolean
expressions, Bayesian Networks, and Markov Networks.
2They are often already expressed as a probability.

Reproduced from [68]:
Review Movie P
12 Monkeys Twelve Monkeys 0.4
12 Monkeys Twelve Monkeys (1995) 0.3
12 Monkeys Monk 0.013
Monkey Love Twelve Monkeys 0.35
Monkey Love Love Story 0.27

(a)

Reproduced from [44]:
...52 A Goregaon West Mumbai ...

ID House-No Area City P
1 52 Goregaon West Mumbai 0.1
1 52-A Goregaon West Mumbai 0.5
1 52 Goregaon West Mumbai 0.2
1 52-A Goregaon West Mumbai 0.3
2 7 Westlake

(b)

Figure 2: Two applications of probabilistic data. Fuzzy object matching: each review matches several
candidate movies (a). Information extraction: each address has several possible segmentations (b).

describe how to use a probabilistic database to store the re-
sult of text segmentation with Conditional Random Fields:
Fig. 2 (b) illustrates the possible segmentations of an ad-
dress, together with their probabilities. Importantly, it has
been shown in [44] that the probabilities computed by CRFs
correlate with the probability that the extracted instance is
correct, i.e. if one manually inspects all extracted items that
have probability between, say, 0.3 and 0.35, then one finds
that approximatively 30−35% of them are correct in a given
instance. In other words, the probabilities have meaning.

What these applications have in common is a need to store
and manage data with a probabilistic semantics. Probabili-
ties are already present in these applications, thus we are not
concerned with where the probabilities are coming from. In-
stead, our goal is to allow users to ask queries over the data,
and to compute the probability for each answer to the query.
We give the definition of the data model next, then describe
the query evaluation problem.

2. THE POSSIBLE WORLDS DATA MODEL
We review here the definition of a probabilistic database

based on possible worlds, and of a disjoint-independent database.
Throughout this paper we restrict our discussion to rela-
tional data over a finite domain: extensions to continuous
domains [29] and to XML [50, 1, 76] have also been consid-
ered.

We fix a relational schema R = (R1, . . . , Rk), where Ri

is a relation name, has a set of attributes Attr(Ri), and a
key Key(Ri) ⊆ Attr(Ri); we explain below why we include
keys in our data model. Denote D a finite domain of atomic
values. For i = 1, . . . , k denote Tupi the set of typed atomic
tuples of the form Ri(a1, . . . , ak) where a1, . . . , ak ∈ D and
k = |Attr(Ri)| is the arity of Ri, and denote Tup =

S
i Tupi

the domain of all tuples. If t ∈ Tupi then Key(t) repre-
sents a typed tuple of arity |Key(Ri)| consisting of the key
attributes in t. A database instance is any subset I ⊆ Tup
that satisfies all key constraints.

To illustrate, R(A, B, C), S(A, D), T (A, B, C) is a schema,
the underlined attributes are the keys, and t1 = R(a, b, c),
t2 = R(a, b, c′), t3 = T (a, b, c) are three distinct atomic tu-
ples, which we sometimes write as R(a, b, c) to emphasize
the key attributes. We have Key(t1) = Key(t2) 6= Key(t3):
the latter because we consider Key(t) to be a typed tuple.

The main idea in a probabilistic database is that the state
of the database, i.e. the instance I is not known. Instead
the database can be in any one of a finite number of possi-
ble states I1, I2, . . ., called possible worlds, each with some
probability.

Definition 2.1. A probabilistic database is a probability

space PDB = (W,P) where the set of outcomes is a set of
possible worlds W = {I1, . . . , In}. In other words, it is a
function P : W → (0, 1] s.t.

P
I∈W P(I) = 1.

We review basic notions in probability theory in the Ap-
pendix. Fig. 3 illustrates three possible worlds of a proba-
bilistic database: the probabilities of all worlds must sum up
to 1. The intuition is that we have a database with schema
R(A, B, C, D), but we are not sure about the content of the
database: there are several possible contents, each with a
probability.

A Boolean query q defines the event {I | I |= q} over a
probabilistic database, and its marginal probability is P(q) =P

I∈W |I|=q P(I). A tuple t is a special case of a Boolean

query and its marginal probability is P(t) =
P

I∈W |t∈I P(I).

Note that t 6= t′ and Key(t) = Key(t′) implies P(t, t′) = 0,
i.e. t, t′ are disjoint events.

Disjoint-Independent Databases In practice we can-
not enumerate all possible worlds, since there are usually too
many. The representation problem for probabilistic database
is an active research topic [26, 10, 41, 6, 5], and Green and
Tannen [41] observed a strong connection between represen-
tation systems for probabilistic databases and for incomplete
database. We restrict our discussion to disjoint-independent
databases, which have a simple representation.

A possible tuple is a tuple that occurs in at least one possi-
ble world, and we denote T the set of possible tuples. PDB
is disjoint-independent if any set of possible tuples with
distinct keys is independent: ∀t1, . . . , tn ∈ T , Key(ti) 6=
Key(tj) for i 6= j implies P(t1, . . . , tn) = P(t1) · · ·P(tn). A
disjoint-independent database is represented by enumerat-
ing the set of possible tuples T and their marginal proba-
bilities P(t): this uniquely determines the probability P(I)
of each instance I ⊆ T 3. We denote a disjoint-independent
database as PDB = (T,P), rather than (W,P), empha-
sizing that it is given by enumerating the set of possible
tuples rather than the possible worlds. Its size is defined as
the size of T . Fig. 4 shows the representation of a disjoint-
independent database: it has 16 possible worlds, and three
of them are precisely those shown in Fig. 3. There are seven
possible tuples, each with some probability and it is con-
venient to group the possible tuples by their keys, A, B,
to emphasize that at most one can be chosen in each group.
The two tables in Fig. 2 are also disjoint-independent. From
now on, throughout the paper a database means a disjoint-
independent probabilistic database. We call the database

3P(I) is a product with one factor for each key k in T :
if some tuple t ∈ I has key k, then that factor is P(t);
otherwise it is 1−

P
t∈T,Key(t)=k P(t).

I1

A B C D

a1 b1 c1 d1

a2 b1 c3 d1

a2 b2 c4 d2

P(I1) = 0.06
(= p1p3p6)

I2

A B C D

a1 b1 c2 c2

a2 b1 c2 c1

a2 b2 c4 c2

P(I2) = 0.12
(= p2p5p6)

I3

A B C D

a1 b1 c1 d1

a2 b2 c4 d2

P(I3) = 0.04
(= p1(1-p3-p4-p5)p6)

Figure 3: A probabilistic database PDB =
({I1, I2, I3, . . .},P) with schema R(A, B, C, D); we show
only three possible worlds.

independent if Key(Ri) = Attr(Ri) for all relation symbols
Ri, i.e. there are no disjoint tuples.

Uncertainty at the Attribute Level Many probabilis-
tic database systems [9, 59, 29, 30, 70, 5] need to capture
uncertainties at the attribute rather than the tuple level.
For example, in a table S(A, B) the A-value of some tuple is
known to be a1, but the B-value attribute can be b1, b2, b3,
with probabilities p1, p2, p3: we must have p1 + p2 + p3 = 1
since it is certain that a tuple of the form (a1,−) is in the
database, only the value of B is uncertain. There exists
a simple mapping from attribute-level uncertainties to a
disjoint-independent database, as illustrated below:

A B
a1 〈b1, p1〉, 〈b2, p2〉, 〈b3, p3〉
a2 〈b2, p4〉, 〈b9, p5〉, . . .

A B P
a1 b1 p1

a1 b2 p2

a1 b3 p3

a2 b2 . . .
Note that we had to make A a key to ensure that the three

values for B are disjoint. The reason why we have keys in
our data model is to represent attribute-level uncertainties.
All the hardness results in Sec. 3 extend easily to attribute-
level uncertainties.

A p-or-set [41] is a database where for every possible key
k,

P
t∈T,Key(t)=k P(t) = 1. S above is a p-or-set.

3. FOUNDATIONS OF QUERY EVALUATION
We study the query evaluation problem: given a query q

and a disjoint-independent database PDB, compute P(q).
We first describe the connection between this problem and
the probability of Boolean formulas, which has been studied
in the literature; in particular it follows that for any fixed
q, computing P(q) is in #P in the size of PDB. We then
analyze the precise complexity of P(q) for a fixed query,
and establish a dichotomy for conjunctive queries without
self-joins: every query is either #P-hard or in PTIME.

From Queries to Boolean Formulas
Consider n Boolean variables X̄ = {X1, . . . , Xn}. A disjoint-

independent probability space with outcomes 2X̄ (the set of
truth assignments) is given by a partition X̄ = X̄1∪. . .∪X̄m

and a probability function P : X̄ → (0, 1] s.t. ∀j = 1, m,P
X∈X̄j

P(X) ≤ 1. A truth assignment is chosen at random

by independently choosing in each set X̄j at most one vari-
able Xi that will be set to true, while all others are set to
false: namely Xi is chosen with probability P(Xi). We will
assume that all probabilities are given as rational numbers,
P(Xi) = pi/qi, i = 1, n, where pi, qi are integers.

We call this probability space independent if ∀j, |X̄j | = 1

A B C D P

a1 b1 c1 d1 p1 = 0.25
c2 d2 p2 = 0.75

a2 b1 c3 d1 p3 = 0.3
c1 d3 p4 = 0.3
c2 d1 p5 = 0.2

a2 b2 c4 d2 p6 = 0.8
c5 d2 p7 = 0.2

Figure 4: Representation of a disjoint-independent
probabilistic database. The seven possible tuples are
grouped by their keys, for readability. There are 16
possible worlds; three are shown in Fig. 3.

(i.e. there are no disjoint variables), and uniform if it is
independent and ∀i,P(Xi) = 1/2.

Let Φ be a Boolean formula over X1, . . . , Xn; the goal is
to compute its probability, P(Φ) =

P
θ∈2X̄ :θ(Φ) P(θ).

The complexity class #P consists of problems of the fol-
lowing form: given an NP machine, compute the number of
accepting computations [64]. Let #Φ denote the number of
satisfying assignments for Φ. Valiant [75] has shown that
the problem: given Φ, compute #Φ, is #P-complete.

A statement like “computing P(Φ) is in #P” is techni-
cally non-sense, because computing P(Φ) is not a counting
problem. However, as we show in the Appendix, there exists
a polynomial-time computable function F over the integers
p1, q1, . . . , pn, qn, s.t. computing F ·P(Φ) is in #P. For ex-
ample, in the case of a uniform distribution, take F = 2n,
and computing 2nP(Φ) = #Φ is in #P. In this sense:

Theorem 3.1. Computing P(Φ) is in #P.

While computing P(Φ) for a DNF Φ is still #P-hard, Luby
and Karp [55] have shown that it has a FPTRAS (fully poly-
time randomized approximation scheme). More precisely:
there exists a randomized algorithm A with inputs Φ, ε, δ,
which runs in polynomial time in |Φ|, 1/ε, and 1/δ, and re-
turns a value p̃ s.t. PA(|p̃/p−1| > ε) < δ. Here PA denotes
the probability over the random choices of the algorithm.
Grädel et al. [40] show how to extend this to independent
probabilities, and we show in the Appendix how to extend
it to disjoint-independent probabilities:

Theorem 3.2. Computing P(Φ) for a disjoint-independent
probability space P and a DNF formula Φ has a FPTRAS.

We now establish the connection between the probability
of Boolean expressions and the probability of a query on
a disjoint-independent database. Let PDB = (T,P) be a
database with possible tuples T = {t1, . . . , tn}. Associate a
Boolean variable Xi to each tuple ti and define a disjoint-
independent probability space on their truth assignments by
partitioning the variables Xi according to their keys (Xi, Xj

are in the same partition iff Key(ti) = Key(tj)), and by
defining P(Xi) = P(ti). This creates a one-to-one corre-
spondence between the possible worlds of PDB and the

truth assignments 2X̄ , which preserves the probabilities.
Consider a Boolean query, q, expressed in First Order

Logic (FO) over the vocabulary R. The intensional formula
associated to q and database PDB is a Boolean formula
ΦPDB

q , or simply Φq when PDB is understood from the
context, defined inductively as follows:

ΦR(ā) =


Xi if R(ā) = ti ∈ T
false if R(ā) 6∈ T

Φtrue = true Φfalse = false Φ¬q = ¬(Φq)

Φq1∧q2 = Φq1 ∧ Φq2 Φq1∨q2 = Φq1 ∨ Φq2

Φ∃x.q(x) =
_

a∈D

Φq[a/x] Φ∀x.q(x) =
^

a∈D

Φq[a/x]

Here D represents the active domain of PDB, q[a/x] de-
notes the formula q where the variable x is substituted with
a, and interpreted predicates over constants (e.g. a < b or
a = b) are replaced by true or false respectively. If q has v
variables, then the size of Φq is O(|q| · |D|v). The connection
between Boolean formulas and Boolean queries is:

Proposition 3.3. For every query q and any database
PDB = (T,P), P(q) = P(Φq).

A Boolean conjunctive query is restricted to the connec-
tives ∧ and ∃, and, as usual, we write it as:

q = g1, g2, . . . , gk (1)

where each gi is a positive relational predicate called a sub-
goal. Obviously, in this case Φq is a positive DNF expres-
sion. For a simple illustration, suppose q = R(x), S(x, y)
and that we have five possible tuples: t1 = R(a), t2 = R(b),
t3 = S(a, c), t4 = S(a, d), t5 = S(b, d) to which we as-
sociate the Boolean variables X1, X2, Y1, Y2, Y3, then Φq =
X1Y1 ∨X1Y2 ∨X2Y3. Our discussion implies:

Theorem 3.4. For a fixed a Boolean query q, computing
P(q) on a disjoint-independent database (1) is in #P, (2)
admits a FPTRAS when q if conjunctive [40].

Grädel et al. [40] stated that computing P(q) is in FP#P

(the class of functions computable by a PTIME machine
with a #P oracle). They also showed that conjunctive queries
have a FPTRAS over independent databases.

A Dichotomy for Queries without Self-joins
We now establish the following dichotomy for queries with-
out self-joins: computing P(q) is either #P-hard or is in
PTIME in the size of the database PDB = (T,P). A query
q is said to be without self-joins if each relational symbol
occurs at most once in the query body [21, 20]. For example
R(x, y), R(y, z) has self-joins, R(x, y), S(y, z) has not.

Three Hard Queries We prove in the Appendix:

Theorem 3.5. For each of the queries below (where k, m ≥
1), computing P(q) is #P-hard in the size of the database:

h1 = R(x), S(x, y), T (y)

h+
2 = R1(x, y), . . . , Rk(x, y), S(y)

h+
3 = R1(x, y), . . . , Rk(x, y), S1(x, y), . . . , Sm(x, y)

The underlined positions represent the key attributes (see
Sec. 2), thus, in h1 the database is tuple independent, while
in h+

2 , h+
3 it is disjoint-independent. When k = m = 1 then

we omit the + superscript and write:

h2 = R(x, y), S(y)

h3 = R(x, y), S(x, y)

The significance of these three (classes of) queries is that
the hardness of any other conjunctive query without self-
joins follows from a simple reduction from one of these three
(Lemma 3.7). By contrast, the hardness of these three
queries is shown directly (by reducing Positive Partitioned
2DNF [67] to h1, and PERMANENT [75] to h+

2 , h+
3) and

these proofs are more involved.
Previously, the complexity has been studied only for inde-

pendent probabilistic databases. De Rougemont [27] claimed
that it is is in PTIME. Grädel at al. [27, 40] corrected this
and proved that the query R(x), R(y), S1(x, z), S2(y, z) is
#P-hard, by reduction from regular (non-partitioned) 2DNF:
note that this query has a self-join (R occurs twice); h1

does not have a self-join, and was first shown to be #P-
hard in [21]. The only prior discussion of the complexity
on disjoint-independent databases is in [20]: we announced
(without proof) the hardness of h2 and of4 R(x, y), S(z, y),
but missed h3 as well as the +-variants.

A PTIME Algorithm We describe here an algorithm
that evaluates P(q) in polynomial time in the size of the
database, which works for some queries, and fails for oth-
ers. We need some notations. V ars(q) and Sg(q) are the
set of variables, and the set of subgoals respectively. If
g ∈ Sg(q) then V ars(g) and KV ars(g) denote all variables
in g, and all variables in the key positions in g: e.g. for
g = R(x, a, y, x, z), V ars(g) = {x, y, z}, KV ars(g) = {x, y}.
For x ∈ V ars(q), let sg(x) = {g | g ∈ Sg(q), x ∈ KV ars(g)}.
Given a database PDB = (T,P), D is its active domain.

Algorithm 3.1 computes P(q) by recursion on the struc-
ture of q. If q consists of connected components q1, q2, then
it returns P(q1)P(q2): this is correct since q has no self-
joins, e.g P(R(x), S(y, z), T (y)) = P(R(x))P(S(y, z), T (y)).
If some variable x occurs in a key position in all subgoals,
then it applies the independent-project rule: e.g. P(R(x)) =
1−

Q
a∈D(1−P(R(a))) is the probability that R is nonempty.

For another example, we apply an independent project on
x in q = R(x, y), S(x, y): this is correct because q[a/x] and
q[b/x] are independent events whenever a 6= b. If there exists
a subgoal g whose key positions are constants, then it ap-
plies a disjoint project on any variable in g: e.g. x is such a
variable in q = R(x, y), S(c, d, x), and any two events q[a/x],
q[b/x] are disjoint because of the S subgoal.

We illustrate the algorithm on the query below:

q = R(x), S(x, y), T (y), U(u, y), V (a, u)

P(q) =
X
b∈D

P(R(x), S(x, y), T (y), U(b, y), V (a, b))

=
X
b∈D

P(R(x), S(x, y), T (y), U(b, y))P(V (a, b))

=
X
b∈D

X
c∈D

P(R(x), S(x, c), T (c), U(b, c))P(V (a, b))

=
X
b∈D

X
c∈D

P(R(x), S(x, c))P(T (c))P(U(b, c))P(V (a, b))

=
X
b∈D

X
c∈D

(1−
Y
d∈D

(1−P(R(d))P(S(d, c)))) ·

P(T (c))P(U(b, c))P(V (a, b))

We call a query safe if algorithm Safe-Eval terminates
successfully; otherwise we call it unsafe. Safety is a property

4This query rewrites ⇒∗ h2 hence is hard by Lemma 3.7.

Algorithm 3.1 Safe-Eval

Input: query q and database PDB = (T,P)
Output: P(q)

1: Base Case: if q = R(ā)
return if R(ā) ∈ T then P(R(ā)) else 0

2: Join: if q = q1, q2 and V ars(q1) ∩ V ars(q2) = ∅
return P(q1)P(q2)

3: Independent project: if sg(x) = Sg(q)
return 1−

Q
a∈D(1−P(q[a/x]))

4: Disjoint project: if ∃g(x ∈ V ars(g), KV ars(g) = ∅)
return

P
a∈D P(q[a/x])

5: Otherwise: FAIL

that depends only on the query q, not on the database PDB,
and it can be checked in PTIME in the size of q by simply
running the algorithm over an active domain of size 1, D =
{a}. Based on our previous discussion, if the query is safe
then the algorithm computes the probability correctly:

Proposition 3.6. For any safe query q, the algorithm
computes correctly P(q) and runs in time O(|q|·|D||V ars(q)|).

We first described Safe-Eval in [20], in a format more
suitable for an implementation, by translating q into an al-
gebra plan using joins, independent projects, and disjoint
projects, and stated without proof the dichotomy property.
Andritsos et al. [4] describe a query evaluation algorithm for
a more restricted class of queries.

The Dichotomy Property We define below a rewrite
rule q ⇒ q′ between two queries, where g, g′ denote subgoals:

q ⇒ q[a/x] if x ∈ V ars(q), a ∈ D
q ⇒ q1 if q = q1, q2, V ars(q1) ∩ V ars(q2) = ∅
q ⇒ q[y/x] if ∃g ∈ Sg(q), x, y ∈ V ars(g)

q, g ⇒ q if KV ars(g) = V ars(g)
q, g ⇒ q, g′ if KV ars(g′) = KV ars(g),

V ars(g′) = V ars(g), arity(g′) < arity(g)

The intuition is that if q ⇒ q′ then evaluating P(q′) can
be reduced in polynomial time to evaluating P(q); the re-
duction is quite easy (see the Appendix) and implies:

Lemma 3.7. If q ⇒∗ q′ and q′ is #P-hard, then q is #P-
hard.

Thus, ⇒ gives us a convenient tool for checking if a query
is hard, by trying to rewrite it to one of the known hard
queries. For example, consider the queries q and q′ below:
Safe-Eval fails immediately on both queries, i.e. none of its
cases apply. We show that both are hard by rewriting them
to h1 and h+

3 respectively. By abuse of notations we reuse
the same relation name during the rewriting, e.g. S, T , in
the second and third line denote different relations:

q = R(x), R′(x), S(x, y, y), T (y, z, b)

⇒ R(x), S(x, y, y), T (y, z, b)

⇒∗ R(x), S(x, y), T (y) = h1

q′ = R(x, y), S(y, z), T (z, x), U(y, x)

⇒ R(x, y), S(y, x), T (x, x), U(y, x)

⇒∗ R(x, y), S(y, x), U(y, x) = h+
3

Call a query q final if it is unsafe, and ∀q′, if q ⇒ q′ then q′

is safe. Clearly every unsafe query rewrites to a final query:
simply apply ⇒ repeatedly until all rewritings are to safe
queries. We prove in the Appendix:

Lemma 3.8. h1, h
+
2 , h+

3 are the only final queries.

This implies immediately the dichotomy property:

Theorem 3.9. Let q be a query without self-joins. Then
one of the following holds:

• q is unsafe and q rewrites to one of h1, h
+
2 , h+

3 . In
particular, q is #P-hard.

• q is safe. In particular, it is in PTIME.

How restrictive is the assumption that the query has no
self-joins ? It is used both in Join and in Independent

project. We illustrate on q = R(x, y), R(y, z) how, by
dropping the assumption, independent projects become in-
correct. Although y occurs in all subgoals, we cannot apply
an independent project because the two queries q[a/y] =
R(x, a), R(a, z) and q[b/y] = R(x, b), R(b, z) are not inde-
pendent: both Φq[a/y] and Φq[b/y] depend on the tuple R(a, b)
(and also on R(b, a)). In fact q is #P-hard [23]. The re-
striction to queries without self-joins is thus significant. We
have recently proved that a dichotomy property holds for
arbitrary conjunctive queries, but only over independent
probabilistic databases [23], and that result is significantly
more complex. The case of independent-disjoint databases
is open.

The Complexity of the Complexity We complete our
analysis by studying the following problem: given a rela-
tional schema R and conjunctive query q without self-joins
over R, decide whether q is safe5. We have seen that this
problem is in PTIME; here we establish tighter bounds.

In the case of independent databases, the key in each re-
lation R consists of all the attributes, Key(R) = Attr(R),
hence sg(x) becomes: sg(x) = {g | x ∈ V ars(g)}.

Definition 3.10. A conjunctive query is hierarchical if
for any two variables x, y, either sg(x) ∩ sg(y) = ∅, or
sg(x) ⊆ sg(y), or sg(y) ⊆ sg(x).

As an example, the query6 q = R(x), S(x, y) is hierar-
chical because sg(x) = {R, S}, sg(y) = {S}, while h1 =
R(x), S(x, y), T (y) is not hierarchical because sg(x) = {R, S}
and sg(y) = {S, T}. SAFE-EVAL works as follows on indepen-
dent databases. When the hierarchy {sg(x) | x ∈ V ars(q)}
has a root variable x, then it applies an independent project
on x; when it has multiple connected components, then it
applies joins. One can check easily that a query is unsafe iff
it contains a sub-pattern:

R(x, . . .), S(x, y, . . .), T (y, . . .)

Proposition 3.11. Let SG be a binary relation name.
We represent a pair R, q, where R is a relational schema
for an independent database and q a conjunctive query with-
out self-joins, as an instance over SG, as follows7. The
5For a fixed R there are only finitely many queries without
self-joins: this is the reason why R is part of the input.
6Since all attributes are keys we don’t underline them.
7This representation is lossy, because it ignores both the
positions where the variables occur in the subgoals in q, and
it also ignores all constants in q.

constants are R∪ V ars(q), and for each subgoal R of q and
each variable x ∈ V ars(R), there is a tuple SG(R, x). Then
the property “given R, q, q is unsafe” can be expressed in
FO over the vocabulary SG.

In fact, it is expressed by the following conjunctive query
with negations, with variables R, S, T, x, y:

SG(R, x),¬SG(R, y), SG(S, x), SG(S, y), SG(T, y),¬SG(T, x)

In the case of disjoint-independent databases we will show
that checking safety is PTIME complete. Recall the Alter-
nating Graph Accessibility Problem (AGAP): given a di-
rected graph where the nodes are partitioned into two sets
called AND-nodes and OR-nodes, decide if all nodes are ac-
cessible. An AND-node is accessible if all its parents are; an
OR node is accessible if at least one of its parents is. AGAP
is PTIME-complete [42]. We prove in the Appendix:

Proposition 3.12. AGAP is reducible in LOGSPACE to
the following problem: given a schema R and a query q with-
out self-joins, check if q is safe. In particular, the latter is
PTIME-hard.

4. CHALLENGES AND OPEN PROBLEMS
We discuss here some challenges, open problems, and fu-

ture research directions in probabilistic databases.

Open Problems in Query Evaluation
We enumerate here briefly a few open problems:

Extend the Dichotomy to interpreted predicates (6=
, <,≤), unions, self-joins. Unions and self-joins seem inter-
related because of P(q1 ∪ q2) = P(q1) + P(q2) − P(q1q2).
Queries with self-joins have been recently shown to admit
a dichotomy [23], but only for independent database; the
dichotomy for disjoint-independent databases is open.

Add partial determinism to the database. For ex-
ample if T is deterministic then R(x), S(x, y), T (y) is in
PTIME. At a finer granularity, we may know that only cer-
tain tuples in a table are deterministic, and would like to
exploit that during query processing.

Aggregates: the expected values of some aggregates s.a.
count(*) can be computed easily; avg it is harder see [12,
52]; the complexity of computing the probability of a HAVING

predicate like count(*) > 25 is open.
Improve hardness results It is open whether h+

2 , h+
3

are hard for a wider ranges of probabilities. Similarly for
h1, when the probabilities in all three tables R, S, T are 1/2.

Optimizations with Safe Subplans
Even when a query is hard, it may have subplans that are
safe. In this case the query processor can start by evaluat-
ing the safe subplans efficiently, then run a FPTRAS on a
much smaller problem. Experiments in [68] report signifi-
cant speedups with this approach. A general theory of such
optimizations techniques remains to be developed. We note
here that it does not suffice for the subquery to be safe, its
answer must also be a disjoint-independent table. For illus-
tration, consider the query q = R(x, y), S(y, z), T (y, z, u):

it is hard, because q ⇒ R(x, y), S(y, z) ⇒∗ R(x, y), S′(y)
which is h2. The subquery sq(y) = S(y, z), T (y, z, u) is safe,
more precisely for every constant a the query sq[a/y] is safe,
hence can be evaluated efficiently. Moreover, for any two

constants a, b, the events sq[a/y] and sq[b/y] are indepen-
dent, hence the answers to sq can be stored in a tempo-
rary, independent table, SQ(y). Now the query becomes:
q = R(x, y), SQ(y). This is still hard, but smaller than the
original one and the FPTRAS runs much more efficiently.

Ranking
In several applications of uncertain data it makes sense to
hide completely the probabilities from the user and only use
them to rank the query answers. For example, if the real
data is deterministic but the system has incomplete knowl-
edge of the data and uses probabilities only to quantify its
degree of confidence in the data, then output probabilities
are not meaningful to the user, only the ranking is mean-
ingful. This justifies the following:

Problem 1. The ranking problem is the following. Given
two queries q1, q2 and a probabilistic database PDB = (T,P),
decide whether P(q1) ≥ P(q2).

The complexity class PP consists of problems of the fol-
lowing form: given an NP machine, check if at least 1/2
of its computations are accepting. The problem: “given a
Boolean formula Φ check if at least half of the truth assign-
ments make Φ true” is PP-complete. Ranking is PP-hard
(just take P(q2) = 1/2), and it can be shown to be in PP.
Beyond that, nothing is known about the ranking problem.
Of particular interest is to study the case where q1 = q[a/x]
and q2 = q[b/x], where q(x) is a non-boolean query, i.e. rank
the outputs a, b to a query. What is the class of queries q for
which this is tractable ? Another aspect is top-k ranking: if
all possible answers to q(x) are a1, a2, . . . , an, compute the
top k answers, see [68].

Probabilistic Inference for Query Evaluation
There exists a rich literature on probabilistic inference in
Bayesian Networks [25] and Markov Networks [17]. Boolean
expressions are special cases of a Bayesian networks [81]. An
important research direction is to adapt these techniques to
the query evaluation problem.

We illustrate here with a technique described8 by Zabiyaka
and Darwiche [81]. A decomposition tree, dtree, for a DNF
formula Φ is a binary tree whose leaves are in one-to-one
correspondence with the disjuncts, and whose nodes are la-
beled with sets of propositional variables s.t. (1) each leaf is
labeled with the propositional variables of its disjunct, and
(2) for each variable Xi the set of nodes labeled with Xi

forms a connected component. The width of the dtree is the
maximum number of labels on any node minus 1. Zabiyaka
and Darwiche show that, given a dtree of width w, the prob-
ability P(Φ) can be computed in time O(|Φ|2w). The main
idea is this. Each node in the dtree represents a formula
Ψ = Ψ1 ∨ Ψ2. If the two expressions Ψ1, Ψ2 are indepen-
dent, then P(Ψ) = 1−(1−P(Ψ1))(1−P(Ψ2)). If they share
one common variable Xi, write Ψ = (Xi ∧ Ψ) ∨ (¬Xi ∧ Ψ)
and, denoting Φ0 = Φ[false/Xi] and Φ1 = Φ[true/Xi] for
any formula Φ, we have P(Ψ) = P(Ψ0)+P(Ψ1). Moreover,
Ψ0 = Ψ0

1∨Ψ0
2, and the two expressions are now independent,

and similarly for Ψ1. In general, if Ψ1, Ψ2 share w common
variables, then we need to expand Ψ as a disjunction of 2w

cases, considering all truth assignments to the w common
variables, resulting in a O(n2w) time algorithm.

8We adapt the original presentation from CNF to DNF

It follows that, for any fixed parameter w, given Φ and
a dtree of width ≤ w for Φ, computing P(Φ) is in PTIME.
Note that this does not immediately lead to a practical al-
gorithm because computing a dtree of width ≤ w for Φ is
hard. It is interesting to note that these tractable classes
are orthogonal to those defined by safe queries. For ex-
ample, consider the safe query q = R(x), S(y). The class
of Boolean formulas ΦPDB

q is tractable but does not have

a bounded treewidth because ΦPDB
q =

W
i,j XiYj , and its

treewidth is Ω(n), when n = |X̄| = |Ȳ |. Conversely, one can
sometimes impose constraints on the database PDB that
result in a bounded tree-width: for example consider the
constraint the representation of S is one-to-one, then the
query h1 = R(x), S(x, y), T (y) is in PTIME because ΦPDB

q

has tree width O(1).

Expressing Correlations through Views
Graphical models are formalisms that capture local corre-
lations between random variables and derive from here a
concise representation of their joint distribution. A treat-
ment of these models is beyond the scope of this paper:
the interested reader may find a good primer targeted to a
database audience in [28], and a broad discussion and mo-
tivation in [65]. Graphical models are also used in some
probabilistic databases [39, 72].

There is a very interesting relationship between graphi-
cal models and database views that has been little explored.
Verma and Pearl [78] show a connection between Embedded
Multivalued Dependencies and a certain class of graphical
models. We hypothesize that one can express any proba-
bilistic database PDB = (W,P) having complex correla-
tions between attributes and/or tuples as a view v over a
disjoint-independent database PDB′ = (T ′,P′), such that
the complexity of the view and/or the disjoint-independent
database PDB′ depends on the structure of the graphi-
cal model describing PDB. This is significant, since it al-
lows us to extend a query processor on disjoint-independent
databases to arbitrary probabilistic databases: to evaluate q
over PDB simply expand the view definition v and evaluate
the rewritten query over PDB′.

Problem 2. Explore the connection between probabilistic
databases described as graphical models on one hand, and
views over disjoint-independent databases on the other hand.

Any probabilistic database is a view over a disjoint-independent
database. We illustrate this with one relation R(A, B, C).
Any probabilistic database PDB = ({W1, . . . , Wn},P) is
obtained as the view R(x, y, z) = S(w), T (w, x, y, z) over a
disjoint-independent database PDB′ = (T ′,P′) with schema
S(W) (Key(S) = ∅), T (W, A, B, C), defined as follows. S
has n distinct identifiers w1, . . . , wn (one for each world)
P′(wj) = P(Wj); T is deterministic and contains all tuples
T (wj , a, b, c) for R(a, b, c) ∈ Wj .

Constraints
When the data is uncertain, constraints can be used to in-
crease the quality of the data, and hence they are an impor-
tant tool in managing data with uncertainties. Currently,
there is no generally accepted formal definition of constraints
over probabilistic databases. We explore here informally the
space of alternatives.

In one interpretation a constraint Γ is a sentence that
must hold on the possible worlds of a probabilistic database.

Deterministic Probabilistic
database database

Deterministic Repairing Cleaning probabilistic
constraint data [4] data P(q | Γ)
Probabilistic Probabilistic Probabilistic
constraint mappings data exchange

Figure 5: Applications of constraints

Query evaluation is now a conditional probability P(q|Γ) =
P(q, Γ)/P(Γ), thus we need to study the problem of eval-
uating probabilities of the form P(q, Γ), for various con-
straint languages. For example, if Γ is a functional de-
pendency, then the problem reduces to conjunctive queries
with self-joins and 6=: if, say A → B in R(A, B, C), then
Γ = ¬q0, where q0 = R(x, y, z), R(x, y′, z′), y 6= y′, hence
P(q, Γ) = P(q)−P(q, q0).

A second interpretation is that of soft constraints [51,
73], for example: “each employee has a unique name with
probability 0.85”; or “most people buy what their friends
buy”, which correspond to statements like P(Γ) = p, or
P(Γ) > p. A formal semantics, proposed in knowledge rep-
resentation [8, 47], is to consider all probability spaces P
that satisfy the constraints, choose that with maximum en-
tropy, and let the domain grow to infinity; query evalua-
tion becomes undecidable. We added the requirement that
the expected cardinality of each relation remains fixed [22];
query evaluation becomes decidable for conjunctive Γ’s.

A particularly interesting application of soft constraints
is to probabilistic mappings, generalizing mappings in peer
data exchange [57]. Here the constraint is between a source
schema and a target schema. For example if the source
and target are S(name, phone) and T(name, homePhone,

officePhone) then Γ may map phone to homePhone with
probability 0.3 and to officePhone with probability 0.7.

Fig. 5, reproduced from [69], summarizes our discussion.

A Logic for Information Leakage
Alice has a database instance I and she wants to send Bob
a view v. However, she wants to ensure that a certain query
q remains secret, i.e. Bob will not learn the secret q(I) from
the view v(I). The question is how do we determine if a
view v leaks information about a query q ?

Following [62] we assume that the adversary knows a prob-
ability distribution P for the instance I, and, hence, can
compute the a prior probability of the secret, P(q). Once
Alice publishes v, then Bob can revise this probability, and
compute the a posteriori probability P(q | v). To prevent
leakage we want P(q | v) ≈ P(q). Our goal is to be able
to decide security (is q secure w.r.t. v ?), and also to make
inferences, like, for example, testing for collusions: given
that q is secure w.r.t. v1 and that q is secure w.r.t. v2,
is q secure w.r.t. to the pair of views v1, v2 ? Formally:
P(q | v1, v2) ≈ P(q).

The difficulty with this approach is choosing the adver-
sary’s prior distribution P. Miklau and Suciu [62] consider a
powerful adversary by allowing P to be any independent dis-
tribution: a query q is perfectly secure w.r.t. v if P(q | v) =
P(q) for all independent distributions P. But this definition
is too restrictive: it classifies as un-secure many query-view
pairs that are considered secure in practice. It also fails to
model collusions, because P(q|v1) = P(q|v2) = P(q) im-

plies P(q | v1, v2) = P(q): collusions are known to exist in
practice, hence this model is too restrictive. Miklau, Dalvi,
and Suciu [19] relaxed this definition and assumed that the
probability of each tuple is small, while the domain of tu-
ples is large, such that the expected size of the table is some
constant. This gives rise to a particular distribution, P,
which corresponds to a certain random graph. A query q is
practically secure w.r.t. v if limn→∞P(q|v) = limn→∞P(q),
where n is the size of the domain. In other words, this defini-
tion requires that P(q|v) ≈ P(q) holds over a large domain,
but allows it to fail over small domains. This models query-
view security closer to common practice, and also cap-
tures collusion [24], i.e. there are queries q, v1, v2 for which
limP(q|v1) = limP(q|v2) = 0, yet limP(q|v1, v2) = 1.

In probability logic [2] the material conditioning, v → q ≡
¬v ∨ q is replaced with probabilistic conditioning v ⇒ q ≡
(P(q|v) ≈ 1), which leads to a form of non-monotonic rea-
soning [65]. We propose as research problem the design of
a non-monotonic logic based on probabilistic conditioning
for reasoning about information leakage, ideally by making
minimal assumptions on the adversary’s prior. We note that
the probabilistic conditioning in the random graph is already
non-monotone [24]: we can have limP(q | v) = 1 (significant
disclosure), yet limP(q | v, v′) = 0 (practical security), i.e.
based on the evidence v the adversary has high confidence
that q is true, but after also seeing the evidence v′ the ad-
versary finds a different explanation for v and his confidence
in q drops.

5. CONCLUSIONS
The cost of enforcing a precise semantics is increasing with

the scale of the data and with its degree of heterogeneity. By
making uncertainties first class citizens we can reduce that
cost, or (more likely) enable applications that were other-
wise prohibitive. We have described here a model in which
uncertainties are represented as probabilities, and the sys-
tem computes and output probability for each answer to a
query. We studied some formal aspects of the query evalu-
ation problem, and discussed number of open problems in
probabilistic data management.

Acknowledgments We thank Amol Deshpande, Luna
Dong, Lise Getoor, Alon Halevy, Christoph Koch, Phokion
Kolaitis, Reneé Miller, Christopher Ré, Sunita Sarawagi, Val
Tannen, and Victor Vianu for their comments and advice.

6. REFERENCES
[1] S. Abiteboul and P. Senellart. Querying and updating

probabilistic information in XML. In EDBT, pages
1059–1068, 2006.

[2] Ernest Adams. A Primer of Probability Logic. CSLI
Publications, Stanford, California, 1998.

[3] R. Ananthakrishna, S. Chaudhuri, and V. Ganti.
Eliminating fuzzy duplicates in data warehouses. In
VLDB, pages 586–597, 2002.

[4] P. Andritsos, A. Fuxman, and R. J. Miller. Clean
answers over dirty databases. In ICDE, 2006.

[5] L. Antova, C. Koch, and D. Olteanu. 10^(10^6) worlds
and beyond: Efficient representation and processing of
incomplete information. In ICDE, 2007.

[6] L. Antova, C. Koch, and D. Olteanu. World-set
decompositions: Expressiveness and efficient
algorithms. In ICDT, pages 194–208, 2007.

[7] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact
set-similarity joins. In VLDB, pages 918–929, 2006.

[8] F. Bacchus, A. Grove, J. Halpern, and D. Koller.
From statistical knowledge bases to degrees of belief.
Artificial Intelligence, 87(1-2):75–143, 1996.

[9] D. Barbara, H. Garcia-Molina, and D. Porter. The
management of probabilistic data. IEEE Trans.
Knowl. Data Eng., 4(5):487–502, 1992.

[10] O. Benjelloun, A. Das Sarma, A. Halevy, and
J. Widom. ULDBs: Databases with uncertainty and
lineage. In VLDB, pages 953–964, 2006.

[11] G. Borriello and F. Zhao. World-Wide Sensor Web:
2006 UW-MSR Summer Institute Semiahmoo Resort,
Blaine, WA, 2006.
www.cs.washington.edu/mssi/2006/schedule.html.

[12] D. Burdick, P. Deshpande, T. S. Jayram,
R. Ramakrishnan, and S. Vaithyanathan. Efficient
allocation algorithms for olap over imprecise data. In
VLDB, pages 391–402, 2006.

[13] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani.
Robust and efficient fuzzy match for online data
cleaning. In ACM SIGMOD, San Diego, CA, 2003.

[14] T. Choudhury, M. Philipose, D. Wyatt, and J. Lester.
Towards activity databases: Using sensors and
statistical models to summarize people’s lives. IEEE
Data Eng. Bull, 29(1):49–58, March 2006.

[15] W. Cohen, P. Ravikumar, and S. Fienberg. A
comparison of string distance metrics for
name-matching tasks. In IIWeb, pages 73–78, 2003.

[16] G. Cooper. Computational complexity of probabilistic
inference using bayesian belief networks (research
note). Artificial Intelligence, 42:393–405, 1990.

[17] R. Cowell, P. Dawid, S. Lauritzen, and
D. Spiegelhalter, editors. Probabilistic Networks and
Expert Systems. Springer, 1999.

[18] P. Dagum and M. Luby. Approximating probabilistic
inference in bayesian belief networks is NP-hard.
Artificial Intelligence, 60:141–153, 1993.

[19] N. Dalvi, G. Miklau, and D. Suciu. Asymptotic
conditional probabilities for conjunctive queries. In
ICDT, 2005.

[20] N. Dalvi, Chris Re, and D. Suciu. Query evaluation on
probabilistic databases. IEEE Data Engineering
Bulletin, 29(1):25–31, 2006.

[21] N. Dalvi and D. Suciu. Efficient query evaluation on
probabilistic databases. In VLDB, Toronto, Canada,
2004.

[22] N. Dalvi and D. Suciu. Answering queries from
statistics and probabilistic views. In VLDB, 2005.

[23] N. Dalvi and D. Suciu. The dichotomy of conjunctive
queries on random structures. In PODS, 2007.

[24] Nilesh Dalvi. Query evaluation on a database given by
a random graph. In ICDT, pages 149–163, 2007.

[25] Adnan Darwiche. A differential approach to inference
in bayesian networks. Journal of the ACM,
50(3):280–305, 2003.

[26] A. Das Sarma, O. Benjelloun, A. Halevy, and
J. Widom. Working models for uncertain data. In
ICDE, 2006.

[27] Michel de Rougemont. The reliability of queries. In
PODS, pages 286–291, 1995.

[28] A. Deshpande, M. Garofalakis, and R. Rastogi.
Independence is good: Dependency-based histogram
synopses for high-dimensional data. In SIGMOD,
pages 199–210, 2001.

[29] A. Deshpande, C. Guestrin, S. Madden, J. M.
Hellerstein, and W. Hong. Model-driven data
acquisition in sensor networks. In VLDB, pages
588–599, 2004.

[30] A. Deshpande, C. Guestrin, S. Madden, J. M.
Hellerstein, and W. Hong. Using probabilistic models
for data management in acquisitional environments. In
CIDR, pages 317–328, 2005.

[31] A. Doan, R. Ramakrishnan, F. Chen, P. DeRose,
Y. Lee, R. McCann, M. Sayyadian, and W. Shen.
Community information management. IEEE Data
Engineering Bulletin, Special Issue on Probabilistic
Data Management, 29(1):64–72, March 2006.

[32] M. Balazinska et al. Data management in the
world-wide sensor web. IEEE Pervasive Computing,
2007. To appear.

[33] O. Etzioni, M. Cafarella, D. Downey, S. Kok, A.M.
Popescu, T. Shaked, S. Soderland, D. Weld, and
A. Yates. Web-scale information extraction in
KnowItAll: (preliminary results). In WWW, pages
100–110, 2004.

[34] Ivan Felligi and Alan Sunter. A theory for record
linkage. Journal of the American Statistical Society,
64:1183–1210, 1969.

[35] M. Franklin, A. Halevy, and D. Maier. From databases
to dataspaces: a new abstraction for information
management. SIGMOD Record, 34(4):27–33, 2005.

[36] Norbert Fuhr and Thomas Roelleke. A probabilistic
relational algebra for the integration of information
retrieval and database systems. ACM Trans. Inf.
Syst., 15(1):32–66, 1997.

[37] Helena Galhardas, Daniela Florescu, Dennis Shasha,
Eric Simon, and Cristian-Augustin Saita. Declarative
data cleaning: Language, model, and algorithms. In
VLDB, pages 371–380, 2001.

[38] Minos Garofalakis and Dan Suciu. Special issue on
probabilistic data management. IEEE Data
Engineering Bulletin, pages 1–72, 2006.

[39] Lise Getoor. An introduction to probabilistic
graphical models for relational data. IEEE Data
Engineering Bulletin, Special Issue on Probabilistic
Data Management, 29(1):32–40, March 2006.

[40] E. Grädel, Y. Gurevich, and C. Hirsch. The
complexity of query reliability. In PODS, pages
227–234, 1998.

[41] T. Green and V. Tannen. Models for incomplete and
probabilistic information. IEEE Data Engineering
Bulletin, 29(1):17–24, March 2006.

[42] R. Greenlaw, J. Hoover, and W. Ruzzo. Limits to
Parallel Computation. P-Completeness Theory.
Oxford University Press, New York, Oxford, 1995.

[43] L. Gu, R. Baxter, D. Vickers, and C. Rainsford.
Record linkage: Current practice and future
directions. In CMIS Technical Report No. 03/83, 2003.

[44] R. Gupta and S. Sarawagi. Creating probabilistic
databases from information extraction models. In
VLDB, pages 965–976, 2006.

[45] A. Halevy, M. Franklin, and D. Maier. Principles of
dataspace systems. In PODS, pages 1–9, 2006.

[46] A. Halevy, A. Rajaraman, and J. Ordille. Data
integration: The teenage years. In VLDB, pages 9–16,
2006.

[47] J. Halpern. From statistical knowledge bases to
degrees of belief: an overview. In PODS, pages
110–113, 2006.

[48] D. Heckerman. Tutorial on graphical models, June
2002.

[49] M. Hernandez and S. Stolfo. The merge/purge
problem for large databases. In SIGMOD, pages
127–138, 1995.

[50] E. Hung, L. Getoor, and V.S. Subrahmanian. PXML:
A probabilistic semistructured data model and
algebra. In ICDE, 2003.

[51] I.F. Ilyas, V. Markl, P.J. Haas, P. Brown, and
A. Aboulnaga. Cords: Automatic discovery of
correlations and soft functional dependencies. In
SIGMOD, pages 647–658, 2004.

[52] T.S. Jayram, S. Kale, and E. Vee. Efficient aggregation
algorithms for probabilistic data. In SODA, 2007.

[53] T.S. Jayram, R. Krishnamurthy, S. Raghavan,
S. Vaithyanathan, and H. Zhu. Avatar information
extraction system. IEEE Data Engineering Bulletin,
29(1):40–48, 2006.

[54] S. Jeffery, M. Garofalakis, and M. Franklin. Adaptive
cleaning for RFID data streams. In VLDB, pages
163–174, 2006.

[55] R. Karp and M. Luby. Monte-Carlo algorithms for
enumeration and reliability problems. In Proceedings
of the annual ACM symposium on Theory of
computing, 1983.

[56] N. Khoussainova, M. Balazinska, and D. Suciu.
Towards correcting input data errors probabilistically
using integrity constraints. In MobiDB, pages 43–50,
2006.

[57] P. Kolaitis. Schema mappings, data exchange, and
metadata management. In PODS, pages 61–75, 2005.

[58] D. Koller. Representation, reasoning, learning.
Computers and Thought 2001 Award talk.

[59] L. Lakshmanan, N. Leone, R. Ross, and V.S.
Subrahmanian. Probview: A flexible probabilistic
database system. ACM Trans. Database Syst., 22(3),
1997.

[60] J. Lester, T. Choudhury, N. Kern, G. Borriello, and
B. Hannaford. A hybrid discriminative/generative
approach for modeling human activities. In IJCAI,
pages 766–772, 2005.

[61] J. Madhavan, S. Cohen, X. Dong, A. Halevy,
S. Jeffery, D. Ko, and C. Yu. Web-scale data
integration: You can afford to pay as you go. In
CIDR, pages 342–350, 2007.

[62] G. Miklau and D. Suciu. A formal analysis of
information disclosure in data exchange. In SIGMOD,
2004.

[63] Radford Neal. Probabilistic inference using Markov
Chain Monte Carlo methods. Technical Report
CRG-TR-93-1, Univ. of Toronto, 1993.

[64] Christos Papadimitriou. Computational Complexity.
Addison Wesley Publishing Company, 1994.

[65] Judea Pearl. Probabilistic reasoning in intelligent
systems. Morgan Kaufmann, 1988.

[66] S. Philippi and J. Kohler. Addressing the problems
with life-science databases for traditional uses and
systems biology. Nature Reviews Genetics, 7:481–488,
June 2006.

[67] J. S. Provan and M. O. Ball. The complexity of
counting cuts and of computing the probability that a
graph is connected. SIAM J. Comput., 12(4):777–788,
1983.

[68] C. Re, N. Dalvi, and D. Suciu. Efficient Top-k query
evaluation on probabilistic data. In ICDE, 2007.

[69] Christopher Ré. Applications of probabilistic
constraints. Technical Reprot TR2007-03-03,
University of Washington, Seattle, Washington, March
2007.

[70] R. Ross, V.S. Subrahmanian, and J. Grant. Aggregate
operators in probabilistic databases. JACM, 52(1),
2005.

[71] Sunita Sarawagi. Automation in information
extraction and data integration. Tutorial presented at
VLDB’2002.

[72] Prithviraj Sen and Amol Deshpande. Representing
and querying correlated tuples in probabilistic
databases. In ICDE, 2007.

[73] W. Shen, X. Li, and A. Doan. Constraint-based entity
matching. In AAAI, pages 862–867, 2005.

[74] D. Suciu and N. Dalvi. Tutorial: Foundations to
probabilistic answers to queries. In SIGMOD, 2005.
Available from www.cs.washington.edu/homes/suciu.

[75] L. Valiant. The complexity of enumeration and
reliability problems. SIAM J. Comput., 8:410–421,
1979.

[76] M. van Keulen, A. de Keijzer, and W. Alink. A
probabilistic XML approach to data integration. In
ICDE, pages 459–470, 2005.

[77] M. Y. Vardi. The complexity of relational query
languages. In Proceedings of 14th ACM SIGACT
Symposium on the Theory of Computing, pages
137–146, San Francisco, California, 1982.

[78] T. Verma and J. Pearl. Causal networks: Semantics
and expressiveness. Uncertainty in Artificial
Intelligence, 4:69–76, 1990.

[79] L. von Ahn and L. Dabbish. Labeling images with a
computer game. In CHI, pages 319–326, 2004.

[80] William Winkler. The state of record linkage and
current research problems. Technical report, Statistical
Research Division, U.S. Bureau of the Census, 1999.

[81] Y. Zabiyaka and A. Darwiche. Functional treewidth:
Bounding complexity in the presence of functional
dependencies. In SAT, pages 116–129, 2006.

[82]
alonhalevy.blogspot.com/2007_01_01_archive.html.

[83] www.flickr.com.

[84] base.google.com.

[85] http://www.mturk.com/mturk/welcome.

APPENDIX
A finite probability space is (Ω,P) where Ω is a finite set
of outcomes, and P : Ω → [0, 1] s.t.

P
ω∈Ω P(ω) = 1.

An event is E ⊆ Ω, it’s marginal probability is P(E) =

P
ω∈E P(ω). If P(E) > 0, the conditional probability of E′

is P(E′|E) = P(E′E)/P(E) and the conditional probability
space is (E,P′), P′(ω) = P(ω|E).

A set {E1, . . . , Em} is independent if P(E1, . . . , Em) =
P(E1) · · ·P(Em). E1, E2 are disjoint if P(E1, E2) = 0.

The product space [41] of n probability spaces (Ωi,Pi),
i = 1, n is (Ω,P) where Ω =

Q
i Ωi and P(ω1, . . . , ωn) =Q

i P(ωi). Let (Ω,P) be a finite probability space, Ω′ a set,
and f : Ω → Ω′ a function. The image space [41] is (Ω′,P′)
where P′(ω′) =

P
ω∈Ω:f(ω)=ω′ P(ω).

Lemma A.1. (1) Let P be a disjoint probability space on
the Boolean variables Y1, . . . , Yn, P(Y1) + . . . + P(Yn) ≤ 1.
Then P is the image of an independent space over X1, . . . , Xn:

Yi = (
^
j<i

¬Xj) ∧Xi, i = 1, n

P(Xi) =
P(Yi)

1−
P

j<i P(Yj)
, i = 1, n

(2) Let P be an independent space on the Boolean variables
Y1, . . . , Yn, s.t. ∀i = 1, n, P(Yi) is a rational number pi/qi

and pi, qi can be represented using at most k bits. Then P
is isomorphic to a conditional space of a uniform space over
kn variables X1, . . . , Xkn (i.e. P(Xi) = 1/2).

Proof. (1) direct calculation. (2) use (Xij)j to encode
the bits of the number(s) pi, qi, define Yi = “(Xij)j < p′′i
and condition on the event

V
i “(Xij)j < q′′i , see [40].

The lemma implies the following Corollary by direct cal-
culations, and this proves Theorems 3.1 and 3.2:

Corollary A.2. There exists a poly-time computable func-
tion F (k, n, m, n1, . . . , nm, p1, q1, . . . , pn, qn) (where

P
j nj =

n, ∀i.pi, qi < 2k), s.t.: for every disjoint-independent prob-
ability space P over Y1, . . . , Yn defined by a partition Ȳj,
j = 1, m (nj = |Ȳj |) and P(Yi) = pi/qi (pi, qi < 2k) there
exists a formula Ψ over kn variables, computable in poly-
time s.t, P(Φ) = #Ψ/F .

A perfect matching in a bipartite graph E ⊆ X̄× Ȳ where
|X̄| = |Ȳ | = n is a subset E0 ⊆ E of size n s.t. each
node occurs exactly once in E0. The number of perfect
matching is equal to permanent of the 0-1 adjacency matrix
for G, hence this problem is denoted PERMANENT. Valiant
showed that it is #P-hard [75].

Proof. (of Theorem 3.5) The proof of h1 is given in [21]
by reduction from partitioned, positive 2DNF [67]. For h2,
h3 we use reductions from PERMANENT. We will show how
to count the number of perfect matches in E ⊆ X̄× Ȳ using
an oracle for computing P(hi), for each i = 2, 3. Both reduc-
tions share the same construction for R: the possible tuples
are E, and P(R(x, y)) = 1/degree(x) (R is a p-or-set). Call
an X̄-match a subset of E that contains each node in X̄
exactly once: the possible instances of R are precisely the
X̄-matches, and every possible X̄-match has the same prob-
ability P = 1/

Q
x∈X̄ degree(x). Consider now the query h2:

let the possible tuples in S be Ȳ , and P(S(y)) = 1−p, for a
fixed p ∈ (0, 1). Let Ei denote the event that the X̄-match
given by R uses exactly i nodes in Ȳ , and Mi be the number
of such X̄-matches: thus, P(Ei) = MiP . Mn is the num-
ber of perfect matches, and

P
i=0,n Mi =

Q
x∈X̄ degree(x):

denote the latter with M . We have P(h2|Ei) = 1 − pi,

because once we fix i target nodes in Ȳ , this is the prob-
ability that we include at least one of them in S. Thus,
P(h2) = F (p) =

P
i P(h2|Ei)P(Ei) =

P
i MiP (1 − pi) =

MP−
P

i piMi. Use the oracle for computing F (p) on n dis-
tinct values p1, . . . , pn: this leads to a linear system of equa-
tions with unknowns Mi’s whose matrix is Vandermonde,
allowing us to compute all Mi’s, and, in particular, Mn.

For h3 we use a different reduction: the possible tuples in
S are all pairs (x, y) ∈ X̄ × Ȳ , and P(S(x, y)) = p for some
p ∈ (0, 1/n). The type of an X̄-match is k̄ = (k1, . . . , kn)
where ki = number of edges incident to yi. Let Ek̄ be the
event that the R-instance has type k̄, and let Mk̄ be the num-
ber of X̄-matches of type k̄; thus P(Ek̄) = PMk̄ and the
number of perfect matches is M1̄, where 1̄ = (1, 1, . . . , 1).
Now we have P(¬h3|Ek̄) = fk̄(p), where fk̄(p) =

Q
i(1 −

kip). This is because in S we must choose at most one
edge for each yi, and we cannot choose any of the ki incom-
ing edges, hence we are left with the choice of the remaining
edges or none at all, for a total probability of 1−kip. For the
type 1̄, f1̄ = (1− p)n is a polynomial of degree n in p, while
for every other type fk̄ is a polynomial of degree < n, be-
cause any type other than 1̄ has at least one ki = 0. We have
P(¬h3) = F (p) =

P
k̄ PMk̄fk̄(p). This is a polynomial in p

of degree n and we want to compute the leading coefficient,
an, i.e. the coefficient of pn, because M1̄ = (−1)n/an. Fix a
small h > 0 and define ∆g(p) = g(p+h)−g(p) for a polyno-
mial g: if degree(g) = k, then degree(∆g) = k − 1, and the

leading coefficient is multiplied by kh. Letting ∆(1) = ∆,
∆(i+1) = ∆(∆(i)), we have ∆(n)f(p) = n!hnan (the degree
is 0), and it can be computed from the values of f on n + 1
equidistant points p.

Finally we show that h+
2 , h+

3 are hard by induction. Let
q be a query that we know is hard, and q′ be obtained by
adding one more copy of R′ or S′: R′(x, y) or S′(x, y). We

cannot reduce q to q′ by making R′ deterministic because it
violates the key constraints. Instead we exploit the special
structure of the hardness for q (which holds on the base cases
h2, h3 then follows inductively). Case 1: the probabilities
of another copy P(R(x, y)) can either be made arbitrarily
low (like for S(x, y) in h3). Define P(R′(x, y)) = 1/n (i.e.

R′ becomes a p-or-set): this has the effect of multiplying
P(R(x, y)) with 1/n, and the query is still hard because
we can make these probabilities small. Case 2: R is a p-
or-set, i.e. its worlds are X-matches. P(R′(x, y)) = p/n
for a small p, and denote qi the event the number of edges
R(a, b) that satisfy the query q is exactly i, hence P(q) =P

i=1,n P(qi). We have P(¬q′|qi) = (1 − p/n)i because R′

must avoid all of those i edges to fail the query q′. Hence
P(¬q′) =

P
i=1,n(1−p/n)iP(qi). This allows us to compute

all the P(qi)’s using a Vandermonde matrix.

Proof. (of Lemma 3.7) The reductions here are very sim-
ple, and we only sketch them. We have an oracle for com-
puting P′(q) for any PDB′ = (T ′,P′) and need to compute
P(q′) on a given PDB = (T,P), where q ⇒ q′. We derive
PDB′ from PB s.t. P(q′) = P′(q). When q′ = q[a/x], then
remove all possible tuples from PDB that have a value other
than a on an x-position; similarly for q′ = q[y/x]. When q′

is a connected component of q, i.e. q = q′, q′′, then make
all relations in q′′ deterministic (P′ = 1), and fill them with
a canonical database for q′′ (hence q′′ is true in any possi-
ble world). When q′ is obtained by removing a subgoal g
then make that table deterministic (this is possible because

KV ars(g) = V ars(g)). Finally, if q′ is obtained by replacing
a subgoal g with g′ and g → g′, then compute the g-table in
PDB′ from the g′-table in PDB in the way dictated by the
relationship between g and g′: copy values across attributes,
and/or set new attributes to constants. Details omitted.

Proof. (of Lemma 3.8) Let q be final. None of the rules
of Safe-Eval (join, independent project, disjoint project)
applies to q, otherwise q would be safe (since it is final). We
can also assume wlog that q has at least two variables, oth-
erwise one can show it is safe. Let V ars(q) = {x1, . . . , xn},
and define the sets of subgoals Si = sg(xi), Ti = Sg(q) −
sg(xi), i = 1, n. We have Si 6= Sg(q): otherwise an in-
dependent project applies to xi. Whenever two variables
xi, xj occur together in a subgoal then Si∪Sj = Sg(q): this
is because q rewrites to q[xj/xi], the latter is safe, and the
independent project on xi is the only rule that may apply
without applying to q, i.e. Si ∪ Sj = Sg(q). We now show:

∀i 6= j, Si ∪ Sj = Sg(q) (2)

Suppose xi, xj do not co-occur in any subgoal. There exists
xk that co-occurs with xi (otherwise xi forms a connected
component and we can apply a join), hence Si∪Sk = Sg(q),
hence xk co-occurs with xj , hence Sj∪Sk = Sg(q), implying
Sk = Sq(q), contradiction. Eq.(2) holds, and in particular
∀i, Si 6= ∅ (otherwise Sj = Sg(q) for j 6= i). We also have
∀i 6= j, Ti∩Tj = ∅ (equivalently Ti ⊆ Sj). For every subgoal
g, all variables occur on its key positions, except perhaps one
(namely that xi for which g ∈ Ti). We now prove that there
are at most two variables x1, x2. Suppose there is a third,
and note that q′ = q[a/x3] is safe. Since each subgoal in q
has at least two variables in key positions we cannot apply
a disjoint project in q′; moreover the subgoals in q′ are still
connected since Sg(q′) = S1∪S2 and T3 ⊆ S1∩S2 6= ∅ hence
a join doesn’t apply either, contradiction. It follows that
there are exactly two variables x1, x2. Case 1: there exists
g ∈ S1∩S2, hence g = R(x1, x2) (a subgoal like R(x1, x2, x1)
rewrites to R(x1, x2)). Rewrite q by removing the subgoal
g: this query is safe, hence it must be disconnected, hence q
is S(x1), R(x1, x2), T (x2) which is h1. Case 2: S1 ∩ S2 = ∅.
If there exists a subgoal g ∈ S1 s.t. V ars(g) = {x1}, i.e.
g = R(x1), then S1 = {g} because by removing g we must
obtain a safe query; similarly for g′ ∈ S2 s.t. V ars(g′) =
{x2}; denote g′ = S(x2). q cannot be g, g′ since that is safe,
so there are three cases: g does not exists, g′ exists, then q =
R1(x, y), . . . , Rk(x, y), S(y) = h+

2 , or g exists and g′ does not

exists (here q is also equivalent to a h+
2), or neither g nor g′

exists, hence q = R1(x, y), . . . , Rk(x, y), S1(x, y), . . . , Sm(x, y),

which is h+
3 .

Proof. (of Proposition 3.12) Let G be an AND/OR graph,
we construct the following relational schema R and query
q. There will be one variable in q for every node in G,
plus one extra variable c; the invariant is: a node is accessi-
ble in the graph iff the corresponding variable can be made
constant by SAFE-EVAL. For every AND node x with par-
ents y, z, . . . we introduce a new relational symbol R and
a subgoal R(y, z, . . ., x) in q (a disjoint project applies to
x iff all its parents are constants). For every OR node x
with parents y, z, . . . we introduce a new subgoal for each
parent Sy(y, z), . . . (a disjoint project applies to z iff one of
its parents is constant). Finally, for each node x, y, z, . . .
we create a new subgoal Tx(c, x), Ty(c, y): these prevent an
independent-project until all variables became constants.

