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Abstract. A revolution is underway in astronomy resulting from mas-
sive astrophysical surveys providing a panchromatic view of the night
sky. The next generation of surveys and the simulations used to calibrate
them can produce in two nights what the previous generation produced
over many years. This enormous image acquisition capability allows the
telescope to revisit areas of the sky with sufficient frequency to expose
dynamic features and transient events; e.g., asteroids whose trajectories
may intersect Earth. At least three such surveys are planned; their col-
lective output must be integrated and calibrated against computational
simulations, prior surveys, and each other.

Relational databases have been shown to be effective for astronomy at
yesterday’s scale, but new access to the temporal dimension and in-
creased intercomparison of multiple sources generate new sources of un-
certainty that must be modeled explicitly in the database. Conventional
relational database management systems are not cognizant of this uncer-
tainty, requiring random variables to be prematurely and artificially col-
lapsed prior to manpiulation. Previous results in probabilistic databases
focus on discrete attribute values and are unproven at large scale.

In this paper, we present concrete examples of probabilistic query pro-
cessing from computational astrophysics, and use them to motivate new
directions of research: continuous-valued attributes and queries involving
complex aggregates over such attributes.

1 Introduction

The last decade has witnessed a revolution in how we approach knowledge dis-
covery in an astrophysical environment. The completion of several massive as-
trophysical surveys provides a panchromatic view of the night sky; spanning the
γ and X-ray spectrum (Fermi and Chandra satellites) through the optical and
ultraviolet (the SDSS, GALEX surveys) to the measurements of the cosmic mi-
crowave background in the submillimeter and radio (the WMAP and PLANCK
satellites). In conjunction with this, simulations of the Universe are becoming
larger and more complex—a single simulation today can use as many as a billion
resolution elements (Figure 1). While each of these massive data sources, both
observational and simulated, provide insights into the highest energy events in
our universe as well as the nature of the dark matter and dark energy that
drives our accelerating universe, it is only when they are combined, by collating
data from several different surveys or matching simulations to observations, that
their full scientific potential will finally be realized. The scientific returns from
the total will far exceed those from any one individual component.



Fig. 1. The neutral hydrogen content of a simulated region of the Universe 25 million
light-years wide as it existed 2 billion years after the Big Bang. The areas of highest
density (yellow) are sites of galaxy formation.

The recognition of this need to federate massive astrophysical databases has
led to initiatives designed to seamlessly interlace data distributed across the
globe. Users will soon be able to return multi-frequency attributes of sources
identified within regions of the sky without needing to worry about how dif-
ferent surveys or simulations interact or what are the underlying protocols for
communicating between them. The virtual observatory (VO) is indicative of the
growing awareness in the US and worldwide that efficient organization, distri-
bution, and analysis of scientific data is essential to the continuing evolution of
scientific inquiry.

As virtual observatories come online, the rate of data acquisition threatens
to overwhelm our ability to access, analyze, and visualize these massive datasets.
Further, observations provide only an imperfect, indirect representation of the
observed phenomenon—we must build systems that not only tolerate uncer-
tainty, but embrace uncertainty by providing probabilistic reasoning capabilities
at the system level. Research in database and data management has developed
techniques for scalable processing of large data sets, but do not attempt to cap-
ture uncertainty. All three modern commercial database systems (IBM’s DB2,
Oracle, and Microsoft’s SQL Server) can optimize and execute SQL queries on
parallel database systems, based on research that was done more than a decade
ago [5, 14]. New trends in computing, such as the map-reduce programming
model introduced by Google [12] and extensions [17, 21, 27] to process massive
datasets, have been adopted and expanded as query processing paradigms in
systems such as Pig Latin [27], Sawzall [28], Dryad [21], and SCOPE [7]. We
are aggressively evaluating these frameworks for general utility in scientific data
analysis, but these results are complementary to the development of a theory
of scalable query processing over probabilistic science databases, for two rea-
sons. First, the theoretical algorithmic complexity of query answering over prob-
abilistic databases is an independent research question from the design of an
effective parallel implementation, map-reduce or otherwise. Second, map-reduce
and similar frameworks are increasingly supporting complete relational algebra
expressions rather than just simple primitives citeolston:08,isard:07,abouzeid:09,
so work on relational modeling and optimization does not preclude a map-reduce
implementation.

In principle, relational databases offer the scalability and performance needed
to process the data from astrophysical surveys; indeed, the Sloan Digital Sky Sur-



vey (SDSS; http://www.sdss.org), the largest current astronomical database,
is powered by a relational database and supports SQL queries. The challenge
posed by the new generation of cosmology surveys, however, stems from a
significantly larger scale compounded by higher dimensionality (measurements
now have a temporal extent) and new sources of uncertainty. The growth
in size can be understood if we consider the volume of data generated by
the previous generation survey of the SDSS. That ten year experiment sur-
veyed 8,000 sq degrees of the sky and detected ∼108 stars and galaxies,
forming a 40 TB data set. In contrast, the next decade will see the Dark
Energy Survey (http://www.darkenergysurvey.org), PanSTARRS (http://pan-
starrs.ifa.hawaii.edu/public/home.html) and the Large Synoptic Survey Tele-
scope (LSST; http://www.lsst.org) that will produce nightly data rates of ∼0.5
TB, 5 TB and 20 TB respectively. The first of these surveys, DES will begin op-
erations in 2011 and cover 5,000 sq degrees over a five year period, PanSTARRS
and LSST will cover 20,000 sq degrees every three nights and are expected to
begin operation in 2014. Beyond their sheer scale, all of these surveys will open
the temporal domain through repeated observations of the sky many times over
the length of the surveys (up to a thousand times in the case of the LSST). This
will enable the extraction of temporal patterns for 108 sources with tremendous
scientific potential, ranging from detection of moving objects, classification of as-
trophysical sources, and monitoring of anomalous behaviour. Individual images
can no longer be analyzed independently—objects too dim to be recognized in
any single image are inferred probabilistically by studying multiple images at dif-
ferent timesteps. However, this inference requires one to reason about and man-
age multiple possible probabilistic interpretations of the data simulatneously—a
capability missing in the formalisms underpinning existing data management
software.

In order to extract interesting temporal patterns from the data one needs to
characterize the nature of sources from data sets with inherently different noise
properties—data may be missing due to incomplete observations and individual
sources may drop below the detection threshold of the image. Therefore, we
are working to extend and apply recently developed techniques for probabilistic
databases in order to extract patterns from temporal astrophysical surveys. We
model the probabilistic inference associated with the pattern extraction task as
a SQL query, then apply techniques such as safe plans [10] to execute them in a
relational database engine, which will enable the engine to (among other things)
evaluate the query in parallel on a cluster.

2 Background and Running Example

A probabilistic database is a relational database where the rows in the database
are random variables. In the simplest case, only the value of an attribute is a
random variable. Consider the two probabilistic tables in Figure 2. The first
table, Objects stores the type of each object. The attribute Type is a discrete
random variable, and its distribution is given explicitly for each object id: thus,
for object id x2234, Type is Quasar, Main Sequence Star, or White Dwarf,
with probabilities 0.1, 0.6, and 0.3 respectively, and this is represented by storing
three distinct rows in the table, all with the same object id and with the three
different values together with their probabilities. The second table in the figure,
Properties, stores the properties measured periodically (e.g. daily): thus, for
each object there are several rows in Properties. All these measurements are
noisy, and are normally given by continuous random variables (most of them are



Objects:

OID Type P

t1,1 x2234 Quasar p1,1 = 0.1
t1,2 x2234 Main Sequence Star p1,2 = 0.6
t1,3 x2234 White Dwarf p1,3 = 0.3
t2,1 x5542 Quasar p2,1 = 1.0
t3,1 xg413 Main Sequence Star p3,1 = 0.7
t3,2 xg413 Quasar p3,2 = 0.3
t4,1 y5553 White Dwarf p4,1 = 0.1
t4,2 y5553 Binary Star p4,2 = 0.9

(a)

Properties:

OID Brightness Color P

s1 x2234 19.7 0.31 q1 = 0.2
s2 x2234 19.7 0.12 q2 = 0.8
s3 xg413 21.2 0.32 q3 = 0.7
s4 xg413 19.7 0.24 q4 = 0.7
s5 x5542 21.2 0.13 q5 = 0.5

(b)

Fig. 2. Example of a probabilistic database. This is a block-independent-disjoint
database: the 8 tuples (rows) in Objects are grouped in four groups. The random
variables corresponding to tuples in a group are disjoint, e.g., t11, t

2
1, t

3
1 are disjoint,

meaning that at most one can be true; so are t14, t
2
4. Tuples from different blocks are

independent, e.g., t21, t
2
2, t

1
4 are independent; the five tuples in Properties are indepen-

dent probabilistic events.

Normal distributions). In the figure, we have represented each row as a discrete
event, whose probability indicates a confidence that the row is in the database.
However, the natural representation of this data is to use a continuous probability
distribution.

Query evaluation on probabilistic databases involves probabilistic inference.
Consider, for example, the SQL query in Figure 4 (a), asking for all object types
that had a measured brightness < 20. The query joins Objects and Properties
on the object id, and returns the type of the object, provided the brightness is
< 20. A probabilistic database needs to examine the lineage of each answer, and
compute a confidence score for that answer. For example, consider the object
type Quasar. It is in the answer because of contributions from the first and the
third object, and because of three rows in Properties, thus, its probability is:

p(Quasar) = 1− (1− p1,1(1− (1− q1)(1− q2)))(1− p3,2q4) (safe result)

The algebra plan in Figure 4(c) computes very efficiently the probabilities
of all object types, by incorporating the operations of the formula above
into standard relational algebra operations: a join computes the probability
p1p2 while a projection with duplicate elimination computes the probability
1 − (1 − p1)(1 − p2)(1 − p3) · · · It is possible to modify a relational database
engine to compute these probabilities on-the-fly. Alternatively, it is possible to
translate back this query plan into SQL (as shown in Figure 4 (d)) and have it
evaluated in any standard relational database engine, without having to mod-
ify the engine: given the current performance of todays commercial database
engines, such a query can be evaluated in a few seconds on a database of hun-
dreds of GB. In our own implementation of a probabilistic database system
mystiq.cs.washington.edu we took the latter approach, where we translated
the relational plan back to SQL.

It is important to note that not every relational algebra plan computes the
correct output probabilities. The algebra plan in Figure 4 (b) is equivalent (over
standard databases) to that in (c), yet it computes the probabilities incorrectly.
In our example it returns the following:

p(Quasar) = 1− (1− p1,1q1)(1− p1,1q2)(1− p3,2q4) (unsafe result)



The difference is that plan (b) first computes a join, thus making a copy of p1,1,
and later projects and eliminates duplicates, thus treating the two copies of p1,1

as two independent probabilistic events, which is incorrect.

Observations
id T X Y sigmaX sigmaY sigmaXY

a1234 10 2.34 0.46 0.2 0.1 0.3
a1235 10 0.33 3.03 0.1 0.3 0.1
. . . . . . . . .
a5466 11 2.36 0.44 0.2 0.2 0.2
a5467 11 0.33 3.03 0.1 0.3 0.1
. . . . . . . . .

For each observation, the uncertain location of each object
(id, T, X, Y, sigmaX, sigmaY, sigmaXY) is given by the two-dimensional
Normal distribution N(µ,Σ), where:

µ =

„
X

Y

«
Σ =

„
sigmaX sigmaXY

sigmaXY sigmaY

«
Fig. 3. The Observations table stores individual observations at each time stamp.

The complexity of query processing in probabilistic databases has been in-
tensively studied [9, 10, 15, 22, 35]. It was proven that, in general, computing
the exact output probabilities is a #P-hard problem in the size of the input
database [9], due to the interaction of joins and duplicate eliminations. What
this means in practical terms is that it is not possible to compute exactly the
output probabilities for every SQL query. However, over databases with discrete
random variables, certain queries can be computed efficiently, and their com-
putation can be expressed as a relational algebra plan, which manipulates the
probabilities explicitly: this is illustrated in Figure 4. Such queries are called
safe queries. Interestingly, not every relational algebra plan computes the output
probabilities correctly: plans that compute the probabilities correctly are called
safe plans. The plan in Figure 4 (b) is unsafe, while the plan in (c) is safe. A
survey of the state of the art of the theory of safe queries and safe plans can be
found in [10].

3 Two Concrete Problems

We consider two problems in astrophysics to motivate requirements for proba-
bilistic databases. the identification of moving objects, and probabilistic classi-
fication.

3.1 Tracking Moving Objects

As with the variable luminosities it is the dynamic range of motions of sources
across the sky coupled with the confusion due to the many sources that are
moving in our own Solar System that drives the complexity of the problem.

Within the Solar System there are approximately 107 sources that move
relative to the Earth. The majority of these sources are the Main Belt Asteroids
that reside between the orbit of Mars and Jupiter. These can be considered as
the background noise that limits our ability to identify the more scientifically



SELECT x.Type, confidence( )

FROM Objects x, Properties y

WHERE x.OID = y.OID

and y.Brightness < 20

GROUP BY x.Type

(a)

SELECT x.Type, 1-prod(1-x.P*y.P)

FROM Objects x, (SELECT OID, 1-(1-prod(P))

FROM Properties

WHERE Brightness < 20

GROUP BY Type) y

WHERE x.OID = y.OID

GROUP BY x.Type

(d)

⋈oid

Objects
Properties

∏Type

σBrightness<20

(b)

⋈OID

Objects
Properties

∏Type

σBrightness<20

∏OID

(c)

Fig. 4. A SQL query on the data in Figure 2(a) returning the types of all objects with a
brightness below 20. Here confidence() is an aggregate operator returning the output
probability. The figure shows an unsafe plan in (b) and a safe plan in (c). The safe
plan re-written in SQL is shown in (d): the aggregate function prod is not supported
by most relational engines, and needs to be rewritten in terms of sum, logarithms, and
exponentiation.

compelling asteroids such as the Kuiper Belt Objects (KBOs) and the potentially
hazardous Earth-crossing Near Earth Objects (NEOs).

NEOs with sizes in excess of 1km that strike the Earth have the potential to
cause extinction level events through their impact and resulting climate change
(similar to the events that may have led to the extinction of the dinosaurs). Such
impacts are expected to occur every 500,000 years. On smaller scales (>140m)
asteroid impacts would cause substantial damage (equivalent to 100 megatons of
TNT) if impacting a populated area (with a 5% chance of impact over the next
century). Because of this NASA has a high priority goal of mapping asteroids
with sizes > 300m within the next 10 years to assess the potential risk to the
Earth from impacts.

The challenge in finding these asteroids comes from the fact that we have
multiple observations of the sky every three nights (i.e. we cannot continuously
view one region of the sky as the asteroids are distributed over several thou-
sand square degrees). For NEOs we will likely detect 50,000 sources against a
background of 106 Main Belt Asteroids. Each of these sources moves with an
average velocity of one degree per day. Sampling the orbits every three days
and accounting for uncertainties in the positional and velocity measurements
the combinatorics in connecting subsequent observations are daunting.

More distant asteroids, in particular those beyond the orbit of Neptune, have
the potential to explain the origins of our Solar System. Kuiper Belt Objects are
in orbits at distances of > 30 Astronomical Units (AU) and have a composi-
tion that is identical to the planetesimals that coalesced to form the planets.



Mapping their positions, distances, dynamics and colors (from which their com-
position can be determined) will constrain rate of accretion, collisions and orbital
perturbations that led to the formation of the inner planets as well as provid-
ing statistical evidence for the possibility of additional existing and/or vanished
planets in the outer Solar System.

There are currently ∼1000 known KBOs which compares to the expected
10-100,000 KBOs from surveys such as the LSST. Moving at 1 arcsecond per
hour KBOs will move 2 degrees per year. Simple algorithms that search all of
the available phase space for the orbital parameters would be prohibitive in
computational time. The joint analysis of one year of data would increase the
population of known KBOs by a factor of 50 and our sensitivity to asteroids a
factor of 100 smaller in mass. This will enable studies of KBOs at distance in
excess of 50 AU where we find a dramatic (and unexplained) drop in the asteroid
population.

3.2 Working with Probabilistic Classifications

As described in Section 2, the next generation of astrophysics surveys will open
the temporal domain probing a broad range of classes of sources, from the most
energetic events in the universe to new classes of physics. Classifications will be
derived based on repeated measurement of the same attributes for sources or by
“coaddition” of the input images to provide a higher signal-to-noise measures.
In each of these cases, the measurements and classifications will be inherently
probabilistic. In the simplest case, these classifications will be uni-modal and
can be approximated by a Gaussian (e.g. the likelihood of a source being a star
or a galaxy). In more complex examples, such as an estimate of the redshift of a
galaxy from its colors [8,20,25], the probability functions are non-Gaussian and
often multimodal.

Understanding how the properties of galaxies depend on their class enables a
better understanding of the physical processes that govern the evolution of the
universe. Designing new ways of querying databases with probabilistic classifi-
cations and uncertain measurements is, therefore, a critical component of any
future astrophysical survey. We provide two examples that will guide our de-
velopment of probabilistic databases. In the initial example we will address the
question of how galaxies are related to the dark matter halos in which they re-
side. Do the properties of galaxies depend simply on the mass of the dark matter
halo or are galaxy properties influenced by larger scale structures? Locally we
can address these questions using large spectroscopic surveys. We find, for exam-
ple, that environment plays an important role in determining the properties of
galaxies (e.g. their star formation and morphology; [19]. At higher redshifts, we
do not have complete spectroscopic samples and, therefore, estimates of redshift
and type must be undertaken probabilistically.

How do we use probabilistic classifications to determine and understand the
relation between the properties of galaxies and their mass or environment? The
classical approach is to subdivide a parent galaxy catalog into a series of sub-
samples (e.g. assuming categorical classifications based on luminosity or type
of a galaxy) and to consider the clustering of these subsamples in isolation
(e.g., [18, 26, 39]). This has been successful in characterizing simple relation-
ships such as the morphology-density relation [29] but there are many reasons
why this is not an optimal use of the data. The properties of galaxies (lumi-
nosity, morphology, star formation) are usually continuous in nature and how
we choose to discretize a sample into subgroups is often arbitrary. Treating all
galaxies within a subgroup as equal ignores the properties of the galaxies within



that group; we are discarding information. Finally, all of the classifications are
inherently noisy so fixed classification thresholds will bias the derived relations.

To address these issues new statistics have been developed, marked corre-
lation functions (MCFs), that do not require that we subdivide a sample of
galaxies [36]. In their simplest form, the marked correlation functions, M(r) are
essentially, weighted correlation functions such that,

M(r) =

∑
i

∑
j wiwj I(rij = r)

〈w〉2
∑

i

∑
j I(rij = r)

=
1 +W (r)
1 + ξ(r)

, (1)

where I = 1 if the separation rij between galaxy i and galaxy j is r, and
I = 0 otherwise, so that the sum over pairs (i, j) includes only those pairs with
separation rij = r. Here wi is the weight or the mark (e.g. the luminosity or
morphology) of galaxy i, 〈w〉 =

∑
i wi/Ngal is the mean mark, and so W (r) and

ξ(r) are the weighted and unweighted two-point correlation functions. Weighting
galaxies by different marks yields datasets which are each biased differently rel-
ative to each other, and to the underlying dark matter distribution. In principle,
we can determine which properties of galaxies result in a weighting of the galaxy
distribution which minimizes the bias relative to the dark matter and over what
redshift ranges this holds. In the context of a halo model that describes the mass
and clustering of dark matter halos, marks provide a probe of the role of mass
and environment in determining galaxy properties [37].

Extending these analyses to the clustering of the dark matter we can consider
gravitational lensing signatures due to the growth of structure as a function of
the age of the universe [3]. Foreground structures induce a lensing signal in back-
ground sources. By averaging the ellipticities of galaxies inside circular apertures,
the coherent induced shear can be measured and can be used to estimate galaxy
and cluster masses, the cosmological mass power spectrum, and higher order
statistics. The size of the lensing distortions depends upon both the distances
traveled, and upon the growth function which determines the amplitude of the
deflecting mass concentrations. Weak lensing is an attractive cosmological probe
because the physical effect, gravitational deflection of light, is simple and well
understood. Furthermore, the deflecting masses are dominated by dark matter,
the evolution of which is purely gravitational and hence calculable. Lensing is
currently regarded as one of the most promising probes of the dark energy.

The uncertainties in this case comes from the use of colors to estimate the
distances to the lens and background galaxies (i.e. photometric redshifts). As in
all inversion problems: the data are both noisy and incomplete. A consequence
of this is that photometric redshifts have broad error distributions as well as the
presence of multiple minima. The scatter within the relation, its dependence on
redshift and galaxy type, and the number of catastrophic outliers will all deter-
mine our ability to constrain the equation of state for dark energy. Given the
prominent role that photometric redshifts play in current and planned cosmo-
logical surveys, it is both timely and necessary that we address how we account
for these uncertainties when analyzing massive data sets and how can we, in
the context of a database design, minimize the impact of the photometric red-
shift uncertainties to maximize our ability to constrain dark energy and dark
matter [24].

4 Research Challenges

Our first aim is to store the temporal astrophysics data in a cluster of relational
databases. Next, we will explore a theory of petascale relational query processing



Fig. 5. To determine the orbital parameters of a moving source shown in the top panel
requires six positional measures (i.e. three observations each with a Right Ascension and
declination). To link three subsequent observations we must match moving sources over
a period of three to 90 days. The lower panel shows a sequence of 4 sets of observations
superimposed where the tracks of two moving objects have been highlighted in the right
panel. the combinatorics associated with a naive linkage model that does a simple linear
forward prediction results in a large number of false positives.

by addressing two specific challenges in computational, data-intensive astrophy-
ics: Trajectory-Fitting Queries over Uncertain Paths and Scalable Analyses of
Probabilistic Classifications.

In this section, we describe two challenges derived from the concrete scenarios
described in Section 3.

4.1 Safe Queries over Continuous Attributes

The theory of safe queries was developed only for probabilistic databases rep-
resented by discrete random variables. In contrast, astrophysical data funda-
mentally requires continuous random variables expressed as probability density
functions (pdf). Our second aim is to develop new, fundamental techniques for
processing SQL queries over probabilistic databases that have both discrete and
continuous random values. A naive solution is to simply replace the the con-
tinuous distribution with a discrete one by sampling. However, manipulating
closed-form expressions is simpler, more accurate, and far more efficient than
manipulating a set of possible worlds, and is therefore preferred when possi-
ble. In particular, we will identify and characterize the class of SQL queries that
can be evaluated efficiently over probabilistic databases with continuous random
variables. In the case of discrete attribute values, there exists a clear separation
between safe queries, which can be computed efficiently using a safe plan and
unsafe queries, which are provably #P-hard: we will study whether a similar di-
chotomy result holds for queries over continuous attribute values. A particularly
hard challenge are fuzzy joins, where the join predicate is given by a user defined
function that returns a confidence score. An index structure for fuzzy joins have
been described for the special case when the function is the Jacquard similarity
between two strings [2], with applications to data cleaning; we plan to explore
extensions of that technique to user-defined similarity functions needed in the



continuous domain. Another challenge comes from the fact that continuous ran-
dom variables may or may not be closed under certain algebraic operations. For
example, the sum of two Normal distributions is always another Normal distri-
bution, but the sum of a Normal distribution and a uniform distribution is not
expressible by a standard pdf. In contrast, the sum of any two discrete numerical
random variables is always a discrete random variable.

We approach this challenge by focusing on the first problem mentioned in
Section 3, detecting moving objects. The challenge here is to transform a set of
uncertain point measurements into a set of object trajectories by fitting curves
subject to physical constraints (e.g. that each track must be able to be described
by a set of orbital parameters). Each point is generally modeled as a two dimen-
sional Gaussian distribution. Points at two different time stamps can either be
the same fixed object, in which case their coordinates should be the same during
all time stamps, or can be the same moving object, in which case their coordi-
nates should evolve along a well defined trajectory, or are unrelated objects. By
aggregating across many time stamps we expect to identify moving objects with
high confidence. We describe this in some detail in the following example.

Example 1. Assuming we have 100 observations (over a period of, say, five
months), each with 107 moving objects in Observations(id, T, X, Y, ...).
Starting with three time slices T1,T2,T3, at the beginning, the middle, and
the end of the observation period, we will compute triples of observations
(id1,id2,id3) that are close in space in the three time slices. Over this time
period, the known distribution of orbital parameters constrains how far an object
may move in a given time period, which will allow us to aggressively prune the set
of candidate triples that need to be considered. For example, over an eight day
period, an orbit can be approximated by a quadratic in x and y and asteroids are
known to rarely move more than 1 degree per day. Moreover, given the endpoints
id1 and id3, the trajectory between these endpoints constrains the position in
the middle, further reducing the number of candidates (id1,id2,id3). In total,
we expect to generate about 108 candidate triples, about 10 times more than
the total number of objects observed.

Next, for each candidate triple, we will compute an approximate candidate
trajectory, which is defined by six parameters a, b, . . . , f such that the quadratic
trajectory is:

x = at2 + bt+ c

y = dt2 + et+ f

Furthermore, the errors in the coordinates translate into errors of the parameters,
leading to six more parameters. All this information can be computed using a
SQL Stored Procedure, and stored in a new relation, Trajectories(tid, a,
b, ...): with 108 records of (conservatively) 500 bytes each, for a total of 50GB.
The attribute tid is a unique key.

At this point we need to validate the trajectories, by using the other time
slices in the Observation table. A correct trajectory should predict correctly
the position of its object in all time slices T = 1, 2, 3, . . . , 100. A few misses are
tolerable, due to measurement errors, but most predictions are expected to be
fairly accurate. To do this, we first predict, for each candidate trajectory and
each timestamp t, the position of its object at time stamp t. This results in a
new probabilistic table, where each predicted position is (approximated by) a
Normal distribution, and which has a foreign key to Trajectories:

CREATE MATERIALIZED VIEW



Predictions(new(PID), C.TID, T.t, X, Y, probabilities...) AS

SELECT C.a*T.t*T.t + C.b*T.t + C.c AS X,

C.d*T.t*T.t + C.e*T.t + C.d AS Y, probability...

FROM Trajectories C, TimeStamps T

Here TimeStamps is the active domain of the timestamps: e.g. the set of the
20 timestamps. PID is a unique identifier created for each prediction point.

To validate the trajectories, we compute for each predicted point, the proba-
bility that it is actually observed in Observations. This is a spatial join between
two probabilistic tables, Predictions and Observations:

CREATE MATERIALIZED VIEW PredictionsConfidence(PID, ....) AS

SELECT P.PID, confidence() /* here we aggregate probabilities */

FROM Predictions P, Observations O

WHERE P.T = Observations.T AND closeEnough(P.x,P.y,O.x,O.y)

GROUP BY P.PID

This is a query with a fuzzy join, defined by the predicate closeEnough: we
assume that the confidence score computed for the prediction depends on the
closeness of the predicted point to the real point. Finally, we join this back with
the trajectories, to get a confidence score on the trajectories:

CREATE MATERIALIZED VIEW TrajectoreisCOnfidence(TID, ...) AS

SELECT C.TID, confidence()

FROM Trajectories T, PredictionsConfidence P

WHERE T.TID = P.TID

GROUP BY C.TID

Here the ≈ 100 confidence scores for one trajectory (one per timestamp)
are aggregated into a global confidence score for that trajectory (hence the role
of the GROUP BY): a few misses are tolerable, but many misses will resulg in a
low confidence score for that trajectory. Finally, the trajectories are sorted in
decreasing order of confidence score and filtered by some threshold.

4.2 Complex Aggregates on Probabilistic Data

A second challenge is to develop general query processing techniques for com-
puting complex aggregates over probabilistic data with continuous values. In
SQL, aggregates come in two forms: value aggregates that are returned to the
user in the SELECT clause, like in the query “COUNT the number of galaxies in
each region”; and predicate aggregates that appear in the HAVING clause, like in
the query “find all regions where the number of galaxies is greater than 20”. In
the case of probabilistic databases, value aggregates are interpreted as expected
values. For example if the type of an object is a discrete probability distribution
with possible outcomes star, quasar, galaxy etc., then counting the number of
galaxies in a region results in the expected value of that number given the joint
distributions of type attributes of all objects in the region. In the case of dis-
crete random attributes, linear aggregate functions such as COUNT and SUM can
be computed straightforwardly, by using the linearity of expectation, but other
aggregates, such as MIN, MAX, AVG, are more difficult to compute, and their com-
plexity depends on the structure of the SQL query (e.g. how many joins there
are); the case of AVG is particularly difficult, even for queries without joins [23].
Predicate aggregates, on the other hand, are interpreted as a probability repre-
senting a confidence score: for each region the system computes the probability
that the number of objects of type galaxy is greater than 20. To compute this



confidence score one generally has to compute the entire probability density
function of the aggregate value. Some techniques for predicate aggregate have
been developed for probabilistic databases with discrete random variables [32].

This challenge requires new techniques to extend value aggregates with MIN,
MAX to queries with joins, and to extend both value and predicate aggregates to
continuous attributes. To explore the challenge further, consider the following
two examples in astrophysics: clustering with intrinsic uncertainty and gravita-
tional lensing analysis.

Example 2. As described in section 3.2, galaxies are classified by clustering
on more than 20 measurable attributes. Specifically, the type of an observed
object is a function of fluxes, wavelength, morphology, moments, and more.
These attributes are collected repeatedly by the sky surveys and stored in the
Observation table ( Figure 3). Each measurement is inherently uncertain and
may be measured thousands of times over the course of the survey. Consequently,
these values are represented as a normal distribution (i.e., the mean and vari-
ance). To determine object type, one may learn a partition function based on
training set of manually labeled data, converting a set of continuous random
variable measurements into a single discrete random variable.

The uncertain type of the objects can help answer a variety of astrophysi-
cal questions. For example, we can reason probabilistically about objects that
change type from one time step to the next or disappear completely; previously
these cases would be handled as anomalies. Returning to examples of complex
aggregates, we can find regions in the sky with a concentration of galaxies above
a specified threshold but with a bound on the minimum luminosity:

SELECT Region.id, COUNT(*), MIN(o.luminosity) FROM Object o, Region r

WHERE Object.type = ’galaxy’ and inRegion(Object, Region)

GROUP BY Region HAVING COUNT(*) > $c AND MIN(o.luminosity) < $l

Here Region is a collection of regions in the sky (defined by the two diagonally
opposed points) that form a partition of the sky. inRegion is a user defined
function checking if an object is in the given region: it is a deterministic predicate,
hence it defines a spatial join, but not a fuzzy join. Luminosity and type are both
uncertain values, complicating the semantics and evaluation of this query.

Example 3. As a second application, we plan to use aggregate queries for scal-
able model-fitting to study the evolution of the growth of structure in the uni-
verse through gravitational lensing. The uncertainty in classification in this case
comes in two ways. The distances to galaxies (lenses and the lenses themselves)
are derived based on the colors of galaxies. These distance estimates (photomet-
ric redshifts) are inherent uncertain. While the uncertainties are often Gaussian
they can also have multimodal probability density functions and complex forms.
The second classification uncertainty is the label for the measured ellipticity
(due to the gravitational shear). These measures, for inherently low signal-to-
noise galaxies, which are barely resolved relative to the telescope point-spread-
function, must be averaged over a large number of galaxies to provide a statisti-
cally significant measure of lensing (e.g. by aggregating regions on the sky). To
accomplish this we will cluster groups of galaxies into shells at various distances,
and then compute for each shell and each region in the sky the average shape
distortion of the galaxies in that shell and that region. By comparing this average
distortion to one predicted by a random model, we can perform the gravitational
analysis (i.e. a shear correlation function):

SELECT Shell.id, Region.id, avg(Object.distortion)

FROM Object, Shell, Region



WHERE Object.type=’galaxy’

AND inRegion(Object, Region) AND inShell(Object, Shell)

GROUP BY Shell.id, Region.id

There are two forms of uncertainty that must be handled. First, the redshift
shell to which a galaxy belongs will be a discrete random variable rather than
a fixed shell. Second, the distortion will be given by a continuous, multimodal
random variable. Thus, the average aggregate operator needs to handle both
continuous and discrete random variables in its input.

This challenge requires an effective representation of the probability density
function (pdf) of the aggregate value for various patterns of aggregate operators
and query structures. Representations for some patterns are known: For the
COUNT over safe queries the pdf can be computed by a safe plan [32], but for SUM
queries this is not possible even for queries without joins. For SUM, one approach
is to examine lossy representations of the pdf, in terms of moments, which can be
computed effectively for SUM. Effective representations for other query patterns
are considered open problems.

5 Related Work

Probabilistic databases have been studied intensively in recent years [1, 4, 10,
22, 35], motivated by a wide range of applications that need to manage large,
imprecise data sets. The reasons for imprecision in data are as diverse as the
applications themselves: in sensor and RFID data, imprecision is due to mea-
surement errors [13, 34]; in information extraction, imprecision comes from the
inherent ambiguity in natural-language text [16]; and in business intelligence,
imprecision is tolerated because of the high cost of data cleaning [6]. In some
applications, such as privacy, it is a requirement that the data be less precise.
For example, imprecision is purposely inserted to hide sensitive attributes of in-
dividuals so that the data may be published [30]. Imprecise data has no place
in traditional, precise database applications like payroll and inventory, and so,
current database management systems are not prepared to deal with it. In con-
trast, in a probabilistic database management system, is a system that can store
probabilistic data and supports SQL queries over this data. The major chal-
lenge studied in probabilistic databases is the integration of query processing
with probabilistic inference. A number of techniques have been described re-
cently: lineage-based representations [4], safe plans [11], algorithms for top-k
queries [31,38], and representations of views over probabilistic data [33].

6 Conclusions

We have described concrete problems for probabilistic databases arising from a
new generation of massive sky surveys and massive astrophysical simulations. To
address these problems, we recommend extensions to existing probablistic theo-
ries to accommodate 1) continuous random variable attributes in the context of
safe plans, 2) scalable evaluation strategies for complex aggregates over contin-
uous attributes, 3) scalable implementations over parallel databases clusters. In
general, we advocate exploration of domain science as a driver for applications
and requirements for probabilistic databases, and we offer this initial treatment
in Astronomy as an exemplar.
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