
Indexing Heterogeneous Data

Nilesh Dalvi
Department of Computer Science

University of Washington
Seattle, WA

nilesh@cs.washington.edu

Dan Suciu
Department of Computer Science

University of Washington
Seattle, WA

suciu@cs.washington.edu

September 27, 2003

Abstract

We consider the indexing problem for heterogeneous data, where objects are sets of attribute-value pairs,
and the queries specify values for an arbitrary subset of the attributes. This problem occurs in a variety of
applications, such as searching individual databases, searching entire collections of heterogeneous data sources,
locating sources in distributed systems, and indexing large XML documents. To date no efficient data structure
is known for such queries. In its most simplified form the problem we address becomes thepartial match
problem, which has been studied extensively and is know to be computationally hard. We describe here the first
practical technique for building such an index. Our basic idea is to precumpute certain queries and store their
results. User queries are then answered by retrieving the “closest” stored query and removing from its answers
all false positives. The crux of the technique consists in chosing which queries to precompute. There are several
design choices, and we evaluate them both theoretically and experimentally (with real data sets). One major
advantage of this technique is that it can be easily implemented on a relational database.

1 Introduction

Web search engines have proved highly popular for searching unstructured documents (Web pages). While in
principle a similar technology can be deployed to search structured information sources, this has not happened
so far. We believe that there are two reasons for that. First, there was little incentive. Structured informa-
tion sources are either beyond firewalls (e.g. corporate data bases), or unique, well known data sources that are
queried by users directly, without any support form a centralized index (e.g. the Protein Sequence Database,
http://pir.georgetown.edu/). The second reason is technical: it is much harder to search and index a
large collection of structured objects than a collection of documents.

We argue that the first reason is quickly disappearing, as more communities need to share their structured
sources on the Web. Consider the case of sharing scientific data. Until recently, individual researchers collected
and analyzed their own data and kept it proprietary, except for a few large, well-known and well-maintained public
databases. But today there is increased pressure on the scientists to share their data. The U.S. National Institute
of Health will expect all funded scientists to release their final research data for use by other scientists [23].
Some scientific journals are making data sharing a condition of publication [22], while others are coming under
pressure to do so [19]. Examples of efforts by scientific communities to share structured information sources are
the SkyQuery project in astronomy [26, 20], the Institute for Systems Biology [15], and the Human Brain Project.
In the business world, vendors of commercial database systems are also considering adding keyword searches to
their systems. While most commercial systems already provide full text capabilities, vendors are now moving
towards supporting searches in both the schema and the content of a database: DataSpot [9] is a middleware,

DBXplorer [3] is an extension of Microsoft’s SQL Server, while DISCOVER [14] describes a general framework
for keyword searches in a database and demonstrates it on Oracle. These systems offer keyword searches over a
single database. The next, and harder step, is to support keyword searches on collections of data sources: this is
needed for example in order to locate relevant sources in large distributed systems [11].

The technical barrier however remains: searching structured data sources is a harder problem than searching
unstructured documents. One challenge is that the translation of keyword searches into SQL becomes too difficult:
the techniques used by the systems above for a single relational database do not scale to a large collection of data
sources. Another challenge is how to reconcile and relate the schemas of the various data sources. There has been
extensive work in the past on addressing schema mappings [21, 13], and we will not be concerned with that in
this paper. Even assuming the schemas have been reconciled, it is unclear how one would search the collection
of heterogeneous data. Unlike information retrieval systems, here we need to support queries that specify schema
elements in addition to data values being searched. In other words the queries need to be schema aware.

Our approach to searching heterogeneous data sources consists of two steps. In the first, all data sources are
mapped into a common data model, in which objects are represented as sets of attribute-value pairs. While this
translation has the disadvantage that all data needs to be copied to a central server, and may not be fully up-to-date
with the original data sources, it has the advantage that sources can be easily added and schema mappings can
be easily encoded in the translation itself. More importantly, it addresses the query translation problem: keyword
searches become nowpartial matchqueries. A partial-match query consists of a set of attribute-value pairs, and
its answer consists of all objects that contain all these attribute-value pairs, and possibly more: hence the name
“partial-match”. The second part of our approach deals with techniques for efficiently answering partial match
queries. This will be the focus of our paper. The specific technical problem that we address is how to build
an efficient index for partial match queries on heterogeneous data. Partial match queries have been extensively
studied in the past, starting with Bentley [4], mostly in the context of relational data, and have been considered to be
difficult to answer efficiently. In the case of heterogeneous data the problem becomes even harder, because the total
number of attributes is much larger, and recently some lower bounds on its complexity have been proved [6, 16].

We describe in this paper the firstpractical index structure for partial match queries on heterogeneous data,
called PMI, for Partial Match Index. In our approach, the answers to a certain subset of queries are precomputed
and stored in the index. The selected queries need to be chosen carefully, in order to allowall queries to be
answered efficiently using the stored answers, and at the same time preventing the size of the index from growing
out of control. An important point for the class of applications that we envision, is that the partial match index
can be implemented easily on a relational database (we used a popular commercial database engine), and a partial
match query can be answered with just a few disk accesses. The paper makes the following contributions:

• It describes an approach to searching heterogeneous data through partial match queries.

• It proposes a simple index structure for partial match queries, that can index an arbitrary set of heterogeneous
data.

• It describes how this index can be implemented using a relational database engine.

• It analyzes the time complexity of the index, and discusses several variations to the basic scheme.

• It evaluates the index structure experimentally, on real data sets.

The paper is organized as follows. Section 2 defines the problem and shows the limitations of naive approaches.
The index is described in Section 3. It is then analyzed and discussed in Section 4. Section 5 presents the
experimental evaluation. We discuss related work in Section 6 and conclude in Section 7.

2

2 Searching Heterogeneous Data

We describe here our approach to searching heterogeneous data.

2.1 Problem Definition

Data Model The first step is to map the heterogeneous data into a flat semistructured data model where objects
are sets of attribute-value pairs. Thus, a data objectd is:

d ::= [A1 = v1, A2 = v2, . . . , Ak = vk] (1)

whereA1, . . . , Ak areattributesandv1, . . . , vk areatomic values. The set of attributes is not fixed a priori: an
attribute is just a string. Each object may have a different set of attributes, and multiple occurrences of the same
attribute are allowed.

Data sets can typically be mapped to this simple model quite easily, e.g. by outer-joining relations in a rela-
tional model, or flattening elements in an XML instance. For a single relational database the attribute-value pair
model corresponds to theuniversal relation, described for example in [27]. In order to be able to map multiple
data sources to this model it is important to keep the model flexible and to allow each object to have its own set
of attributes. When schema mappings between sources are available, then attributes have to be renamed, to ensure
that attributes from different sources that are mapped to each other have the same name in the attribute-value pairs
model. Notice that the model is flat, and, as a consequence, some information may be lost during the mapping,
e.g. grouping associations in nested XML documents.

Each object in (1) has a unique object-identifier, oid. We denote withU a set of such objects:U will be our
data instance.

A partial-match queryhas the form:

q = [B1 = w1 and . . . and Bp = wp] (2)

HereB1, . . . , Bp are attributes andw1, . . . , wp are constants. Each conditionBi = wi is called apredicate,
hence the query consists of a conjunction ofp predicates. The queryq matchesa data objectd ∈ U if all attributes
in q occur ind, and have the same values: formally, referring to Equations (2) and (1), if there exists integers
i1, . . . , ip ∈ {1, 2, . . . , k} s.t. B1 = Ai1 , . . . , Bp = Aip andw1 = vi1 , . . . , wp = vip . The query specifies only
parts of the attributes and values in the object, hence the name partial-match query. For a queryq and data instance
U , we denote withSUPU (q) the set of objects inU that match the queryq, and refer to it as thesupportof q.

Applications The partial match problem has numerous applications. We illustrate here three. First, consider
the special case when there is a single attribute, call itA. Then both objects and queries are sets of strings. A query
q matches an objectd iff all strings in q appear ind. This is precisely the setting in information retrieval engines,
where both documents and queries are sets of words. Hence any efficient implementation of partial match queries
also applies to IR engines.

The second application is indexing XML documents. Previous work [8] focused on the navigation part of
XPath queries, by indexing path queries with a single predicate. To evaluate XPath expressions with multiple
predicates, the results of each individual predicate must be joined. A technique that replaces joins with traversal of
a suffix tree is described in [28]. Partial match queries offer an alternative approach to XML indexing, in which the
predicates are evaluated first, then the navigation constraints are checked separately. To evaluate the predicates,
an XML document is first mapped to the attribute-value pairs model by associating an attributeAi, i = 1, . . . , k
to each path occurring in the document. A partial match query specifies a conjunction of predicates on the XML
documents being searched.

3

The third application is peer data management systems [12, 13, 17, 1], which propose a flexible architecture
for sharing heterogeneous data. A major unsolved problem in such systems is how to discover peers that hold
relevant data. Most systems proposed so far use some form of flooding or gossiping, which has known limitations.
An exception is [11], which uses a distributed hash table (DHT) to locate data sources in a distributed system.
None of these systems scale well to queries with multiple keywords, which are precisely the partial match queries.

The ProblemThis paper addresses the following:

Problem 1. (Partial Match Indexing Problem) Given a data instanceU , construct a data structure (the index) s.t.
for every partial match queryq the answerSUPU (q) = {o1, o2, . . . , ok} can be computed efficiently.

Example 2.1 We illustrate the partial match problem with an example from indexing XML data. Consider the
Protein Sequence Database, available athttp://pir.georgetown.edu/ which is an XML data instance
containing entries about proteins. We map this XML data to our data model by flattening it1. Every sequence of
XML tags becomes a new attribute, for a total of 75 attributes, like:

header/created_date
reference/refinfo/authors/author
reference/refinfo/year
organism/variety
. . .

The data is truly semistructured: different protein entries have different sets of attributes, and some attributes
may have multiple occurrences in the same entry. Consider now a typical partial match query:

[refinfo/year = ’2000’ and
reference/refinfo/authors/author = ’White,_O.’
and reference/refinfo/citation = ’Nature’
and feature/feature-type = ’domain’]

Such queries are often formulated by scientists when searching scientific databases. They use multiple predi-
cates to narrow their search, much in the same way we use multiple keywords in Web search engines.

The data set has about 260,000 objects (protein entries); the query matches only 43 objects. The challenge in
designing a partial match index is to be able to retrieve these 43 objects with a reasonably small number of disk
I/Os.

What is interesting about this query is to examine the number of objects that match each individual predicate.
This is shown in the table below (we show only the last element label, for succinctness):

Predicate No. of Matches
year=’2000’ 37,335
author=’White, O’ 37,822
citation=’Nature’ 63,220
feature-type=’domain’ 35,004
all four predicates 43

Each individual predicate matches more objects (by three orders of magnitude) than the entire query. As we
show next, this gap makes the partial match indexing problem hard.

1Some information about grouping is lost during flattening.

4

2.2 Naive Approaches and Their Limitations

We discuss here a few simple approaches to the partial match indexing problem and highlight their limitations.
We start by considering approaches based on a relational database engine, then briefly discuss other techniques.
Recall thatU denotes the data instance.

The Join Approach Define thedata tableto be a relationRU(Oid, Attr, Val) which stores all attribute
value pairs for all objects inU . That is, an objectd = [A1 = v1, . . . , Ak = vk], having identifiero, will be
decomposed intok tuples, which are stored inRU: (o,A1, v1), . . . , (o,Ak, vk). A partial match query of the form
(2) can be answered exactly by the following SQL query:

SELECTx1.oid
FROM RUx1, RU x2, . . . , RUxp

WHERE x1.Oid =x2.Oid and
. . .
x1.Oid =xp.Oid and
x1.Attr = ’B1’ andx1.val = ’w1’
and . . . and
xp.Attr = ’Bp’ andxp.Val = ’wp’

To make this technique practical we build two indexes for the tableRU, a clustered index on(Attr, Val) ,
and an unclustered index onOid . If one of thep predicates is very selective, the optimizer has a very efficient
plan: start by looking up the selective predicate in the(Attr, Val) index, then index-join the result with the
otherp − 1 tables. But if none of the predicates is selective, then there are no efficient plans. An alternative to
theRUtable is a universal table, where each data item is a tuple with lots of null values. This, however, is not a
feasible representation because of two reasons. First, according to the data model we have assumed, the complete
set of attributes is not know a priori. Secondly, even if this is known, a large set of attributes will make the size of
the universal table prohibitively large. In fact, some commercial database systems impose an upper bound on the
number of attribute allowed in a table.

Example 2.2 (cont’d) Continuing Example 2.1, the partial match query with four predicates gets translated into a
four way join. The query took304453 logical2 disk I/O’s to run on a SQL Server database to find the 43 objects
in the answer.

The False Positives ApproachAn alternative approach is the following. Pick somei = 1, . . . , p, and execute
the following SQL query:

Qi: SELECT x.Oid
FROM RU x
WHERE x.Attr = ’Bi’ and x.Val = ’wi’

This query translates into a single lookup in a clustered index, which is very efficient. The answer toQi

contains all answers to the partial match queryq, plus false positives. We need to eliminate these in a separate
step, by iterating over all resultingOid ’s and checking the otherp − 1 predicates3. We can optimize this: using
data statistics, pick thati for which SUPU (Qi) is smallest. Or, if data statistics are not available, then execute
all queries,Q1, . . . , Qp (they can all be run in the same stored procedure), and return the result with the smallest

2The number of logical disk I/O’s reported by the SQL Server is the total number of accesses to disk pages, regardless of whether the
pages are in the buffer cache or not. It is a more accurate measure of the query’s complexity than the running time.

3This approach assumes that objects can be accessed efficiently by their oid.

5

1

10

100

1000

10000

100000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
at

io

Fraction of queries with higher ratio

Distribution Across Queries on Protein Database

2 predicates
3 predicates
4 predicates
6 predicates

Figure 1: The ratio|SUPU (pi)|/|SUPU (q)| for various queriesq.

cardinality4. Again, this approach works well when one of the predicates is very selective. Otherwise, the post-
processing step becomes quite inefficient.

Example 2.3 (cont’d) Continuing Example 2.1, the partial match query can be answered in two steps. First,
answer the queryfeature-type=’domain’ , which returns 35,004 items. This query took only 259 logical
disk I/O’s to run on SQL Server. Next we need to scan over them to find the 43 items that match the entire query.
Unfortunately, there are no efficient solutions for this step, other than a sequential scan over the 35,004 objects.
Fetching these objects takes at least an additional 35,004 logical disk I/O’s.

DiscussionAn efficient solution to the partial match indexing problem should answer a queryq in time propor-
tional to|SUPU (q)|. Instead, the approaches described above take time at least proportional to|SUPU (pi)|, where
pi is the most selective predicate inq. The question is how likely are queries for which|SUPU (pi)| � |SUPU (q)|,
like the query illustrated in Example 2.1, where the gap was three orders of magnitude. We argue that they are
quite likely. The analogy in Web search engines is when users type multiple keywords: this usually happens af-
ter they tried single keywords and received too many answers. Anecdotal evidence we collected from scientists
interested in sharing data through peer data management systems is that they would need queries consisting of
several predicates, say 4 to 6 or more, in order to narrow their search to only few data sources: no individual
predicate is selective enough to narrow the search. Finally, in a more systematic investigation, we analyzed the
Protein Sequence Database in Example 2.1 and inspected all possible queries with 2, 3, 4, and 6 predicates that
return some non-empty answers on the data set. For each of them we computed the fractionf between the number
of items matched by the most selective predicate and the number of items matching the entire query. For example,
for the query in Example 2.1 this number would bef = 35, 004/43 = 814, because the most selective predicate
matched 35,004 objects, while the entire query matched 43 objects. The graph in Figure 1 shows the cumulative
number of queries that havef above a certain value. Reading from left to right on the x axis, 20% of the queries
hadf ≥ 625, 40% of the queries hadf ≥ 45, etc. In other words, if one chooses a query at random, with a
probability of 0.2 the valuef is ≥ 625. Thus, queries for which|SUPU (qi)| � |SUPU (q)| exists, and form a
non-negligible fraction of the set of all queries.

4One may be tempted to intersect the set of oid’s in thep answer sets, but this brings us back to the join approach.

6

Other Approaches to Partial Match QueriesBitmaps are an effective way to perform intersections. Several
database systems support bitmap indexes. The problem here is that, when used for partial match queries, the
bitmaps take in the worst case time that is proportional to the number of objects matched by each predicate. Thus,
their runtime is proportional to

∑
i |SUPU (pi)|, and not to|SUPU (q)|. Compression techniques can speed up

execution, and could prove effective in certain cases in practice. But they lack theoretical guarantees. In this paper
we focus solely on techniques that have strong time guarantees, and do not consider compressed bitmaps.

Early approaches to the partial match problem [4] were designed in the context of a single table, with a fixed
and not too large set of attributes. They are not appropriate for heterogeneous data.

3 The Partial Match Index (PMI)

We describe here our Partial Match Index, PMI. It is implemented on top of a relational database, and consists of
only a few tables, each with an associated clustered index. The PMI has two parameters, chosen by the systems
administrator to adjust the time/space trade off:S, a natural number, andε > 0. The number of logical disk I/O’s
needed to answer a queryq is guaranteed to be≤ max(S, (1 + ε)|SUPU (q)|), plus a negligible overhead.

The TablesPMI consists of the following tables:

• The tableRU(Oid, Attr, Val) was introduced in Sec. 2.2 and has a clustered index on(Attr,
Val) .

• The tableRU’ , which is a copy ofRU, but with a clustered index onOid .

• A number of tablesL1, L2, . . . , Lk, . . . The exact number of tables depends on the data instances, but is
typically small (say, under 10 or so). For eachk ≥ 1, Lk has the schemaLk(Oid, Attr 1, Val 1,
..., Attr k, Val k) . An entry(o,A1, v1, . . . , Ak, vk) in Lk denotes the fact that the objecto contains
all attribute values pairs(Ai, vi), i = 1, . . . , k, and possibly more. In other words,o is in the answer to
the queryq = [A1 = v1, . . . , Ak = vk]. The tableLk will contain all answerso to somequeriesq. We
will explain below which queries are selected to be included inLk. To eliminate redundancies, all tuples
(oid,A1, v1, . . . , Ak, vk) in Lk have the predicates ordered lexicographically, i.e.(A1, v1) < (A2, v2) <
. . . < (Ak, vk). By definition(A, v) < (B,w) if A < B, or A = B andv < w.

We first describe how to search in the PMI, then define which queries are stored in the levelk tables.
Answering Queries with the Stratified Index Consider a queryq = [B1 = w1, . . . , Bp = wp]. We first

compute a set of oids denotedf ind(q), which contains all answers toq plus some false positives, and|f ind(q)| ≤
max(S, (1 + ε)|SUPU (q)|). Then we iterate over all oids in this set and eliminate the false positives.

The functionf ind(q) is computed as follows. Assume that(B1, w1) < (B2, w2) < . . . < (Bp, wp). For each
k = 1, . . . , p, let qk = [B1 = w1, . . . , Bk = wk] be the subquery consisting of the firstk predicates inq. For each
k = p, p − 1, . . . , 1, lookupqk in Lk. If we find it, thenf ind(q) is the corresponding set of oid’s fromLk (this
is preciselySUPU (qk), hence it contains all answers toq plus some false positives). Otherwise we continue with
k − 1, etc. If we reachk = 1 and still couldn’t findq1 = [B1 = w1] in L1, then we searchq1 in RUand return
the set of oids fromRU. The number of logical disk I/O’s to computef ind(q) is negligible: it consists of at most
p unsuccessful index lookups, followed by one successful lookup, which returns|f ind(q)| oid’s

To eliminate the false positives, we iterate over all oid’s inf ind(q), and check the remaining predicatesBi =
wi, for i = k+1, . . . , p, by looking up that object inRU’ . This step takes|f ind(q)| ≤ max(S, (1+ε)|SUPU (q)|)
logical disk I/O’s (assuming that each object fits on one page) because of the clustered index onOid .

Defining Lk The difficult problem is to decide which queries to store inLk: if we choose to include all
queries, then the size of the entire PMI is prohibitively large. We start by including inL1 all unary queriesq
for which |SUPU (q)| > S. That is,L1 contains only those (attribute, value)-pairs with high support. Next we

7

build the tablesL2, L3, . . . , in this order, as follows. To buildLk, we consider all queries withk predicates that
occur in the data instanceU : q = [A1 = v1, . . . , Ak = vk], and decide whether to insertq in Lk or not. By
“inserting q in Lk” we mean inserting all tuples(oid,A1, v1, . . . , Ak, vk), for oid ∈ SUPU (q). To make that
decision, we check the following condition. Assume that(A1, v1) < (A2, v2) < . . . < (Ak, vk), and consider
the queryqk−1 = [A1 = v1, . . . , Ak−1 = vk−1]. Compute the setAnsw = f ind(qk−1): this is the approximate
answer that we would obtain if we try to answerq, andq were not inLk. Notice that it is possible to compute
f ind(qk−1) at this stage because all tables belowLk are already computed. We insertq in Lk if S <| Answ |
and (1 + ε) | SUPU (q) |<| Answ |. To see why, consider what happens if we don’t insert it. In that case
f ind(q) = Answ. ClearlySUPU (q) ⊆ Answ, but the question is how many false positives do we have. We
know that either| Answ |≤ S, or | Answ |≤ (1+ε) | SUPU (q) |, hencef ind(q) ≤ max(S, (1+ε)|SUPU (q)|).

This completes the definition of the PMI. Assuming that each object can be stored on one page, the following
holds:

Theorem 3.1. The number of logical disk I/O’s needed to answer a partial match queryq with the PMI is≤
max(S, (1 + ε)|SUPU (q)|), plus a negligible amount.

Example 3.2 (cont’d) Continuing example 2.1, we answer the queryq by issuing the following query5:

SELECT x.Oid
FROM L4 x
WHERE x.Attr 1 = ’author’ and x.Val 1 = ’White, ’
and x.Attr 2 = ’citation’ and x.Val 2 = ’nature’
and x.Attr 3 = ’feature-type’ and x.Val 3 = ’domain’
and x.Attr 4 = ’year’ and x.Val 4 = ’2000’

(Notice that we ordered the attributes lexicographically.) This query returned the 43 answers directly, and used
only 5 logical disk I/O’s on SQL Server. Recall that the join-approach took304453, while the false-positives
approach took259 + 35004 logical disk I/Os.

We defer a discussion on the size of the PMI to Sec. 4. Here, we discuss first how to build the PMI.

3.1 Construction of PMI

The definition of the PMI cannot be turned into a construction procedure, because it enumerates all queries in the
data, which is too inefficient. The technique we use to build the PMI is somewhat similar to the item set generation
algorithm in data mining. We assume that the data instanceU is available in a file and can be read sequentially.

We build the indexes iteratively. For each k, the construction ofLk requires exactly two scans overU . At each
level, we create two intermediate tables:

• CNTk is the count table and it stores all k-predicate queries which go intoLk along with their count.

• CNDk is the candidate table and it stores all k-predicate queriesq such that for anyi ≤ k, the query formed
by taking the firsti predicates ofq does not belong toCNTi with count less thanS.

The queries inCNDk are the only candidates for insertion intoLk. This is because if someLi stores a query
q with support less thanS, none of its extensions have to be considered in higher level indexes, as all of them can
be answered usingq.

5We omit the complete paths and show only the last tag. In practice, we assigned a separate identifier to each of the 75 distinct paths in
our data set and used that instead.

8

q1 : (p1, p2, p3, p4)
q2 : (p1, p2, p3, p5)
q3 : (p1, p5, p6, p7)
q4 : (p2, p5, p6, p8)
q5 : (p2, p5, p8, p9)

p1

p2

p3

p4 p5

p5

p6

p7

p2

p5

p6

p8

p8

p9

Q3Q1 Q2 Q4 Q5

Figure 2: Sample Queries and Query-Tree

Now we describe how to build the levelk index, having constructed all lower level indexes.
CNDk is initialized to the subset ofCNDk−1 ×CND1 for which the(k− 1)th predicate is smaller than the

kth predicate (because we only store queries in lexicographical order). By the definition ofCNDk, any query not
in CNDk−1 cannot be the initial part of a query inCNDk. This significantly reduces the number of queries we
need to consider forLk.

Now we construct the count table. Note that sinceCNDk only contains a set of queries and not their support,
its size is small compared to the data. We load theCNDk table into the main memory. Then, we perform a single
scan overU and with each data item read, we update the counts of all the queries that contain it.

To speed up this computation, we create a tree representation ofCNDk in memory. Every node in the tree is
a predicate and every leaf corresponds to a query. Figure 2 shows few queries belonging toCND4, where eachpi

denotes a predicate, and the corresponding tree.
For each data item read, the tree is searched from top to bottom. If the data item doesn’t satisfy some node,

the whole subtree below the node is pruned. The query-tree representation not only results in sharing of computa-
tions(testing predicates) between queries, it also compresses the size ofCNDk.

All candidate queries along with their counts are inserted inCNTk. Next we prune the count table. We remove
a queryq = (a1, v1, · · · ak, vk) from CNTk if there exists a queryqi = (a1, v1, · · · ai, vi) in CNTi with count
less than(1 + ε) times the count ofq. We are left with precisely those queries inCNTk that need to be inserted in
Lk. We load backCNTk into memory as we did forCNDk, and perform another scan overU and insert intoLk

data items along with the matching queries. Finally, we prune theCNDk table by removing those queries which
occur inCNTk with count less thanS.

3.2 The Cut-off Optimization

In some applications queries that return too many answers do not have to be answered exactly. If a query returns
too many answers, users are likely to refine their query (by adding more predicates) and are not interested in seeing
all the answers. We can exploit this in the PMI and save space by removing queries with large support.

Let Qu be a number representing the threshold after which exact answers are no longer interesting. There are
two ways to implement this optimization:

1. Hard Cut-off If a user issues a queryq s.t. |SUPU (q)| > Qu, then an error message is returned.

2. Soft Cut-off If the user issues a queryq s.t. |SUPU (q)| > Qu, then onlyQu objects need to be returned,
together with a warning message.

To chose the PMI parameters, we proceed as follows. ChooseS > Qu to represent an upper bound on the
cost that is acceptable to answer a query, and defineε = S/Qu − 1. In this way, if the user issues a queryq
s.t. |SUPU (q) ≤ Qu, then the number of objects inspected by the PMI is≤ max(S, (1 + ε)|SUPU (q)|) ≤
max(S, (1 + ε)Qu) = S.

9

The PMI definition is then modified as follows. For the Hard Cut-off, do not store any queries in index with
support more thanS, because by definition of PMI, these queries are used to answer only those queries whose
support is> S/(1 + ε) = Qu. If a user issues a query with support greater thanQu, it is simply not answered. In
the Soft Cut-off, for queries with support greater thanS we store onlyS tuples chosen randomly. Again, this does
not affect queries of size less thanQu and they are answered exactly and efficiently. For queries larger thanQu,
the index only returnsQu tuples (or more) instead of the complete answer.

3.3 Handling Updates

Let U be the data instance on which the index is constructed. Let∆U be a set of data items to be inserted or
deleted from the data instance. We describe asoft updateto the index that takes time proportional to the size of
∆U . The resulting index answers queries on the new data correctly and provides performance gurantees similar
to the old index provided∆U is small compared toU . The soft update is carried out as follows.

• Soft Insert : Let ∆U be the set of data items to be inserted. For each levelk, CNTK is loaded into memory
and∆U is scanned. All data items that match any of the queries inCNTk are inserted intoLk along with
the matching queries.

• Soft Delete: Let ∆U be the set of data items to be deleted. For each levelk, delete fromLk all data items
contained in∆U .

It is easy to see that in the new index, each query in the index stores correct answer. However, the index no
longer provides any performance gurantees as∆U may change the ration of the sizes of a query and its subquery.
This will not be significant for small updates. The performance can progressively detoriate as more and more
updates occur. To restore the performance, the index can be reconstructed from the new data.

To summarize, changes in the data instance can be handled using quick soft updates, along with infrequent
rebuilds when the current data becomes significantly different from the original data.

4 Analysis and Variations

We now discuss and analyze the Partial Match Index (PMI) theoretically and place it in the context of related work
done on the set containment problem. Our discussion will also lead us to alternative indexes for the partial match
problem, which we will compare experimentally to PMI in Sec. 5.

4.1 Background: The Set Containment Problem

An extensively studied problem that is equivalent to the partial match problem is theset containment problem. Let
[m] = {1, 2, · · ·m}. An objects is a subset of[m], s ⊆ [m]. As before we associate an oid to each object, and
denote withU a data instance, i.e. a set of objects. Aqueryis also a subset of[m]. The answerq consists of all
objects inU that containq. We also call this set thesupportof q, SUPU (q) = {s|s ∈ U, q ⊆ s}. Notice that
q ⊆ q′ impliesSUPU (q) ⊇ SUPU (q′) and if q = ∅ thenSUPU (q) = U .

We next define the set containment problem.

Problem 2. (Set Containment Indexing Problem) Given a data instanceU construct a data structure (the index)
s.t. for every queryq ⊆ [m], the answerSUPU (q) = {s1, . . . , sk} can be computed efficiently. We will denote
n = |U | the number of objects in the data instance.

The partial match problem and the set containment problem can easily be reduced to each other as follows.
Consider a partial match problem, and number all possible attribute-value pairs occurring in the dataset from 1

10

100

82 8560

40 25

45

30

1 4

1 4

4 1 4

35 20

3 2

33

2

2323

55

43

23

25

15

2 4

43

23

25

15

Figure 3: Illustration for CIP

to m. Each object can be thought of as a set consisting of attribute-value pairs, and hence, a subset of[m]. A
partial-match query also specifies a set of attribute-value pairs and again can be represented by a subset of[m].
The answer to the query is precisely the set of data items containing the query as a subset. The converse reduction
is trivial.

The time/space trade off of the set containment problem has been studied theoretically. One extreme approach
is answer each query with a sequential scan over the data: here the time complexity is linear in the size of the data,
and so is the space complexity. The other extreme is to precompute and store the answers to all2m queries: here
the time complexity is sub-linear in the size of the data, but the space complexity is exponential. Until recently it
was not clear that one can do any better than these two extremes.

Charikar, Indyk and Panigrahy [7] found the first index that has a better time/space compromise. We review it
here, introducing our own notations. We call this algorithm CIP.

CIP has a parameterc, that can be adjusted to tune the time/space trade off. The index consists of a tree
obtained follows. Each node corresponds to some queryq and storesSUPU (q): multiple nodes may correspond
to the same query. A node corresponding toq has children corresponding to queries of the formq ∪ {p} for
p ∈ [m], p 6∈ q. The tree is constructed recursively as follows:

1. The root storesSUPU (∅) (which isU).

2. A nodex storing a setSUPU (q) has the following children. For eachp(1 ≤ p ≤ m), x has a child storing
SUPU (q ∪ {p}) if p 6∈ q and the following condition is true:

|SUPU (q)| ≥ |SUPU (q ∪ {p})|+ n

c

The edge is labeled asp. If the node is not stored, then we say that it is “pruned”: none of its descendants
are stored in this case.

Figure 3 shows a hypothetical tree constructed according to the CIP algorithm. There are four attributes
(m = 4) numbered from 1 to 4. The numbers in the circle denote the size of the support of the corresponding
query. Dotted circles denote the nodes that were pruned.

Given a queryq, its answer is computed by the following nondeterministic algorithm. The tree is traversed
starting from the root. If some nodex storingSUPU (q′) is reached, then we inspect whetherx has at least one
outgoing edge labeledp s.t. p ∈ q. If so, one such edge is chosen nondeterministically and the search continues
with that child. Otherwise,SUPU (q′) is returned: this may contain false positives, which are eliminated in one
linear scan.

11

100

82 8560

40 25

45

30

1 4

4

4 4

35 20

3 2

33

55

43

23

25

15

2 4

Figure 4: Illustration for CIP2

Space Complexity: Each node stores at leastn
c fewer objects than its parent. Also, the root storesn objects.

Thus, the depth of the tree is bounded byc. Also, the maximum fanout ism. So there areO(mc) nodes in the tree,
each storing at mostn objects. Thus, the space taken by the algorithm isO(nmc).

Time Complexity: Suppose the search ends at nodex. For eachp ∈ q, there can be at mostn
c objects stored

at x that do not containp. So there can be at mostmn
c objects atx that do not containq and need to be filtered.

So the time taken by the algorithm isO(c + |SUPU (q)| + mn
c). Notice that this upper bound holds for every

nondeterministic choice of the algorithm.

4.2 Optimizations to CIP

In its original formulation CIP cannot be used as a practical algorithm for the partial match problem. We introduce
here several optimizations and variations to make practical.

Order Optimization In CIP, some query results may be stored more than once. For instance, a query{1,
2} may be stored after expanding the edge 1 followed by 2 as well as expanding 2 followed by 1. In general, a
query withk elements can possibly occurk! times. The CIP algorithm can be modified to remove the storage of
duplicate queries. The following rule is added while expanding a node.

Rule 1. Expand the tree in a breadth-first fashion. Letx be the node to be expanded on behalf of queryq. Let the
path from the root tox go through nodesx1, x2 · · ·xk and edges labeledp1, p2 · · · pk (the edgepk is fromxk to
x; notice thatq = {p1, . . . , pk}). Do not expandx if there existsi such thatpk < pi andxi has an outgoing edge
labeledpk.

Figure 4 shows the tree in Figure 3 with the order optimization. To see an instance of Rule 1 consider the node
labeled 25 in Fig. 3 reachable by2 then1. Its ancestors are labeled 100 and 45. The node 100 has already an
outgoing edge labeled 1 (to 68), and1 < 2, hence 25 is eliminated.

The search is modified as follows, and made deterministic: at each nodex, the smallestp is traversed such that
query containsp andx expandsp.

Lets call this algorithm as CIP2. We prove:

Theorem 4.1. In CIP2 algorithm, no query is stored twice.

Proof. On the contrary, let us assume that there is such a queryq. Let xi andxj be the nodes that storeq, and let
x be their least common ancestor. Letpi andpj be the edges fromx leading toxi andxj respectively. We can
assumepi < pj w.l.o.g. By Rule 1, no descendant ofx reached bypj can expandpi. So, it is impossible forxj to
storeq, leading to a contradiction.

12

Theorem 4.2. The CIP2 algorithm has the same time bounds as CIP.

Proof. Let q be the given query. After following the search algorithm, suppose we reach a nodex that cannot be
traversed further. We will show that there cannot be an edgep such thatp ∈ q andp is not expanded because
of Rule 1. This will show that CIP2 and CIP have the same time complexity. So, on the contrary, let us assume
that there is such an edgep. This implies that some parentxi of x expandsp. Let pi be the edge that leads tox.
By Rule 1,p < pi. So the search algorithm will take the edgep at x and never reach nodex, which leads to a
contradiction. This proves the theorem.

Rule 1 is equivalent to the following simpler rule. Rule 2 is faster to enforce than Rule 1 as we do not need to
check all the parents of a node before expanding it.

Rule 2. Expand the tree in a breadth-firth fashion. Letx be the node to be expanded with incoming edge labeled
p. Letx′ be its parent, and let its incoming edge be labeledp′. Do not expandx if p′ > p.

Rule (2) enforces a simple structure on the tree. Letp1, p2, . . . , pk be the labels on the edges on the path from
the root to some nodex. Thenp1 < p2 < . . . < pk.

The equivalence of the two rules follows easily from the following lemma.

Lemma 4.3. In algorithm CIP, it a nodex doesn’t expandp, none of the ancestors ofx expandsp.

The lemma is a direct consequence of the fact that number of data items atx not containingp is less that the
number of data items not containingp at any ancestor ofx.

Algorithm MULT In CIP2 the the running time for a queryq is not guaranteed to be proportional to|SUPU (q)|.
The following change can provide this guarantee, and also motivates the construction of the PMI below: replace
the additive condition for expanding the node in the CIP algorithm by a multiplicative condition. For that we
introduce a new parameterε > 0. A nodex storing a setSUPU (q) has a child corresponding to queryq ∪ {p} if
the following is true:

|SUPU (q)| ≥ |SUPU (q ∪ {p})|+ ε|SUPU (q)|

Time Complexity: Let q be the query to be answered, and consider a nodex (corresponding to some queryq′) that
does not expand any of the elements inq. There are|SUPU (q′)| objects stored atx. Therefore, given anyp ∈ q,
there are at mostε|SUPU (q′)| objects stored atx that do not containp. In all, there are at mostεm|SUPU (q′)|
sets not containingq. So time taken by the algorithm is1

1−mε |SUPU (q)|.

Space Complexity: The maximum fanout ism and the depth is log n
log 1/(1−ε) . So the space required isO(nm

log n
log 1/(1−ε)).

The Rule 1 can be applied to MULT as well to achieve the order optimization6.

4.3 Algorithm PMI

Finally, we can express our Partial Match Index PMI described in Sec. 3 in a way in which it can be analyzed and
compared with the variations on CIP described here.

Recall that PMI takes two parameters,S andε. PMI also builds a tree, with each node storingSUPU (q) for
some queryq. We apply Rule 2, hence the association from nodes to queries is one-to-one, and each path in the
tree has increasing edge labels. We prune nodes according to a multiplicative criteria. But unlike the previous
algorithms, a node can be pruned while some of its descendants are not pruned. We call a nodealive if it is not
pruned.

Algorithm PMI The tree is constructed breadth-first:

6Its simplified version, Rule 2, is not applicable for MULT

13

100

82 8560

40 25

45

30

1 4

4

4 4

35 20

3 2

33

55

43

23

25

15

2 4

L3

L1

L2

Figure 5: Illustration for PMI

1. The root is associated to the queryq = ∅ and storesSUPU (∅) (which isU). It hasm children, associated to
the queries{1}, . . . , {m} respectively; the edges entering these children are labeled1, . . . ,m respectively.

2. Letx be a non-root node, associated to some queryq, and with incoming edge labeledp (p ∈ q). Thenx has
children associated toq ∪ {p′}, for p′ > p, p′ 6∈ q. (This enforces Rule 2.) The child associated toq ∪ {p′}
has incoming edge labeledp′.

3. If nodex associated to queryq has some live ancestorx′ associated toq′ s.t. either (a)|SUPU (q′)| ≤ S
or (b) |SUPU (q′)| ≤ (1 + ε)|SUPU (q)|, thenx is pruned andSUPU (q) is not stored. Notice that its
descendants are not necessarily pruned. If condition (a) holds forx then it also holds for all its descendants
and these are pruned too; if condition (b) holds then some of the descendants may be alive. If neither
conditions (a) or (b) hold thenx is alive, andSUPU (q) is stored at nodex.

Given a queryq = {p1, . . . , pk} its answer is computed by the following algorithm. Assumep1 < p2 < . . . <
pk, and letx be the node associated to the queryq (x is reachable from the root by following the edges labeled
p1, p2, . . . , pk in this order). Starting fromx, follow the path to the root until the first nodex′ which is alive (x′

is x if x happens to be alive). ReturnSUPU (q′), whereq′ is the query associated tox′: this may contain false
positives, which are eliminated in a linear scan.

Figure 5 shows the same tree as 3 with algorithm PMI. In the actual data structure the pruned nodes need to be
eliminated, and their children promoted.

The connection to the PMI relational structure described in Sec. 3 is the following.Lk contains precisely the
queriesq corresponding to the live nodes at depthk in the tree.

Time Complexity: It takesO(m) time to find the nodex corresponding to the given queryq. The setAnsw =
SUPU (q′) that is actually returned satisfies|Answ| ≤ max(S, (1 + ε)|SUPU (q)|). Hence the running time is
bounded byO(m + max(S, (1 + ε)|SUPU (q)|)).

Space Complexity: To analyze the space complexity, we proceed in two steps. First we express the space as
a function of the number of live-leaf nodes, then estimate the number of live-leaf nodes.

A live-leaf nodeis a nodex which is alive, and which has no live descendants. If one collects all live nodes
in the PMI tree then the live-leaf nodes form the leaves of this subtree. Let the live-leaf nodex be associated to a
queryq; then:

|SUPU (q)| ≤ S (3)

Moreover, letx0 be the parent ofx in the PMI tree (x0 is not necessarily live), andq0 = q − {max(q)} be the
query associated tox0. Then:

|SUPU (q0)| > S/(1 + ε) (4)

14

Indeed, suppose not. Then, in particularx0 is not alive (otherwise it would be a live-leaf node, contradicting the
fact thatx is alive). Letx′ be the first live ancestor ofx, with associated queryq′. We have|SUPU (q′)| > S and
|SUPU (q0)| ≤ S/(1 + ε), which implies that|SUPU (q′) > (1 + ε)|SUPU (q0)|, contradicting the fact thatx0 is
not alive. Thus, we have shown that live-leaf nodes satisfy Equations (3) and (4).

We first prove:

Proposition 4.4. Let L be the total number of live-leaf nodes in a PMI tree. Then the total number of live nodes
is≤ L(2 + log(n/S)

log(1+ε)).

Proof. Equation (4) says that the parent of a life-leaf nodex contains at leastS/(1 + ε) data objects. Each live
ancestor ofx will have at least a factor of(1 + ε) more data objects than the previous live ancestor. Hence the
total number of live ancestors ofx, including itself, is≤ 1 + log1+ε(n(1 + ε)/S) = 2 + log(n/S)

log(1+ε) . This proves the
proposition.

We now examine the number of live-leaf nodes, denotedL. Rather than giving a general upper bound, we
consider a probability distribution on the attributes in[m] = {1, 2, . . . ,m}, and compute the expected value forL.
Letpr(p) denote the probability that the attributep belongs to a data object. In other words, the expected number of
data objectsd that containp (p ∈ d) is n× pr(p). Given a queryq = {p1, . . . , pk}, we denotepr(q) =

∏
i=1,k pi.

Assuming the probabilities of the attributes to be independent, the expected value of|SUPU (q)| is e(q) = n ×
pr(q). Given a queryq and a numberS ≤ n, we denote withpr(q, S) the probability that|SUPU (q)| > S. We
have:

pr(q, S) = pr(|SUPU (q) > S) =
∑

t=S+1,n

(
n

t

)
(pr(q))t(1− pr(q))n−t

We need an upper bound forpr(q, S), and for that we use the following:

(
n

t

)
=

(
n− S
t− S

) (
n
S

)
(

t
S

) ≤
(

n− S

t− S

)(
n

S

)

which implies:

pr(q, S) ≤ (
(

n

S

)
pr(q)S)

∑
t=S+1,n

(
n− S

t− S

)
pr(q)t−S(1− pr(q))n−t <

(
n

S

)
pr(q)S < (e(q))S

Recall thate(q) is the expected size of the answer ofq.
Now we will compute the expected number of live-leaf nodesL in the PMI tree. Letx be a node associated

to the queryq. The probability that it is a live-leaf node follows from conditions (3) and (4) which characterize
live-leaf nodes. Namely, this probability ispr(q, S)(1 − pr(q0, S/(1 + ε))), whereq0 = q − {min(q)}. Hence
the expected number of live-leaf nodes is bounded by:

L =
∑

q⊆[m]

pr(q0, S/(1 + ε))(1− pr(q, S))

≤
∑

q⊆[m]

pr(q0, S/(1 + ε))

≤ m
∑

q0⊆[m]

(pr(q0, S/(1 + ε)))

≤ m
∑

q0⊆[m]

(e(q0))S/(1+ε) (5)

15

0

2e+07

4e+07

6e+07

8e+07

1e+08

1.2e+08

10000 100000

In
de

x
S

iz
e

S

Comparision of PMI and CAP on Protein dataset

Data size
CAP

epsilon=0.05
epsilon=0.25
epsilon=1.00
epsilon=2.00
epsilon=4.00
epsilon=20.0

0

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

7e+07

8e+07

9e+07

1e+08

100 1000 10000 100000 1e+06

In
de

x
S

iz
e

S

Comparision of PMI and CAP on FMA dataset

Data size
CAP

epsilon=0.00
epsilon=0.05
epsilon=0.25
epsilon=1.00
epsilon=4.00
epsilon=20.0

(a) (b)

Figure 6: Index Sizes for CIP2 and PMI

So far we have not made any assumptions on the probability distributions of the attributes,pr(p). When the
distribution is uniform, i.e. there exists a constantc, 0 < c < 1, s.t. ∀p ∈ [m], pr(p) = c, then expected
value of |SUPU (q0)| is e(q0) = nck, wherek = |q0|, and Equation (5) becomesmn(1 + cS/(1+ε))n. For a
Zipf distributions,e(q0) = nck/k, for some constantc, 0 < c < 1. For example, in the case of a simple Zipf
distribution wherepr(p) = 1/p, we havee(q0) = n ×

∏
p∈q0

1/p ≤ n × 1/k! ≈ n × 1/(k × ek/e). In this case

Equation (5) becomesm(1 + cS/(1+ε))n, i.e. a factor ofn less than the uniform case. In summary, we have:

Proposition 4.5. The expected number of live-leaf nodesL is bounded bymn(1 + cS/(1+ε))n, in the case of a
uniform probability distribution on the attributes, and bym(1+cS/(1+ε))n in the case of a Zipf distribution, where
c is some constant,0 < c < 1.

Together, Propositions 4.4 and 4.5 give us the space complexity of the PMI.

5 Experiments

We evaluated algorithms CIP2 and PMI on two datasets. Experiments were ran on a Linux 930 MHz processor
with 256MB memory using C to construct the indexes and Microsoft SQL Server to execute queries on the indexes.
The first dataset was the Protein Sequence Database (http://pir.georgetown.edu/), which consists of
integrated collection of protein sequences. It has 75 distinct attributes. Not all data items have all the attributes
and some data items have multiple values for the same attribute. There are around 260,000 data items with a total
of 17.3 million attribute-value pairs and the total size of the database is 466 MB. The second database is called
FMA and consists of the metadata of MRI scans of brain. It is 166 MB in size with 1.4 million data items. Each
data item has exactly 7 attributes.

CIP2 uses a parameterc while PMI usesS. To compare them we chose c such as to give the same guarantees
as PMI. For Protein database, c was S/10 as PMI stored queries with a maximum size of 10. For FMA database, c
was put as S/7.

Figure 6 (a) shows the comparison of the sizes of indexes constructed using CIP2 and PMI on a log scale as a
function of the parameterS. For PMI we potted several curves for various values of the parameterε. For a fixed
value ofS, we observe that PMI performs better than CIP2 above a certain threshold value ofε beyond which

16

���
���
���
���

 epsilon= 4.00
 epsilon= 1

 epsilon= 0.25

���
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�� ��

L1 L2 L3 L4 L5 L6 L7

N
um

be
r o

f T
up

le
s

 (m
ill

on
s)

5

10

15

135

140

145

150

155

160

165

170

175

180

185

10000 100000

Ti
m

e
(s

ec
on

ds
)

S

Index Construction Times for Protein Database

"timing.data"

(a) (b)

Figure 7: Size ofLk (S = 16500) and time to construct the PMI (b). For Protein data.

CIP2 performs better. This threshold value decreases asS is increased. Figure 6 (b) shows the same graph for
FMI. Again, PMI performs better that CIP2 above a fixed threshold value ofε. But, unlike Protein database, this
threshold value does not increase asS increases. Both PMI and CIP2 algorithms seem to grow at the same rate.
Secondly, this threshold value is very low. Even forε = 0.05, PMI outperforms CIP2 for all values ofS.

Figure 7 (a) shows the sizes ofLk for the Protein database (it peaks atk = 3 and is zero afterk = 7), while
(b) shows the time needed to construct the index, excluding the time needed to load it into the relational database.

PMI was implemented on Microsoft’s SQL server and we evaluated the efficiency of answering queries in
terms of logical disk I/Os. We compared this with the number of I/Os required to answer same queries using the
join-approach (Sec. 2.2). The results are shown in Figure 8 (a) and (b). Instead of reporting real time (which is
distorted by factors beyond our control, such as cache hits etc) we report the total number of logical disk I/Os
performed by the database, which is equal to the number of reads with cold cache. The comparison shows that
queries using the naive method are around 9000 times slower than those using the PMI index on the Protein
database.

Next we consider the effects of hard and soft cut-offs on the index size. Figure 9 (a) shows, on a log scale,
the sizes of index on Protein database as a function ofS with ε = 0.05. We can see that soft cut-off results in a
saving of 15 to 35% while hard cut-off reduces space by 40 to 60%. Figure 9 (b) shows the same graph for FMA
database. For this database, with hard/soft cut in effect, the index size actually decreases asS decreases. This
is due to the fact that with a decrease in S, the hard/soft cut makes the index more specialized to answer smaller
queries. With Protein database, this phenomenon was not observed as it is a much larger database. WithS being
made sufficiently small, it would also show the same behavior but it would be prohibitively expensive to construct
index on Protein database for such a smallS.

To summarize, we have experimental shown that PMI can be highly efficient in answering partial match
queries, while consuming a only a practical amount of space.

6 Related Work

The earliest works on the partial match problem are thek-d-treesby Bentley[4], quadtreesby Bentley and
Finkel[10] andhashing and digital techniquesby Rivest[24]. All of these algorithms use space partitioning tech-
niques. They work well only when the number of attributesm is small compared to the numbern of data items

17

10

100

1000

10000

100000

1e+06

1e+07

10 100 1000 10000 100000 1e+06

N
um

be
r o

f I
/O

Query Size

Disk I/Os for queries with PMI and Joins on Protein database

With PMI
With Joins

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000 1e+06

N
um

be
r o

f I
/O

Query Size

Disk I/Os for queries with PMI and Joins on FMA database

With PMI
With Joins

(a) (b)

Figure 8: Efficiency of answering queries measured in logical disk I/Os.

(m ≈ log n), and run in timeO(n(1− k
d
)), wherek is the number of attributes specified in the query. In fact, Rivest

conjectured that any algorithm with linear space would requireΩ(n(1− k
m

)) time to answer such queries.
For a generaln andm, and in particular, for high-dimensional data (m � log n), there is no algorithm known

that is fast and has small space requirements. Therefore, it is believed [6] that this problem suffers from the curse of
dimensionality. Jayaram et al. [16] proved that in the cell probe model, any algorithm running in space polynomial
in m must makeΩ(m) probes. However, these lower bounds do not seem strong enough to justify the curse of
dimensionality conjecture. Charikar et. al. [7] have recently given two algorithms that run in sub-linear time and
sub-exponential space for largem (presented here in Section 4).

A related problem in multidimensional data is the nearest neighbors problem [5]. However, the approximate
version of the nearest neighbor problem does not suffer from the curse of dimensionality [18]. No such analog is
known for the partial match problem.

There has been work [2, 25, 32] on creating indexes to efficiently answer second order queries, i.e. queries
which specify the values of two attributes. However, all of these techniques work in a naive way by considering all
possible second order queries, dividing them into groups and storing the result for each group in a bucket. These
techniques are applicable only when attributes take very few values and cannot be efficiently extended to higher
order queries.

It has been shown [31] that most of the data structures based on space partitioning perform worse than linear
scan for dimensions above 10. Several alternatives have been proposed to optimize the linear data scan like VA-
files [29], signature based techniques [30] and bitmaps. In spite of these optimizations, the fundamental problem
persists: the running time is proportional to the number of dataitems.

7 Conclusions

We have described a simple approach to searching heterogeneous data throughpartial match queries. We also
described an efficient index structure for supporting partial match queries on heterogeneous data. The index can
be implemented easily on any relational database engine, and provides guarantees on the number of physical disk
I/O’s performed to answer a query.

One interesting application of this index is to structured information sources on the Web. An issue for such an
index is how to crawl the available sources and how to relate their schemas. We leave this for future work.

18

0

2e+07

4e+07

6e+07

8e+07

1e+08

1.2e+08

10000 100000

In
de

x
S

iz
e

S

Comparision of various cuts on Protein dataset for epsilon=0.05

Data size
No cut

Soft cut
Hard cut

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

100 1000 10000 100000 1e+06

In
de

x
S

iz
e

S

Comparision of various cuts on FMA dataset for epsilon=0.05

Data size
No cut

Soft cut
Hard cut

(a) (b)

Figure 9: Hard and Soft Cut-offs

References

[1] Karl Aberer, Philippe Cudŕe-Mauroux, and Manfred Hauswirth. The chatty web: Emergent semantics through gossip-
ing. In International World Wide Web Conference, Hungary, 2003.

[2] C. T. Abharam, S.P.Ghosh, and D.K.Ray-Chaudhuri. File organization schemes based on finite geometries.Inform.
Contr., 12(2):143–163, 1968.

[3] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A system for keyword-based search over relational databases. In
ICDE, pages 5–16, 2002.

[4] Jon Louis Bentley. Multidimensional binary search trees used for associative searching.CACM, 18(9):509–517, 1975.

[5] Stefan Berchtold, Christian B̈ohm, and Hans-Peter Kriegel. The pyramid-technique: Towards breaking the curse of
dimensionality. InSIGMOD 1998, Proceedings ACM SIGMOD International Conference on Management of Data,
June 2-4, 1998, Seattle, Washington, USA, pages 142–153. ACM Press, 1998.

[6] Allan Borodin, Rafail Ostrovsky, and Yuval Rabani. Lower bounds for high dimensional nearest neighbor search and
related problems. InAnnual ACM Symposium on Theory of Computing (STOC), pages 312–321, 1999.

[7] M. Charikar, P. Indyk, and R. Panigrahy. New algorithms for subset query, partial match, orthogonal range searching,
and related problems. In29th International Colloquium on Algorithms, Logic, and Programming, pages 451–462,
2002.

[8] B. Cooper, N. Sample, M. Franklin, G. Hjaltason, and M. Shadmon. A fast index for semistructured data. InVLDB,
2001.

[9] S. Dar, G. Entin, S. Geva, and E. Palmon. DTD’s DataSpot: database exploration using plain language. InVLDB, pages
645–649, 1998.

[10] Raphael A. Finkel and Jon Louis Bentley. Quad trees: A data structure for retrieval on composite keys.Acta Informa-
tion, 4:1–9, 1974.

[11] L. Galanis, Y. Wang, S. Jeffrey, and D. DeWitt. Locating data sources in large distributed systems. InVLDB, pages
874–885, 2003.

[12] A. Halevy, Z. Ives, P. Mork, and I. Tatarinov. Piazza: Data management infrastructure for semantic web applications.
In Proceedings of the Intenrnational Conference on the World Wide Web, 2003.

[13] A. Halevy, Z. Ives, D. Suciu, and I. Tatarinov. Schema Mediation in Peer Data Management System. InICDE, 2003.

[14] V. Hristidis and Y. Papakonstantinou. DISCOVER: keyword search in relational databases. InVLDB, 2002.

19

[15] Institute for Systems Biology. http://www.systemsbiology.org.

[16] T.S. Jayram, Subhash Khot, and Ravi Kumar Yuval Rabani. Cell-probe lower bounds for the partial match problem. In
Annual ACM Symposium on Theory of Computing (STOC), 2003.

[17] A. Kementsietsidis, M. Arenas, and R. J. Miller. Mapping Data in Peer-to-Peer Systems: Semantics and Algorithmic
Issues. InSIGMOD, pages 325–336, 2003.

[18] Jon M. Kleinberg. Two algorithms for nearest-neighbor search in high dimensions. InTwenty-ninth annual ACM
symposium on Theory of computing, pages 599–608, 1997.

[19] Stephen H. Koslow. Should the neuroscience community make a paradigm shift to sharing primary data?Nature
Neuroscience, 3(9):863–865, September 2000.

[20] Tanu Malik and Alex Szalay. Skyquery: A web service approach to federate databases. InProceedings of CIDR, 2003.

[21] R. J. Miller, L. M. Haas, and M. Herńandez. Schema Mapping as Query Discovery. InVLDB, pages 77–88, Cairo,
Egypt, September 2000.

[22] Nature Neuroscience Editorial. A debate over fmri data sharing.Nature Neuroscience, 3(9):845–846, Sep 2000.

[23] NIH statement on sharing research data.http://grants2.nih.gov/grants/policy/datasharing/index.htm, March 2002. U.S.
National Institutes of Health.

[24] Ronald L. Rivest. Partial-match retrieval algorithms.SIAM J. Comput., 5(1):19–50, 1976.

[25] S.P.Ghosh and C. T. Abharam. Application of finite geometries in file organization for records with multiple-valued
attributes.IBM J. Res. Develop., 12(2):180–187, 1968.

[26] Alexander S. Szalay, Jim Gray, Ani Thakar, Peter Z. Kunszt, Tanu Malik, Jordan Raddick, Christopher Stoughton, and
Jan vandenBerg. The sdss skyserver: public access to the sloan digital sky server data. InSIGMOD, pages 570–581,
2002.

[27] Jeffrey D. Ullman. Principles of Database and Knowledgebase Systems I. Computer Science Press, Rockville, MD
20850, 1989.

[28] H. Wang, S. Park, W. Fan, and P. Yu. ViST: a dynamic index method for querying XML data by tree structures. In
SIGMOD, pages 110–121, 2003.

[29] Roger Weber, Klemens B̈ohm, and Hans-J. Schek. Interactive-time similarity search for large image collections using
parallel VA-files.Lecture Notes in Computer Science, 1923:83–??, 2000.

[30] Roger Weber, Klemens B̈ohm, and Hans-J. Schek. Interactive-time similarity search for large image collections using
parallel VA-files.Lecture Notes in Computer Science, 1923:83–??, 2000.

[31] Roger Weber, Hans-Jörg Schek, and Stephen Blott. A quantitative analysis and performance study for similarity-search
methods in high-dimensional spaces. InProc. 24th Int. Conf. Very Large Data Bases, VLDB, pages 194–205, 24–27
1998.

[32] Sumiyasu Yamamoto, Shinsei Tazawa, Kazuhiko Ushio, and Hideto Ikeda. Design of a balanced multiple-valued file-
organization scheme with the least redundancy.ACM Transactions on Database Systems (TODS), 4(4):518–530, 1979.

20

