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Abstract

Consider XML content-based document routing: a
stream of XML documents are routed through a net-
work, and routing decisions are taken based on the
result of evaluating XPath predicates on these doc-
uments. Parsing XML documents and interpreting
XPath expressions is the main bottleneck in such sys-
tems. We propose a movel solution to speedup the
evaluation of XPath predicates based on precomput-
ing views for the XML documents. There are both
similarities and differences from the "view selection
problem” in relational databases. We describe an ar-
chitecture for using these views, discuss several de-
sign choices and make a brief theoretical analysis for
one special case. Finally, we report some initial ex-
periments, showing the potential for query speedup by
using stream views.

1 Introduction

We consider a class of XML applications in which a
continuous stream of XML documents is processed
and routed in a network of servers. Examples of such
applications include content-based XML routing [21],
selective dissemination of information (SDI) [2, 6],
and continuous queries [8]. XML documents are gen-
erated at certain nodes in the network. These doc-
uments then flow in the network and may get repli-
cated through the network’s servers. Servers only do
some minimal processing on the documents: evaluate
some boolean predicates, compute some aggregates
and forward the documents to one or more servers
in the network. Performance is critical in such ap-
plications, since servers usually need to keep up with
the network’s throughput. The main bottleneck in
achieving a high throughput is the XML process-
ing part: parsing and then evaluating a collection
of XPath expressions.
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A particular example of such an application is the
XML Routing system described in [21]. The project
aims to achieve low latency in the presence of fail-
ures, by sending multiple copies of a document from a
source to its destinations, and routing different copies
through different paths. Each router forwards every
XML document it receives to a subset of its output
links (to other routers or clients), and makes these
routing decisions based on the results of evaluating a
large number of XPath predicates (corresponding to
clients’ subscription queries) on the XML document.
No data processing is required beyond the evaluation
of XPath predicates. But the performance reported
in [21] with publicly available tools is very poor, since
each document needs to be parsed and then XPath
queries need to be evaluated at each server where it
is forwarded.

This paper proposes a new method of using views
that can significantly increase the throughput in such
applications — by a factor of up to 100 in our initial
experiments. In our approach, the XML data flow
is complemented by a second flow of wiews, which is
used by the servers to speed up the computation of
their XPath expressions. The views for each XML
document are computed only once, by the producer
of that document, and can then be used by all the
servers downstream. The key to our approach is that
the answer to a view is encoded in the header of the
XML document — the header contains the offsets of
the answers to the views within the XML document.
When a server receives an XML document, it tries to
answer its set of XPath expressions using the views
that are already precomputed on that document. In
the case of a hit, i.e., the set of expressions can be
evaluated using the views, both parsing the XML and
XPath evaluation are avoided and replaced with sim-
ple lookups inside the XML document. The observed
performance gains in this case are two orders of mag-
nitude compared to normal processing. If a server
cannot evaluate its expressions using the views (i.e.,
a miss), then it falls back on parsing the XML docu-
ment and normal XPath evaluation.

Our goal in this paper is to describe the general
architecture for using views in a stream processing



system, and then to define a specific representation
of the views and evaluate their potential speedup in
XML stream processing. In our particular represen-
tation, a view V is given by an XPath expression, and
the result of evaluating V' on an XML document con-
sists of the byte offset of the node selected by V' in the
document, or NULL if the result does not consist of
exactly one node. Given a set of views to be precom-
puted, called a view configuration, VC, the results of
all the views in the VC on a given XML document
is called a header. In principle, our approach raises
problems on several dimensions:

View Selection: given a set of statistics on the
XML streams, and the global query workload
at all servers, choose a view configuration (VC)
that maximizes the system’s expected through-
put. The VC is then made available to all servers
in the network. Optionally, we may decide to
choose different view configurations for different
type of XML documents; for example choose a
different VC for each DTD.

Online v.s. Offline Configuration: the view se-
lection can be done offline, in which case the
VC is computed before the system starts operat-
ing. The assumption here is that a central server
knows the query workload, network topology, as
well as statistics on the XML documents, and
can choose a VC that optimizes the global per-
formance. In the online configuration the VC is
chosen dynamically by the XML data providers,
based on feedback from the network. No cen-
tral server is needed, but, on the other hand, a
global optimum is harder to achieve. This paper
restricts the discussion to offline configuration.

Run-time Evaluation: given an XML document
with a set of materialized views (i.e., its header),
a server needs to choose a good plan to evalu-
ate all queries in its workload in order to max-
imize the probability of a hit. In the case of
conjunctive queries, servers may choose to eval-
uate conjuncts with low selectivity first and then
short-circuit the evaluation whenever a condition
evaluates to false.

Using materialized views in query processing is a
widely applied technique in database query process-
ing [23, 12, 7, 20, 25, 13, 5, 17]. The problem of view
selection has also received significant attention as of
late [1, 9, 14, 16, 22, 24, 4, 15, 18, 19, 10]. How-
ever, there are significant differences between mate-
rialized views in databases and materialized views
in stream processing. First, space comes almost for

free in database applications, while space is the pri-
mary limiting factor in stream processing, because
the views and the XML data stream share the same
network. For example, if the views are as large as
the XML documents, then the network throughput
for the combined stream is reduced to half of the
throughput without views, more than offsetting any
benefit gained from using those views. On the other
hand, while the cost of updating views is a concern
in databases, it is not in stream processing.

A second difference is that views in stream pro-
cessing are dynamic, while in database applications
they are static. Different documents may have dif-
ferent views and hence different headers. When the
XML document is first generated, a specific header
is selected that would best benefit all servers down-
stream in processing that particular document, and a
tag is attached to specify which header the document
carries. For example, in an XML document rout-
ing application where documents belong to different
domains, there may be a different header for each
domain. This idea can be pushed further and have
multiple documents within the same domain: when
a server has a miss for that document, and needs to
parse the entire document, it may decide to compute
another header to better help servers downstream.

This paper makes three contributions. First, it de-
scribes an architecture for using stream views, the
first of its kind. Second, we provide experimental
support for the potential speedup from using stream
views. Finally, it explores a few directions in the de-
sign space, and provides a theoretical study for one
particular choice.

2 Overview

We define here the problem formally and discuss a
number of techniques that define the solution space.

2.1 Problem Setting

We define here an XML Stream Processing Network,
to consists of a network of servers evaluating queries
on an input XML stream. Queries are conjunctive
queries, of the form:

Q ::= GA...AG

G : Expr Oprel Const

Each Expr is an XPath expression, and each Oprel

is any relational operator comparing the XML data
value to a constant, including arithmetic compar-
isons, substring searchers, string regular expression
matches, or datatype dependent operators such as
date comparisons.



For example: /news//company/text() ="IBM” A
/news/agency/text() contains "Reuters”.

A server, S, has a workload of conjunctive queries,
denoted by Qg. The server accepts incoming XML
documents, evaluates all queries in Qg on each such
document, and takes appropriate actions, such as
forwarding the document to other servers, updating
some aggregate values, updating a database, etc.

An XML stream processing network consists of a
set of servers, S, connected in a network topology, N,
that defines how documents are forwarded between
servers. XML documents are generated at source
nodes in the network, then sent along the network
edges. Each server evaluates its queries on each XML
document, and depending on the queries’ results, for-
wards the document to some of its output links.

2.2 Basic
Views

Stream Processing with

A view, V, is one XPath expression. Given an XML
document and a view, the value of the view consists of
the byte offset representing the first byte of the XML
fragment that represents that XPath expression, or
NULL if the result does not consist of exactly one
node. A view configuration consists of an ordered
collection of views, VC = (Vi,...,Vi): the value of
a VC on an XML document D is an ordered collec-
tion of offsets, VC(D) = (dy,...,dk), and is called a
header, and k is called the header size.

Stream processing with views proceeds in two
phases. The first is the view selection problem whose
goal is to compute the set VC, and the plan genera-
tion problem whose goal is to produce a plan at each
server S. This phase is done offline: view selection
is done on a central server, while plan generation on
all the servers. The inputs to view selection prob-
lem are the set of servers S, the connection network
N, the workload Qg at each server, as well as statis-
tics such as distribution of the size of the XML docu-
ments, selectivities of different predicates, probability
distributions on the XML stream, probability distri-
butions for each link in the network. The result of the
view selection problem consists a number k, called the
header size, and a set VC = (V4,...,Vi). Both k and
V C are now distributed to all servers in the network,
and each server S generates a plan for its workload
Qg. The plan essentially chooses an evaluation order
for the conjuncts in each query @ € Qg, with short-
circuit: whenever a conjunct evaluates to false, the
rest of the conjuncts are no longer evaluated.

In the second phase, the network processes XML
documents, as follows. For each XML document D,
its producer computes a header H = VC(D), and
“attaches” it to the document. Packets are then

routed through the network. Whenever a server S
receives an (H, D) pair, it evaluates its query plan.
The plan consists of repeated evaluation of XPath ex-
pressions, and condition tests. As long as the XPath
expressions requested can be satisfied by looking up
the header, the server does exactly that. If some
XPath expression is encountered for which there is
a miss, then the server parses D, and enters a tradi-
tional evaluation mode.

2.3 Advanced Stream Processing with
Views

We discuss here a number of extensions to the basic
stream processing method described in Sec. 2.2.

Dynamic Headers: in this approach we generate
multiple view configurations, VCy,...,VC,,
and dynamically choose a header type for each
document. An additional tag, t € {1,2,...,m},
is attached to each header H to indicate its
type. Header types may differ both in their
size, and in what XPath expressions they choose
to precompute. The following two exam-
ples illustrate the usefulness of dynamic head-
ers. (1) The DTDs for the XML documents
are known ahead, and there are m different
DTDs. Then it makes sense to choose a differ-
ent view configuration for each DTD. (2) Dif-
ferent servers in the network focus on differ-
ent parts of the data. Some servers test pri-
marily the fields /news/content/address/city
and /news/content/address/country, while
other servers focus on /news/header/agency
and /news/header/date. As documents travel
through the network it makes sense to dynami-
cally change their header to improve the hit rate
downstream.

Nested XML Elements: assume that the follow-
ing XPath expressions occur frequently in the
workload : /news/content/address/country,
/news/content/address/city,
/news/content/address/phone. There are
two ways to support them with views. The first
is to define three views in V'C': this however uses
up three entries in the header. Alternatively, we
could have a single entry in V', corresponding
to the view /news/content/address. Now
servers can read directly the byte offset of the
<address> element, and parse the document
from that offset in order to retrieve <country>,
or <city>, or <phone>. By moving up or down
the XML hierarchy we can trade off header size
with query speedup.



Multiple XML Elements: so far we have as-
sumed that if some XPath expression in VC
evaluates to two or more nodes on a spe-
cific document, then the corresponding entry
in the header is NULL: this is required, in
order to implement XPath’s existential se-
mantics. For example, the XPath predicate
/news/content/address/country = "France”
is true on a document with two address
elements, one in France and one in Belgium,
and storing only one offset in the header may
mislead the server in believing that there is
only one value. It is possible to extend views to
cope with multiple occurrences of elements. For
example, we could have two distinct views in
VC': /news/content/address[1]/country and
/news/content/address[2]/country. If there
are at most two addresses in the document, then
both can be represented in the header; if there
are three or more addresses, then they cannot
be represented and we issue a miss.

3 The View Selection Problem

We now discuss the view selection problem, which is,
in essence, an optimization problem. We show that
it is hard, even in the simplest settings. We then
propose a simple greedy algorithm for it, which we use
in our experiments to compute view configurations.

3.1 A Hardness Result

We consider here a simplified form of the view se-
lection problem. Let P = {pi,p2,...,pn} be the
set of all XPath expressions occurring in the system
and let § = {S1,Sa,...,Sm} be the set of servers in
the network. Each server S; has a set of z; queries
Q: = {qi1, 2, - - -, iz, } associated with it. The first
simplifying assumption we make concerns the topol-
ogy of the network: we assume the servers are ar-
ranged in a linear chain. Each server evaluates its set
of queries on every incoming document and forwards
the document to the next server in the chain. Sec-
ond, we assume that the number of conjuncts in each
query q;; is one, i.e., gij = pa,; Oprel Const for some
Pa;; € P.

If the maximum possible size of the view configu-
ration VC, is k (i.e., the header can store the off-
sets for no more than k& XPath expressions), then
the View Selection Problem is to select VC C P,
of size k, such that the total number of hits in the
network is maximized. For a hit to occur at a server
S;, VC must contain all the XPath expressions that
need to be evaluated at that server. If we denote

{Pai; | 7 = 1,2,...,2;} by s;, then this essentially
means s; C VC. Therefore, to maximize the number
of hits, we need to select such a VC' of size k that it
covers as many s; as possible.

It turns out that there is another way of looking
at the same problem. Let ¥’ = |P| — k and VC' =
P — V. Note that retaining V' C' of size k that max-
imizes hits is the same as discarding VC’ of size k'
that minimizes misses. (For a document, the number
of hits plus the number of misses is equal to the num-
ber of servers in the network. Therefore maximizing
hits is equivalent to minimizing misses.) Let us first
associate with each p; € P, aset P; = {S; | p; € si}.
P;j is the set of servers at which the XPath expression
p; occurs in a query. If for some j, p; € VC’, then a
miss occurs at every server in P;. Therefore, to min-
imize the number of misses, we need to select such a
VC' that |U, ey o Pjl is minimized. The restricted
view selection problem can now be stated as follows.

Definition 3.1 Restricted View Selection
(a) Optimization Problem:  Given the sets P,
P, P,,...,P, as defined above and a number k',
compute a VC' C P of size at least k' such that

, P;| is minimized. (b) Decision Problem:
|G95éreLvtc;Le {s‘|ets P, Pl,Pg,...(,lén as defined above
and numbers k' and x, does there exist a VC' C P
of size at least k" such that |U, cycr Pj| < x.

Theorem 3.2 The Restricted View Selection Prob-
lem is NP-complete.

Proof: Proof by reduction from the clique prob-
lem [11]. Given a graph G = (V,E) and a num-
ber k, we can construct an instance of the restricted
view selection problem. The set P is the set of
edges of the graph G. For each edge e; € FE, de-
fine P; = {v; | ¢; is incident on the vertex v;}. The
number k' is k(k —1)/2, and x is k. It is easy to see
that a solution to the restricted view selection prob-
lem exists if and only if the graph G = (V, E) has a
clique of size k.

O

Previous theoretical analyses of the view selection
problem (e.g., [10, 16]) have focused on SPJ queries
and on traditional database cost models. Here our
queries are simpler (conjunctions of path selections),
and our cost is modeled by hits and misses. Hence,
Theorem 3.2 does not follow from previous results.

3.2 A Greedy Algorithm

We propose here a simple greedy algorithm for the
view selection problem, that essentially uses heuris-
tics to guide its search. It can be extended to more



complex versions of the problem. The greedy algo-
rithm works by discarding, at each stage, the XPath
expression p, that is required by minimum number
of remaining servers to answer their queries.

Algorithm 1 Greedy Algorithm for Selecting the
View Configuration
1: for p; € P do
Py ={Si|pj € si}
end for
K =P|—k
fori=1—k" do
Select a p, € P that minimizes |P,]|
PP —{p:}
for p; € P do
Pj — Pj - Pm
end for
. end for

= =
= O

The algorithm works as follows. The set P con-
tains, at each stage, the set of XPath expressions that
are candidates for being a part of the view configu-
ration. Line 6 is the greedy decision-making step.
An XPath expression p, is chosen that is required by
minimum number of servers. After p, is discarded,
we take out the servers in P, from the list of servers
for the remaining XPath expressions. This is because
once p, is discarded, a miss is going to result at all
the servers in P, and for the later iterations, we want
to consider only those servers which could still have
a hit. When the algorithm terminates, the set P is
the required view configuration.

4 Experiments

Our experiments demonstrate the following: (a)
when the view configuration contains all the XPath
expressions used in the system, then very high
speedup can be achieved. (b) significant speedup can
be achieved even if a good fraction of the XPath ex-
pressions are missing from the view configuration.
Our execution environment consists of a dual
450MHz Pentium II with 1536MB memory, running
Red Hat Linux 7.1. Our compiler is gcc version
2.96.2, without any optimization options. We use
the Xerxes SAX parser (available from the Apache
foundation [3]) to parse XML. We run each experi-
ment five times and we report the average. To simu-
late a stream of documents, we take a document and
replicate it multiple times in the same file. There
are 10000 servers in this experiment. The number
of queries at servers vary from 1 to 5. Each query
contains a single conjunct. The XPath expressions in
the conjuncts for the queries come from a Zipf distri-

Time Per Document vs Header Size

40 q
- 35 4
]
Eo 30
35 25
o o
g $ 20
o = 15
o E
£ 10
- 5

0 T T T T |
0 5 10 15 20 25
Header Size

Figure 1: Average time to process a document at a
server as a function of header size

bution. Instead of distributing the queries on 10000
different machines, the queries for all the servers re-
side on the same machine. And during the experi-
ment, we evaluate the set of queries associated with
each server on every replica of the document in the
input file, and record the total execution time. We
use the greedy algorithm from Sec. 3.2 to compute the
view configurations for varying header sizes. Only the
queries associated with a given server are processed
in parallel. For every document-server pair, we reset
the parser to the beginning of the document. We ran
this experiment on documents of varying sizes. We
observed similar trends. So, we report numbers for
just one document, for lack of space.

Figure 1 shows the average time to process a doc-
ument at a server as a function of header size for
a document of size 52KB. Without the header, this
time is 37.99 ms, and with the header containing off-
sets for all the required XPath expressions, this time
is 0.372 ms, giving a speedup of more than 100. Even
when the header contains offsets for just two-thirds
(15 out of 22) of the XPath expressions present in
the system, we still get an average processing time of
4.61 ms, a speedup of 8.3. Thus, even when a fairly
good fraction of XPath expressions is not present in
the view configuration, a healthy speedup can be ob-
tained by using these views.

One might argue that, using a faster parser will
negate most of the speedup achieved by using the
views. However, this is not the case. If we use a
parser that is 10 times faster than the Xerces parser,
the maximum speedup achieved does go down by a
factor of 10. However, very rarely will we have the
case that the header will contain the offsets for all the
XPath expressions in the system. The portion of the
graph in Figure 1 that we want to concentrate on is
when some of the XPath expressions are missing from
the view configuration. When the view configuration



is missing 7 of the 22 XPath expressions, we still get
a speedup of 5.2 (down from 8.3), if we use a parser
that is 10 times faster.

5 Conclusions

We have described an architecture for XML stream
processing that uses views in a novel way. The key
idea is to encode the results of a view in the header
of the document and hence to avoid parsing the XML
and XPath expression evaluation. We outlined a gen-
eral architecture in which this idea can be applied,
and studied one instance of this architecture. For this
instance, we proved that the view selection problem is
hard and proposed a greedy algorithm. Our prelim-
inary experiments show that our approach can yield
significant speedups, even in cases where the headers
do not contain all the relevant views. Our approach
raises a rich set of problems that we are currently
pursuing, including the development of methods for
view selection, run-time evaluation, methods for syn-
chronization of data and views, and consideration of
different network topologies and application charac-
teristics.
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