Statistical methods for inferring the gene regulatory networks – Part I

Lecture 1 – May 14th, 2013 GENOME 541, Spring 2013

> Su-In Lee GS & CSE, UW suinlee@uw.edu

Motivation: Why network?

- DNA, RNA, protein, and other biological molecules don't operate alone.
- Instead, they operate as part of complex pathways or networks.
- Inferring the networks from data can lead to a better understanding of disease process, evolutionary process, etc.

Example: P53 pathway
 P53
 A transcription factor
 A tumor suppressor protein
 Regulates the expression of genes involved in apoptosis, inhibition of cell cycle progression and DNA repair.

This image is downloaded from Sino Biological Inc (www.sinobiological.com)

Independence assumptions in BNs

- The expression levels of G4 and G5 are related only because they share a common regulator G2.
- In mathematical term, G4 and G5 are conditionally independent given G2.

G4⊥G5 | G2

Independence assumptions in BNs

• The expression levels of G4 and G1 are related only because of gene G2.

G4⊥G5 | G2 G1⊥G4 | G2

10

Independence assumptions in BNs

- Quiz:
 - Would G5 independent of G1 given G3?
 (Would G1 and G5 are related only because of G3?)

Parameterization in BNs

- P(G1,G2,G3,G4,G5)
- = P(G1) P(G2|G1) P(G3|G1) P(G4|G2) P(G5|G1,G2,G3)

G4⊥G5 | G2 G1⊥G4 | G2

:

Directed vs. undirected models

Todav

Undirected graphical model (Gaussian graphical model)

Different conditional independence assumptions

17

Outline (5/14, 5/16)

Basic concepts on Bayesian networks

- Probabilistic models of gene regulatory networks
- Learning algorithms
- Evaluation
- Recent probabilistic approaches to reconstructing the regulatory networks

18

References

- A Primer on Learning in Bayesian Networks for Computational Biology
 - Chris Needhan et al. PLoS Computational Biology, 2007
- Probabilistic Graphical Models: Principles and Techniques
 - Daphne Koller and Nir Friedman, MIT Press 2009

9

Probability theory review

- Assume random variables Val(A)={a¹,a²,a³}, Val(B)={b¹,b²}
 P(A), P(B)
- Conditional probability

• Definition
$$P(A|B) = \frac{P(A,B)}{P(B)}$$

• Chain rule
$$P(X_1, ..., X_n)$$

$$= P(X_1) P(X_2 | X_1) P(X_3 | X_1, X_2) ... P(X_n | X_1, ..., X_{n-1})$$

Bayes' rule
$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Probabilistic independence

$$A \perp B$$
 if and only if $P(A|B) = P(A) P(A,B) = P(A) P(B)$

Bayesian network 101

- Directed acyclic graph
 - Node: a random variable
 - Edge: direct influence of one node on another
- The *Diabetes* example
 - Genetic risk (G), Diabetes (D), Hypertension (H)
 - Val (G) = {g¹,g⁰}, Val (D) = {d¹,d⁰}, Val (H) = {h¹,h⁰}
 - P(G,D,H) = P(G) P(D|G) P(H|G)

21

Bayesian network semantics

- A Bayesian network structure *G* is a DAG whose nodes represent random variables X₁,...,X_n.
 - PaX_i: parents of X_i in G
 - NonDesX_i: variables in G that are not descendants of X_i.
- Local Markov assumptions
 - G encodes the following set of conditional independence assumptions:

For each variable X_i,

X_i LNonDesX_i | PaX_i

The Student Example

- Variables
 - Course difficulty (D),Val(D) = {easy, hard}
 - Quality of the rec. letter (L), Val(L) = {strong, weak}
 - Intelligence (I),
- $Val(I) = \{i^1, i^0\}$
- SAT (S) ,
- Val (S) = $\{s^1, s^0\}$
- Grade (G) ,
- Val (G) = $\{g^1, g^2, g^3\}$
- Bayesian network G

Parameters

 Relationship among variables can be described based on conditional probability distributions (CPDs) – P(X_i|Parents of X_i)

• $P(X_1, ..., X_n) = \prod_i P(X_i | Parents of X_i)$

ล

Model selection problem

- How can we determine the Bayesian network of a certain set of variables?
- For example, how a change in a certain nucleotide in DNA (SNP), blood pressure and heart disease are related?
- There can be many possible "models"...

Model selection — another example How genes A, B and C regulate each other's expression levels (mRNA levels)? There can be many possible models...

Outline

- Basic concepts on Bayesian networks
- Probabilistic models of gene regulatory networks

- Learning algorithms
- Evaluation
- Recent probabilistic approaches to reconstructing the regulatory networks

Regulatory network

Bayesian network representation

Xi: expression level of gene i

Val(Xi): continuous

Joint distribution

P(X) = P(X1) P(X2 | X1) P(X3 | X1) P(X4 | X1) P(X5 | X3, X4) P(X6 | X3, X4)

Interpretation

Conditional independence

Conditional probability

distribution (CPD)?

CPD for discrete expression level

- After discretizing the expression levels to "high" and "low"...
 - Parameters probability values in every entry

Outline

- Basic concepts on Bayesian networks
- Probabilistic models of gene regulatory networks
- Learning algorithms

- Parameter learning
- Structure learning
- Structure discovery
- Evaluation
- Recent probabilistic approaches to reconstructing the regulatory networks

Reordering terms, we got

$$L(\Theta:D) = \prod_{m} P(E[m], B[m], A[m], C[m]:\Theta)$$

$$= \begin{pmatrix} \prod_{m} P(E[m]:\Theta_{E}) \times \\ \prod_{m} P(B[m]:\Theta_{B}) \times \\ \prod_{m} P(A[m]|B[m], E[m]:\Theta_{A|B,E}) \times \\ \prod_{m} P(C[m]|A[m]:\Theta_{C|A}) \end{pmatrix}$$

Parameters can be estimated for each variable independently!

General Bayesian networks

• Generalization for any Bayesian network:

$$L(\Theta:D) = \prod_{m} P(x_1[m], ..., x_n[m]: \Theta)$$

$$= \prod_{m} \prod_{i} P(x_i[m] | Pa_i[m]: \Theta_i)$$

$$= \prod_{i} L_i(\Theta_i: D)$$

 Parameters can be estimated for each variable independently!

