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Motivation: Why network?

= DNA, RNA, protein, and other biological molecules
don’t operate alone.

= Instead, they operate as part of complex pathways or
networks.

= Inferring the networks from data can lead to a better
understanding of disease process, evolutionary
process, etc.

Example: P53 pathway

= P53
= A transcription factor

= A tumor suppressor
protein

= Regulates the
expression of genes
involved in apoptosis,
inhibition of cell cycle
progression and DNA
repair.

This image is downloaded from Sino Biological Inc (www.sinobiological.com)
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Genetic regulatory network
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We can estimate networks using
observational gene expression data
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Learning gene regulatory networks

= Input: Gene expression data — measurement of
mRNA levels of all genes

Samples
(e.g. 200 patients
with lung cancer)

= Goal: Reconstruct the gene
regulatory network that controls
gene expression

= Method: Probabilistic graphical
models to represent the
regulatory network

Directed vs. undirected models

~
Directed graphical model
(Bayesian network; BN)

Undirected graphical model
(Gaussian graphical model)
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m Different conditional independence assumptions

Directed graphical models (BNs)

= Probability distribution for a gene expression level depends
only on its parents (regulators) in the network
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Independence assumptions in BNs

= The expression levels of G4 and G5 are related only because
they share a common regulator G2.

= In mathematical term, G4 and G5 are conditionally
independent given G2.
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Independence assumptions in BNs

= The expression levels of G4 and G1 are related only
because of gene G2.

@ G4 1G5 | G2
G1.1G4| G2
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Independence assumptions in BNs

= Quiz:
= Would G5 independent of G1 given G3?
(Would G1 and G5 are related only because of G37?)
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Parameterization in BNs

= P(G1,G2,G3,G4,G5)
= P(G1) P(G2|G1) P(G3|G1) P(G4|G2) P(G5|G1,G2,G3)

G41G5| G2
G1.1G4 | G2
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Directed vs. undirected models In undirected graphical models ...
Directed graphical model ( Undirected graphical model ) Edge indicates 2 genes are
(Bayesian network; BN) (Gaussian graphical model) Each node represents a gene | conditionally dependent
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= Different conditional independence assumptions = 2 genes that are

conditionally independent
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An example: A network among

An example
people not genes ...

Y s ) s
Mike Mike

O ANN

Mike and Sally have a -
. Mike and Joe are

shared love of musical theatre. .
big fans of Harry

Potter.

Joe SHARED PREFERENCE CAN BE Joe

FULLY EXPLAINED BY MIKE
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Directed vs. undirected models

Today

~
Directed graphical model
(Bayesian network; BN)

Undirected graphical model
(Gaussian graphical model)
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m Different conditional independence assumptions
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Outline (5/14, 5/16)

= Basic concepts on Bayesian networks <:|

= Probabilistic models of gene regulatory
networks

] Learningalgorithms ....................................................
= Evaluation

= Recent probabilistic approaches to
reconstructing the regulatory networks
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Probability theory review

= Assume random variables Val(A)={al,a?,a3}, Val(B)={b?,b?}
P(A), P(B)
= Conditional probability

= Definition P(A|B) = PF()?{;)

= Chainrule

P(Xy, ) X,)
= P(X;) P(X5 | X;)P(X5 X1, X;)-o. P(X [ X g0 Xi1)
=  Bayes’ rule

P(B|A)P(A)

P(A|B) = P(B)

=  Probabilistic independence

A 1 B ifandonlyif
P(A|B)=P(A) P(A,B)=P(A)P(B)
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Bayesian network 101

= Directed acyclic graph
= Node: a random variable
= Edge: direct influence of one node on another

= The Diabetes example
= Genetic risk (G), Diabetes (D), Hypertension (H)
= Val (G) = {g%,g%, Val (D) = {d%,d%}, Val (H) = {h%,h®}
= P(G,D,H)= P(G) P(D|G) P(H|G)
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Bayesian network semantics

= A Bayesian network structure G is a DAG whose nodes
represent random variables X,,...,X
= PaX;: parents of X;in G
= NonDesX;: variables in G that are not descendants of X;.

p*

= Local Markov assumptions

= G encodes the following set of conditional independence
assumptions:

For each variable X;,

X;LNonDesX; | PaX;

The Student Example

= Variables
= Course difficulty (D), Val(D) = {easy, hard}
= Quality of the rec. letter (L) , Val(L) = {strong, weak}
= Intelligence (1), Val(l) = {it,i%
= SAT(S), Val (S) = {s,s°}
= Grade (G), Val (G) = {g%,g%,8%}

= Bayesian network G

Intelligent

Exam difficulty
linfluences grade

RELATIONSHIP BETWEEN DIFFICULTY AND
LETTER CAN BE EXPLAINED BY GRADE

rade affects the
quality of letter
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Parameters

= Relationship among variables can be described based on
conditional probability distributions (CPDs) — P(X;| Parents of X;)

ot | at
06 | 04 5,

Conditional probability distributions
(CPDs):

Probabilities inside the tables are
parameters of the Bayesian network
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g
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0.8% | 0.01

= P(X,, ..., X,) = TT; P(X;| Parents of X;)
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Model selection problem

= How can we determine the Bayesian network of a certain
set of variables?

= For example, how a change in a certain nucleotide in DNA
(SNP), blood pressure and heart disease are related?

= There can be many possible “models”...

sos oo &

Model | Model II Model Ill

Exp1Exp2 Exp N

= Model selection

= Select the model X that best explains the data
argmax, P( Data | model X is true )

= How to compute P( Data | model X is true )
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Model selection — another example

= How genes A, B and C regulate each other’s
expression levels (mRNA levels) ?

= There can be many possible models...

Fods o™
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Computing P(Data | model Il is true)

= P(A,B,C | model ll is true)="?
= P(A)P(B|A)P(C|A)
= For samplei,
P(A=high)P(B= | A=high)P(C=low | A=high

Model Il

Sample i
Sample 1 Sample N
Gene A

= P(Data | model Il is true) =TT, P( [A,B,C] in sample i | model II)
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Outline

= Basic concepts on Bayesian networks

= Probabilistic models of gene regulatory
networks

= Learning algorithms
= Evaluation

= Recent probabilistic approaches to
reconstructing the regulatory networks
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Regulatory network

= Bayesian network representation
= Xi: expression level of gene i
= Val(Xi): continuous

= Joint distribution

= P(X) =P(X1) P(X2|X1) P(X3|X1) P(X4|X1)
P(X5|X3, X4) P(X6|X3, X4)

= Interpretation
= Conditional independence

Conditional probability
distribution (CPD)?

CPD for discrete expression level

m After discretizing the expression levels to “high”

and “low”...

= Parameters — probability values in every entry

X5=high | X5=low o
X3=high, X4=high | 0.3 0.7 ° 0
X3=high, X4=low | 0.95 0.05
X3=low, X4=high [ 0.1 0.9 »

Table CPD

X3=low, X4=low 0.2 0.8

\ parameters

<\
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Context specificity of gene expression

level
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Context specificity of gene expression

Context A
Basal expression level

Upstream region
of target gene (X5)

Cor?text B. Activator (X3
Activator induces
expression o

activator
binding site

Context C Repressor
Activator + repressor (x4)
decrease expression

Activator
(x3)

Context A

-

repressor activator

Context B Context C

Continuous-valued expression |

= Tree conditional probability distributions (CPD)
= Parameters — mean (u) & variance (02) of the normal

distribution in each context

= Represents combinatorial and context-specific regulation

Decision tree

false

binding site binding site
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Context A
K Context B Context C

\
parameters

090
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Continuous-valued expression Il

= Linear Gaussian CPD

= Parameters — weights wy,...,w\ associated with the parents
(regulators)

Linear Gaussian CPD

/ parameters

P(X5|ParX5:w) = N(Zwx;, €2)

\

Outline

= Basic concepts on Bayesian networks

= Probabilistic models of gene regulatory
networks

= Learning algorithms <:I
= Parameter learning
= Structure learning
= Structure discovery

= Evaluation

= Recent probabilistic approaches to
reconstructing the regulatory networks
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Known structure, complete data

E,B A N\
<H,L,L>
samples || <H,L,H>
<L,L,H>
<L,H,H> E B|P(A|EB)
: D Ol o 1
<L,H,H>
>'Hl:> Learner | Ssiierp HLr 3
L H| .8 .2
£ 8lra/EB) & o
PR R L L]-99 .01
@D,
HLl? ?
LH 2?2 ?
L L] ? ? J

= Network structure is specified
= Learner needs to estimate parameters

= Data does not contain missing values
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Learning parameters

= Training data has the form: D D
genes CAD
E[] B[ Al CH o

samples

D=
E[M] B[M] AIM] C[M]
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Likelihood function

= Assume i.i.d. samples D D
m Likelihood function is defined as:

L(®: D) = P(ELm], BIm], Alm],C[m]: ©)

genes

E[l B[l ALl Cfl

samples

E[M] B[M] AM] C[M]
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Likelihood function

= Joint distribution can be decomposed as: @D
<D,
L(®:D)=| | P(E[m],B[m], ,C[m]:
(©:D) ];[ (E[m], B[m], Am],C[m]: ©®) o
P(E[m]: @) x
_H P(B[m]: ®)x
L P(AIm]| B[m], E[m]: ©) x genes

P(C[m]| Am]: ®) E B[ Al

samples

i
<

Cil D

E[M] B[M] AM] C[M]D
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Likelihood function

= Reordering terms, we got @D D

L(©:D) =] [ P(E[m], B[m], Alm],C[m]: ®)
TTP(EIM]:©¢)x
[1P(BIm]:0;)x

[ TIP(AIm]| B[m], E[M]: © 5 ) x
m [ B[1]
[TPcIm]| AIm]: 0;,) ‘ :
= Parameters can be estimated for B[M A
each variable independently! ‘ '
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General Bayesian networks
= Generalization for any Bayesian network:
L(©:D) =[] P(x[m],..., x,[m]:©)
=HHmP(xi[m]| Pa,[m]:©,)
=HL (©,:D)

= Parameters can be estimated for each variable
independently!
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Unknown structure, complete data

E, B, A \
<H,L,L>
<H,L,H>
<L,L,H>
<L,H,H> 7T
: & o 1
<L,H,H>
>’ﬂ':> Learner |y LA RS
LH 8 2
£ 2l e8] B
D L L].99 .01
HH 2 2
HLl? 2
LH 2 2
LL? 2 J

= Network structure is not specified
= Learner needs to estimate both structure and parameters

= Data does not contain missing values i
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