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LET’S CONSIDER THE SIMPLEST
EXAMPLE.

The Thumbtack example

m Parameter estimation for a single variable

= Variable
= X - an outcome of a thumbtack toss
= Val(X) = {head, tail}

= Data
= A set of thumbtack tosses: x[1] ... x[M]
heads tails
A L

Maximum likelihood estimation

= Say that P(x=head) = O, P(x=tail) = 1-0
= P(HHTTHHH...<M, heads, M tails>; ©) =

= Definition: The likelihood function
= L(®:D)=P(D; 0)

= Maximum likelihood estimation (MLE)

= Given data D=HHTTHHH...<M, heads, M, tails>, find © that
maximizes the likelihood function L(© : D).

Likelihood function

Probability of HHTHH,

given P(H) = 0: 8
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MLE for the Thumbtack problem

= Given data D=HHTTHHH...<M, heads, M, tails>
= MLE solution 8" = M, / (M,+M,).

= Proof:

Bayesian Network with table CPDs

The Thumbtack example

&

Joint distribution P(X)
Parameters 0
Data D: {H..x[m]...T}
Likelihood function

Mh(1_Q\Mt
L(6:D) = P(D;0) oh(1-6)
MLE solution f= Mh

Mh +Mt

'S

The Student example

Intelligence

P(1,D,G) =
61 6, Bg)10

D: {(i%,d%g")...(i(m],d[m],g[m])...}

QM ot 0‘"”:;0 9M Dp-dt gMMO 0 Mo-dudod
I=i ;

1= “D=d* “D=d® ~G=g'|I=i*,D=d"

0 _ MG:g].l:ii‘D:dG
G=g'I=i*,D=d° M

/=t p=a® 10

Unknown structure, complete data
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= Network structure is not specified
= Learner needs to estimate both structure and parameters
= Data does not contain missing values
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Score-based learning

= Define scoring function that measures how well a
certain structure fits the observed data.

Score(G,) = 10 Score (G,) =1.5  Score (G;) =0.01
G, G, G;
Q) @ || E,
@D, > D
4 @D,
Q

m Search for a structure that maximizes the score.
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Structure score
= Likelihood score: P(D]S, éﬁ e Rl o ze

parameters

= Bayesian score
= Average over all possible parameter values

P(D|S) = j P(D|S,0)P(0|S)do

Marginal likelihood | Likelihood | Prior distribution over
parameters

m Penalized likelihood score

log P(D|S, 6, )— C-model complexity(S, 85, D)
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Decomposability of scores

= Likelihood score
L(®:D)= HLI. (®,:D) (seeslide 11)

= Bayesian score
P(D|S) =_[P(D|S,9)P(9|S)dg
- L)l.__@ H(H P(x,[m]| Pa,[m]: Q-)JP(@i :5) dO
= H-[@), (H P(x,[m]| Pa,[m]: ®i)JP(®i :8)dO,

=[] BayesianScore(®, : D)

Search for optimal network structure

= Start with a given network structure.
= Empty network
= Best simple structure (e.g. tree)
= A random network

At each iteration
= Evaluate all possible changes

= Apply change based on score

= Stop when no modification improves the score.

15

Search for optimal network structure

m Typical operations: B D

@
o o
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T
> <>
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Search for optimal network structure

= Typical operations:

=D
oo
>

Ascore =

SO
&5 Score decomposability:
At each iteration only need to score
0 the site that is being updated !
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Outline

= Basic concepts on Bayesian networks

= Probabilistic models of gene regulatory
networks
= Learning algorithms
= Parameter learning
= Structure learning
= Structure discovery <:|

= Evaluation

= Recent probabilistic approaches to
reconstructing the regulatory networks

Structure discovery

= Task: Discover structural properties
= |s there a direction connection between X and Y?
= Does X separate between two “subsystems”?
= Does X causally affect Y?

= Example: scientific data mining

= Disease properties and symptoms
= Interactions between the expression of genes

19

Model averaging
P(SID)

i
NN NN

= There may be many high-scoring models
= Answer should not be based on any single model

= Want to average over many models

20
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P(sID)

O

[ ]
DD OO O
<:>:;; q;::;; D> D Cf;};;’ :i;%:D
f(s) o (] 1 (] (]
m Define a structural feature f(S) of a model S.

= For example: 1 ifagraphShas4—C
0 otherwise

fKS)={

= We are interested in computing

Epsml/ (S)]= Zf(S)P(S | D)

21

Bootstrapping

= Sampling with replacement

genes

experiments —————*

Original data Bootstrap data 1
v v
[ 4
“A_. S\

Inferring sub-networks from perturbed expression profiles, Pe’er et al. Bioinformatics 2001

sEstimated confidence of each edge i

_# networks that contain the edge
total # networks (N)

Bootstrapping

= Sampling with replacement

Inferring sub-networks from perturbed expression profiles, Pe’er et al. Bioinformatics 2001 23

Outline

= Basic concepts on Bayesian networks

= Probabilistic models of gene regulatory
networks

= Learning algorithms

= Evaluation <:|

= Predicted co-regulated groups of genes
= Putative regulator-regulatees

= Recent probabilistic approaches to
reconstructing the regulatory networks

24
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Functional coherence of gene clusters

= Gene Ontology (GO) [http://www.geneontology.org/]

= The GO database provides a controlled vocabulary to describe
gene and gene product attribute in any organism.
= Set of biological phrases (GO terms) which are applied to
genes
= Organized as three separate ontologies
= Molecular functions
= Biological processes
= Cellular components
= Each gene may
= Have more than one in molecular function.
= Take part in more than one biological process.
= Act in more than one cellular component.
25

Structure of ontologies

m Shows the relationship between different terms

= One term may be a more specified description of another more
general term.

= Shows hierarchies of the terms (directed acyclic graph).
= Each child-term is a member of its parent-term

B all: al [view

Meration [uew g

il proliferation in bane Marrow [v

Predicted regulatory interaction |

= Say that your network suggests:

Module A

= If HAP4 is a transcription factor,
= Targets should have a binding site for HAP4.
= Or there should be different kind of evidence that HAP4 binds to
genes in Module A (chip-chip or chip-seq data).

Module A

HAP4

= Say that your network suggests:

Module A

m If HAP4 really regulates module A, deletion (or
overexpression) of HAP4 should lead to significant
up/down- regulation of genes in module A.

= There are many publicly available gene expression data that
measure expression of genes after deleting/over-expressing a
certain gene.

28
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Create functional categories

s For each GO term,

= Genes that have the same GO term form a functional category

= Other gene annotation systems

= KEGG: Kyoto Encyclopedia of Genes and Genomes
[http://www.genome.jp/kegg/]

= Molecular Signature Database [http://www.broadinstitute.org/gsea/msigdb/index.jsp]

B W GORGES 796 | ool prodleration invobied I i e piradins]

Functional categories?®

Functional coherence

Modules Known functional categories

Gene ontology (GO)
http://www.geneontology.org/
Predicted targets of regulators

Sharing TF binding sites

Module 1 Cholesterol
synthesis

= How significant is the overlap?
= Calculate P(# overlap 2 k | m, n, N; two groups are independent)

based on the hypergeometric distribution 30

Examples

= Say N=1000, m=100, n=200 genes
= If k=40 genes in the intersection, p-value = 2.7410e-07.
= If k=30, p-value = 0.0039
= If k=20, p-value = 0.4394.

)|

Module 1 Cholesterol synthesis

= How significant is the overlap?

= Calculate p-value = P(# overlap = k | m, n, N; two groups are
independent), based on the hypergeometric distribution
= What p-values are considered to be significant? 31

Multiple hypothesis testing

= Say that there are 200 modules and 3000 functional categories

Modules Known functional categories

= How many hypotheses are we testing?
= 200 x 3000 = 600,000
= Is p-value of 0.001 significant? (p-value=0.001: frequency of
observing the # genes in intersection by random.)
= P-values should be “corrected”
= Bonferroni correction: min(1, p-value x # hypotheses)

= FDR correction: control false discovery rate 32
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Outline Challenges

. . Too large search space
= Basic concepts on Bayesian networks

= For a network with n genes, what is the number of possible

= Probabilistic models of gene regulatory structures? ~ g2
networks
= Learning algorithms = Computationally costly

= Evaluation

= Predicted co-regulated groups of genes Heuristic approaches may be trapped to local maxima.

= Putative regulator-regulatees

Biologically motivated constraints can alleviate the problems

= Module-based approach

= Recent probabilistic approaches to
reconstructing the regulatory networks
= Only the genes in the candidate regulators list can be parents of

other variables
33 34

The Module networks concept Feature selection via regularization
Tree CPDs __

Module 1

@ activator

- X expression |

@ Module 2
Cxa D repressor

> . expression

Module 3
target gene
@ @ expression_I”

= Assume linear Gaussian CPD

= MLE: solve maximize,, - (Zwx; - Y)?

regulation
program

Regulatory network

Candidate regulators (features)

o™ Yeast: 350 genes
[V ] Mouse: 700 genes
52 parameters
35
-3 x Repressor X3 UEES—S.IIII1 2 P(Y|x:w) = N(Zwx;, €2)
0.5x 1 r o O
0 induced ‘Q'SS' @-\5' ; @-‘S'
| (Jo(‘ Qo‘\ (’é‘ Problem: This objective learns too many regulators
A 35 36
Linear CPDs repressed Segal et al. Nat Genet 03, JMLR 05




L, regularization

= “Select” a subset of regulators
= Combinatorial search?

= Effective feature selection algorithm: L, regularization (LASSO)
[Tibshirani, J. Royal. Statist. Soc B. 1996]

= minimize,, (Ew;x; - Y)+ Z C |w;|: convex optimization!
= Induces sparsity in the solution w (Many w;'s set to zero)

Candidate regulators (features)
Yeast: 350 genes
Mouse: 700 genes

P(Y|x:w) = N(Zwx;, €2)

®
- ®
Linear module network e \(:
-3x \ K \/L/p
" i digs
Iterative procedy .5 x GEaDmmI——— .\(

= Learnaregulato ;% D | \‘“C)/ -
I

= Fi R

= Cluster genes in

£ L regularized optimization
+ minimize,, (Zw;X; - Er,gets)2+ Z C [ w;|
spPL2) ——

<@ @

Lee et al., PLoS Genet 2008

Let’s consider the module network
with tree CPD:s...
LEARNING

Learning module networks

= Score-based learning — Find the structure that
maximizes Bayesian score log P(S|D) (or via
regularization)

= “Hidden” variables
= How genes are organized into modules is not known.

= Expectation Maximization (EM) algorithm: Repeat
= E-step: filling in hidden variables

= M-step: parameter estimation

40
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Learning module networks

m Learning algorithm

= Initialization: Group genes by (k-means) clustering into
modules

= M-step: Given a partition of the genes into modules, learn
the best regulation programs (tree CPD) for modules.

= E-step: Given the inferred regulatory programs, we reassign
genes into modules such that the associated regulation
program best predicts each gene’s behavior.

= Repeat until convergence.

41

®
Learning module networks s \\g-
= Iterative procedure (EM-steps) k\/‘ :

= Cluster genes into modules (E-step)
= Learn regulatory programs for modules (tree CPD) (M-step)

Maximum increase in ,
s - the Bayesian score

M-step: Learning regulatory programs

m Combinatorial search over the space of trees

Arrays sorted in original
order

Arrays sorted according
to expression of HAPA—

Segal et al. Nat Genet 2003

Segal et al. Nat Genet 2003
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M-step: Learning regulatory programs

a Score:
logP(M|D) =
log IP(D| M,u,0)P(u,0) dudo

o Score of HAP4 split:
logP(M|D) =
log JP(Dyapagl Mo )P(i,0) dudo
+log [P(Dyapas| Mu,0 )P(u,c) dudc

Segal et al. Nat Genet 2003 0

Learning module networks

= Iterative procedure
= Cluster genes into modules (E-step)

= Learn regulatory programs for modules (M-step)
Candidate
~--._ regulators

Maximum increase in

M-step: Learning regulatory programs

o Split as long as the
score improves

> LA

0
o Score of HAP4 split:
[ a— h A L4 ) log P(M | D) o
. =Tt - log [P(Dyapanl Mo )Py, 0) duds
+log [P(Dyapav| Mu,o )Py, 0) dudo
o Score of HAP4/YGRO043C split:
log P(M | D) o
1 /\ 10g | P(Dyiapin /M 11,0)P(,0) duds
+ + 109 [ P(Dyupsv Dysroszon /Moty )P, ) Gdﬂdff
+ 109 J A(Duupss Dysrossc v IMyis,0)P(u,0) duclo

Summary

= Basic concepts on Bayesian networks

= Probabilistic models of gene regulatory
networks

= Learning algorithms
= Evaluation

= Recent probabilistic approaches to
reconstructing the regulatory networks
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