Statistical methods for haplotype inference – Part I

Lecture 3 – May 21th, 2013 GENOME 541, Spring 2013

> Su-In Lee GS & CSE, UW suinlee@uw.edu

Learning gene regulatory networks

Input:

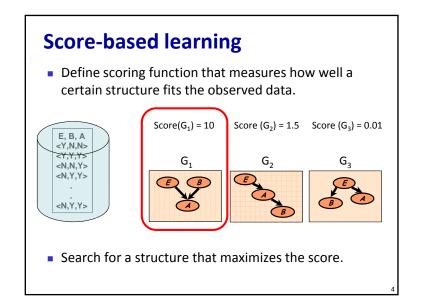
Measurement of mRNA levels of all genes from microarray or ma-sequencing

Samples (e.g. 200 patients with lung cancer)

Goal: Reconstruct the gene regulatory network underlying genome-wide gene expression

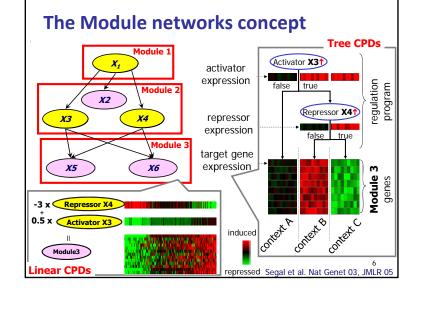
Method: Probabilistic models to represent the regulatory network

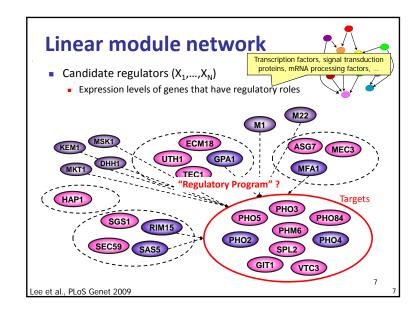
Unknown structure, complete data | E, B, A | C, L, L, B | C, L, L, B

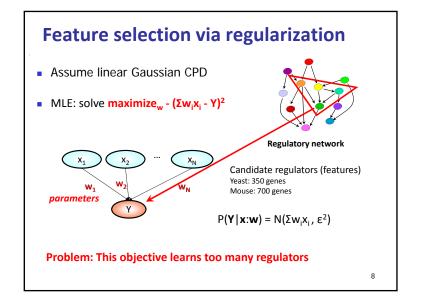


Challenges

- Too large search space
 - What is the number of possible structures of *n* genes? $\sim 3^{n^2/2}$
- Computationally costly
- Heuristic approaches may be trapped to local maxima.
- Biologically motivated constraints can alleviate the problems
 - Module-based approach
 - Only the genes in the candidate regulators list can be parents of other variables

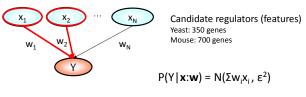




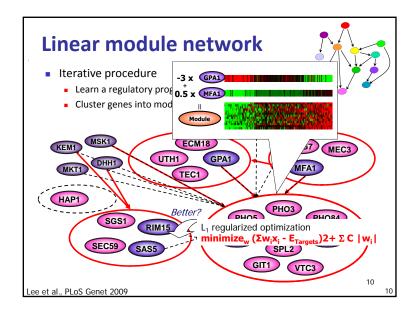


L₁ regularization

- "Select" a subset of regulators
 - Combinatorial search?
 - Effective feature selection algorithm: L₁ regularization (LASSO)
 [Tibshirani, J. Royal. Statist. Soc B. 1996]
 - minimize_w (Σw_ix_i Y)²+ Σ C |w_i|: convex optimization!
 ⇒ Induces sparsity in the solution w (Many w_i's set to zero)



9



Summary

- Basic concepts on Bayesian networks
- Probabilistic models of gene regulatory networks
- Learning algorithms
 - Parameter learning
 - Structure learning
 - Structure discovery
- Evaluation
- Recent probabilistic approaches to reconstructing the regulatory networks

Haplotype inference (5/21, 5/23)

Background & motivation

- Problem statement
- Statistical methods for haplotype inference
 - Clark's algorithm
 - Expectation Maximization (EM) algorithm

Today

- Coalescent-based methods and HMM
- Haplotype inference on sequence data
- Example applications

Genetic variation

- Single nucleotide polymorphism (SNP)
 - Each variant is called an *allele*; each allele has a *frequency*

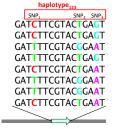
SNP₁ SNP₂ SNP₃
GATCTTCGTACTGAGT
GATCTTCGTACTGAGT
GATTTTCGTACGGAAT
GATTTTCGTACTGAGT
GATCTTCGTACTGAGT
GATCTTCGTACTGAAT
GATCTTCGTACTGAAT
GATTTTCGTACGGAAT
GATTTTCGTACGGAAT
GATCTTCGTACTGAAT

- How about the relationship between alleles of neighboring SNPs?
 - We need to know about haplotype

13

Haplotype

- A combination of alleles present in a chromosome
- Each haplotype has a frequency, which is the proportion of chromosomes of that type in the population
- There are 2^N possible haplotypes
 - But in fact, far fewer are seen in human population



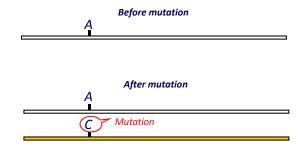
Haplotype frequencies

 $\begin{aligned} &\text{P(haplotype}_{123} = \text{TGA}) = 3/8 \\ &\text{P(haplotype}_{123} = \text{CTG}) = 2/8 \\ &\text{P(haplotype}_{123} = \text{CTA}) = 2/8 \\ &\text{P(haplotype}_{123} = \text{TTG}) = 1/8 \end{aligned}$

14

History of two neighboring alleles

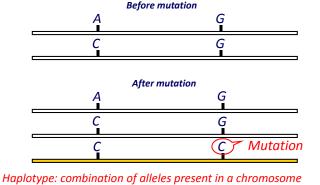
 Alleles that exist today arose through ancient mutation events...

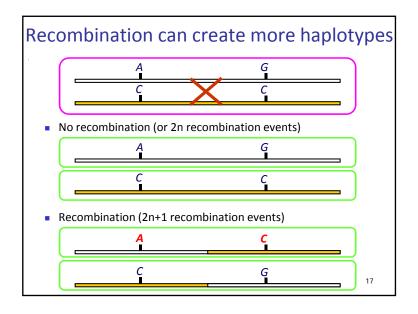


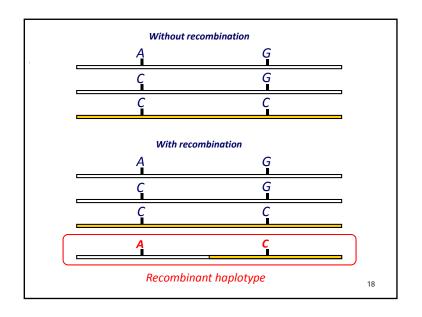
15

History of two neighboring alleles

• One allele arose first, and then the other...





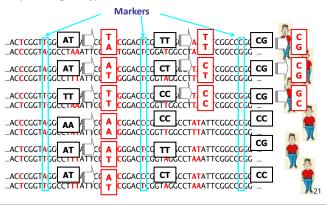


Haplotype What determines haplotype frequencies? • Recombination rate (r) between neighboring alleles in the population r is different for different regions in genome Linkage disequilibrium (LD) Non-random association of alleles at two or more loci, not necessarily on the same **Haplotype frequencies** $P(haplotype_{123} = TGA) = 3/8$ GATTTTCGTACGGAAT $P(haplotype_{123} = CTG) = 2/8$ GATTTTCGTACTGAGT $P(haplotype_{123} = CTA) = 2/8$ GATCTTCGTACTGAAT $P(haplotype_{123} = TTG) = 1/8$ GATTTTCGTACGGAAT GATTTTCGTACGGAAT GATCTTCGTACTGAAT, 19 chromosome ==

How can we measure haplotypes?

- Haplotypes can be generated through laboratorybased experimental methods
 - X-chromosome in males
 - Sperm typing
 - Hybrid cell lines
 - Other molecular techniques
- Computational approaches
 - Input: Genotype data from individuals in a population
 - Output: Haplotypes of each individual in the population

 Sequence and SNP array data generally take the form of unphased genotypes



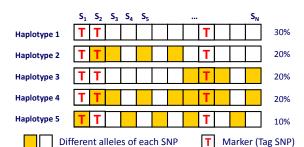
Motivation

- Enormous amounts of genotype data are being generated
 - Inexpensive genome-wide SNP microarrays
 - Whole-genome and whole-exome sequencing tools
- Determination of haplotype phase is increasingly important
 - Characterizing the relationship between genetic variation and disease susceptibility
 - Imputing low frequency variants

22

Why useful in GWAS?

- In a typical short chromosome segment, there are only a few distinct haplotypes
- Carefully selected markers can determine status of others
- We can test for association of untyped SNPs



Example

- Holm et al. Nat Genet (2011)
 - Used the inferred haplotypes for accurate imputation of a putative rare causal variant in other individuals, to obtain a stronger association signal

A rare variant in MYH6 is associated with high risk of sick sinus syndrome

Hilma Holm^{5,*}, Daniel F. Gudbjartson^{5,*}, Patrick Sulem¹, Gibl Masson¹, Hafdin Th Helgadottir¹, Carlo Zanon¹, Othor Th Magnusson¹, Agas ir Helgam¹, Jona Saemahdottir¹, Arnaldun Gefanon¹, Hirafalbin Settandottir¹ Helma Sedanson¹, Homas Werg², Hornon Rofan¹, Landern A. Krimeney², Ildust Parvet², Eguthon¹, Radia Mahammad³, Dan M. Rofan¹, Davood Drabra², Gudmar Thodelitosn¹, Girgi Walters¹, Augentine Kong¹, Huma Thoreticodettics¹, David O Arnar^{2,8} & Kari Sefanson², Sa Kari Sefanson², Sa Kari Sefanson², Thoretics Canada Sanda Sanda

Example

- Sick sinus syndrome (SSS)
 - Characterized by slow heart rate, sinus arrest and/or failure to increase heart rate with exercise
- Genome-wide association scan of 7.2M SNPs with 792 SSS cases and 37,592 controls

Source	SNP	P value	OR	MAF
Directly genotyped	rs1055061	2.2 × 10-5	1.57	0.055
Imputed from HapMap2	rs10130976	4.4×10^{-7}	1.57 1.74 2.06 3.64	0.048
Imputed from the 1000 Genomes project	14-22399934	5.8 × 10-9	1.74 2.06 3.64 3.05	0.052
Imputed from the Human1M-Duo chip	rs2231801	1.3×10^{-13}	3.64	0.010
Imputed from the HumanOmnil-Quad chip	rs2231801	1.5×10^{-10}	3.05	0.012
Imputed from the HumanOmnil-Quad chip	rs28730774	1.6×10^{-11}	3.49	0.010

• The association analysis yielded association with several correlated SNPs in and near MYH6-MYH7 (never before associated with SSS)

Outline

- Background & motivation
- Problem statement

- Statistical methods for haplotype inference
 - Clark's algorithm
 - Expectation Maximization (EM) algorithm

Today

- Coalescent-based methods and HMM
- Haplotype inference on sequence data
- Example applications

Typical genotype data

- Two alleles for each individual for each marker
 - Chromosome origin for each allele is unknown

Observation

{CG} {TC} {GA}

Multiple haplotype pairs can fit observed genotype

Possible states

Use information on relatives?

- Family information can help determine phase at many markers
- Can you propose examples?
- Genotype: {AT} {AA} {CG}
 - Maternal genotype: {TA} {AA} {CC} → TAC/AAC
 - Paternal genotype: {TT} {AA} {CG} → TAC/TAG
 - Then the haplotype is AAC/TAG

Example – inferring haplotypes

- Still, many ambiguities might not be resolved
 - Problem more serious with larger numbers of markers
- Genotype: {AT} {AA} {CG}
 - Maternal genotype: {AT} {AA} {CG}
 - Paternal genotype: {AT} {AA} {CG}
 - Cannot determine unique haplotype
- Problem
 - Determine haplotypes without parental genotypes

29

What if there are no relatives?

- Rely on linkage disequilibrium (LD)
 - LD: non-random association of variants at different sites in the genome
- Assume that population consists of small number of distinct haplotypes

30

Haplotype reconstruction

- Also called, phasing, haplotype inference or haplotyping
- Data
 - $\bullet \quad \mathsf{Genotype} \ \mathsf{on} \ \mathit{N} \ \mathsf{markers} \ \mathsf{from} \ \mathit{M} \ \mathsf{individuals}$

Individual i

A marker₃

- Goals
 - Frequency estimation of all possible haplotypes
 - Haplotype reconstruction for individuals
 - How many out of all possible haplotypes are plausible in a population?

31

Statistical methods for haplotypes inference

- Let's focus on the methods that are most widely used or historically important
 - Browning and Browning, Nat Rev Genet. 2011

Published in final edited form as: Nat Rev Genet.; 12(10): 703–714. doi:10.1038/nrg3054.

Haplotype phasing: Existing methods and new developments

Sharon R. Browning^{1,*} and Brian L. Browning^{2,*}

¹Department of Biostatistics, University of Washington, Seattle WA 98195, USA

²Division of Medical Genetics, Department of Medicine, University of Washington, Seattle WA 98195, USA

Outline

- Background & motivation
- Problem statement
- Statistical methods for haplotype inference
 - Clark's algorithm

- Expectation Maximization (EM) algorithm
- Coalescent-based methods and HMM
- Haplotype inference on sequence data
- Example applications

33

Clark's haplotyping algorithm

- Clark (1990) Mol Biol Evol 7:111-122
- One of the first published haplotyping algorithms
 - Computationally efficient
 - Very fast and widely used in 1990's
 - More accurate methods are now available

34

Clark's haplotyping algorithm

- Find unambiguous individuals
 - Initialize a list of known haplotypes
- What kinds of genotypes will these have?
- Unambiguous individuals
 - Homozygous at every locus (e.g. {TT} {AA} {CC})
 Haplotypes: TAC
 - Heterozygous at just one locus (e.g. {TT} {AA} {CG})
 Haplotypes: TAC or TAG

35

Unambiguous vs. ambiguous

Haplotypes for 2 SNPs (alleles: A/a, B/b)

A A A A A A B B b b b

a a a a a B B B B

a A a A b b

Ambigous Genotype

Multiple Underlying Genotypes Possible

Unambigous Genotypes Underlying Haplotype is Known

Clark's haplotyping algorithm

- Find unambiguous individuals
 - Initialize a list of known haplotypes
- Resolve ambiguous individuals
 - If possible, use two haplotypes from the list
 - Otherwise, use one known haplotype and augment list
- If unphased individuals remain
 - Assign phase randomly to one individual
 - Augment haplotype list and continue from previous step

37

Parsimonious phasing - example

- Notation (more compact representation)
 - 0/1: homozygous at each locus (00,11)
 - h: heterozygous at each locus (01)

10100h

101000

h01h00

101000 001100

0 h h 1 h 0

001100 010110

38

Parsimony algorithm

- Pros
 - Very fast
 - Can deal with very long sequences
- Cons
 - No homozygotes or single SNP heterozygotes in the data
 - Some haplotypes may remain unresolved
 - Outcome depends on order in which lists are transversed
 - Naïve, not very accurate (no modeling)

39

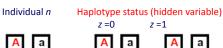
Outline

- Background & motivation
- Problem statement
- Statistical methods for haplotype inference
 - Clark's algorithm
 - Expectation Maximization (EM) algorithm

- Coalescent-based methods and HMM
- Haplotype inference on sequence data
- Example applications

The EM haplotyping algorithm

- Excoffier and Slatkin Mol Biol Evol (1995); Qin et al. Am J Hum Genet (2002); Excoffier and Lischer Molecular ecology resources (2010)
- Why EM for haplotyping?
 - EM is a method for MLE with hidden variables.
- What are the hidden variables, parameters?
 - · Hidden variables: haplotype state of each individual
 - Parameters: haplotype frequencies

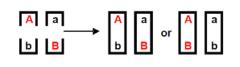


A a or B b

Haplotype frequencies (parameters)

 p_{Ab} , p_{aB} , p_{AB} , p_{ab} 41

Assume that we know haplotype frequencies



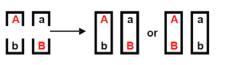
For example, if

 $P_{AB} = 0.3$ $P_{ab} = 0.3$ $P_{Ab} = 0.3$ $P_{aB} = 0.1$

- Probability of first outcome:
 - $P_{Ab}P_{aB} = 0.06$
- Probability of second outcome:
 - $P_{AB}P_{ab} = 0.18$

42

Conditional probabilities are ...



For example, if

 $P_{AB} = 0.3$ $P_{ab} = 0.3$

 $P_{ab} = 0.3$ $P_{Ab} = 0.3$

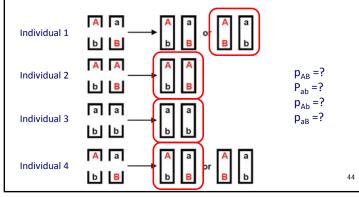
 $P_{aB} = 0.1$

- Conditional probability of first outcome:
 - $P_{Ab}P_{aB} / (2P_{Ab}P_{aB} + 2P_{AB}P_{ab}) = 0.25$
- Conditional probability of second outcome:
 - $P_{AB}P_{ab}/(2P_{Ab}P_{aB}+2P_{AB}P_{ab})=0.75$

43

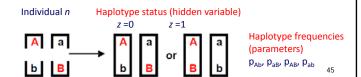
Assume that we know the haplotype state of each individual

Computing haplotype frequencies is straightforward



EM as Chicken vs Egg

- If we know haplotype frequencies p's (parameters), we can estimate the haplotype status of individuals z's (hidden variables)
- If we know the haplotype state of each individual z's (hidden variables), we can estimate the haplotype frequencies p's (parameters)



Phasing By EM • EM: Method for maximum-likelihood parameter inference with hidden variables Inferring haplotype state of each individual E Parameters (haplotype frequencies p's) Maximize Likelihood Estimating haplotype frequencies 47

EM as Chicken vs Egg

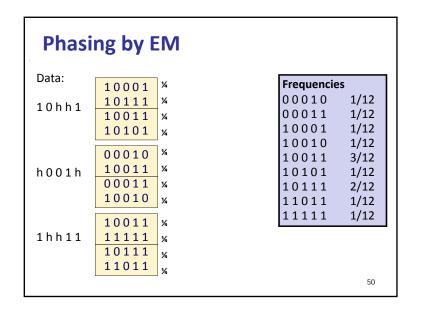
- If we know haplotype frequencies p's (parameters), we can estimate the haplotype states of individuals z's (hidden variables)
- If we know the haplotype state of individuals z's (hidden variables), we can estimate the haplotype frequencies p's (parameters)
- BUT we know neither; iterate
 - Expectation-step: Estimate z's, given haplotype frequencies p's
 - Maximization-step: Estimate p's, given the haplotype states of individuals z's
- Overall, a clever "hill-climbing" strategy

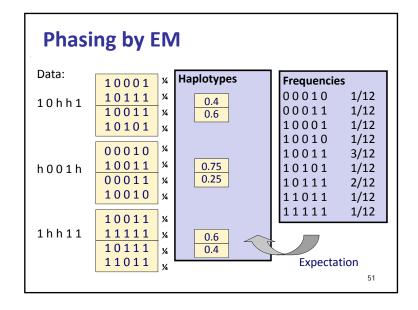
46

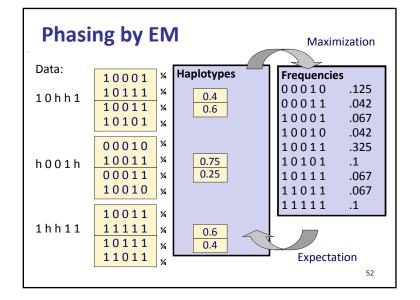
EM algorithm for haplotyping

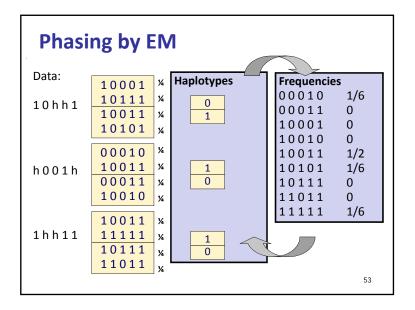
- 1. "Guesstimate" haplotype frequencies
- 2. Use current frequency estimates to replace ambiguous genotypes with fractional counts of phased genotypes
- 3. Estimate frequency of each haplotype by counting
- 4. Repeat steps 2 and 3 until frequencies are stable

Phasi	ng by E	M	
Data:	10001	1/4	
10hh1	10001	1/4	
1011111	10011	1/4	
	10101	1/4	
	00010	1/4	
h001h	10011	1/4	
	00011	¾ ¼	
	10011	1/4	
1 h h 1 1	11111	1/4	
	10111	1/4	
	11011	1/4	









Computational cost (for SNPs)

• Consider sets of *m* unphased genotypes

Markers 1..m

For example, if m=10

If markers are bi-allelic

■ 2^m possible haplotypes = 1024

 $2^{m-1} (2^m + 1) possible haplotype pairs = 524,800$

■ 3^m distinct observed genotypes = 59,049

■ 2ⁿ⁻¹ reconstructions for n heterozygous loci = 512

54

EM algorithm

- Pros
 - More accurate than Clark's method
 - Fully or partially phased individuals contribute most of the information
- Cons
 - Estimate depends on starting point: need to run multiple times on different starting points
 - Implementation may become computationally expensive: cost grows rapidly with number of markers
 - $\,\bullet\,$ For each individual, the number of possible haplotypes is $2^m,$ where m is the number of makers
 - Typically run for short sequences with < 25 SNPs
 - No modeling on haplotypes

55

Outline

- Background & motivation
- Problem statement
- Statistical methods for haplotype inference
 - Clark's algorithm
 - Expectation Maximization (EM) algorithm
 - Coalescent-based methods and HMM

- Haplotype inference on sequence data
- Example applications