GENOME 541, Spring 2012 Problem Set \#2 Solution

1. [20 points] Testing for Hardy-Weinberg Equilibrium: Chi-square Test

Suppose we are interested in determining whether an tri-allelic site is in Hardy-Weinberg equilibrium, the numbers of genotypes observed were shown in the table below. Let's use the chi-square, Goodness of Fit Test to make that decision.

$n_{A A}$	$n_{A B}$	$n_{A C}$	$n_{B B}$	$n_{B C}$	$n_{C C}$	$n_{\text {Total }}$
699	541	69	369	882	860	3420

(a) [$\mathbf{2}$ points] What are the genotype frequencies in the sample?

Answer: The genotype frequencies are computed as follows:

$$
\begin{aligned}
& p_{A A}=\frac{n_{A A}}{n_{\text {Total }}}=\frac{699}{3420}=0.204 \\
& p_{A B}=\frac{n_{A B}}{n_{\text {Total }}}=\frac{541}{3420}=0.158 \\
& p_{A C}=\frac{n_{A C}}{n_{\text {Total }}}=\frac{69}{3420}=0.020 \\
& p_{B B}=\frac{n_{B B}}{n_{\text {Total }}}=\frac{369}{3420}=0.108 \\
& p_{B C}=\frac{n_{B C}}{n_{\text {Total }}}=\frac{882}{3420}=0.258 \\
& p_{C C}=\frac{n_{C C}}{n_{\text {Total }}}=\frac{860}{3420}=0.252
\end{aligned}
$$

(b) [3 points] What are the allele frequencies?

Answer: The allele frequencies can be computed based on the genotype frequencies.

$$
\begin{aligned}
& p_{A}=p_{A A}+0.5 \times p_{A B}+0.5 \times p_{A C}=0.204+0.5 \times 0.158+0.5 \times 0.020=0.2936 \\
& p_{B}=p_{B B}+0.5 \times p_{A B}+0.5 \times p_{B C}=0.108+0.5 \times 0.158+0.5 \times 0.258=0.3159 \\
& p_{C}=p_{C C}+0.5 \times p_{A C}+0.5 \times p_{B C}=0.252+0.5 \times 0.020+0.5 \times 0.258=0.3905
\end{aligned}
$$

(c) [3 points] Given the allele frequencies, what are the expected genotype frequencies assuming Hardy-Weinberg equilibrium?
Answer: Assuming HWE, the expected genotype frequencies are computed as follows:

$$
\begin{aligned}
\bar{p}_{A A} & =p_{A}^{2}=0.2936 \times 0.2936=0.0862 \\
\bar{p}_{A B} & =2 p_{A} p_{B}=2 \times 0.2936 \times 0.3159=0.1855 \\
\bar{p}_{A C} & =2 p_{A} p_{C}=2 \times 0.2936 \times 0.3905=0.2293 \\
\bar{p}_{B B} & =p_{B}^{2}=0.3159 \times 0.3159=0.0998 \\
\bar{p}_{B C} & =2 p_{B} p_{C}=2 \times 0.3159 \times 0.3905=0.2467 \\
\bar{p}_{C C} & =p_{C}^{2}=0.3905 \times 0.3905=0.1525
\end{aligned}
$$

(d) [2 points] Given the expected genotype frequencies, what is the expected count for each genotype?
Answer:

$$
\begin{aligned}
& \bar{n}_{A A}=\bar{p}_{A A} \times n_{\text {Total }}=0.0862 \times 3420=294.804 \\
& \bar{n}_{A B}=\bar{p}_{A B} \times n_{\text {Total }}=0.1855 \times 3420=634.41 \\
& \bar{n}_{A C}=\bar{p}_{A C} \times n_{\text {Total }}=0.2293 \times 3420=784.206 \\
& \bar{n}_{B B}=\bar{p}_{B B} \times n_{\text {Total }}=0.0998 \times 3420=341.316 \\
& \bar{n}_{B C}=\bar{p}_{B C} \times n_{\text {Total }}=0.2467 \times 3420=843.714 \\
& \bar{n}_{C C}=\bar{p}_{C C} \times n_{\text {Total }}=0.1525 \times 3420=521.55
\end{aligned}
$$

(e) [5 points] Compute the Chi-square statistics $\left(\chi^{2}\right)$.

Answer:

$$
\begin{aligned}
\chi^{2}= & \sum_{i=1}^{n} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}} \\
= & \frac{(699-294.804)^{2}}{294.804}+\frac{(541-634.41)^{2}}{634.41}+\frac{(69-784.206)^{2}}{784.206}+\frac{(369-341.316)^{2}}{341.316} \\
& +\frac{(882-843.714)^{2}}{843.714}+\frac{(860-521.55)^{2}}{521.55} \\
= & 554.469+13.751+652.190+2.237+1.723+219.701 \\
= & 1444.071
\end{aligned}
$$

(f) [5 points] Suppose that you reject your null hypothesis when $\chi^{2}>5.991$, then is the population at Hardy-Weinberg equilibrium? Explain what it means to reject the null hypothesis.
Answer: The null hypothesis is that this population is at Hardy-Weinberg equilibrium. Rejecting the null hypothesis means that the HWE assumption is not correct; the expected genotype frequencies are much deviated from the actual genotype frequencies. Since $\chi^{2}=1444.071>5.991$, we reject the null hypothesis and this means that this population is not at HWE.
2. [20 points] EM-based Haplotype Reconstruction Let's consider the following example of a haplotype reconstruction problem. You are given the genotype data on 5 markers
from 3 individuals: ($\{10 \mathrm{hhh} 1\},\{\mathrm{h} 001 \mathrm{~h}\},\{1 \mathrm{hh} 11\}$). Given the initial haplotype frequencies listed below, we want to describe how each of the E-step and M-step works. We also want to implement an EM-based haplotype reconstruction algorithm.

Frequencies			
0	0	0	1
0	0	$1 / 12$	
0	0	0	1
1	1	$1 / 12$	
1	0	0	0
1	1	$1 / 12$	
1	0	1	1

(a) [8 points] Describe what are hidden variables and what are parameters.

Answer: A hidden variable $z_{i j}$ is defined for each individual i and a haplotype state j.

$$
\begin{aligned}
z_{i j}= & 1, \text { if the individual } i \text { has the haplotype pairs } j \\
& 0, \text { otherwise }
\end{aligned}
$$

For example, z_{11} is 1 if the 1 st individual having the genotype $\{10 \mathrm{hh} 1\}$ has the halotypes $\{10001 / 10111\}$ and 0 otherwise (if the individual's haplotypes are $\{10011 / 10101\}$). Thus, there are 6 hidden variables for 3 individuals: $z_{11}, z_{12}, z_{21}, z_{22}, z_{31}$, and z_{32}. Parameters p_{i} 's are haplotype frequencies given to 9 haplotypes that appear in this population.
(b) [8 points] Given the haplotype frequencies listed above, describe the next E-step.

Answer: In the E-step, given the current parameters (haplotype frequencies), we estimate the values on the hidden variables $z_{11}, z_{12}, z_{21}, z_{22}, z_{31}$, and z_{32}, trying to resolve ambiguity on the haplotypes of all 3 individuals.

$$
\begin{aligned}
& z_{11}=\frac{\text { probability that the individual } 1 \text { has haplotypes }\{10001 / 10111\}}{\text { probability of }\{10001 / 10111\}+\text { probability of }\{10011 / 10101\}} \\
& z_{12}=\frac{\text { probability that the individual } 1 \text { has haplotypes }\{10011 / 10101\}}{\text { probability of }\{10001 / 10111\}+\text { probability of }\{10011 / 10101\}} \\
& z_{21}=\frac{\text { probability that the individual } 2 \text { has haplotypes }\{00010 / 10011\}}{\text { probability of }\{00010 / 10011\}+\text { probability of }\{00011 / 10010\}} \\
& z_{22}=\frac{\text { probability that the individual } 2 \text { has haplotypes }\{00011 / 10010\}}{\text { probability of }\{00010 / 10011\}+\text { probability of }\{00011 / 10010\}} \\
& z_{31}=\frac{\text { probability that the individual } 3 \text { has haplotypes }\{10011 / 11111\}}{\text { probability of }\{10011 / 11111\}+\text { probability of }\{10111 / 11011\}} \\
& z_{32}=\frac{\text { probability that the individual } 3 \text { has haplotypes }\{10111 / 11011\}}{\text { probability of }\{10011 / 11111\}+\text { probability of }\{10111 / 11011\}}
\end{aligned}
$$

(c) [8 points] Write down the result of E-step that will be used in the next M-step. Answer:

$$
\begin{aligned}
& z_{11}=\frac{2 \times 1 / 12 \times 2 / 12}{2 \times 1 / 12 \times 2 / 12+2 \times 3 / 12 \times 1 / 12}=0.4 \\
& z_{12}=\frac{2 \times 3 / 12 \times 1 / 12}{2 \times 1 / 12 \times 2 / 12+2 \times 3 / 12 \times 1 / 12}=0.6 \\
& z_{21}=\frac{2 \times 1 / 12 \times 3 / 12}{2 \times 1 / 12 \times 3 / 12+2 \times 1 / 12 \times 1 / 12}=0.75 \\
& z_{22}=\frac{2 \times 1 / 12 \times 1 / 12}{2 \times 1 / 12 \times 3 / 12+2 \times 1 / 12 \times 1 / 12}=0.25 \\
& z_{31}=\frac{2 \times 3 / 12 \times 1 / 12}{2 \times 3 / 12 \times 1 / 12+2 \times 2 / 12 \times 1 / 12}=0.6 \\
& z_{32}=\frac{2 \times 2 / 12 \times 1 / 12}{2 \times 3 / 12 \times 1 / 12+2 \times 2 / 12 \times 1 / 12}=0.4
\end{aligned}
$$

(d) [8 points] Given the result of the E-step you described in part (b), describe the M-step.
Answer: In the M-step, given the $z_{i j}$'s estimated in the previous E-step, we estimate the haplotype frequencies by partial counting.
(e) [8 points] Write down the result of M-step that will be used in the next E-step. Answer:

$$
\begin{array}{ll}
00010: & p_{1}=\frac{2 \times z_{21}}{12}=0.125 \\
00011: & p_{2}=\frac{2 \times z_{22}}{12}=0.0417 \\
10001: & p_{3}=\frac{2 \times z_{11}}{12}=0.0667 \\
10010: & p_{4}=\frac{2 \times z_{22}}{12}=0.0417 \\
10011: & p_{5}=\frac{2 \times\left(z_{12}+z_{21}+z_{31}\right)}{12}=0.325 \\
10101: & p_{6}=\frac{2 \times z_{12}}{12}=0.1 \\
10111: & p_{7}=\frac{2 \times\left(z_{11}+z_{32}\right)}{12}=0.1333 \\
11011: & p_{8}=\frac{2 \times z_{32}}{12}=0.0667 \\
11111: & p_{9}=\frac{2 \times z_{31}}{12}=0.1
\end{array}
$$

(f) [20 points] Based on the E-step and M-steps you described above, implement the EM-based haplotype reconstruction method. Given the genotype data (\{10hhh1\}, $\{\mathrm{h} 001 \mathrm{~h}\},\{1 \mathrm{hh} 11\})$ as input, what are the final results at convergence?

Answer: At convergence, the haplotype states are as follows.

Data	Haplotypes	Conditional probabilities
$10 h h h 1$	10001,10111	0
	10011,10101	1
$h 001 h$	00010,10011	1
	00011,10010	0
$1 h h 11$	10011,11111	1
	10111,11011	0

The haplotype frequencies are as follows.

$$
\begin{array}{ll}
00010: & p_{1}=0.1667 \\
00011: & p_{2}=0 \\
10001: & p_{3}=0 \\
10010: & p_{4}=0 \\
10011: & p_{5}=0.5 \\
10101: & p_{6}=0.1667 \\
10111: & p_{7}=0 \\
11011: & p_{8}=0 \\
11111: & p_{9}=0.1667
\end{array}
$$

