Course Announcements

= A course mailing list has been created
Lecture 2: Random Variables and = genome560a_spl2@u.washington.edu

Proba bility Distributions = The registered students are already subscribed

= Problem Set 1 has been posted

May 3 2012 = Due next Thursday (5/10) before class
’ = Please start as soon as possible

GENOME 560, Spring 2012
= Please go to the course website
Su-In Lee, CSE & GS = http://www.cs.washington.edu/homes/suinlee/genome560
. = Check Announcements!
suinlee@uw.edu )
Outline Random Variables (RV)

= Random variables m Arvis avariable whose value results from the

measurement of a quantity that is subject to

= Overview of probability distributions important in varlat|o_ns due t? chance (i.e. rand.omneSS).
genetics and genomics = e.g. dice throwing outcome, expression level of gene A
= R exercises = More formally...

= How to use R for calculating descriptive statistics and
making graphs

= Working with distributions in R




Random Variables (RV)

= Arvisany rule (i.e. function) that associates a number
with each outcome in the sample space
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What Does That Mean?

= Say that you throw a die
= There are 6 possible outcomes (or events)
= Associate each event with a number € {1,2,3,4,5,6}
= Arvis what associates each dice throwing outcome with a number

events /

/ -!l (l) 'i
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= Let’s consider an expression level of gene “A”
= There are infinite number of events

= Associate each event with a continuous-valued number
representing expression level of gene A

Two Types of Random Variables

= A discrete rv has a countable number of possible
values

= e.g. dice throwing outcome, genotype on a SNP, etc

= A continuous rv all values in an interval of numbers
= e.g. expression level gene A, blood glucose level, etc

Random Variables (RV)

= Arvisany rule (i.e. function) that associates a number
with each outcome in the sample space

m A rv associates each outcome with a probability...
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Probability Distribution

= Discrete

= Let X be a discrete rv. Then the probability mass function
(pmf), f(x), of X is:

: PX=x),xeQ
o am
0, X & Q
H T
= Continuous X = Coin toss outcome

= Let X be a continuous rv. Then the probability density
function (pdf) of X is a function f(x) such that for any two
numbers a and b witha<b

o

b
PasX sb)= [ f(x)dx

a

g

Cumulative Density Function
= Use CDFs to compute probabilities
= Continuousrv: F(x)=PX=x)= f_f‘(_\-)r.'_\-

pdf cdf
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Cumulative Density Function

= Use CDFs to compute probabilities

= Continuous rv: F(x)=P(X =x)= [ f(y)dy

& pdf cdf
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PlasX <b)=F(b)-F(a)
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Expectation of Random Variables

= Discrete

= Let X be a discrete rv that takes on values in the set D and
has a pmf f(x). Then the expected or mean value of X is:

e = E[X]= Y x: f(x)

XED

= For example, let’s say that X is a rv representing the
outcome of a die throw ‘&
= Xcanbel,2,3,4,5,or6;s0D={1,2,3,4,5,6} @’
= What is the expected value of X?

= X =1 with probability 1/6, X = 2 with prob. 1/6, X = 3 with
prob. 1/6, ..., X = 6 with prob. 1/6
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Expectation of Random Variables

= Discrete

= Let X be a discrete rv that takes on values in the set D and
has a pmf f(x). Then the expected or mean value of X is:

iy = ELX] = Y x- f(x)

xXED

= Continuous

= The expected or mean value of a continuous rv X with pdf
f(x) is:

u, = E[X]= fx-f(x)ck\‘
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Variance of Random Variables

= Discrete

= Let X be a discrete rv with pmf f(x) and expected value W. The
variance of X is:

oy =V[X]= Y (x -0’ = E[(X -]

rED

= Continuous

= The variance of a continuous rv X with pdf f(x) and mean p is:

oy =VIX]= [(x=w*- f(x)dx = E[(X - )]
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Example of Expectation and Variance

= letl,, L, .., L, be asequence of n nucleotides and define

the rv X; as:
{ 1,ifL=A
X .
0, otherwise

= pmfisthen: P(X,=1)=PL=A)=p,
PX,=0)=P(L,=CorGorT)=1-ps

= EX]=1Xpa+0X(1-pa)=pa

= Var[X] = E[X - u]2 = E[X?] - 2
=[12xpa+02x (1-pa)l - Pa2
=pa (1-pa)
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The Distributions We’ll Study Today

Binomial distribution

Hypergenomtric Distribution

Poisson Distribution

Normal Distribution
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Binomial Distribution

= Experiment consists of n trials

= e.g., 15 tosses of a coin; 20 patients; 1000 people surveyed
= Trials are independent and identical (called i.i.d)

m Each trial can result in one of the two same outcomes
= e.g., head or tail in each toss of a coin
= Generally called “success” and “failure”

= Probability of success is p, probability of failure is 1-p

= Constant probability for each observation

= e.g., Probability of getting a trial is the same each time we
toss the coin
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Binomial Distribution: Example 1

m Let’s say that we toss a coin n (=100) times
= Itis a biased coin; the chance of Head is 0.4

m Arv X represents the number of heads
= What is the probability that X = k? What if k> 100 ?

= The probability of k particular tosses coming up Heads out of n
tosses (say TTHTHHTTT...HT) is

A -p)(=ppA - ppp(l =p)A=p)(1 =p) .p(AL = p) = p* (1 —p)"
n n!
= There are (k) = KMm—h! different ways to choose k coins

to be Heads out of n tosses. Each of these choices is mutually
exclusive, so we add up the above probability that many times,
so the total probability of all ways of getting k Heads out of n

tosses is |
N _ keq _ o n—k_ n k4 _ =k
(k) - =T =" 1-p

18

Our Coin Example

= In our numerical example (n =100, p = 0.4)

= Probability of k Heads is

100 4801 _ 100—48 __ 100! 48() £52
(48)(0.4) (1-0.4) = Tare; 04006
= 93,206,558,875,049,876,949,581,681,100 X

7.92282 x 1072% x 2.90981 x 10712
=0.0214878

(which really is best done with a computer and/or logarithms!)
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The Histogram of a Binomial Dist.
m This is for n = 20 and p=0.2
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Binomial Distribution

= pmf:
P{X - X} = (Z )p\(l _ p)u—.\'
= cdf: X ‘ ‘
P{X =sx}= E(;)p-‘ 1-p"
y=0
m E(x)=np

= Var(x) = np(1-p)
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Binomial Distribution: Example 2

= A couple, who are both carriers for a recessive
disease, wish to have 5 children. They want to know
the probability that they will have four healthy kids
= Whatis p and n?
P{X =4}=(3)0.75" x0.25'
=0.395

" III
-l
0

1 2 3 4 5
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Binomial Distribution: Example 3

= Wright-Fisher model: There are i copies of the A allele
in a population of size 2N in generation t. What is the
distribution of the number of A alleles in generation
(t+1) ?
= Whatis p and n?

= The probability of j copies of A allele in generation (t+1) is

plE[C
= | | 3y SN)  i=0 LN
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Hypergeometric Distribution

= Population to be sampled consists of N finite
individuals, objects, or elements

= Each individual can be characterized as a success or
failure, m successes in the population

= A sample of size k is drawn and the rv of interest is
X = number of successes
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Hypergeometric Distribution

= Similar in spirit to Binomial distribution, but from a
finite population without replacement

20 white balls 000
i
out of —_— \I;{ \Q () ®
100 balls YO e

If we randomly sample 10 balls, what is the probability that 3
or less are blue?
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Hypergeometric Distribution

= Say that we have an urn with N balls in it, M of which are blue
(the rest are white). If we draw n balls out of it without
replacement, what is the probability that m of those are blue?

20 white balls
out of
100 balls

= It turns out to be the fraction, out of the ways we could choose n
balls out of N, in which there are m white and (n-m) blue balls:

(%)X(IZ:Z)_ MI(N = M)!n! (N — n)!
(N) T NmE (M - m)! (n —m)! (N — (n —m))!
n

26

Histogram of a Hypergeometric Dist.

= There are N (=20) balls in the urn, M (=8) of which are blue.

n If we draw n (=5) balls out of it without replacement, what is
the probability that m of them are blue?

= Here are histograms showing the
pmf of m, the number of blue balls
(out of 5)

= Gray boxes are the hypergeometric
distribution
= Red outlines are the corresponding
binomial distribution
= What made them different? E El
I=—]
=0 2 3 4 5

m 1
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Hypergeometric Distribution

= pmf of a hypergeometric rv:

m n
P{X=ilnmk}= m
m+n
k

Where,
k = Number of balls selected
m = Number of balls in urn considered “success”
n = Number of balls in urn considered “failure”
m + n = Total number of balls in urn
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Hypergeometric Distribution

= Extensively used in genomics to test for “enrichment”:

Number of genes of interest with
annotation

a N

Number of
genes with
annotation

Number of/
genes of |
interest

\ Q = Number of annotated genes /
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Poisson Distribution

= It expresses the probability of a given number of events occurring
in a fixed interval of time and/or space if these events occur with
a known average rate and independently of the time since the
last event

= Suppose someone typically gets 4 pieces of mail per day. That
becomes the expectation, but there will be a certain spread:
sometimes a little more, sometimes a little less, once in a while
nothing at all.

= Given only the average rate, for a certain period of observation
(e.g. pieces of mail per day), and assuming that the process that
produce the event flow are essentially random, the Poisson
distribution specifies how likely it is that the count will be 3, or 5,
or 11, or any other number, during one period of observation
(e.g. 1 week). That is, it predicts the degree of spread around a
known average rate of occurrence.

m Poisson distribution approximates the binomial distribution when
n (# trials) is large and p (change of success) is small 30

Poisson Distribution

= Arv X follows a Poisson distribution if the pmf of X is:

0.4

i *? CEPY
A ) 035
P{X:i}:(_)”'f Fori=0,1,23, ... 0.30 f'\
i! 2025 A
0
%0200 Lsa
Soisf 4

0.10 L et

005l /& A L

0.0 ; HS "l-D :5 20
= Ais frequently a rate per unit time: p

k= at = expected number of events per unit time t

Safely approximates a binomial experiment when n > 100,
p <0.01,np =A<20)

E(X) = Var(X)=A
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Poisson RV: Example 1

= The number of crossovers, X, between two markers is
X~ poisson (A=d)

[i
PIX=i}=e S

I
P{X=0}=c"

P{X=l=1-¢"
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Poisson RV: Example 2

= Recent work in Drosophila suggests the spontaneous rate
of deleterious mutations is ~ 1.2 per diploid genome.
Thus, let’s tentatively assume X ~ Poisson(A = 1.2) for
humans. What is the probability that an individual has 12
or more spontaneous deleterious mutations?

=6.17 x10°
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Poisson RV: Example 3

m Suppose that a rare disease has an incidence of 1 in 1000
people per year. Assuming that members of the population are
affected independently, find the probability of k cases in a
population of 10,000 (followed over 1 year) for k=0,1,2.

m The expected value (mean) =A =0.001 x 10,000 = 10

0 ,-(10)

P(X =0)= (IO)T‘I = 0000454
l)f(lDJ

P(X =1) = (10)1—: = 000454
2 ,-(10)

Px=2= 19 00227

bl
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Normal Distribution

= “Most important” probability distribution
= Many rv’s are approximately normally distribued

= Even when they aren’t, their sums and averages often
are Central Limit Theorem (CLT)
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Normal Distribution

= pdf of normal distribution: foawo?) |

e—(x—u): 202 i
2no

“

flouo®) =

= standard normal distribution (u =0, 0? = 1):

FEOD = e
2no

= cdfofZ B
P(Z=2= [ f(y:0.0)dy

-
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Standardizing Normal RV

m If X has a normal distribution with mean u and
standard deviation o, we can standardize to a
standard normal rv:

Y
-2 /9

. 1
z0,1) = e’
f(z0.D) .
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1 Digress: Sample Distributions

= Before data is collected, we regard observations as
random variables X;, X,,..., X,,.

= This implies that until data is collected, any function
(statistic) of the observations (mean, sd, etc) is also a
random variable

= Thus, any statistic, because it is a random variable, has a
probability distribution — referred to as a sample
distribution

= Let’s focus on the sampling distribution of the mean, X
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Behold The Power of the CLT

= Let X, X,,..., X, be an iid random sample from a
distribution with mean p and standard deviation . If n is
sufficiently large:
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Example

= If the mean and standard deviation of serum iron values from healthy men
are 120 and 15 mgs per 100ml, respectively, what is the probability that a
random sample of 50 normal men will yield a mean between 115 and 125
mgs per 100ml?

First, calculate mean and sd to normalize (120 and 15/sqrt(50))

5- 5-12
;7(1155T5125=p(” 1205?512 120
2.12 212

=p(-236=2:=230)

= p(2=2.306) - p(z=-2.306)
=0.9909 - 0.0091

=0.9818
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