Lecture 9: Multiple Hypothesis Testing

May 29, 2012
GENOME 560, Spring 2012
Su-In Lee, CSE & GS
suinlee@uw.edu

Goals
- Define the multiple testing problem and related concepts
- Methods for addressing multiple testing (FWER and FDR)
- Correcting for multiple testing in R
- Final course evaluation (15 minutes)

Type I and II Errors

<table>
<thead>
<tr>
<th>Actual Situation “Truth”</th>
<th>H₀ True</th>
<th>H₀ False</th>
</tr>
</thead>
<tbody>
<tr>
<td>Don Not Reject H₀</td>
<td>Correct Decision (True Negative) 1-α</td>
<td>Incorrect Decision (False Negative) Type II Error β</td>
</tr>
<tr>
<td>Reject H₀</td>
<td>Incorrect Decision (False Positive) Type I Error α</td>
<td>Correct Decision (True Positive) 1-β</td>
</tr>
</tbody>
</table>

α = P(Type I Error) β = P(Type II Error)
Power = 1 - β

Type I and Type II Errors

- Consider the distribution of your test statistic

H₀ is true
Significance level
H₀ is false
Type II Error β
Type I Error α
Test statistic
Why Multiple Testing Matters

- **Genomics: Lots of data, Lots of hypothesis tests**
- A typical microarray experiment might result in performing 10,000 separate hypothesis tests.
- If we use a standard p-value cut-off of $\alpha = 0.05$, we’d expect 500 genes to be deemed “significant” by chance.
- Why 500?

Why Multiple Testing Matters

- In general, if we perform m hypothesis tests, what is the probability of at least 1 false positive?
 - Assume that all the null hypotheses are true

 $P(\text{Making an error}) = \alpha$

 $P(\text{Not making an error}) = 1 - \alpha$

 $P(\text{Not making an error in } m \text{ tests}) = (1 - \alpha)^m$

 $P(\text{Making at least 1 error in } m \text{ tests}) = 1 - (1 - \alpha)^m$

Probability of At Least 1 False Positive

Counting Errors

- Assume that we are testing m hypotheses: H^1, \ldots, H^m
 - $m_0 = \# \text{ of true null hypotheses}$
 - $R = \# \text{ of rejected null hypotheses}$

<table>
<thead>
<tr>
<th></th>
<th>Null True</th>
<th>Alternative True</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Called Significant</td>
<td>U</td>
<td>T</td>
</tr>
<tr>
<td>Called Significant</td>
<td>V</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>m_0</td>
<td>$m - m_0$</td>
</tr>
</tbody>
</table>

- $V = \# \text{ Type I errors [false positives]}$
Correcting for Multiple Testing?
- When we say “adjusting p-values for the number of hypothesis tests performed”, what we mean is controlling the Type I error rate.
- Very active area of statistics – many different methods have been described.
- Although these varied approaches have the same goal, they go about it in fundamentally different ways.

Different Approaches to Control Type I Errors
- Per comparison error rate (PCER): the expected value of the number of Type I errors over the number of hypotheses.
 \[\text{PCER} = \frac{E(V)}{m} \]
- Per-family error rate (PFER): the expected number of Type I errors.
 \[\text{PFER} = E(V) \]
- Family-wise error rate (FWER): the probability of at least one Type I error.
 \[\text{FWER} = P(V \geq 1) \]
- False discovery rate (FDR): the expected proportion of Type I errors among the rejected hypotheses.
 \[\text{FDR} = \frac{E(V/R | R>0)}{P(R>0)} \]
- Positive false discovery rate (pFDR): the rate that discoveries are false.
 \[\text{pFDR} = \frac{E(V/R | R>0)}{1} \]

Family-Wise Error Rate (FWER)
- Many procedures have been developed to control the Family-Wise Error Rate (the probability of at least one Type I error):
 \[P(V \geq 1) \]
- Two general types of FWER corrections:
 - Single step: equivalent adjustments made to each p-value
 - Sequential: adaptive adjustment made to each p-value.

Single Step Approach: Bonferroni
- Very simple method for ensuring that the overall Type I error rate of \(\alpha \) is maintained when performing \(m \) independent hypothesis tests.
- Rejects any hypothesis with p-value \(\leq \frac{\alpha}{m} \):
 \[\tilde{p}_j = \min\{mp_j, 1\} \]
- For example, if we want to have an experiment wide Type I error rate of \(\alpha = 0.05 \) when we perform 10,000 hypothesis tests, we’d need a p-value of \(0.05/10,000 = 5 \times 10^{-6} \) to declare significance.
Philosophical Objections to Bonferroni Corrections

- "Bonferroni adjustments are, at best, unnecessary and, at worst, deleterious to sound statistical inference" Perneger (1998)
- Counter-intuitive: interpretation of finding depends on the number of other tests performed
- The general null hypothesis (that all the null hypotheses are true) is rarely of interest
- High probability of Type II errors, i.e., of not rejecting the general null hypothesis when important effects exist

FWER: Sequential Adjustments

- Simplest sequential method is Holm’s Method
 - Order the unadjusted p-values such that \(p_1 \leq p_2 \leq ... \leq p_m \)
 - For control of the FWER at level \(\alpha \), the step-down Holm adjusted p-values are
 \[
 \tilde{p}_j = \min[(m - j + 1) \cdot p_j, 1]
 \]
 - The point here is that we don’t multiple every \(p_i \) by the same factor \(m \)
 - For example, when \(m = 10,000 \):
 \[
 \tilde{p}_1 = 10000 \cdot p_1, \quad \tilde{p}_2 = 9999 \cdot p_2, \ldots, \tilde{p}_m = 1 \cdot p_m
 \]

Who Cares About Not Making ANY Type I Errors?

- FWER is appropriate when you want to guard against ANY false positives
- However, in many cases (particularly in genomics) we can live with a certain number of false positives
- In these cases, the more relevant quantity to control is the false discovery rate (FDR)
 \[
 \frac{\text{# falsely rejected}}{\text{# rejected in total}}
 \]

False Discovery Rate

<table>
<thead>
<tr>
<th></th>
<th>Null True</th>
<th>Alternative True</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Called</td>
<td>(U)</td>
<td>(T)</td>
<td>(m-R)</td>
</tr>
<tr>
<td>Called</td>
<td>(V)</td>
<td>(S)</td>
<td>(R)</td>
</tr>
<tr>
<td>Significant</td>
<td>(m_0)</td>
<td>(m - m_0)</td>
<td>(m)</td>
</tr>
</tbody>
</table>

- \(V = \# \text{Type I errors [false positives]} \)
- False discovery rate (FDR) is designed to control the proportion of false positives among the set of rejected hypotheses (R) -- \(V/R \)
FDR vs FPR (False Positive Rate)

<table>
<thead>
<tr>
<th></th>
<th>Null True</th>
<th>Alternative True</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Called Significant</td>
<td>U</td>
<td>T</td>
<td>$m-R$</td>
</tr>
<tr>
<td>Called Significant</td>
<td>V</td>
<td>S</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>m_0</td>
<td>$m - m_0$</td>
<td>m</td>
</tr>
</tbody>
</table>

- $V =$ # Type I errors [false positives]
- FDR = $\frac{FP}{FP + TP} = \frac{V}{R}$
- FPR = $\frac{FP}{FP + TN} = \frac{V}{m_0}$

What If $R = 0$?

- Benjamini & Hochberg:
 \[FDR = E \left[\frac{V}{R} \right] P(R > 0) \]
- The rate that false discoveries occur
- Story:
 \[pFDR = E \left[\frac{V}{R} \right] P(R > 0) \]
- The rate that discoveries false

Benjamini and Hochberg FDR

- To control FDR at level δ:
 1. Order the unadjusted p-values: $p_1 \leq p_2 \leq \ldots \leq p_m$
 2. Then find the test with the highest rank, j, for which the p-value, p_j, is less than or equal to $\left(\frac{j}{m}\right) \times \delta$
 3. Declare the tests of rank 1, 2, \ldots, j as significant

\[p(j) \leq \delta \frac{j}{m} \]

B&H FDR Example

- Controlling the FDR at $\delta = 0.05$

<table>
<thead>
<tr>
<th>Rank</th>
<th>P-value</th>
<th>$(j/m) \times \delta$</th>
<th>Reject H_0 ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0008</td>
<td>0.005</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0.009</td>
<td>0.010</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0.165</td>
<td>0.015</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0.205</td>
<td>0.020</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0.396</td>
<td>0.025</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0.450</td>
<td>0.030</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0.641</td>
<td>0.035</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0.781</td>
<td>0.040</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0.900</td>
<td>0.045</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0.993</td>
<td>0.050</td>
<td>0</td>
</tr>
</tbody>
</table>
Storey’s Positive FDR (pFDR)

BH: \[\text{FDR} = E \left[\frac{V}{R} \bigg| R > 0 \right] P(R > 0) \]

Storey: \[p\text{FDR} = E \left[\frac{V}{R} \bigg| R > 0 \right] \]

- Since \(P(R>0) \) is \(\sim 1 \) in most genomics experiments FDR and pFDR are very similar

- Omitting \(P(R>0) \) facilitates development of a measure of significance in terms of the FDR for each hypothesis

Input Data

- Expression levels of 5419 genes in 32 samples from 16 human individuals
 - There are 2 replicates per individual (e.g. CEU_1_1 & CEU_1_2)
 - 16 individuals are from two populations: CEU (Europe) and YRI (African)

Expressed in the form of a table or matrix showing the expression levels of 5419 probesets across 32 samples from 16 individuals in two populations.