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Abstract

Structured prediction tasks pose a fundamen-
tal trade-off between the need for model com-
plexity to increase predictive power and the
limited computational resources for inference
in the exponentially-sized output spaces such
models require. We formulate and develop
structured prediction cascades: a sequence
of increasingly complex models that progres-
sively filter the space of possible outputs. We
represent an exponentially large set of fil-
tered outputs using max marginals and pro-
pose a novel convex loss function that bal-
ances filtering error with filtering efficiency.
We provide generalization bounds for these
loss functions and evaluate our approach on
handwriting recognition and part-of-speech
tagging. We find that the learned cascades
are capable of reducing the complexity of in-
ference by up to five orders of magnitude, en-
abling the use of models which incorporate
higher order features and yield higher accu-
racy.

1 Introduction

The trade-off between approximation and estimation
error is fundamental in learning complex prediction
models. In structured prediction tasks, such as part-
of-speech tagging, machine translation and gene pre-
diction, the factor of computation time also plays an
important role as models with increasing complexity
of inference are considered. For example, a first order
conditional random field (CRF) (Lafferty et al., 2001)
is fast to evaluate but may not be an accurate model
for phoneme recognition, while a fifth order model is
more accurate, but prohibitively expensive for both
learning and prediction. (Model complexity can also
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lead to overfitting problems due the sparseness of the
training data. We do not specifically address this prob-
lem in our paper other than judiciously regularizing
model parameters.)

In practice, model complexity is limited by computa-
tional constraints at prediction time, either explicitly
by the user or implicitly because of the limits of avail-
able computation power. We therefore need to balance
expected error with inference time. A common solu-
tion is to use heuristic pruning techniques or approx-
imate search methods in order to make higher order
models feasible. While it is natural and commonplace
to prune graphical model state space, the problem of
explicitly learning to control the error/computation
tradeoff has not been addressed. In this paper, we for-
mulate the problem of learning a cascade of models of
increasing complexity that progressively filter a given
structured output space, minimizing overall error and
computational effort at prediction time according to a
desired tradeoff. The contributions of this paper are:

• A novel convex loss function specifically geared
for learning to filter accurately and effectively.

• A simple online algorithm for minimizing this loss
using standard inference methods.

• Theoretical analysis of generalization of the cas-
cade (in terms of both accuracy and efficiency).

• Evaluation on two large-scale applications: hand-
writing recognition and part-of-speech tagging.

2 Related Work

Heuristic methods for pruning the search space of out-
puts have been exploited in many natural language
processing and computer vision tasks. For part-of-
speech tagging, perhaps the simplest method is to limit
the possible tags for each word to those only seen as its
labels in the training data. For example, the MXPOST
tagger (Ratnaparkhi, 1996) and many others use this
technique. In our experiments, we compare to this
simple trick and show that our method is much more
accurate and effective in reducing the output space. In
parsing, the several works (Charniak, 2000; Carreras
et al., 2008; Petrov, 2009) use a “coarse-to-fine” idea
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closely related to ours: the marginals of a simple con-
text free grammar or dependency model are used to
prune the parse chart for a more complex grammar.
We also compare to this idea in our experiments. The
key difference with our work is that we explicitly learn
a sequence of models tuned specifically to filter the
space accurately and effectively. Unlike the work of
Petrov (2009), however, we do not learn the structure
of the hierarchy of models but assume it is given by
the designer.

It is important to distinguish the approach proposed
here, in which we use exact inference in a reduced out-
put space, with other approximate inference techniques
that operate in the full output space (e.g., Druck et al.
(2007), Pal et al. (2006)). Because our approach is or-
thogonal to such approximate inference techniques, it
is likely that the structured pruning cascades we pro-
pose could be combined with existing methods to per-
form approximate inference in a reduced output space.

Our inspiration comes partly from the cascade classi-
fier model of Viola and Jones (2002), widely used for
real-time detection of faces in images. In their work, a
window is scanned over an image in search of faces and
a cascade of very simple binary classifiers is trained to
weed out easy and frequent negative examples early
on. In the same spirit, we propose to learn a cascade
of structured models of increasing order that weed out
easy incorrect assignments early on.

3 Structured Prediction Cascades

Given an input space X , output space Y, and a train-
ing set S = {

〈
x1, y1

〉
, . . . , 〈xn, yn〉} of n independent

and identically-distributed (i.i.d.) random samples
from a joint distribution D(X,Y ), the standard super-
vised learning task is to learn a hypothesis h : X 7→ Y
that minimizes the expected loss ED [L (h(x), y)] for
some non-negative loss function L : Y × Y → R+.

We consider the case of structured classification where
Y is a `-vector of variables and Y = Y1 × · · · × Y`.
In many settings, the number of random variables Y
differs depending on input X (for example, length of
the sentence in part of speech tagging), but for sim-
plicity of notation, we assume a fixed number ` here.
We denote the components of y as y = {y1, . . . , y`},
where yi ∈ {1, . . . ,K}. The linear hypothesis class we
consider is of the form:

hw(x) = argmax
y∈Y

w>f(x, y) (1)

where w ∈ Rp is a vector of parameters and f : X ×
Y 7→ Rp is a function mapping (x, y) pairs to a set
of p real-valued features. We further assume that f
decomposes over a set of cliques C ⊆ P{X,Y } (where

P is a powerset):

w>f(x, y) =
∑
c∈C

w>fc(x, yc). (2)

Above, yc is an assignment to the subset of Y vari-
ables in the clique c and we will use Yc to refer to
the set all assignments to the clique. By considering
different cliques over X and Y , f can represent ar-
bitrary interactions between the components of x and
y. Thus, evaluating hw(x) is not always tractable, and
computational resources limit the expressiveness of the
features that can be used.

For example, a first order Markov sequence model has
cliques {Yi, Yi+1, X} to score features depending on
emissions {X,Yi} and transitions {Yi, Yi+1}:

w>f(x, y) =
∑̀
i=1

w>fi(x, yi, yi+1). (3)

For the first order model, evaluating (1) requires
O(K2`) time using the Viterbi decoding algorithm.
For an order-d Markov model, with cliques over
{yi, . . . , yi+d, x}, inference requires O(kd+1`) time.

Several structured prediction methods have been
proposed for learning w, such as conditional ran-
dom fields (Lafferty et al., 2001), structured percep-
tron (Collins, 2002), hidden Markov support vector
machines (Altun et al., 2003) and max-margin Markov
networks (Taskar et al., 2003). Our focus here is in-
stead on learning a cascade of increasingly complex
models in order to efficiently construct models that
would otherwise be intractable.

3.1 Cascaded inference with max-marginals

We will discuss how to learn a cascade of models in
Section 4, but first we describe the inference proce-
dure. The basic notion behind our approach is very
simple: at each level of the cascade, we receive as in-
put a set of possible clique assignments corresponding
to the cliques of the current level. Each level further
filters this set of clique assignments and generates a
set of possible clique assignments which are passed as
input to the next level. Note that each level is able to
prune further than the preceding level because it can
consider higher-order interactions. At the end of the
cascade, the most complex model chooses a single pre-
diction as usual, but it needs only consider the clique
assignments that have not already been pruned. Fi-
nally, pruning is done using clique max-marginals, for
reasons which we describe later in this section.

An example of a cascade for sequential prediction using
Markov models is shown is Figure 1. A d-order Markov
model has maximal cliques {X,Yi, Yi+1, . . . , Yi+d}. We
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Figure 1: Schematic of a structured prediction cascade us-
ing unigram, bigram, and trigram Markov sequence mod-
els. Models are represented as factor graphs; as order in-
creases, the state space grows, but the size of the filtered
space remains small (filled area).

can consider a cascade of sequence models of increasing
order as a set of bigram models where the state space
is increasing exponentially by a factor of K from one
model to the next. Given a list of valid assignments
Vi in a d-order model, we can generate an expanded
list of valid assignments Vi+1 for a (d+1)-order model
by concatenating the valid d-grams with all possible
additional states.

More generally, for a given input x, for each maximal
clique c ∈ C in the current level of the cascade, we
have a list of valid assignments Vc ⊆ Yc. Inference
is performed only over the set of valid clique assign-
ments V =

⋃
c∈C Vc. Using the filtering model w of

the current cascade level, the clique assignments in Vc
are scored by their max-marginals, and a threshold t
is chosen to prune any yc ∈ Vc with a score less than
the threshold. The sets V are then passed to the next
level of the cascade, where higher-order cliques consis-
tent with unpruned cliques are constructed. If we can
eliminate at least a fraction of the entries in V on each
round of the cascade, then |V| decreases exponentially
fast and the overall efficiency of inference is controlled.

Thus, to define the cascade, we need to define: (1) the
set of models to use in the cascade, and (2) a procedure
to choose a threshold t. In the remainder of this section
we discuss our approach to these decisions.

First, to define a set of models for the cascade, we
require only that the sets of cliques of the models form
a nesting sequence. The cliques of the models must
satisfy the relation,

C1 ⊆ C2 ⊆ · · · ⊆ Cd, (4)

where Ci is the set of cliques of the i’th model of the
cascade. In other words, every clique assignment yc
of the i’th model is contained in at least one clique

assignment y′c of the (i + 1)’th model. This property
allows for the use of increasingly complex models as
the depth of the cascade increases. As long as (4)
holds, a simple and intuitive mapping from the set of
valid cliques of the i’th model Vi to a corresponding
set of valid cliques of the (i+ 1)’th model, Vi:

Vi+1
c = {yc ∈ Yc | ∀c′ ∈ Ci, c′ ⊆ c, yc′ ∈ Vic′} (5)

This is the set of clique assignments yc in the (i+1)’th
model for which all consistent clique assignments yc′

for subcliques c′ ∈ Ci have not been pruned by the i’th
model.

In order to filter clique assignments, we use their
max-marginals. We introduce the shorthand θx(y) =
w>f(x, y) for the cumulative score of an output y, and
define the max marginal θ?x(yc) as follows:

θ?x(yc) , max
y′∈Y

{θx(y′) : y′c = yc}.

Computing max-marginals can be achieved using the
same dynamic programming inference procedures in
factor graphs as would be used to evaluate (1). Most
importantly, max marginals satisfy the following sim-
ple property:

Lemma 1 (Safe Filtering). If θx(y) > θ?x(y′c) for some
c, then yc 6= y′c.

Lemma 1 states that if the score of the true label y is
greater than the max marginal of a clique assignment
y′c, then that clique assignment y′c must be inconsistent
with the truth y. The lemma follows from the fact
that the max marginal of any clique assignment yc
consistent with y is at least the score of y.

A consequence of Lemma 1 is that on training data,
a sufficient condition for the target output y not to
be pruned is that the threshold t is lower than the
score θx(y). Note that a similar condition does not
generally hold for standard sum-product marginals of
a CRF (where p(y|x) ∝ eθx(y)), which motivates our
use of max-marginals.

The next component of the inference procedure is
choosing a threshold t for a given input x. Note that
the threshold cannot be defined as a single global value
but should instead depend strongly on the input x
and θx(·) since scores are on different scales. We also
have the constraint that computing a threshold func-
tion must be fast enough such that sequentially com-
puting scores and thresholds for multiple models in
the cascade does not adversely effect the efficiency of
the whole procedure. One might choose a quantile
function to consistently eliminate a desired propor-
tion of the max marginals for each example. However,
quantile functions are discontinuous in the score func-
tion, and we instead approximate a quantile threshold
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with a more efficient mean-max threshold function, de-
fined as a convex combination of the mean of the max
marginals and the maximum score θ?x = maxy θx(y),

tx(α) = αθ?x + (1− α)
1

|V|
∑

c∈C,yc∈Vc

θ?x(yc). (6)

Choosing a mean-max threshold is therefore choos-
ing α ∈ [0, 1). Note that tx(α) is a convex func-
tion of θx(·) (in fact, piece-wise linear), which com-
bined with Lemma 1 will be important for learning
the filtering models and analyzing their generaliza-
tion. In our experiments, we found that the distri-
bution of max marginals was well centered around the
mean, so that choosing α ≈ 0 resulted in ≈ 50% of
max marginals being eliminated on average. As α ap-
proaches 1, the number of max marginals eliminated
rapidly approaches 100%. We used cross-validation to
determine the optimal α in our experiments (section
6).

4 Learning the cascade

We now turn to the problem of finding the best pa-
rameters w and the corresponding best tuning of the
threshold α for each level of the cascade. When learn-
ing a cascade, we have two competing objectives that
we must trade off:
• Accuracy: Minimize the number of errors incurred
by each level of the cascade to ensure an accurate in-
ference process in subsequent models.
• Efficiency: Maximize the number of filtered max
marginals at each level in the cascade to ensure an
efficient inference process in subsequent models.

We quantify this trade-off by defining two loss func-
tions. We define the filtering loss Lf to be a 0-1 loss
indicating a mistakenly eliminated correct assignment.
The efficiency loss Le is the proportion of unfiltered
clique assignments.

Definition 1 (Filtering loss). Let θx be the scoring
function in the current level of the cascade. A filtering
error occurs when a max-marginal of a clique assign-
ment of the correct output y is pruned. We define
filtering loss as Lf (y, θx) = 1 [θx(y) ≤ tx(α)].

Definition 2 (Efficiency loss). Let θx be de-
fined as above. The efficiency loss is the propor-
tion of unpruned clique assignments Le(y, θx) =
1
|V|
∑
c∈C,yc∈Vc 1 [θ?x(yc) ≥ tx(α)].

Note that we can trivially minimize either of these at
the expense of maximizing the other. If we set (w, α)
to achieve a minimal threshold such that no assign-
ments are ever filtered, then Lf = 0 and Le = 1.
Alternatively, if we choose a threshold to filter every

assignment, then Lf = 1 while Le = 0. To learn a cas-
cade of practical value, we can minimize one loss while
constraining the other below a threshold ε. Since the
ultimate goal of the cascade is accurate classification,
we focus on the problem of minimizing efficiency loss
while constraining the filtering loss to be below a de-
sired tolerance ε.

We can express the cascade learning objective as a
joint optimization over w and α:

min
w,α

E [Le(Y, θX)] s.t. E [Lf (Y, θX)] ≤ ε, (7)

We solve this problem with a two-step procedure.
First, we define a convex upper-bound on the filter
error Lf , making the problem of minimizing Lf con-
vex in w (given α). We learn w to minimize filter er-
ror for several settings of α (thus controlling filtering
efficiency). Second, given w, we optimize the objec-
tive (7) over α directly, using estimates of Lf and Le
computed on a held-out development set. In section
5 we present a theorem bounding the deviation of our
estimates of the efficiency and filtering loss from the
expectation of these losses.

To learn one level of the structured cascade model w
for a fixed α, we pose the following convex margin
optimization problem:

SC : inf
w

λ

2
||w||2 +

1

n

∑
i

H(w; (xi, yi)), (8)

where H is a convex upper bound on the filter loss Lf ,

H(w; (xi, yi)) = max{0, `+ txi(α)−w>f(xi, yi)}.

The upper-bound H is a hinge loss measuring the mar-
gin between the filter threshold txi(α) and the score
of the truth w>f(xi, yi); the loss is zero if the truth
scores above the threshold by margin ` (in practice,
the length ` can vary by example). We solve (8) using
stochastic sub-gradient descent. Given a sample (x, y),
we apply the following update if H(w; (x, y)) (i.e., the
sub-gradient) is non-zero:

w′ ← (1− λ)w + ηf(x, y)− ηαf(x, y?)

− η(1− α)
1

|V|
∑
c∈C,yc

f(x, y?(yc)).
(9)

Above, η is a learning rate parameter, y? =
argmaxy′ θx(y′) and y?(yc) = argmaxy′:yc=y′c θx(y′).
The key distinguishing feature of the this update as
compared to structured perceptron is that it sub-
tracts features included in all max marginal assign-
ments y?(yc).

Note that because (8) is λ-strongly convex, if we chose
ηt = 1/(λt) and add a projection step to keep w in a
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closed set, the update would correspond to the Pegasos
update with convergence guarantees of Õ(1/ε) itera-
tions for ε-accurate solutions (Shalev-Shwartz, Singer,
and Srebro, 2007).

5 Generalization Analysis

In this section, we give generalization bounds on the
filtering and efficiency loss functions for a single level
of a cascade. These bounds depend on Lipschitz dom-
inating cost functions φf and φe that upper bound Lf
and Le. To formulate these functions, we define the the
scoring function θx : X 7→ Rm where m =

∑
c∈C |Yc| to

be the set of scores for all possible clique assignments,
θx = {w>fc(x, yc) | c ∈ C, yc ∈ Yc}. Thus, given θx,
the score θx(y) can be computed as the inner product
〈θx, y〉, where we treat y as a m-vector of indicators
where yi = 1 if the i’th clique assignment appears in
y. Finally, we define the auxiliary function φ to be
the difference between the score of output y and the
threshold as φ(y, θx) = θx(y) − tx(α). We now state
the main result of this section.

Theorem 1. Let θx, Le, Lf , and φ be defined as
above. Let Θ be the class of all scoring functions
θX with ||w||2 ≤ B, the total number of cliques `,
and ||f(x, yc)||2 ≤ 1 for all x and yc. Define the
dominating cost functions φf (y, θX) = rγ(φ(y, θX))
and φe(y, θX) = 1

m

∑
c∈C,yc rγ(φ(y?(yc),−θX)), where

rγ(·) is the ramp function with slope γ. Then for any
integer n and any 0 < δ < 1 with probability 1 − δ
over samples of size n, every θX ∈ Θ and α ∈ [0, 1]
satisfies:

E [Lf (Y, θX)] ≤ Ê [φf (Y, θX)] +O

(
m
√
`B

γ
√
n

)

+

√
8 ln(2/δ)

n
,

(10)

where Ê is the empirical expectation with respect to
training data. Furthermore, (10) holds with Lf and
φf replaced by Le and φe.

This theorem relies on the general bound given
in Bartlett and Mendelson (2002), the properties
of Rademacher and Gaussian complexities (also in
Bartlett and Mendelson (2002)), and the following
lemma:

Lemma 2. φf (y, ·) and φe(y, ·) are Lipschitz (with
respect to Euclidean distance on Rm) with constant√

2`/γ.

A detailed proof of Theorem 1 and Lemma 2 is given
in the appendix.

Theorem 1 provides theoretical justification for the
definitions of the loss functions Le and Lf and the

structured cascade objective; if we observe a highly
accurate and efficient filtering model (w, α) on a finite
sample of training data, it is likely that the perfor-
mance of the model on unseen test data will not be
too much worse as n gets large. Theorem 1 is the first
theoretical guarantee on the generalization of accuracy
and efficiency of a structured filtering model.

6 Experiments

Handwriting Recognition. We first evaluated the
accuracy of the cascade using the handwriting recog-
nition dataset from Taskar et al. (2003). This dataset
consists of 6877 handwritten words, with avereage
length of ∼8 characters, from 150 human subjects,
from the data set collected by Kassel (1995). Each
word was segmented into characters, each character
was rasterized into an image of 16 by 8 binary pixels.
The dataset is divided into 10 folds; we used 9 folds
for training and a single withheld for testing (note that
Taskar et al. (2003) used 9 folds for testing and 1 for
training due to computational limitations, so our re-
sults are not directly comparable). Results are aver-
aged across all 10 folds.

Our objective was to measure the improvement in pre-
dictive accuracy as higher order models were incorpo-
rated into the cascade. The final cascade consisted
of four Markov models of increasing order. Pixels are
used as features for the lowest order model, and 2,3,
and 4-grams of letters are the features for the three
higher order models, respectively. The maximum filter
loss threshold ε was set to 1%, 2%, and 4% (this avoids
over-penalizing higher order models), and we trained
structured cascades (SC) using α’s from the candidate
set {0, 0.25, 0.5}. To simplify training, we fixed η = 1,
λ = 0, and used an early-stopping procedure to choose
w that achieved optimal tradeoff according to (7).

Results are summarized in Table 1. We found that
the use of higher order models dramatically increased
accuracy of the predictions, raising accuracy at the
character above 90% and more than tripling the word-
level accuracy. Furthermore, the cascade reduced the
search space of the 4-gram model by 5 orders of mag-
nitude, while incurring only 3.41% filtering error.

Part-of-Speech Tagging. We next evaluated our
approach on several part of speech (POS) tagging
tasks. Our objective was to rigorously compare the
efficacy of our approach to alternative methods on
a problem while reproducing well-established bench-
mark prediction accuracy. The goal of POS tagging is
to assign a label to each word in a sentence. We used
three different languages in our experiments: English,
Portuguese and Bulgarian. For English, we used vol-
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umes 0-17 of the Wall Street Journal portion of the
Penn TreeBank (Marcus et al., 1993) for training, vol-
umes 18-20 for development, and volumes 21-24 for
testing. We used the Bulgarian BulTreeBank (Simov
et al., 2002) and the Bosque subset of the Portuguese
Floresta Sinta(c)tica (Afonso et al., 2002) for Bulgar-
ian and Portuguese datasets, respectively.

For these experiments, we focused on comparing the
efficiency of our approach to the efficiency of several
alternative approaches. We again used a set of Markov
models of increasing order; however, to increase filter-
ing efficiency, we computed max marginals over sub-
cliques representing (d − 1) order state assignments
rather than d-order cliques representing transitions.
Thus, the bigram model filters unigrams and the tri-
gram model filters bigrams, etc. Although we ran
the cascades up to 5-gram models, peak accuracy was
reached with trigrams on the POS task.

We compared our SC method to two baselines: the
standard structured perceptron (SP) and a maximum
a posteriori CRF. All methods used the same stan-
dard set of binary features: namely, a feature each
(word,tag) pair 1 [Xt = xt, Yt = yt] and feature for
each d-gram in the model. For the baseline methods,
we trained to minimize classification error (for SP) or
log-loss (for CRF) and then chose α ∈ [0, 1] to achieve
minimum Le subject to Lf ≤ ε on the development set.
For the CRF, we computed sum-product marginals
P (yc|x) =

∑
y′:y′c=yc

P (y′|x), and used the threshold

tx(α) = α to eliminate all yc such that P (yc|x) ≤ α.
For all algorithms, we used grid search over several val-
ues of η and λ, in addition to early stopping, to choose
the optimal w based on the development set. For SC
training, we considered initial α’s from the candidate
set {0, 0.2, 0.4, 0.6, 0.8}.

We first evaluated our approach on the WSJ dataset.
To ensure accuracy of the final predictor, we set a strict
threshold of ε = 0.01%. All methods were trained us-
ing a structured perceptron for the final classifier. The
results are summarized in Table 2. SC was compared
to CRF, an unfiltered SP model (Full), and a heuris-
tic baseline in which only POS tags associated with a
given word in the training set were searched during in-
ference (Tags). SC was two orders of magnitude faster
than the full model in practice, with the search space
reduced to only ≈ 4 states per position in inference
(roughly the complexity of a greedy approximate beam
search with 4 beams.) SC also outperformed CRF by
a factor of 2.6 and the heuristic by a factor of 6.8.
Note that because of the trade-off between accuracy
and efficiency, CRF suffered less filter loss relative to
SC due to pruning less aggressively, although neither
method suffered enough filtering loss to affect the ac-
curacy of the final classifier. Finally, training the full

Model Order: 1 2 3 4
Accuracy, Char. (%) 77.44 85.69 87.95 92.25
Accuracy, Word (%) 26.65 49.44 73.83 84.46
Filter Loss (%) 0.56 0.99 3.41 —
Avg. Num n-grams 26.0 123.8 88.6 5.4

Table 1: Summary of handwriting recognition results. For
each level of the cascade, we computed prediction accuracy
(at character and word levels) using a standard voting per-
ceptron algorithm as well as the filtering loss and average
number of unfiltered n-grams per position for the SC on
the test set.

Model: Full SC CRF Tags
Accuracy (%) 96.83 96.82 96.84 —
Filter loss (%) 0 0.121 0.024 0.118
Test Time (ms) 173.28 1.56 4.16 10.6
Avg. Num States 1935.7 3.93 11.845 95.39

Table 2: Summary of WSJ Results. Accuracy is the accu-
racy of the final trigram model. Filter loss is the number
of incorrectly pruned bigrams at the end of the cascade.
The last row is the average number of states considered at
each position in the test set.

trigram POS tagger with exact inference is extremely
slow and took several days to train; training the SC
cascade took only a few hours, despite the fact that
more models were trained in total.

We next investigated the efficiency vs. filtering accu-
racy trade-off of SC compared to the SP and CRF
baselines on all three languages. For each of the
three languages, we generated 10 different training
sets from 40% of the full training datasets. Random-
ization was taken with the same 10 seeds for each
dataset/algorithm pair. For all methods, we trained
bigram models under two conditions: first, as the ini-
tial step of a cascade (e.g., no prior filtering), and sec-
ond, as the second step of a cascade after initial filter-
ing by the SC algorithm with ε = 0.05%, and analyzed
the resulting trade-off between efficiency and accuracy.

The results are presented in Figure 2. The figures were
generated by computing for each ε along the x-axis the
corresponding test efficiency Le when the constraint on
filter loss (Lf ≤ ε) is enforced using development set
data. Points for which the constraint could not be en-
forced (even with α = 0) are not shown. SC handily
beats the competitors in both the filtered and unfil-
tered case. Note that in the unfiltered condition, the
CRF is unable to achieve significant pruning efficiency
for any ε, while the SP cannot achieve filtering accu-
racy for small ε. However, because SC and SP become
equivalent as α approaches 1, we observe that the per-
formance of SC and SP converge as ε increases.
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Unfiltered Bigram

Development Set Filter Loss Threshold ε (%)
Filtered Bigram

Development Set Filter Loss Threshold ε (%)

Figure 2: Efficiency vs. accuracy trade-off for unfiltered
(top) and filtered (bottom) bigram models on POS tagging
task. Blue (darkest) is SC, green (lighter) is CRF, and
orange is SP (lightest). Shaded region shows standard error
over 10 different random training sets. The y-axis show
the test set efficiency when fitting to enforce the constraint
Lf ≤ ε (x-axis) on development data.

7 Conclusion

We presented structured prediction cascades: an effi-
cient, principled method of tackling the complexity of
structured prediction problems. We proposed and the-
oretically analyzed a novel loss function that attempts
to balance accuracy and efficiency of the cascade. Us-
ing a simple sub-gradient optimization method, we
evaluated our method on several large-scale datasets.
On the handwriting recognition task, we found that
the cascade reduced the state space of a fourth-order
Markov model by five orders of magnitude, allowing
the use of higher order features that tripled the word-
level accuracy of predictions. On the POS task, the
cascade increased inference efficiency of trigram mod-
els 100× relative to unfiltered inference without nega-
tively impacting the accuracy of the final predictor.

While we used sequence models to illustrate the cas-
cades, the methods described here could be applied to
other sets of nested models. For example, graphical
models used for articulated object detection in vision
have a natural coarse-to-fine scale hierarchy. Temporal
models with factored state (e.g., dynamic Bayes nets or
factorial CRFs) are another natural candidate for cas-
caded learning and inference. Our approach could also
be extended to incorporate intractable models through
the use of approximate inference techniques. Theoret-
ical analysis of filtering accuracy in the case of approx-
imate inference is an interesting open question.

A Proof of Theorem 1

Assume Lemma 2 holds (that φf and φe are Lips-

chitz with constant
√

2`/γ) as shown below. We now
reproduce the following four facts from Bartlett and
Mendelson (2002) that we require to prove the theo-
rem.

Theorem 2 (Bartlett and Mendelson, 2002). Con-
sider a loss function L and a dominating cost function
φ such that L(y, x) ≤ φ(y, x). Let F : X 7→ A be
a class of functions. Then for any integer n and any
0 < δ < 1, with probability 1−δ over samples of length
n, every f in F satisfies

EL(Y, f(X)) ≤ Ênφ(Y, f(X)) +Rn(φ̃ ◦ F )

+

√
8 ln(2/δ)

n
,

(11)

where φ̃◦F is a centered composition of φ with f ∈ F ,
φ̃ ◦ f = φ(y, f(X))− φ(y, 0).

Furthermore, there are absolute constants c and C
such that for every class F and every integer n,

cRn(F ) ≤ Gn(F ) ≤ C lnnRn(F ). (12)

Let A = Rm and F : X → A be a class of func-
tions that is the direct sum of real-valued classes
F1, . . . , Fm. Then, for every integer n and every sam-
ple (X1, Y1), . . . , (Xn, Yn),

Ĝn(φ̃ ◦ F ) ≤ 2L

m∑
i=1

Ĝn(Fi). (13)

Let F = {x 7→ w>f(x, ·) | ||w||2 ≤ B, ||f(x, ·)||2 ≤ 1}.
Then,

Ĝn(F ) ≤ 2B√
n
. (14)

Proof of Theorem 1. Let A = Rm and F = ΘX . By
(12), we have that Rn(φ̃f ◦F ) = O(Gn(φ̃f ◦F )). Since

φ̃ passes through the origin, then by (13), Gn(φ̃f ◦F ) =

O(2L(φ̃f )
∑
iGn(fi)) = O(mL(φ̃f )Gn(H)). With

Lemma 2 and L(φ̃f ) = L(φf ), we then have that

Rn(φ̃f ◦ F ) = O(mγ−1
√
lGn(Fi)), where Fi is a lin-

ear function scoring the i’th clique assignment. Thus
the results follows from (14) and (11). Finally, be-
cause L(φf ) = L(φe), the same results applies to Le
as well.

A.1 Proof of Lemma 2

To prove Lemma 2, we first bound the slope of the
difference φ(y, θx). We observe that we can consider
the scores of output y as the inner product 〈y, θx〉,
where we treat y as a m-vector of indicators and yi = 1
if the i’th clique assignment appears in y.
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Lemma 3. Let f(θx) = 〈y, θx〉 −maxy′ 〈y′, θx〉. Then

f(u)− f(v) ≤
√

2`||u− v||2.

Proof. Let yu = argmaxy′ 〈y′, u〉 and yv =
argmaxy′ 〈y′, v〉. Then we have,

f(u)− f(v) = 〈y, u〉 − 〈yu, u〉+ 〈yv, v〉 − 〈y, v〉
= 〈yv − y, v〉+ 〈y − uu, u〉+ 〈yv, u〉 − 〈yv, u〉
= 〈yv − y, v − u〉+ 〈u, yv − yu〉
≤ 〈yv − y, v − u〉

≤ ||yv − y||2||u− v||2 ≤
√

2`||u− v||2.

The last two steps follow from the fact that yu maxi-
mizes 〈yu, u〉 (so 〈u, yv − yu〉 is negative), application
of Cauchy-Schwarz, and from the fact that there are
at most ` cliques appear, each of which can contribute
a single non-zero entry in y or yv.

Lemma 4. Let f ′(θx) = 〈y, θx〉 −
1
m

∑
c∈C,yc maxy′:y′c=yc 〈y

′, θx〉. Then f(u) − f(v) ≤√
2`||u− v||2.

Proof. Let yui = argmaxy′:y′c=yc 〈y
′, u〉 for the i’th

clique assignment yc, and yvi the same for v. Then
we have,

f ′(u)− f ′(v) =
1

m

m∑
i=1

〈y, u〉 − 〈yui, u〉+ 〈yvi, v〉 − 〈y, v〉

≤ 1

m

m∑
i=1

〈yvi − y, v − u〉

≤ 1

m

m∑
i=1

√
2`||u− v||2 =

√
2`||u− v||2.

Here we have condensed the same argument used to
prove the previous lemma.

Lemma 5. Let g(θx) = 〈y, θx〉 − tx(α). Then g(u) −
g(v) ≤

√
2`||u− v||2.

Proof. Plugging in the definition of tx(α), we see that
g(θx) = αf(θx)+(1−α)f ′(θx). Therefore from the pre-
vious two lemmas we have that g(u)−g(v) = α(f(u)−
f(v)) + (1− α)(f ′(u)− f ′(v)) ≤

√
2`||u− v||2.

From Lemma 5, we see that φ(y, ·) = g(·) is Lip-
schitz with constant

√
2`. We can now show that

φf and φe are Lipschitz continuous with constant√
2`/γ. Let L(·) denote the Lipschitz constant. Then

L(φt) = L(rγ) · L(φ(y, ·)) ≤
√

2`/γ.

To show L(φe) requires more bookkeeping because
we must bound φ(y?(yc), θx). We can prove equiva-
lent lemmas to lemmas 3, 4 and 5 where we substi-
tute 〈y, θx〉 with maxy′:y′c=yc 〈y

′, θx〉, and thus show

that L(φ(y?(yc), ·)) ≤
√

2`. Therefore, L(φe) =
1
m

∑
c∈C,yc L(rγ) · L(φ(y?(yc), ·)) ≤

√
2`/γ, as desired.
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