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Abstract

Most real-world data is stored in relational form. In
contrast, most statistical learning methods work with
“flat” data representations, forcing us to convert our
data into a form that loses much of the relational struc-
ture. The recently introduced framework pfoba-
bilistic relational model§PRMs) allows us to repre-
sent probabilistic models over multiple entities that
utilize the relations between them. In this paper, we
propose the use of probabilistic models not only for
the attributes in a relational model, but for the rela-
tional structure itself. We propose two mechanisms for
modelingstructural uncertaintyreference uncertainty
andexistence uncertaintyWe describe the appropriate
conditions for using each model and present learning
algorithms for each. We present experimental results
showing that the learned models can be used to pre-
dict relational structure and, moreover, the observed
relational structure can be used to provide better pre-
dictions for the attributes in the model.

sions about attributes whose values may be unobserved.

Unfortunately, Bayesian networks are designed for mod-
eling attribute-based domains, where we have a single table
of IID instances. They cannot be used for modeling richer
relational data set®robabilistic relational models (PRMs)
are a recent development (Koller & Pfeffer, 1998; Poole,
1993) that extend the standard attribute-based Bayesian
network representation to incorporate a much richer rela-
tional structure. These models allow properties of anentit
to depend probabilistically on properties of othelated
entities. The model represents a generic dependence for
a classof objects, which is then instantiated for particular
sets of entities and relations between them. Friedetan
al. (1999) adapt the machinery for learning Bayesian net-
works from flat data to the task of learning PRMs from
structured relational data.

The PRM framework focuses on modeling the distribu-
tion over the attributes of the objects in the model. It takes
the relational structure itself — the relational links beem
entities — to be background knowledge, determined out-
side the probabilistic model. This assumption implies that
the model cannot be used to predict the relational structure

1. Introduction itself. Thus, for example, we cannot use it to predict that
Relational models are the most common representation ahere exists a money-laundering relation between a bank
structured data. Enterprise business data, medical recordand a drug cartel. A more subtle point is that the relational
and scientific datasets are all stored in relational datzbas structure is informative in and of itself. For example, the
A relational model captures the set of entities in our uni-links from and to a web page are very informative about
verse, their properties, and the relationships betwean.the the type of web page (Craven et al., 1998), and the citation
Recently, there has been growing interest in extracting intinks between papers are very informative about the paper
formation, such as patterns and regularities, from theseopics (Cohn & Hofmann, 2001).
huge amounts of data (Lavrac & Dzeroski, 1994). In this paper, we provide a framework for specifying and
Bayesian networkhave been shown to provide a good |earning a probabilistic model of the relational structure
representation language for statistical patternsinweald  This concept, calledtructural uncertainty was first in-
domains. By learning a Bayesian network from data (Hecktroduced by Koller and Pfeffer (1998). In this paper, we
erman, 1998), we can obtain a deeper understanding of owxtend their notion ofeference uncertaintyp make it suit-
domain and the statistical dependencies in it. A learnecble for a learning framework; we also introduce a new type
Bayesian network can also be used for reaching conclu-
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ture to provide better predictions about attribute values.
2. Probabilistic Relational Models Figure 1.An instantiation of the relational schema for a simple

A probabilistic relational model (PRM3pecifies a tem- Mmovie domain.
plate for a probability distribution over a database. The As discussed in the introduction, our goal in this paper
template describes the relational schema for the domairis to construct probabilistic models over instantiatiofs.
and the probabilistic dependencies between attributé®in t do so, we need to provide enough background knowledge
domain. A PRM, together with a particular database of obto circumscribe the set of possible instantiations. Fried-
jects and relations, defines a probability distributionrove manet al. (1999) assume that the entire relational structure
the attributes of the objects and the relations. is given as background knowledge. In other words, they
assume that they are givemedational skeletono,., which
Relational Schema A schema for a relational model de- specifies the set of objectsin all classes, as well as alethe r
scribes a set oflasses X = X;,...,X,. Eachclass is lationships that hold between them (in other words, it spec-
associated with a set afescriptive attributesind a set of ifies the values for all of the reference slots). In our simple
reference slot$ The set of descriptive attributes of a class movie example, the relational skeleton would contain all
X is denotedA(X). Attribute A of classX is denoted of the information except for the gender of the actors, the
X.A, and its domain of values is denot&gX.A). We  genre of the movies, and the nature of the role.
assume here that domains are finite, however this is not a

fundamental limitation of our approach. For example, thepropapilistic Model for Attributes A probabilistic re-
Actor class might have the descriptive attribu@ender  |ational modelll specifies a probability distribution over
with domain{male, femal¢. all instantiationsZ of the relational schema. It consists of
The set of reference slots of a claksis denoted? (X).  the qualitative dependency structus®, and the parame-
We useX.p to denote the reference slobf X. Each ref-  ters associated with ils. The dependency structure is
erence slop is typed: the domain type ddom[p] = X defined by associating with each attribtife4 a set ofpar-
and the range typRange[p] = Y, whereY’ is some class entsPaX.A). Each parent of{.A has the formX.7.B
in X'. A slot p denotes a function frobom[p] = X  wherer is either empty or a single slgt (PRMs also
to Range[p] = Y. For example, we might have a class ajlow dependencies on longgpt chainsbut we have cho-
Role with the reference slot&ctorwhose range is the class sen to omit those for S|mp||c|ty of presentation_) To under-
Actor andMoviewhose range is the clab&ovie. stand the semantics of this dependence, notexthat! is
Itis useful to distinguish between antityand arelation-  a multiset of values in V' (X.7.4). We use the notion of
ship, as in entity-relationship diagrams. In our language aggregatiorfrom database theory to define the dependence
classes are used to represent both entities and relaisnshi on a multiset; thusz.A will depend probabilistically on
Thus, a relationship such &ole, which relates actors to  some aggregate propertyS). In this paper, we use the
movies, is also represented as a class, with reference slofgedianfor ordinal attributes, and thmode(most common
to the classActor and the clas#lovie. We useXs to de-  value) for others. Whef is single-valued, both reduces to
note the set of classes that represent entitiesdgntb de-  a dependence on the valuexof.B.
note those that represent relationShipS. We use the generiq’he quantitative part of the PRM Speciﬁes the parameter-
termobjectto refer both to entities and to relationships.  jzation of the model. Given a set of parents for an attribute,
The semantics of this language is straightforward. An in-we can define a local probability model by associating with
stantiationZ specifies the set of objects in each clas it aconditional probability distribution (CPD)For each at-
and the values for each attribute and each reference slots gfbute we have a CPD that specifie$X.A | Pa X.A)).
each object. For example, Figure 1 shows an instantiation
of our simple movie schema. It specifies a particular set oDefinition 1: A probabilistic relational model (PRMIJ for
actors, movies and roles, along with values for each of theia relational schema is defined as follows. For each class
attributes and references. X € X and each descriptive attributee A(X), we have

There is a direct mapping between our notion of class and thé set obarentsPg X. ), and aconditional probability dis-

tables in a relational database: descriptive attributespond to ~ tribution (CPD)that representsy; (X.A | P X.A4)). I

standard table attributes, and reference slots corredpdockign _
keys (key attributes of another table). Given a relational skeletos,., a PRMII specifies a dis-



tribution over a set of instantiatiodsconsistent withr,.:

PIZ|o,, M= [[ [ P@A|Paz.4)) (1)

z€on(X) ACA(z)

M1

M2

Decade
19905,

. Movie.Genre = foreign ¢ { Movie.Genre = thriller

whereo,.(X) are the objects of each class as specified by Theat.
the relational skeleton, (in general we will use the nota- ggzﬁm Shows | (Twe__mi m2
tion o (X) to refer to the set objects of each class as defined
by any type of domain skeleton).

For this definition to specify a coherent probability distri Figure 2.A simple example of reference uncertainty
bution over instantiations, we must ensure that our proba- i o irectl hi
bilistic dependencies are acyclic, so that a random vagiabl@ Probability distribution directly ovew,(Y). This ap-
does not depend, directly or indirectly, on its own value.proaCh has two major flaws. Most obviously, this distribu-

Moreover, we want to guarantee that this will be the casd!O" Would require a parameter for each objectinMore

for any skeleton. For this purpose, we useclass de- importantly, we want our deper_ldency_model to be general
pendency graptwhich describes all possible dependenciesSNugh to apply over all possible object skeletopsa
among attributes. In this graph, we have an (intra-objectﬁj'S,t”b”t'on defined in terms of the objects within a specific
edgeX.B — X.Aif X.B is a parent of{.A. If X.p.B object skeleton would not apply to others.

is a parent ofX. 4, andY” = Range[p|, we have an (inter- We achieve a general and compact representation by par-
object) edge’.B — X.A. If the dependency graph of titioning the classY” into subsets according to the values
is acyclic, then it defines a legal model for any relational®f Some of its attributes. We assume that the valu& gf

Theater megaplex | 0.1 0.9
> Movie arttheater | 0.7 0.3

skeletons, (Friedman et al., 1999). is chosen by first selecting a partition, and then selecting
an object within that partition uniformly. For example, as
3. Structural Uncertainty shown in Figure 2, we can partition the cldg®vie by

Genre indicating that a movie theater first selects which

In the model described in the previous section, all rela- enre of movie it wants to show. and then uniformly amon
tions between attributes are determined by the relation . . ' ormly 9
e movies with the selected genre. The decision on genre

skeletono,.; only the descriptive attributes are uncertain. might depend on the type of theater.

Thus, Eg. (1) determines the probabilistic model of the o . -
attributes of objects, but does not provide a model for We make this intuition precise by defining, for each slot

the relations between objects. In this section, we extend Set ofartition attributesPartition[p] € A(Y). In the

our probabilistic model to allow fostructural uncertainty ~ 2°0Ve examplePartition[Shows = {Genrg. We now
Here, we do not treat the relational structure as backgroung€€d o specify the distribution that the reference value of
knowledge, but choose to model it explicitly within the # falls into one partition versus another. We accomplish
probabilistic framework. Clearly, there are many ways toliS bY introducings, as a new attribute o, called a
represent a probability distribution over the relationals-  SS/€Ctor attributeit takes on a value in the space of pos-
ture. In this paper, we explore two simple yet natural mod-Sible instantiations” (Partition[p]). Each possible value

els: Reference UncertaingndExistence Uncertainty v determines a subset 6T from which the value op (the
referent) will be selected. We udg to represent the re-

Reference Uncertainty In this model, we assume that sulting partition ofz, (Y").
the objects are prespecified, but relations among them,We now represent a probabilistic model over the values of
i.e., reference slots, are subject to random choices. Thug,by specifying how likely it is to reference objects in one
rather than being given a full relational skeletop, we  subset in the partition versus another. We define a prob-
assume that we are given abject skeletorv,. The  abilistic model for the selector attribut®,. This model
object skeleton specifies only the objeetgX) in each s the same as that of any other attribute: it has a set of
class X € &, but not the values of the reference parents and a CPD. Thus, the CPD &)y would specify
slots. In our example above, the object skeleton woulda probability distribution over possible instantiationss
specify only the set of movies, actors, and roles in thefor descriptive attributes, we allow the distribution okth
databasew, (Actor) = {fred, ginger, bing, o,(Movie) =  slot to depend on other aspects of the domain. For exam-
{m1,m2}, ando,(Role) = {rl,r2,r3,r4,r5}. Inthis ple, an independent movie theater may be more likely to
case, we must specify a probabilistic model for the valueshow foreign movies while a megaplex may prefer to show
of the reference slot¥.p. The domain of a reference slot thrillers. Thus, the CPD oShow.Syovie Might have as a
X.pis the set of keys (unique identifiers) of the objects inparentTheater.Type The choice of value fof5, deter-
the classt” to which X.p refers. Thus, we need to specify mines the partitiorY, from which the reference value pf
a probability distribution over the set of all objectstin is chosen; the choice of reference value gds uniformly

A naive approach is to simply have the PRM specify distributed within this set.



Definition 2: A probabilistic relational modell with ref-  Theorem 3: Let IT be a PRM with relational uncertainty
erence uncertaintpas the same components as in Defini-and acyclic dependency graph. Let be an object skele-
tion 1. In addition, for each reference st R(X) with  ton. Therll ando, uniquely define a probability distribu-
Range[p] = Y, we have: tion over instantiationd that extendr, via Eq. (2).

e a set of attribute®artition[p] C A(Y); Existence Uncertainty The reference uncertainty model

of the previous section assumes that the number of objects
is known. Thus, if we consider a division of objects into en-
tities and relations, the number of objects in classes df bot

* aset of parents and a CPD 6. I types are fixed. In this section, we consider models where
gﬂe number of relationship objects is not fixed in advance.
Consider a simple citation domain with an entity cl&ss

per and a relation clasSite. In this case, we might assume

e a new selector attributé, within X which takes on
values in the cross-product spacéPartition[p]);

To define the semantics of this extension, we must defin
the probability of reference slots as well as descriptive at

tributes:
that the set of papers is part of our background knowledge,
P(Z|o0,,1) = H H P(z.A | Paz.A)) but we want to provide an explicit model for the presence
2€0q(X) ACA(z) or absence of citations. More generally, we assume that
P(z.S, = v[z.p] | Pa(a:.Sp)){ we are given only aentity skeletomr., which specifies the

[T

PER(z),Range[p]=Y

2)  set of objects in our domain only for the entity classes. In
our example of Figure 1, the entity skeleton would include
only the set of actors and movies. We call the entity classes
determinedand the othersindeterminedWe note that re-
lationship classes typically represent many-many ratatio
‘ . i ships; they have at least two reference slots, which refer
ways: the interpretation of.p, the values of the attributes ;. yotermined classes. For example, 6ite class would
¥[p] within the objectr.p, and the size oF. _ have reference sloGiting-PaperandCited-Paper

As above, we must guarantee that dependencies arey. hagic approach is to allow objects whose existence
acyclic for every object skeleton. We accomplish this goaliS uncertain — the objects in the undetermined classes.
by extending our definition of class dependency graph. Theyo ay of achieving this effect is by introducing into the
graph has a node for each descriptive or selector attributg,ye| 5| of the entities that carotentiallyexist in it; with

A.A and the following edges: each of them we associate a special binary variable that

e For any descriptive or selector attribuleC' and any tells us whether the entity actually exists or not. Note that

of its parentsX.7.B we introduce an edge froii.B this construction is purely conceptual; we never expijcitl
to X.C, whereY = Range[]. construct a model containing non-existent objects. In our

. . example above, the domain of tléte class in a given in-
¢ For any descriptive or selector attribuie and any of stantiationZ is Z(Paper) x Z(Paper). Each “potential”

its parentsX.p.3 we add an edge fro;Y.5, 0 X.C. gpiecty — Cite(y1, y») in this domain is associated with a
e Foreach sloiX.p, and eacy.B € Partition[p] (for  binary attributez. E that specifies whether papgr did or

Y| )

where we take|[z.p] to refer to the instantiation of the at-
tributesPartition[p] for the objectz.p in the instantiation
7. Note that the last term in Eq. (2) dependsiim three

Y = Range[p]), we add an edg¥.B — X.S,. did not cite in papey:.
The first class of edges in this definition is identical to theDPefinition 4: We define arundeterminectlass X as fol-
definition of dependency graph above, except that it dealoWs. Letpi,..., p: be the set of reference slots 4f,

with selector as well as descriptive attributes. Edgesef thand letY; = Range[p;]. In any instantiatiorl, we re-
second type reflect the fact that the specific choice of parerftuire thatZ(X) = Z(Y1) x - --Z(Yy). For (y1,... ,yx) €
for a node depends on the reference value of the parent sigk(Y1) X -- Z(Y%), we useX[yi, . .. , yx] to denote the cor-
Edges of the third type represent the dependency of a si¢gSPonding object in¥'. Each.X has a speciatxistence
on the attributes of the associated partition. To see wisy thiattributeX. £’ whose values are (E) = {true, false}. For
is required, we observe that our choice of reference valugniformity of notation, we introduce a# attribute for all

for z.p depends on the values of the partition attributesclasses; for classes that are determined Ahalue is de-
Partition[X.p] of all of the different objects i”. Thus, ~ fined to be alwaysrue. We require that all of the reference

these attributes must be determined before is deter- ~ Sots of a determined class have a range type which is

mined. In our example, aBartition[Shows = {Genrg,  also a determined clask.

the genres of all movies must be determined before we caTihe existence attribute for an undetermined class is tleate

select the value of the reference skitows in the same way as a descriptive attribute in our dependency
Once again, we can show that if this dependency graph isodel, in that it can have parents and children, and is asso-

acyclic, it defines a coherent probabilistic model. ciated with a CPD. In our citation domain, it is reasonable



to assume that the existence of a citation may depend on thn to the two most common models of word appearance
topic of the citing paper and the topic of the cited paper (itin documents. Suppose our domain contains two entity
is more likely that citations will exist between papers with classes:Document, representing the set of documents in
the same topic). Our definitions are such that the semantiasur corpus, andVords, representing the words contained
of the model does not change. By defining the existencén our dictionary. Documents may have descriptive at-
events to be attributes, and incorporating them appropritributes such aJopic dictionary entries would have the
ately into the probabilistic model, we have set things up sattributeWord, which is the word itself, and may also have
that Eq. (1) applies unchanged. additional attributes such as the type of word. The relation
We must, however, place some restrictions on our modeship classAppearance represents the appearance of words
to ensure that our definitions lead to a coherent probabilityn documents; it has two slotsDoc andHasWord In this
model. For example, if the range type of a slot of an un-schema, structural uncertainty corresponds to a probabili
determined class refers to itseR4nge[X.p] = X) then tic model of the appearance of words in documents.
the setZ(X) is defined circularly, in terms of itself. We In existence uncertainty, the claggpearance is an
say that an undetermined cla&Sis coherentif it satis- an undetermined class; the potential objects in this class
fies the following restrictions: (1) An attribut¥.A can-  correspond to document-word paii w), and the asser-
not be an ancestor aK.E. (2) An object can only ex- tion Appearance(d, w).E = true means that the particular
ist if all the objects it refers to exist, i.e., for every slot dictionary entryw appears in the particular documeht
p € R(X), P(a.E = false | z.p.E = false = 1. (3)  Now, suppose thaippearance.FE has the parent&ppear-
Dependencies can only “pass through” objects that existance.InDoc.Topicand Appearance.HasWordWord. This
More precisely, for any sloY".p of range-typeX, we de-  implies, that, for each word> and topict, we have a pa-
fine theusable slotp as follows: for anyy € Z(Y), we  rametelp, . which is the probability that a word appears
definey.p = {x € y.p : z.E =true}. We allow onlypto  in a document of topi¢. Furthermore, the different events
be used as a parent in the dependency m&del Appearance(d,w).E are conditionally independent given
We can use our class dependency graph to capture modte topict. It is easy to see that this model is equivalent
of these requirements. For evelj.A, we introduce an to the model often calleinary naive Bayes modéMc-
edge fromX.E to X.A. For every slop € R(X) whose Callum & Nigam, 1998), where the class variable is the
range type i€”, we have an edge frofi.E to X.E. For  topic and the conditionally independent features are ginar
every attributeX. 4 and everyX.p.B € PgX.A), we have variables corresponding to the appearance of different dic
an edge fronRange[p].E to X.A. As before, we require tionary entries in the document.
that the attribute dependency graph is acyclic. It turns out When using reference uncertainty, we can consider sev-
that our requirements are sufficient to guarantee that evergral modeling alternatives. The most straightforward
undetermined class is coherent, and to allow our extendedhodel is to view a document as a bag of words. Now,
language to be viewed as a standard PRM. Appearance also includes an attribute that designates

Theorem 5: Let II be a PRM with undetermined classes the position of the word in the document. Thus, a
and an acyclic class dependency graph. &ebe an entity ~document ofn words hasn related Appearance ob-
skeleton. Then the PRM and uniquely define a relational 1€Cts. We can provide a probabilistic model of word
skeletor, over all classes, and a probability distribution @PPearance by using reference uncertainty over the slot

over instantiationd that extends, via Eq. (1). Appearance.HasWord In particular, if we choose

. I . . Partition[Appearance.HasWord = Word.Word, then we
Note that a full instantiatiofd also determines the existence have a multinomial distribution over the words in the dic-

aFtrlt_)ute_s fo_r undetermined classes. Hence_,_the probabili tionary. If we setAppearance.lnDoc.Topicas the parent
d!s_trlbunon mdut_:ed by the_ PRM e_llso specifies the proba—of the selector variabl@ppearance.SHasworg then we get
bility that a certain entity will exist in the model. . a different multinomial distribution over words for each
We T‘Ote thfat real-world.cllatabases do not _spemfy the det'opic. The result is a model where a document is viewed
scriptive attributes of entities that do not exist. However o sequence of independent samples from a multinomial
sihce we only allow dependences on Ob]‘_eCts that exist (fogjistribution over the dictionary, where the sample disirib
which z.E = true), then nonexistent objects ateaves i, jepends on the document topic. This document model

in the model and can be ignored in the computation ofg .5jjeq themultinomial Naive Bayesian mod@¥cCal-
P(Z | o¢,1I). The only contribution of a nonexistententity | . o Nigam, 1998)

z to the probability of an instantiatioh is the probability

Thus, for this simple PRM h f f
thatz E — false us, for this simple structure, the two forms o

structural uncertainty lead to models that are well-stdidie
Example: Word models Our two models of structural Within the statistical NLP community. However, the lan-
uncertainty induce simple yet intuitive models for link ex- guage of PRMs allows us to represent more complex struc-
istence. We illustrate this by showing a natural conneciures: Both the existence and reference uncertainty can de-



pend on properties of words rather than on the exact idenModel Search To find a high-scoring structure, we use
tity of the word; they can also depend on other attributesa simple search procedure that considers operators such

such as the research area of the document’s author. as adding, deleting, or reversing edges in the dependency
_ model S. The procedure performs greedy hill-climbing
4. Learning PRMs search, using the Bayesian score to evaluate structures.

In the previous sections we discussed three variants of No extensions to the search algorithm are required to han-
PRM models that differ in their expressive power. Our aimdle existence uncertainty. We simply introduce the new at-
is to learn such models from data: given a schema and ariributes X.E, and integrate them into the search space, as
instance, construct a PRM that describes the dependencigsual. As usual, we enforce coherence using the class de-
between objects in the schema. We stress that, all thregendency graph described above.

PRM model variants are learned using the same type of The extension for incorporating reference uncertainty is
training data: a complete instantiation that describes a sanore subtle. Initially, the partition of the range class for
of objects, their attribute values and their referencesslot a slot X.p is not given in the model. Therefore, we must
However, in each variant, we attempt to learn somewhaalso search for the appropriate set of attribubgs]. We
different structure from this data. For basic PRMs, weintroduce two new operatorgfine and abstract, which
learn the probability of attributes given other attribyfes ~ modify the partition by adding and deleting attributes from
PRMs with reference uncertainty, we also attempt to learnP[p]. Initially, ¥[p] is empty for eaclp. Therefine op-

the rules that govern the choice of slot references; and foerator adds an attribute intd[p]; the abstract operator
PRMs with existence uncertainty, we attempt to learn theleletes one. These newly introduced operators are treated
probability of existence of relationship objects. by the search algorithm in exactly the same way as the stan-

We separate the learning problem into two questionsgdard edge-manipulation operators: the change in the score
evaluating the “goodness” of a candidate structure, ands evaluated for each possible operator, and the algorithm
searching the space of legal candidate structures. selects the best one to execute.

We note that, as usual, the decomposition of the score
Model Scoring For scoring candidate structures, we can be exploited to substantially speed up the search. In
adapt Bayesiamodel selectior{fHeckerman, 1998). We general, the score change resulting from an opetatere-
compute the posterior probability of a structufegiven  evaluated only after applying an operatgrthat modifies
an instantiatiorZ. Using Bayes rule we have th&(S | the parent or partition set of an attribute thatnodifies.
Z,0) x P(Z | S,0)P(S | o). This score is composed of This is also true when we consider operators that modify
two main parts: the prior probability &, and the proba- the parent of selector attributes and existence attributes
bility of the instantiation assuming the structureSis By
making fairly reasonable assumptions about the prior prob5. Results

ability of structures and parameters, this term cardeée e evaluated the methods on several real-life data sets,
composednto a product of terms. Each term in the de- comparing standard PRMs, PRMs with reference uncer-
composed form measures how well we predict the valueg;ainty (RU), and PRMs with existence uncertainty (EU).
of X.A given the values of its parents. Moreover, the termgoyr experiments used the Bayesian score with a uniform
for P(X.A | u) depends only on theufficient statistics  pjrichlet parameter prior with equivalent sample size-
Cx.a[v, u], that count the number of entities withA = v 9 and a uniform distribution over structures.
and Par.A) = u. We first tested whether the additional expressive power al-
The extension of the Bayesian score to PRMs with exisiows us to better capture regularities in the domain. Toward
tence uncertainty is straightforward. The only new issue ighjs end, we evaluated the likelihood of test data given our
how to Compute sufficient statistics that include eXiStenCQearned models. Unfortunate'y, we cannot direct'y com-
attributesz. 2 without explicitly enumerating all the non- pare Jikelihoods, since the PRMs involve different sets of
existent entity. We perform this computation by counting, probabilistic events. Instead, we compare the two variants
for each possible instantiation of @& E), the number of  of PRMs with structural uncertainty, EU and RU, to “base-
potential objects with that instantiation, and subtragtite  |ine” models which incorporate link probabilities, but neak
actual number of objects with that parent instantiation.  the “null” assumption that the link structure is uncorretht
The extension required to deal with reference uncertaintyyith the descriptive attributes. For reference unceraint
is also not a difficult one. Once we fix the set partition at-the baseline ha®[p] = 0 for each slot. For existence un-
tributes¥[p], a CPD forS, compactly defines a distribution  certainty, it forces:. E to have no parents in the model.
over values op. Thus, scoring the success in predictingthe e evaluated these different variants on a dataset that

value ofp can be done efficiently using standard Bayesiancombines information about movies and actors from the
methods used for attribute uncertainty (e.g. using a stan-

dard Dirichlet prior over values gf).



Actor

Figure 3.The PRM learned using existence uncertainty.

Internet Movie Databadeand information about people’s
ratings of movies from the Each Movie datadethere

Table 1.Prediction accuracy of topic/category attribute of docu-
ments in the Core and WebKB datasets. Accuracies and reporte
standard deviations are based on a 10-fold cross validation

| [ Cora | WebKB ]
baseline | 75+2.0 | 74+ 2.5
RUCiting | 81+1.7 | 78+ 2.3
RUCited | 794+1.3 | 77+ 1.5
EU 85+09| 82+1.3

structure we can improve the prediction of descriptive at-
tributes. Here, we hide some attribute of a test-set object,
and compute the probability over its possible values given
the values of other attributes on the one hand, or the val-
ues of other attributes and the link structure on the other.
We tested on two similar domains: Cora (McCallum et al.,
2000) and WebKB (Craven et al., 1998). The Cora dataset
contains 4000 machine learning papers, each with a seven-

each person’s demographic information was extended Witb/alued Topic attribute, and 6000 citations. The WebKB

census information for their zipcode.

From these, Weiataset contains approximately 4000 pages from several

constructed five classes (with approximate sizes ShoV‘m)éomputerScience departments, with a five-valued attribute

Movie (1600), Actor (35,000); Role (50,000), Person

representing their “type”, and 10,000 links between web

(25,000), and/ote (300’_000)' . pages. In both datasets we also have access to the con-
We modeled uncertainty about the link structure of theiont of the document (webpage/paper), which we summa-
classeRole (relating actors to movies) andte (relating ;¢ ysing a set of attributes that represent the presence of
people_t_o movies). ThIS was done elthgr by modeling _th%iifferent words on the page (a binary Naive Bayes model).
probability of the existence of such objects, or modelingsier stemming and removing stop words and rare words,
the reference uncertainty of the slots of these objects. Wg,q dictionary contains 1400 words in the Cora domain, and

trained on nine-tenths of the data and evaluated the '09800 words in the WebKB domain.

likelihood of the held-out test set. Both models of struc-
tural uncertainty significantly outperform their “basein
counterparts. In particular, we obtained a log-likelihadd
—210, 044 for the EU model, as compared te213, 798

for the baseline EU model. For RU, we obtained a log-
likelihood of —149, 705 as compared te-152, 280 for the

In both domains, we compared the performance of mod-
els that use only word appearance information to predict the
category of the document with models that also used prob-
abilistic information about the link from one document to
another. We fixed the dependency structure of the models,
using basically the same structure for both domains. In the

baseline model. Thus, we see that the model where the r%ora EU model, the existence of a citation depends on the

lational structure is correlated with the attribute valiges
substantially more predictive than the baseline model th
takes them to be independent: although any particular lin
is still a low-probability event, our structural uncertiyin
models are much more predictive of its presence.

topic of the citing paper and the cited paper. We evalu-
ted two symmetrical RU models. In the first, we partition

ifhe citing paper by topic, inducing a distribution over the

topic of Citation.Citing. The parent of the selector variable
is Citation.Cited.Topic. The second model is symmetrical,

Figure 3 shows the EU model learned. We learned thaﬁsing reference uncertainty over the cited paper.

the existence of a vote depends on the age of the voter an

the movie genre, and the existence of a role depends on t

gender of the actor and the movie genre. In the RU mode)

(figure omitted due to space constraints), we partition eac

of the movie reference slots on genre attributes; we partip

tion the actor reference slot on the actor’'s gender; and w
partition the person reference of votes on age, gender a

education. An examination of the models shows, for ex-
ample, that younger voters are much more likely to haved
voted on action movies and that male action movies role%

are more likely to exist than female roles.

dTable 1 shows prediction accuracy on both data sets. We
Re that both models of structural uncertainty signifigantl
prove the accuracy scores, although existence uncer-
inty seems to be superior. Interestingly, the varianhef t
U model that models reference uncertainty over the citing
per based on the topics of papers cited (or the from web-
ge based on the categories of pages to which it points)
utperforms the cited variant. However, in all cases, the ad
ition of citation/hyperlink information helps resolve am
iguous cases that are misclassified by the baseline model
that considers words alone. For example, paper #506 is

0

Next, we considered the conjecture that by modeling linky propapilistic Methods paper, but is classified based on

2(©1990-2000 Internet Movie Database Limited.
3http:/www.research.digital.com/SRC/EachMovie.

its words as a Genetic Algorithms paper (with probability
0.54). However, the paper cites two Probabilistic Methods



papers, and is cited by three Probabilistic Methods papersises a multinomial distribution over specific citationg-pr
leading both the EU and RU models to classify it correctly.venting the model from generalizing to a different test set.
Paper #1272 contains words such as rule, theori, refin, inSecond, each paper is assumed to be independent, so there
duct, decis, and tree. The baseline model classifies it ais no ability to reach conclusions about the topic of a cited
a Rule Learning paper (probability 0.96). However, thispaper from that of a citing paper. Finally, dependencies be-
paper cites one Neural Networks and one Reinforcementveen the words appearing in the document and the pres-
Learning paper, and is cited by seven Neural Networks, fiveence or absence of a citation cannot be represented.
Case-Based Reasoning, fourteen Rule Learning, three GeThe ability to learn probabilistic models of relational
netic Algorithms, and seventeen Theory papers. The Corstructure is an exciting new direction for machine learn-
EU model assigns it probability 0.99 of being a Theory pa-ing. Our treatment here only scratches the surface of this
per, which is the correct topic. The first RU model assignsarea. In particular, although useful, neither of the regmes
it a probability 0.56 of being Rule Learning paper, whereagations proposed for structural uncertainty is entirelyssa
the symmetric RU model classifies it correctly. We explainfying as a generative model. Furthermore, both models are
this phenomenon by the fact that most of the information inrestricted to considering the probabilistic model of a king
this case is in the topics of citing papers; it appears that RUelational “link” in isolation. These simple models can be
models can make better use of information in the parents ofeen as the naive Bayes of structural uncertainty; in prac-
the selector variable than in the partitioning variables. tice, relational patterns involve multiple links, e.g e tton-
cepts of hubs and authorities. In future work, we hope to
6. Discussion and Conclusions provide a unified framework for representing and learning
In this paper, we present two representations for strucprobabilistic models of relational “fingerprints” invohg
tural uncertainty: reference uncertainty and existence unmultiple entities and links.

certainty. Reference uncertainty models the process b
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