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Abstract
Most real-world data is stored in relational form. In
contrast, most statistical learning methods work with
“flat” data representations, forcing us to convert our
data into a form that loses much of the relational struc-
ture. The recently introduced framework ofproba-
bilistic relational models(PRMs) allows us to repre-
sent probabilistic models over multiple entities that
utilize the relations between them. In this paper, we
propose the use of probabilistic models not only for
the attributes in a relational model, but for the rela-
tional structure itself. We propose two mechanisms for
modelingstructural uncertainty: reference uncertainty
andexistence uncertainty. We describe the appropriate
conditions for using each model and present learning
algorithms for each. We present experimental results
showing that the learned models can be used to pre-
dict relational structure and, moreover, the observed
relational structure can be used to provide better pre-
dictions for the attributes in the model.

1. Introduction
Relational models are the most common representation of

structured data. Enterprise business data, medical records,
and scientific datasets are all stored in relational databases.
A relational model captures the set of entities in our uni-
verse, their properties, and the relationships between them.
Recently, there has been growing interest in extracting in-
formation, such as patterns and regularities, from these
huge amounts of data (Lavrac & Dzeroski, 1994).

Bayesian networkshave been shown to provide a good
representation language for statistical patterns in real-world
domains. By learning a Bayesian network from data (Heck-
erman, 1998), we can obtain a deeper understanding of our
domain and the statistical dependencies in it. A learned
Bayesian network can also be used for reaching conclu-

sions about attributes whose values may be unobserved.
Unfortunately, Bayesian networks are designed for mod-

eling attribute-based domains, where we have a single table
of IID instances. They cannot be used for modeling richer
relational data sets.Probabilistic relational models (PRMs)
are a recent development (Koller & Pfeffer, 1998; Poole,
1993) that extend the standard attribute-based Bayesian
network representation to incorporate a much richer rela-
tional structure. These models allow properties of an entity
to depend probabilistically on properties of otherrelated
entities. The model represents a generic dependence for
a classof objects, which is then instantiated for particular
sets of entities and relations between them. Friedmanet
al. (1999) adapt the machinery for learning Bayesian net-
works from flat data to the task of learning PRMs from
structured relational data.

The PRM framework focuses on modeling the distribu-
tion over the attributes of the objects in the model. It takes
the relational structure itself — the relational links between
entities — to be background knowledge, determined out-
side the probabilistic model. This assumption implies that
the model cannot be used to predict the relational structure
itself. Thus, for example, we cannot use it to predict that
there exists a money-laundering relation between a bank
and a drug cartel. A more subtle point is that the relational
structure is informative in and of itself. For example, the
links from and to a web page are very informative about
the type of web page (Craven et al., 1998), and the citation
links between papers are very informative about the paper
topics (Cohn & Hofmann, 2001).

In this paper, we provide a framework for specifying and
learning a probabilistic model of the relational structure.
This concept, calledstructural uncertainty, was first in-
troduced by Koller and Pfeffer (1998). In this paper, we
extend their notion ofreference uncertaintyto make it suit-
able for a learning framework; we also introduce a new type



of structural uncertainty, calledexistence uncertainty. We
present a framework for learning these models from a rela-
tional database, and present empirical results on real-world
data showing that these models can be used to predict rela-
tional structure, as well as use an observed relational struc-
ture to provide better predictions about attribute values.

2. Probabilistic Relational Models
A probabilistic relational model (PRM)specifies a tem-

plate for a probability distribution over a database. The
template describes the relational schema for the domain,
and the probabilistic dependencies between attributes in the
domain. A PRM, together with a particular database of ob-
jects and relations, defines a probability distribution over
the attributes of the objects and the relations.

Relational Schema A schema for a relational model de-
scribes a set ofclasses, X = X1; : : : ; Xn. Each class is
associated with a set ofdescriptive attributesand a set of
reference slots.1 The set of descriptive attributes of a classX is denotedA(X). Attribute A of classX is denotedX:A, and its domain of values is denotedV (X:A). We
assume here that domains are finite, however this is not a
fundamental limitation of our approach. For example, theAtor class might have the descriptive attributesGender,
with domainfmale, femaleg.

The set of reference slots of a classX is denotedR(X).
We useX:� to denote the reference slot� of X . Each ref-
erence slot� is typed: the domain type ofDom[�℄ = X
and the range typeRange[�℄ = Y , whereY is some class
in X . A slot � denotes a function fromDom[�℄ = X
to Range[�℄ = Y . For example, we might have a classRole with the reference slotsActorwhose range is the classAtor andMoviewhose range is the classMovie.

It is useful to distinguish between anentityand arelation-
ship, as in entity-relationship diagrams. In our language,
classes are used to represent both entities and relationships.
Thus, a relationship such asRole, which relates actors to
movies, is also represented as a class, with reference slots
to the classActor and the classMovie. We useXE to de-
note the set of classes that represent entities, andXR to de-
note those that represent relationships. We use the generic
termobjectto refer both to entities and to relationships.

The semantics of this language is straightforward. An in-
stantiationI specifies the set of objects in each classX ,
and the values for each attribute and each reference slots of
each object. For example, Figure 1 shows an instantiation
of our simple movie schema. It specifies a particular set of
actors, movies and roles, along with values for each of their
attributes and references.

1There is a direct mapping between our notion of class and the
tables in a relational database: descriptive attributes correspond to
standard table attributes, and reference slots correspondto foreign
keys (key attributes of another table).

ACTOR
name gender

fred male
ginger female
bing male

MOVIE
name genre

m1 drama
m2 comedy

ROLE
role movie actor role-type

r1 m1 fred hero
r2 m1 ginger heroine
r3 m1 bing villain
r4 m2 bing hero
r5 m2 ginger love-interest

Figure 1.An instantiation of the relational schema for a simple
movie domain.

As discussed in the introduction, our goal in this paper
is to construct probabilistic models over instantiations.To
do so, we need to provide enough background knowledge
to circumscribe the set of possible instantiations. Fried-
manet al.(1999) assume that the entire relational structure
is given as background knowledge. In other words, they
assume that they are given arelational skeleton, �r, which
specifies the set of objects in all classes, as well as all the re-
lationships that hold between them (in other words, it spec-
ifies the values for all of the reference slots). In our simple
movie example, the relational skeleton would contain all
of the information except for the gender of the actors, the
genre of the movies, and the nature of the role.

Probabilistic Model for Attributes A probabilistic re-
lational model� specifies a probability distribution over
all instantiationsI of the relational schema. It consists of
the qualitative dependency structure,S, and the parame-
ters associated with it,�S . The dependency structure is
defined by associating with each attributeX:A a set ofpar-
entsPa(X:A). Each parent ofX:A has the formX:�:B
where� is either empty or a single slot�. (PRMs also
allow dependencies on longerslot chains, but we have cho-
sen to omit those for simplicity of presentation.) To under-
stand the semantics of this dependence, note thatx:�:A is
a multiset of valuesS in V (X:�:A). We use the notion of
aggregationfrom database theory to define the dependence
on a multiset; thus,x:A will depend probabilistically on
some aggregate property(S). In this paper, we use the
medianfor ordinal attributes, and themode(most common
value) for others. WhenS is single-valued, both reduces to
a dependence on the value ofx:�:B.

The quantitative part of the PRM specifies the parameter-
ization of the model. Given a set of parents for an attribute,
we can define a local probability model by associating with
it a conditional probability distribution (CPD). For each at-
tribute we have a CPD that specifiesP (X:A j Pa(X:A)).
Definition 1: A probabilistic relational model (PRM)� for
a relational schemaS is defined as follows. For each classX 2 X and each descriptive attributeA 2 A(X), we have
a set ofparentsPa(X:A), and aconditional probability dis-
tribution (CPD)that representsP�(X:A j Pa(X:A)).

Given a relational skeleton�r , a PRM� specifies a dis-



tribution over a set of instantiationsI consistent with�r :P (I j �r;�) = Yx2�r(X) YA2A(x)P (x:A j Pa(x:A)) (1)

where�r(X) are the objects of each class as specified by
the relational skeleton�r (in general we will use the nota-
tion�(X) to refer to the set objects of each class as defined
by any type of domain skeleton).

For this definition to specify a coherent probability distri-
bution over instantiations, we must ensure that our proba-
bilistic dependencies are acyclic, so that a random variable
does not depend, directly or indirectly, on its own value.
Moreover, we want to guarantee that this will be the case
for any skeleton. For this purpose, we use aclass de-
pendency graph, which describes all possible dependencies
among attributes. In this graph, we have an (intra-object)
edgeX:B ! X:A if X:B is a parent ofX:A. If X:�:B
is a parent ofX:A, andY = Range[�℄, we have an (inter-
object) edgeY:B ! X:A. If the dependency graph ofS
is acyclic, then it defines a legal model for any relational
skeleton�r (Friedman et al., 1999).

3. Structural Uncertainty
In the model described in the previous section, all rela-

tions between attributes are determined by the relational
skeleton�r ; only the descriptive attributes are uncertain.
Thus, Eq. (1) determines the probabilistic model of the
attributes of objects, but does not provide a model for
the relations between objects. In this section, we extend
our probabilistic model to allow forstructural uncertainty.
Here, we do not treat the relational structure as background
knowledge, but choose to model it explicitly within the
probabilistic framework. Clearly, there are many ways to
represent a probability distribution over the relational struc-
ture. In this paper, we explore two simple yet natural mod-
els: Reference UncertaintyandExistence Uncertainty.

Reference Uncertainty In this model, we assume that
the objects are prespecified, but relations among them,
i.e., reference slots, are subject to random choices. Thus,
rather than being given a full relational skeleton�r, we
assume that we are given anobject skeleton�o. The
object skeleton specifies only the objects�o(X) in each
class X 2 X , but not the values of the reference
slots. In our example above, the object skeleton would
specify only the set of movies, actors, and roles in the
database:�o(Ator) = ffred, ginger, bingg, �o(Movie) =fm1;m2g, and�o(Role) = fr1; r2; r3; r4; r5g. In this
case, we must specify a probabilistic model for the value
of the reference slotsX:�. The domain of a reference slotX:� is the set of keys (unique identifiers) of the objects in
the classY to whichX:� refers. Thus, we need to specify
a probability distribution over the set of all objects inY .

A naive approach is to simply have the PRM specify
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Figure 2.A simple example of reference uncertainty

a probability distribution directly over�o(Y ). This ap-
proach has two major flaws. Most obviously, this distribu-
tion would require a parameter for each object inY . More
importantly, we want our dependency model to be general
enough to apply over all possible object skeletons�o; a
distribution defined in terms of the objects within a specific
object skeleton would not apply to others.

We achieve a general and compact representation by par-
titioning the classY into subsets according to the values
of some of its attributes. We assume that the value ofX:�
is chosen by first selecting a partition, and then selecting
an object within that partition uniformly. For example, as
shown in Figure 2, we can partition the classMovie by
Genre, indicating that a movie theater first selects which
genre of movie it wants to show, and then uniformly among
the movies with the selected genre. The decision on genre
might depend on the type of theater.

We make this intuition precise by defining, for each slot�,
a set ofpartition attributesPartition[�℄ � A(Y ). In the
above example,Partition[Shows℄ = fGenreg. We now
need to specify the distribution that the reference value of� falls into one partition versus another. We accomplish
this by introducingS� as a new attribute ofX , called a
selector attribute; it takes on a valuev in the space of pos-
sible instantiationsV (Partition[�℄). Each possible valuev determines a subset ofY from which the value of� (the
referent) will be selected. We useYv to represent the re-
sulting partition of�o(Y ).

We now represent a probabilistic model over the values of� by specifying how likely it is to reference objects in one
subset in the partition versus another. We define a prob-
abilistic model for the selector attributeS�. This model
is the same as that of any other attribute: it has a set of
parents and a CPD. Thus, the CPD forS� would specify
a probability distribution over possible instantiations.As
for descriptive attributes, we allow the distribution of the
slot to depend on other aspects of the domain. For exam-
ple, an independent movie theater may be more likely to
show foreign movies while a megaplex may prefer to show
thrillers. Thus, the CPD ofShow:SMovie might have as a
parentTheater:Type. The choice of value forS� deter-
mines the partitionYv from which the reference value of�
is chosen; the choice of reference value for� is uniformly
distributed within this set.



Definition 2: A probabilistic relational model� with ref-
erence uncertaintyhas the same components as in Defini-
tion 1. In addition, for each reference slot� 2 R(X) withRange[�℄ = Y , we have:� a set of attributesPartition[�℄ � A(Y );� a new selector attributeS� within X which takes on

values in the cross-product spaceV (Partition[�℄);� a set of parents and a CPD forS�.

To define the semantics of this extension, we must define
the probability of reference slots as well as descriptive at-
tributes:P (I j �o;�) = Yx2�o(X) YA2A(x)P (x:A j Pa(x:A))Y�2R(x);Range[�℄=Y P (x:S� = v[x:�℄ j Pa(x:S�))jYv j (2)

where we takev[x:�℄ to refer to the instantiationv of the at-
tributesPartition[�℄ for the objectx:� in the instantiationI. Note that the last term in Eq. (2) depends onI in three
ways: the interpretation ofx:�, the values of the attributes	[�℄ within the objectx:�, and the size ofYv.

As above, we must guarantee that dependencies are
acyclic for every object skeleton. We accomplish this goal
by extending our definition of class dependency graph. The
graph has a node for each descriptive or selector attributeX:A and the following edges:� For any descriptive or selector attributeX:C and any

of its parentsX:�:B we introduce an edge fromY:B
toX:C, whereY = Range[� ℄.� For any descriptive or selector attributeC, and any of
its parentsX:�:B we add an edge fromX:S� toX:C.� For each slotX:�, and eachY:B 2 Partition[�℄ (forY = Range[�℄), we add an edgeY:B ! X:S�.

The first class of edges in this definition is identical to the
definition of dependency graph above, except that it deals
with selector as well as descriptive attributes. Edges of the
second type reflect the fact that the specific choice of parent
for a node depends on the reference value of the parent slot.
Edges of the third type represent the dependency of a slot
on the attributes of the associated partition. To see why this
is required, we observe that our choice of reference value
for x:� depends on the values of the partition attributesPartition[X:�℄ of all of the different objects inY . Thus,
these attributes must be determined beforex:� is deter-
mined. In our example, asPartition[Shows℄ = fGenreg,
the genres of all movies must be determined before we can
select the value of the reference slotShows.

Once again, we can show that if this dependency graph is
acyclic, it defines a coherent probabilistic model.

Theorem 3: Let � be a PRM with relational uncertainty
and acyclic dependency graph. Let�o be an object skele-
ton. Then� and�o uniquely define a probability distribu-
tion over instantiationsI that extend�o via Eq. (2).

Existence Uncertainty The reference uncertainty model
of the previous section assumes that the number of objects
is known. Thus, if we consider a division of objects into en-
tities and relations, the number of objects in classes of both
types are fixed. In this section, we consider models where
the number of relationship objects is not fixed in advance.
Consider a simple citation domain with an entity classPa-
per and a relation classCite. In this case, we might assume
that the set of papers is part of our background knowledge,
but we want to provide an explicit model for the presence
or absence of citations. More generally, we assume that
we are given only anentity skeleton�e, which specifies the
set of objects in our domain only for the entity classes. In
our example of Figure 1, the entity skeleton would include
only the set of actors and movies. We call the entity classes
determinedand the othersundetermined. We note that re-
lationship classes typically represent many-many relation-
ships; they have at least two reference slots, which refer
to determined classes. For example, ourCite class would
have reference slotsCiting-PaperandCited-Paper.

Our basic approach is to allow objects whose existence
is uncertain — the objects in the undetermined classes.
One way of achieving this effect is by introducing into the
model all of the entities that canpotentiallyexist in it; with
each of them we associate a special binary variable that
tells us whether the entity actually exists or not. Note that
this construction is purely conceptual; we never explicitly
construct a model containing non-existent objects. In our
example above, the domain of theCite class in a given in-
stantiationI is I(Paper) � I(Paper). Each “potential”
objectx = Cite(y1; y2) in this domain is associated with a
binary attributex:E that specifies whether papery1 did or
did not cite in papery2.
Definition 4: We define anundeterminedclassX as fol-
lows. Let �1; : : : ; �k be the set of reference slots ofX ,
and letYi = Range[�i℄. In any instantiationI, we re-
quire thatI(X) = I(Y1)� � � � I(Yk): For (y1; : : : ; yk) 2I(Y1)�� � � I(Yk), we useX [y1; : : : ; yk℄ to denote the cor-
responding object inX . EachX has a specialexistence
attributeX:E whose values areV (E) = ftrue; falseg. For
uniformity of notation, we introduce anE attribute for all
classes; for classes that are determined, theE value is de-
fined to be alwaystrue. We require that all of the reference
slots of a determined classX have a range type which is
also a determined class.

The existence attribute for an undetermined class is treated
in the same way as a descriptive attribute in our dependency
model, in that it can have parents and children, and is asso-
ciated with a CPD. In our citation domain, it is reasonable



to assume that the existence of a citation may depend on the
topic of the citing paper and the topic of the cited paper (it
is more likely that citations will exist between papers with
the same topic). Our definitions are such that the semantics
of the model does not change. By defining the existence
events to be attributes, and incorporating them appropri-
ately into the probabilistic model, we have set things up so
that Eq. (1) applies unchanged.

We must, however, place some restrictions on our model
to ensure that our definitions lead to a coherent probability
model. For example, if the range type of a slot of an un-
determined class refers to itself (Range[X:�℄ = X) then
the setI(X) is defined circularly, in terms of itself. We
say that an undetermined classX is coherentif it satis-
fies the following restrictions: (1) An attributeX:A can-
not be an ancestor ofX:E. (2) An object can only ex-
ist if all the objects it refers to exist, i.e., for every slot� 2 R(X), P (x:E = false j x:�:E = false) = 1. (3)
Dependencies can only “pass through” objects that exist.
More precisely, for any slotY:� of range-typeX , we de-
fine theusable slot� as follows: for anyy 2 I(Y ), we
definey:� = fx 2 y:� : x:E = trueg. We allow only� to
be used as a parent in the dependency modelS.

We can use our class dependency graph to capture most
of these requirements. For everyX:A, we introduce an
edge fromX:E to X:A. For every slot� 2 R(X) whose
range type isY , we have an edge fromY:E to X:E. For
every attributeX:A and everyX:�:B 2 Pa(X:A), we have
an edge fromRange[�℄:E to X:A. As before, we require
that the attribute dependency graph is acyclic. It turns out
that our requirements are sufficient to guarantee that every
undetermined class is coherent, and to allow our extended
language to be viewed as a standard PRM.

Theorem 5: Let � be a PRM with undetermined classes
and an acyclic class dependency graph. Let�e be an entity
skeleton. Then the PRM and�e uniquely define a relational
skeleton�r over all classes, and a probability distribution
over instantiationsI that extends�e via Eq. (1).

Note that a full instantiationI also determines the existence
attributes for undetermined classes. Hence, the probability
distribution induced by the PRM also specifies the proba-
bility that a certain entity will exist in the model.

We note that real-world databases do not specify the de-
scriptive attributes of entities that do not exist. However,
since we only allow dependencies on objects that exist (for
which x:E = true), then nonexistent objects areleaves
in the model and can be ignored in the computation ofP (I j �e;�). The only contribution of a nonexistent entityx to the probability of an instantiationI is the probability
thatx:E = false.

Example: Word models Our two models of structural
uncertainty induce simple yet intuitive models for link ex-
istence. We illustrate this by showing a natural connec-

tion to the two most common models of word appearance
in documents. Suppose our domain contains two entity
classes:Document, representing the set of documents in
our corpus, andWords, representing the words contained
in our dictionary. Documents may have descriptive at-
tributes such asTopic; dictionary entries would have the
attributeWord, which is the word itself, and may also have
additional attributes such as the type of word. The relation-
ship classAppearance represents the appearance of words
in documents; it has two slotsInDocandHasWord. In this
schema, structural uncertainty corresponds to a probabilis-
tic model of the appearance of words in documents.

In existence uncertainty, the classAppearance is an
an undetermined class; the potential objects in this class
correspond to document-word pairs(d; w), and the asser-
tion Appearane(d; w):E = true means that the particular
dictionary entryw appears in the particular documentd.
Now, suppose thatAppearane:E has the parentsAppear-
ance.InDoc.TopicandAppearance.HasWord.Word. This
implies, that, for each wordw and topict, we have a pa-
rameterpw;t which is the probability that a wordw appears
in a document of topict. Furthermore, the different eventsAppearane(d; w):E are conditionally independent given
the topict. It is easy to see that this model is equivalent
to the model often calledbinary naive Bayes model(Mc-
Callum & Nigam, 1998), where the class variable is the
topic and the conditionally independent features are binary
variables corresponding to the appearance of different dic-
tionary entries in the document.

When using reference uncertainty, we can consider sev-
eral modeling alternatives. The most straightforward
model is to view a document as a bag of words. Now,
Appearance also includes an attribute that designates
the position of the word in the document. Thus, a
document ofn words hasn related Appearance ob-
jects. We can provide a probabilistic model of word
appearance by using reference uncertainty over the slot
Appearance.HasWord. In particular, if we choosePartition[Appearane:HasWord℄ = Word:Word, then we
have a multinomial distribution over the words in the dic-
tionary. If we setAppearance.InDoc.Topicas the parent
of the selector variableAppearane:SHasWord, then we get
a different multinomial distribution over words for each
topic. The result is a model where a document is viewed
as a sequence of independent samples from a multinomial
distribution over the dictionary, where the sample distribu-
tion depends on the document topic. This document model
is called themultinomial Naive Bayesian model(McCal-
lum & Nigam, 1998).

Thus, for this simple PRM structure, the two forms of
structural uncertainty lead to models that are well-studied
within the statistical NLP community. However, the lan-
guage of PRMs allows us to represent more complex struc-
tures: Both the existence and reference uncertainty can de-



pend on properties of words rather than on the exact iden-
tity of the word; they can also depend on other attributes,
such as the research area of the document’s author.

4. Learning PRMs
In the previous sections we discussed three variants of

PRM models that differ in their expressive power. Our aim
is to learn such models from data: given a schema and an
instance, construct a PRM that describes the dependencies
between objects in the schema. We stress that, all three
PRM model variants are learned using the same type of
training data: a complete instantiation that describes a set
of objects, their attribute values and their reference slots.
However, in each variant, we attempt to learn somewhat
different structure from this data. For basic PRMs, we
learn the probability of attributes given other attributes; for
PRMs with reference uncertainty, we also attempt to learn
the rules that govern the choice of slot references; and for
PRMs with existence uncertainty, we attempt to learn the
probability of existence of relationship objects.

We separate the learning problem into two questions:
evaluating the “goodness” of a candidate structure, and
searching the space of legal candidate structures.

Model Scoring For scoring candidate structures, we
adapt Bayesianmodel selection(Heckerman, 1998). We
compute the posterior probability of a structureS given
an instantiationI. Using Bayes rule we have thatP (S jI; �) / P (I j S; �)P (S j �). This score is composed of
two main parts: the prior probability ofS, and the proba-
bility of the instantiation assuming the structure isS. By
making fairly reasonable assumptions about the prior prob-
ability of structures and parameters, this term can bede-
composedinto a product of terms. Each term in the de-
composed form measures how well we predict the values
of X:A given the values of its parents. Moreover, the term
for P (X:A j u) depends only on thesufficient statistics
CX:A[v;u℄, that count the number of entities withx:A = v
and Pa(x:A) = u.

The extension of the Bayesian score to PRMs with exis-
tence uncertainty is straightforward. The only new issue is
how to compute sufficient statistics that include existence
attributesx:E without explicitly enumerating all the non-
existent entity. We perform this computation by counting,
for each possible instantiation of Pa(X:E), the number of
potential objects with that instantiation, and subtracting the
actual number of objectsx with that parent instantiation.

The extension required to deal with reference uncertainty
is also not a difficult one. Once we fix the set partition at-
tributes	[�℄, a CPD forS� compactly defines a distribution
over values of�. Thus, scoring the success in predicting the
value of� can be done efficiently using standard Bayesian
methods used for attribute uncertainty (e.g. using a stan-
dard Dirichlet prior over values of�).

Model Search To find a high-scoring structure, we use
a simple search procedure that considers operators such
as adding, deleting, or reversing edges in the dependency
model S. The procedure performs greedy hill-climbing
search, using the Bayesian score to evaluate structures.

No extensions to the search algorithm are required to han-
dle existence uncertainty. We simply introduce the new at-
tributesX:E, and integrate them into the search space, as
usual. As usual, we enforce coherence using the class de-
pendency graph described above.

The extension for incorporating reference uncertainty is
more subtle. Initially, the partition of the range class for
a slotX:� is not given in the model. Therefore, we must
also search for the appropriate set of attributes	[�℄. We
introduce two new operatorsrefine and abstract, which
modify the partition by adding and deleting attributes from	[�℄. Initially, 	[�℄ is empty for each�. The refine op-
erator adds an attribute into	[�℄; the abstract operator
deletes one. These newly introduced operators are treated
by the search algorithm in exactly the same way as the stan-
dard edge-manipulation operators: the change in the score
is evaluated for each possible operator, and the algorithm
selects the best one to execute.

We note that, as usual, the decomposition of the score
can be exploited to substantially speed up the search. In
general, the score change resulting from an operator! is re-
evaluated only after applying an operator!0 that modifies
the parent or partition set of an attribute that! modifies.
This is also true when we consider operators that modify
the parent of selector attributes and existence attributes.

5. Results
We evaluated the methods on several real-life data sets,

comparing standard PRMs, PRMs with reference uncer-
tainty (RU), and PRMs with existence uncertainty (EU).
Our experiments used the Bayesian score with a uniform
Dirichlet parameter prior with equivalent sample size� =2, and a uniform distribution over structures.

We first tested whether the additional expressive power al-
lows us to better capture regularities in the domain. Toward
this end, we evaluated the likelihood of test data given our
learned models. Unfortunately, we cannot directly com-
pare likelihoods, since the PRMs involve different sets of
probabilistic events. Instead, we compare the two variants
of PRMs with structural uncertainty, EU and RU, to “base-
line” models which incorporate link probabilities, but make
the “null” assumption that the link structure is uncorrelated
with the descriptive attributes. For reference uncertainty,
the baseline has	[�℄ = ; for each slot. For existence un-
certainty, it forcesx:E to have no parents in the model.

We evaluated these different variants on a dataset that
combines information about movies and actors from the
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Figure 3.The PRM learned using existence uncertainty.

Internet Movie Database2 and information about people’s
ratings of movies from the Each Movie dataset,3 where
each person’s demographic information was extended with
census information for their zipcode. From these, we
constructed five classes (with approximate sizes shown):
Movie (1600), Actor (35,000); Role (50,000), Person
(25,000), andVote (300,000).

We modeled uncertainty about the link structure of the
classesRole (relating actors to movies) andVote (relating
people to movies). This was done either by modeling the
probability of the existence of such objects, or modeling
the reference uncertainty of the slots of these objects. We
trained on nine-tenths of the data and evaluated the log-
likelihood of the held-out test set. Both models of struc-
tural uncertainty significantly outperform their “baseline”
counterparts. In particular, we obtained a log-likelihoodof�210; 044 for the EU model, as compared to�213; 798
for the baseline EU model. For RU, we obtained a log-
likelihood of�149; 705 as compared to�152; 280 for the
baseline model. Thus, we see that the model where the re-
lational structure is correlated with the attribute valuesis
substantially more predictive than the baseline model that
takes them to be independent: although any particular link
is still a low-probability event, our structural uncertainty
models are much more predictive of its presence.

Figure 3 shows the EU model learned. We learned that
the existence of a vote depends on the age of the voter and
the movie genre, and the existence of a role depends on the
gender of the actor and the movie genre. In the RU model
(figure omitted due to space constraints), we partition each
of the movie reference slots on genre attributes; we parti-
tion the actor reference slot on the actor’s gender; and we
partition the person reference of votes on age, gender and
education. An examination of the models shows, for ex-
ample, that younger voters are much more likely to have
voted on action movies and that male action movies roles
are more likely to exist than female roles.

Next, we considered the conjecture that by modeling link
2 c1990-2000 Internet Movie Database Limited.
3http://www.research.digital.com/SRC/EachMovie.

Table 1.Prediction accuracy of topic/category attribute of docu-
ments in the Core and WebKB datasets. Accuracies and reported
standard deviations are based on a 10-fold cross validation.

Cora WebKB
baseline 75� 2.0 74� 2.5
RU Citing 81� 1.7 78� 2.3
RU Cited 79� 1.3 77� 1.5
EU 85� 0.9 82� 1.3

structure we can improve the prediction of descriptive at-
tributes. Here, we hide some attribute of a test-set object,
and compute the probability over its possible values given
the values of other attributes on the one hand, or the val-
ues of other attributes and the link structure on the other.
We tested on two similar domains: Cora (McCallum et al.,
2000) and WebKB (Craven et al., 1998). The Cora dataset
contains 4000 machine learning papers, each with a seven-
valuedTopic attribute, and 6000 citations. The WebKB
dataset contains approximately 4000 pages from several
Computer Science departments, with a five-valued attribute
representing their “type”, and 10,000 links between web
pages. In both datasets we also have access to the con-
tent of the document (webpage/paper), which we summa-
rize using a set of attributes that represent the presence of
different words on the page (a binary Naive Bayes model).
After stemming and removing stop words and rare words,
the dictionary contains 1400 words in the Cora domain, and
800 words in the WebKB domain.

In both domains, we compared the performance of mod-
els that use only word appearance information to predict the
category of the document with models that also used prob-
abilistic information about the link from one document to
another. We fixed the dependency structure of the models,
using basically the same structure for both domains. In the
Cora EU model, the existence of a citation depends on the
topic of the citing paper and the cited paper. We evalu-
ated two symmetrical RU models. In the first, we partition
the citing paper by topic, inducing a distribution over the
topic ofCitation.Citing. The parent of the selector variable
is Citation.Cited.Topic. The second model is symmetrical,
using reference uncertainty over the cited paper.

Table 1 shows prediction accuracy on both data sets. We
see that both models of structural uncertainty significantly
improve the accuracy scores, although existence uncer-
tainty seems to be superior. Interestingly, the variant of the
RU model that models reference uncertainty over the citing
paper based on the topics of papers cited (or the from web-
page based on the categories of pages to which it points)
outperforms the cited variant. However, in all cases, the ad-
dition of citation/hyperlink information helps resolve am-
biguous cases that are misclassified by the baseline model
that considers words alone. For example, paper #506 is
a Probabilistic Methods paper, but is classified based on
its words as a Genetic Algorithms paper (with probability0:54). However, the paper cites two Probabilistic Methods



papers, and is cited by three Probabilistic Methods papers,
leading both the EU and RU models to classify it correctly.
Paper #1272 contains words such as rule, theori, refin, in-
duct, decis, and tree. The baseline model classifies it as
a Rule Learning paper (probability 0.96). However, this
paper cites one Neural Networks and one Reinforcement
Learning paper, and is cited by seven Neural Networks, five
Case-Based Reasoning, fourteen Rule Learning, three Ge-
netic Algorithms, and seventeen Theory papers. The Cora
EU model assigns it probability 0.99 of being a Theory pa-
per, which is the correct topic. The first RU model assigns
it a probability 0.56 of being Rule Learning paper, whereas
the symmetric RU model classifies it correctly. We explain
this phenomenon by the fact that most of the information in
this case is in the topics of citing papers; it appears that RU
models can make better use of information in the parents of
the selector variable than in the partitioning variables.

6. Discussion and Conclusions
In this paper, we present two representations for struc-

tural uncertainty: reference uncertainty and existence un-
certainty. Reference uncertainty models the process by
which reference slots are selected from a given set. Exis-
tence uncertainty provides a model for whether a relation
exists between two objects. We have shown how to in-
tegrate them with our learning framework, and presented
results showing that they allow interesting patterns to be
learned. The ability to learn probabilistic models of re-
lational structure has many applications. It allows us to
predict whether two objects with given properties are more
likely to be related to each other. More surprisingly, the
link structure also allows us to predict attribute values of
interest. For example, we can better predict the topic of a
paper by using the fact that it cites certain types of papers.

Several recent works in the literature examine learning
from relational data. Kleinberg (1998) learns a global prop-
erty of a relation graph (“authority” of web pages) based on
local connectivity. This approach does not generalize be-
yond the training data, and ignores attributes of the pages
(e.g., words). Slattery and Mitchell (2000) integrate Klein-
berg’s authority recognition module with a first-order rule
learner to perform classification that also utilizes the rela-
tional structure in the test set. Their approach is intended
purely for classification, and is not a statistical model of the
domain. Furthermore, their approach is not based on a sin-
gle coherent framework, so that the results of two different
modules are combined procedurally.

A stochastic relational model recently defined by Cohn
and Hofmann (2001) introduces alatent (hidden)variable
that describes the “class” of each document. Their model
assumes that word occurrences and links to other docu-
ments are independent given the document’s class. This
model is similar to a PRM model with reference uncer-
tainty, but differs from it in several important ways. First, it

uses a multinomial distribution over specific citations, pre-
venting the model from generalizing to a different test set.
Second, each paper is assumed to be independent, so there
is no ability to reach conclusions about the topic of a cited
paper from that of a citing paper. Finally, dependencies be-
tween the words appearing in the document and the pres-
ence or absence of a citation cannot be represented.

The ability to learn probabilistic models of relational
structure is an exciting new direction for machine learn-
ing. Our treatment here only scratches the surface of this
area. In particular, although useful, neither of the represen-
tations proposed for structural uncertainty is entirely satis-
fying as a generative model. Furthermore, both models are
restricted to considering the probabilistic model of a single
relational “link” in isolation. These simple models can be
seen as the naive Bayes of structural uncertainty; in prac-
tice, relational patterns involve multiple links, e.g., the con-
cepts of hubs and authorities. In future work, we hope to
provide a unified framework for representing and learning
probabilistic models of relational “fingerprints” involving
multiple entities and links.
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