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Chakrabartet al.[1999 describe a relaxation labeling algo-

rithm that iteratively reassigns labels based on the ctitaen
bels the neighboring documents. Neville and Jenk2®0Q
propose ariterative classificationalgorithm which essen-
tially implements this process. Slattery and MitcH&00J
propose an application of a similar iterative relaxatidmesoe

to the problem of classifying web pages. This work illustgat
that classification accuracy improves by exploiting tha-rel
tional structure. However, none of these approaches peopos
a single coherent model of the correlations between diftere
related documents. Hence, they are forced to provide a pro-
cedural approach, where the results of different classidica
steps or algorithms are combined without a general underly-
ing model.

In this paper, we propose a unified framework for model-
ing and learning relational structure. Our framework aow
for inferences, similar to those mentioned above, that prop
agate via the relational structure that exists over theatbje
in our domain. The key to our approach is the use of a sin-
gle probabilistic model that captures the interactions/ieen
the objects in our domain. Our work builds probabilis-
tic relational models (PRMs)-a recent developmefiKoller
1 Introduction and Pfeffer, 1998; Poole, 19p3PRMs extend the standard

attribute-based Bayesian network representation to posor
The majority of previous work on text classification has maderate a much richer relational structure. They allow prdpert
use of “flat” representations, where each document is a daigf an entity to depend probabilistically on properties dfast
instance whose attributes are the set of words it containgelatedentities. The model represents a generic dependence
However, many text domains are much richer in structurefor a classof objects, which is then instantiated for partic-
involving multiple documents that are related to each otheular sets of entities and relations between them. Friedman
in complex ways. Examples of such domains are the Worlct al. [1999 adapt the machinery for learning Bayesian net-
Wide Web where web pages are related to each other via hyvorks from flat data to the task of learning PRMs from struc-
perlinks and the scientific paper domain where papers are redred relational data.
lated via citations. The basic PRM model takes the relational structure as in-

Recently, there has been a growing interest in classificaput; in other words, it is outside the probabilistic modek A
tion techniques for more richly structured text data ses$ th many have noted, the relational structure is informativeid
make use of the additional link structure information that e of itself. For example, the links from and to a web page are
ists between documents. As a motivating example, considarery informative about the type of web pafferavenet al,
the task introduced by Cravenal.[1994 of classifyingweb 1994, and the citation links between papers are very infor-
documents as being either a student, faculty, course cegiroj mative about the paper topi¢€ohn and Hofmann, 2001
home page. Intuitively, we would like to use our information The knowledge that a certain page is a fkileinberg, 1998
about one document to help us reach conclusions about otheran also be quite informative. For example a directory of stu
related documents. For example, we should be able to use tlent listings is a student hub; this knowledge can help &s inf
categories of pages to which a web page links to help infethe category of pages pointed to by the hub.
the category of the page. Here, we model the link structure explicitly by modeling

Several papers have recently proposed algorithms that utithe uncertainty over the existence of links between objeacts
lize information from related documents to aid classifimati  our domain, as introduced [Getooret al., 200]. For exam-

Most text classification methods treat each document as an
independent instance. However, in many text domains, doc-
uments are linked and the topics of linked documents are cor-
related. For example, web pages of related topics are often
connected by hyperlinks and scientific papers from related
fields are commonly linked by citations.  We propose a
unified probabilistic model for both the textual content and
the link structure of a document collection. Our model is
based on the recently introduced framework of Probalilisti
Relational Models (PRMs), which allows us to capture cor-
relations between linked documents. We show how to learn
these models from data and use them efficiently for classifi-
cation. Since exact methods for classification in theseelarg
models are intractable, we utilize belief propagation, pn a
proximate inference algorithm. Belief propagation autema
ically induces a very natural behavior, where our knowledge
about one document helps us classify related ones, which in
turn help us classify others. We present preliminary empiri
cal results on a dataset of university web pages.



ple, when classifying web pages, we model the probabilityFor example, we might have a clasak with the reference
of the existence of a hyperlink between all possible pairs oflotsFrom-PageandTo-Pagewhose range is the claBage.
web pages. In addition, we introduce a hidden variable, Itis often useful to distinguish between entityand arela-
Hub, which not only captures the traditional notion of hub tionship as in entity-relationship diagrams. In our language,
[Kleinberg, 1998 but which also describes the type of hub. classes are used to represent both entities and relatsnshi
For example, in the WebKB domain, a web page may be &hus, entities such as web pages are represented by classes,
student, course, project or faculty hub page. This modelingnd a relationship such &snk, which relates web pages to
is precisely that which enables the propagation of influenceveb pages, is also represented as a class, with referense slo
between objects that are related: a page that points to mang the classPage. We useXs to denote the set of classes
student pages is likely to be a student hub; furthermore, #hat represent entities, atidz to denote those that represent
page that is pointed to by a student hub is more likely to be aelationships. The members of classes are callgdctsre-
student page. gardless of whether the class is an entity or relationsiaigscl
We evaluate our method on the task of classification of web The semantics of this language is straightforward. An in-
pages into a predetermined set of classes from a collection atantiationZ specifies the set of objects in each class, and the
university web pages. Here, we learn a model over schoolgalues for each attribute and each reference slots of each ob
in the training set and use it to classify web pages in otheject. For example, in a dataset of web pages, an instantiatio
schools. The probabilistic inference algorithm we use -autospecifies the set of web pages and hyperlinks between them,
matically induces the desired behavior, where our knowdedgalong with words they contain.
about one instance helps us classify related ones, which in An instantiation includes thelational skeletone,., which
turn help us classify others. Preliminary experiments shovgpecifies the complete relational structure in the moded: th
that the relational information provides a significant ldns  set of objects in all classes, as well as all the relatiorsship
classification accuracy. that hold between them. In other words, it specifies the set
Section 2 describes probabilistic relational models. Inof object in each clas¥, denoteds(X), and for each object
Section 3, we propose a probabilistic relational modelliert z € o(X), it specifies the values of all of the reference slots
web domain. Section 4 presents a method for learning the.p. In our web page example, the relational skeleton would
models and Section 5 describes how a learned model catontain the set of web pages and links between them but not
be used to make predictions. We explain how relational intheir category or the words they contain.
formation in the test set is propagated between instances in

Section 6. Finally, Section 7 presents evaluation andi®sul propapilistic Model for Attributes A probabilistic rela-

o . tional modelll specifies a probability distributions over all
2 Probabilistic Relational Models instantiationsZ of the relational schema. It consists of the

A probabilistic relational model (PRM3pecifies a template gualitative dependency structuig, and the parameters as-
for a probability distribution over a relational databa3te  Sociated with itfs. The dependency structure is defined by
template describes the relational schema for the domaih, ar@ssociating with each attribufe. A a set ofparentsPa X A).

the probabilistic dependencies between attributes in the d  Each parent o' A has the formX.B or X.7.B wherer
main. A PRM, together with a particular database of objectds & sequence of reference slots. More precisely, we define a
and relations, defines a probability distribution over the a Slot chainp:, ..., p; be a sequence of slots such that for all

tributes of the objects and the relations. i, Range[p;] = Dom[p;1]. B _
The quantitative part of the PRM specifies the parameteri-

Relational Schema A schema for a relational model de- zation of the model. Given a set of parents for an attribuee, w
can define a local probability model by associating with it a

spribgs iset (ﬁlﬁfﬂsesx t: X irib i(” Each ?a,fsésf IS asso- o gitional probability distribution (CPD)For each attribute
ciated with a set aflescriptive attributeand a set ofeference o 1ave o CPD that specifi@( X. 4 | PAX.A)).

slots! The set of descriptive attributes of a claksis de- o T .

noted.A(X). Attribute 4 of classX is denotedX. 4, and its Deflnlt!on 2L A probz_;\blllst!c relational model (PRMI for
domain of values is denotdd(X.A). We assume here that relational schema' is defined as follows. For each class
domains are finite. For example, tRage class might con- X € & and each descriptive attributee A(X), we have:
tain aCategoryattribute with a domain ofcourse, faculty, e a set ofparentsPg X.A), where each parent has the form
project, student, othéras well as a set of binary attributesto ~ X.B or X.7.B.

indicate whether it contains certain words. e a conditional probability distribution that represents
The set of reference slots of a claksis denotedR (X). P(X.A|PaX.4)).1
We useX.p to denote the reference slptof X. Each refer- For a given skeletorr, the PRM structure induces am-

ence slop is typed: the domain type dfom[p] = X andthe  5)ieq Bayesian network over the random variabled. For

range typRange[p] = Y, whereY"is some class i’. Aslot  ayery object: € o(XX), 2.4 depends probabilistically on par-

p denotes a function froom[p] = X to Range[p] =Y.  ents'of the forme.B or z.7.B. (We will assume that.r is
There is a direct mapping between our notion of class and théingle-valued throughout, although PRMs allow dependence

tables in a relational database: descriptive attributesespond to 0N multi-valued relations as well.) Note that the CPD.Xord

standard table attributes, and reference slots corresfmfateign IS used for eaclr. A in the unrolled network, and is repeated
keys attributes (key attributes of another table). many times in the network. Thus the same parameters are
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Figure 1: (a) PRM Model for WebKB domain; (b) Fragment of ute® network for WebKB model.

used in many different contexts in the network. The contextential” objectz = Link(yy,y:) in this domain is associated
is given by the set of parents for each attribute as defined bwith a binary attribute:. E that specifies whether the page
the CPD together with the relational skeleton. did or did not have a link to the page.
The exists attribute for an undetermined class is treated in

Structural Uncertainty  In the model described in the pre- theé same way as a descriptive attribute in our dependency
vious section, all relations between attributes are détezen  Model, in that it can have parents and children, and is associ

by the relational skeletoa,; only the descriptive attributes ated with a CPD. Our definitions are such that the semantics
are uncertain. In this section, we extend our probabilisticof the model does not change. For example, the existence of
model to allow forstructural uncertainty Here, we do not @ link between two pages may depend on their categories as
treat the relational structure as background knowledge, byvell as presence of certain words in those pages.

choose to model it explicitly within the probabilistic fram

work. Clearly, there are many ways to represent a probgbilit3 PRMSs for the Web

distribution over the relational structure. In this papes,use _ )

a simple yet natural modeExistence Uncertainty Figure 1(a) shows a PRM for the web page domain. For

Suppose we are given only the schema and informatioglarity, thePage class was duplicated in the figure, once as
about some of the objects in the domain, but we have unErom-Page and once ajo-Page. The textual content of
certainty over the links between objects. We can extend ou?ach page is described by a simple binomial Naive Bayes type
probabilistic model to handle this uncertainty by explicit Model over words contained in the page (a binomial bag-of-
modeling the existence of the links themselves. words-model).

We begin by introducing the notion of antity skeleton Some categories of pages are much more likely to have
o.. An entity skeleton is less informative than a relationallinks to each other (faculty and students) while others are
skeleton. It specifies a set of entities(X) only for the =~ much less likely (course and project). We can model such de-
classesY € X¢. In our web page example, the entity skele- pendence using the existence uncertainty model described i
ton would omit the information about the hyperlinks, andthe previous section. We introduce an attriblitek.Exists
only include information about the set of web pages. We calfnd haveLink.Exists depend onLink.From-Page.Category
the entity classesleterminedand the othersindetermined  andLink.To-Page.Category
We note that relationship classes typically represent many In addition, certain web pages may dieectorypages. Di-
many relationships; they have at least two reference slotggectory pages point to a large number of web pages of a par-
which refer to determined classes. For example, lduk  ticular category. For example, a student directory typycal
class would have reference sldt®m-Pageand To-Pageto ~ points to student web pages. We can model this property of
classPage. While we know the set of web pages, we may beweb pages by introducing the attributeib for Page class.
uncertain about which web pages link to each other, and thuhe domain of thédubcorresponds to the domain of tGat-
we have uncertainty over the existence of Ltk objects. egory, e.g.,{course-hub, faculty-hub, project-hub, student-

Our basic approach in this model is that we allow objectshub, non-hub. The existence of a link between a student
whose existence is uncertain. These are the objects in the uhub page and a student page is highly probable, while a link
determined classes. One way of achieving this effect is bjrom a student hub page to a course page is very unlikely. We
introducing into the model all of the entities that gamten-  can model this dependence by lettibimk.Existsdepend on
tially exist in it; with each of them we associate a specialLink.From-Page.Hulas well as orink.From-Page.Category
binary variable that that tells us whether the entity aégyual andLink.To-Page.Category
exists or not. Note that this construction is purely conaapt Another important source of information comes from the
we never explicitly construct a model containing non-exi¢t anchor words contained (underlined) in the hyperlink. For
objects. In our example above, the domain of ek class example, a student page with a link containing the word
in a given instantiatiotT is Z(Page) x Z(Page). Each “po-  “advisor” is likely to point to a faculty page, while a



course page with a link containing the word “instructor” of which are described below), we chose to bséef prop-
probably links to a faculty page. Note that the categoryagation Belief Propagation (BP) is a local message passing
of both the source and destination page is crucial. Walgorithm introduced by Pedr1989. Itis guaranteed to con-
can model this dependence by introducing a classhor  verge to the correct marginal probabilities for each nodg on
with a reference slotn-Link and an attributéNord, where  for singly connected Bayesian networks. However, empiri-
Word has parentsnchor.In-Link.From-Page.Categorgnd  cal resultd Murphy and Weiss, 199%how that it often con-
Anchor.In-Link.To-Page.Category verges in general networks, and when it does, the marginals
Given a particular set of hyperlinked pages, the templatéire a good approximation to the correct posteriors.

is instantiated to produce an “unrolled” Bayesian network. We provide a brief outline of one variant of BP, referring
Figure 1(b) shows a fragment of such a network for threg¢o [Murphy and Weiss, 199%or more details. Consider a
web pages. The two existing links from page 1 to page 2Bayesian network over some set of nodes (which in our case
and 3 are shown while non-existing links omitted for clarity would be the variables. A). We first convert the graph into
(however still play a role in the inference). Also shown area family graph with a nodeF; for each variableX; in the
the anchor word for link 1 and two anchor words for link 2. BN, containingX; and its parents. Two nodes are connected
Note that during classification, existence of links and amnch if they have some variable in common. The CPDJof is
words in the links are used as evidence to infer categoriegssociated witlF;. Lety, represent the factor defined by the
of the web pages. Hence, our unrolled Bayes net has activePD; i.e., if F; contains the variableX,Y;, ..., Y}, theny;
paths between categories of pages through the v-structiresis a function from the domains of these variableftd]. We
Link.ExistsandAnchor.Word These active paths capture ex- also definey; to be a factor overX; that encompasses our
actly the pattern of relational inference we set out to model evidence abouk;: ¢;(X;) = 1if X; is not observed. If we

observeX; = z, we have that);(z) = 1 and0 elsewhere.
4 Learning the Models _Our posteri_or distribution is them [, ¢; x [], ¥s, wherea

is a normalizing constant.
In this paper, we assume that the dependency structure in our The belief propagation algorithm is now very simple. At
models is specified, so learning the models amounts to estéach iteration, all the family nodes simultaneously send-me
mating the parameters. We adapt a Bayesian parameter esage to all others, as follows:
timation approaciHeckerman, 1998 We use a standard
Dirichlet prior for the parameters. Conveniently, in thise mij(F; N Fj) < a Z it H Mk
the CPD of each attribute can be estimated separately. The Fi—F; keN (i) —{j}
CPD P(X.A | u) depends only on theufficient statistics whereq is a (different) normalizing constant ané(i) is the
Nx.a[v,u], that count the number of entities withA = v set of families that are neighbors &F in the family graph.
and Péx.A4) = u. These sufficient statistics can be computedat any point in the algorithm, our marginal distribution atho
using standard relational database queries. any family F; is b; = agp;1h; erN(i) myi. This process is

The extension of parameter estimation to PRMs with exyepeated until the beliefs converge.

istence uncertainty is straightforward. The only new issue  after convergence, thé; give us approximate marginal
how to compute sufficient statistics that include existeatee gstributions over each of the families in the unrolled nate

tributesz. 2 without explicitly adding all non-existent entity These marginals are then used to predict the class of the doc-
into our database. We perform this computation by countyments.

ing, for each possible instantiation of P& E), the number

of potential objects with that instantiation, and subtragthe : ;
actual number of objects with that parent instantiatﬁ]. 6 Influence propagation over relations

Among the strong motivations for using a relational model is
its ability to model dependencies between related instance
Intuitively, we would like to use our information about one
Once we have learned a model, how do we use the model fabject to help us reach conclusions about other, related ob-
prediction? Classification in our framework is done by com-jects. For example, we should be able to propagate informa-
puting the posterior distribution over the unobserved-vari tion about the topic of a documento documents it has links
ables given the data and assigning each unobserved varialiteand documents that link to it. These, in turn, would propa-
its most likely value. This requires inference over the un-gate information to yet other documents.

rolled network defined by instantiating a PRM for a partic- Recently, several papers have proposed a process along
ular document collection. We cannot decompose this taskhe lines of this “influence propagation” idea. Chakrabarti
into separate inference tasks over the objects in the maslel, et al. [1999 describe a relaxation labeling algorithm that
they are all correlated. In general, the unrolled network ca makes use of the neighboring link information. The algo-
be fairly complex, involving many documents that are linkedrithm begins with the labeling given by a text-based classsifi

in various ways. (In our experiments, the networks involveconstructed from the training set. It then uses the estiinate
hundreds of thousands of nodes.) Exact inference over thestass of neighboring documents to update the distributfon o
networks is clearly impractical, so we must resort to approxthe document being classified. They show that even using
imate inference. There are a wide variety of approximatiorsmall neighborhoods around the test document significantly
schemes for Bayesian networks. For various reasons (sonigcreases accuracy.

5 Belief Propagation for Classification
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Figure 2: Comparison of accuracy of several models rangiogp the simplest modeNaive-Bayes to the most complex
model,Ex+Hubs+Anchors, which incorporates existence urmgtainty, hubs and link anchor words. In each case, a model
was learned for 3 schools and tested on the remaining school.

Neville and Jense200d propose a very similar ap- 7 Experiments
proach. Theiriterative classificatioralgorithm essentially

implements this process exactly. It builds a classifier thase
on a fully observed relational training set: the classifieess PKB dataset[Cravenet al, 1998. The WebKB dataset con-

both base attributes and more relational attributes (thg., [2ins web pages from four different Computer Science depart

number of related entities of a given type). It then uses thignents. We included only pages that have at least one out link;

classifier on a test set where the base attributes are obiservén€ number of resulting pages for each school are: Cornell
but the class variables are not. Those instances that are cld318), Texas (319), Washington (420), and Wisconsin (465).

sified with high confidence are temporarily labeled with theE@Ch page has a category attribute representing the type of
predicted class; the classification algorithm is then renitn ~~ Web page which is one dfcourse, faculty, student, project,
the additional information. The process repeats sevenakti ~ Other}. The text content of the web page is represented using

The classification accuracy is shown to improve substaytial & Set of binary attributes that indicate the presence cfifit
as the process iterates. words on the page. After stemming, removing stop words and

rare words, the dictionary contains around 800 words. Each
Slattery and Mitchell2004 propose an iterative algorithm web page has a hub attribute, which is takes the following val

called FOIL-HUBS for the problem of classifying web pages, ues: course-hub, faculty-hub, student-hub, project-hoh;

e.g., as belonging to a university student or not. They notéwub. The original dataset did not contain hub labels. We la-
that several pages in the dataset have links to many othéreled a page as a hub of a particular category if it pointed to
pages, most of which were classified as student home pagasany pages of that category. Note that we hid the hub labels
Their approach uses recursive predicate rules to identifits in the test set. Each school had one hub page of each cat-
a page as a student directory page based on whether the pagemry, except for Washington which does not have a project
it points to are student pages, and conclude that other pageshub page and Wisconsin which does not have a faculty web
which it points are also more likely to be student pages. &hespage. The data set also describes the links between school
rules are combined with text-based classifiers in an itexati web pages; the number of links for each school are: Cor-
relaxation scheme. They show that classification accuracgell (923), Texas (1041), Washington (1534) and Wisconsin
improves by exploiting the relational structure. (1823). In addition, for each link between pages, the datase

. . .. _specifies the words on the anchor link. We selected top 100
Our approach achieves this effect through the probabilisz ,-hor words using mutual information score.

tic influences induced by the unrolled Bayesian network over We compared the performance of several models on pre-

the instances in our domain. For example, in the web domairhicting web page categories. In each case, we learned a
?hu;tr}ﬁ‘t\lfl?gkegii %f[:r?é;8|$trl1%2 bgltjvyebirl]ié?se ;L%Sust ?;;vi?agggo odel from three schools, and tested the performance of the
' ' earned model on the remaining school. Our experiments

one web page will influence our beliefs about the class of it%sed Bayesian estimation with a uniform Dirichlet parame-
related web pages. In general, probabilistic influence “§low ter prior with equivalent sample size= 2

through active paths in the unrolled network, allowing &fli Al model d be vi d bset of th
about one cluster to influence others to which it is relatéd (d MOGE'S we compared can be viewed as a subset of the
model in Figure 1(a). Our baseline is a standard binomial

rectly or indirectly). Moreover, the use of belief propaga-NaiVe Bayes model that uses only words on the page to pre-

tion implements this effect directly. By propagating a lloca ' . .
message from one family to another in the family graph netg'fcétohge?gtegory of the page. We evaluated the following set

work, the algorithm propagates our beliefs about one vigiab
to other variables to which it is directly connected. 1. Naive-Bayes Our baseline model.

In this section we describe experimental results on the We-



2. Anchors: This model uses both words on the page andCohn and Hofmann, 2091D. Cohn and T. Hofmann. The missing
anchor words on the links to predict the category. link: A probabilistic model of document content and hypette
3. Exists: This model adds structural uncertainty over the _Connectivity. InProc. NIP$2001. To appear. _
link relationship to the simple baseline model; the parentdCravenetal, 1999 M. Craven, D. DiPasquo, D. Freitag, A. Mc-

of Link.ExistsareLink.From-Page.CategorgndLink.To- Callum, T. Mitchell, K. Nigam, and S. Slattery. Learning to-e
Page.Category tract symbolic knowledge from the world wide web. Rroc.
) - AAA], 1998.

4. Ex+Hubs:  This model extends theExists model [Friedmaret al, 1999 N. Friedman, L. Getoor, D. Koller, and

W.ith Hubs. In the queILink.Exists dep_ends on A. Pfeffer. Learning probabilistic relational models. Mmoc.
Link.From-Page.Hulin addition to the categories of each 3¢ 1999.

of the pages. ) ) _ [Getooret al, 2001 L. Getoor, N. Friedman, D. Koller, and
5. Ex+Anchors: This model extends thExists model with B. Taskar. Learning probabilistic models of relationatsture.
anchor words (but not hubs). In Proc. ICML, 2001. To appear.
6. Ex+Hubs+Anchors: The final model includes existence [Heckerman, 1998 D. Heckerman. A tutorial on learning with
uncertainty, hubs and anchor words. Bayesian networks. In M. I. Jordan, editbgarning in Graphi-
Figure 2 compares the accuracy achieved by the differ- cal Models MIT Press, Cambridge, MA, 1998.
ent models on each of the schools. The final model[Kleinberg, 1998 J. Kleinberg. Authoritative sources in a hyper-
Ex+Hubs+Anchors, which incorporates structural uncer- linked environment. IProc. 9th ACM-SIAM Symposium on Dis-

tainty, hubs and anchor words, consistently outperforras th  Crete Algorithms1998. o
Naive-Bayesmodel by a significant amount. In addition, it [Koller and Pfeffer, 1998 D. Koller and A. Pfeffer. Probabilistic
outperforms any of the simpler variants. frame-based systems. R1oC. AAA| 1998. _
Our algorithm was fairly successful at identifying the hubstMurphy and Weiss, 1999K. Murphy and Y. Weiss. Loopy belief
in the test set. It misclassified 7 out 1522 pages as hubs while Bﬂ’?%‘géon for approximate inference: an empirical stully
recognizing 6 out of the true 14 hubs correctly. The page L : , ,
mislabeled as hubs often pointed to many pages that had beEheville and Jensen, 20D0J. Neville and D. Jensen. lterative clas-
labeled as Other web pages. However, on further inspec- sification in relational data. IfProc. AAAI-2000 Workshop on

- . . L Learning Statistical Models from Relational D es 13-20.
tion, these hub pages oft@reredirectories pointing to pages  apa| :;,rgess 2'060. ' akag

that were likely to be researcher home pages or Cours_e_horgsearl, 1988 J. Pearl. Probabilistic Reasoning in Intelligent Sys-
pages and seemed to have been mislabeled in the training seti, s Morgan Kaufmann, 1988.

as other. We investigated how mUCh these m'SCIaSS'f'Cat'Or[%oole, 1998 D. Poole. Probabilistic Horn abduction and Bayesian
hurt the performance by revealing the labels of the hub at= o 1orks Artificial Intelligence 64:81-129, 1993.

tribute in the test data. The improvementin performance Wagg,iery ang mitchell, 2040'S. Slattery and T. Mitchell. Discov-

roughly 2%. ering test set regularities in relational domains.Phoc. ICML,
. _ , 2000.
8 Discussion and Conclusions

Many real-world domains have a rich relational structure,
with complex webs of interacting entities: the web, sciénti
papers and more. Traditional machine learning algorithms
ignore this rich relational structure, flattening it intoet sf
attribute vectors assumed to be independent. Recently, how
ever, there has been growing interest in learning methads th
exploit the relational structure of the domain.

In this paper, we provide a general method for classifica-
tion in richly structured data with instances and relatiadsr
approach has coherent probabilistic semantics, allowsrtg u
build on powerful tools for probabilistic reasoning andrtea
ing. Our classification algorithm uses a combination of ¢hes
techniques to provide effective scaling in the number of in-
stances; it can thus be applied to large domains.

Finally, our approach induces a compelling behavior
unigue to relational settings: Because instancesatén-
dependent, information about some instances can be used to
reach conclusions about others. Our approach is the first to
provide a formal framework for this behavior.
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