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Abstract
Markov networks are extensively used to model
complex sequential, spatial, and relational in-
teractions in fields as diverse as image process-
ing, natural language analysis, and bioinformat-
ics. However, inference and learning in general
Markov networks is intractable. In this paper, we
focus on learning a large subclass of such mod-
els (called associative Markov networks) that are
tractable or closely approximable. This subclass
contains networks of discrete variables with K

labels each and clique potentials that favor the
same labels for all variables in the clique. Such
networks capture the “guilt by association” pat-
tern of reasoning present in many domains, in
which connected (“associated”) variables tend to
have the same label. Our approach exploits a lin-
ear programming relaxation for the task of find-
ing the best joint assignment in such networks,
which provides an approximate quadratic pro-
gram (QP) for the problem of learning a margin-
maximizing Markov network. We show that for
associative Markov network over binary-valued
variables, this approximate QP is guaranteed to
return an optimal parameterization for Markov
networks of arbitrary topology. For the non-
binary case, optimality is not guaranteed, but
the relaxation produces good solutions in prac-
tice. Experimental results with hypertext and
newswire classification show significant advan-
tages over standard approaches.

1. Introduction

Numerous classification methods have been devel-
oped for the principal machine learning problem of
assigning to a single object one of K labels consis-
tent with its properties. Many classification problems,
however, involve sets of related objects whose labels
must also be consistent with each other. In hypertext
or bibliographic classification, labels of linked and co-
cited documents tend to be similar (Chakrabarti et al.,
1998; Taskar et al., 2002). In proteomic analysis, lo-
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cation and function of proteins that interact are often
highly correlated (Vazquez et al., 2003). In image pro-
cessing, neighboring pixels exhibit local label coher-
ence in denoising, segmentation and stereo correspon-
dence (Besag, 1986; Boykov et al., 1999a).

Markov networks compactly represent complex
joint distributions of the label variables by modeling
their local interactions. Such models are encoded by a
graph, whose nodes represent the different object la-
bels, and whose edges represent direct dependencies
between them. For example, a Markov network for
the hypertext domain would include a node for each
webpage, encoding its label, and an edge between any
pair of webpages whose labels are directly correlated
(e.g., because one links to the other).

There has been growing interest in training Markov
networks for the purpose of collectively classifying
sets of related instances. The focus has been on dis-
criminative training, which, given enough data, gen-
erally provides significant improvements in classifica-
tion accuracy over generative training. For example,
Markov networks can be trained to maximize the con-
ditional likelihood of the labels given the features of
the objects (Lafferty et al., 2001; Taskar et al., 2002).
Recently, maximum margin-based training has been
shown to additionally boost accuracy over conditional
likelihood methods and allow a seamless integration of
kernel methods with Markov networks (Taskar et al.,
2003a).

The chief computational bottleneck in this task is
inference in the underlying network, which is a core
subroutine for all methods for training Markov net-
works. Probabilistic inference is NP-hard in general,
and requires exponential time in a broad range of
practical Markov network structures, including grid-
topology networks (Besag, 1986). One can address the
tractability issue by limiting the structure of the un-
derlying network. In some cases, such as the the quad-
tree model used for image segmentation (Bouman &
Shapiro, 1994), a tractable structure is determined in
advance. In other cases (e.g., (Bach & Jordan, 2001)),



the network structure is learned, subject to the con-
straint that inference on these networks is tractable.
In many cases, however, the topology of the Markov
network does not allow tractable inference. In the hy-
pertext domain, the network structure mirrors the hy-
perlink graph, which is usually highly interconnected,
leading to computationally intractable networks.

In this paper, we show that optimal learning is fea-
sible for an important subclass of Markov networks
— networks with attractive potentials. This subclass,
which we call associative Markov networks (AMNs),
contains networks of discrete variables with K labels
each and arbitrary-size clique potentials with K pa-
rameters that favor the same label for all variables
in the clique. Such positive interactions capture the
“guilt by association” pattern of reasoning present
in many domains, in which connected (“associated”)
variables tend to have the same label. AMNs are a
natural fit for object recognition and segmentation,
webpage classification, and many other applications.

Our analysis is based on the maximum margin
approach to training Markov networks, presented by
Taskar et al. (2003a). In this formulation, the learn-
ing task is to find the Markov network parameteriza-
tion that achieves the highest confidence in the target
labels. In other words, the goal is to maximize the
margin between the target labels and any other label
assignment. The inference subtask in this formulation
of the learning problem is one of finding the best joint
(MAP) assignment to all of the variables in a Markov
network. By contrast, other learning tasks (e.g., max-
imizing the conditional likelihood of the target labels
given the features) often require that we compute the
posterior probabilities of different label assignments,
rather than just the MAP.

The MAP problem can naturally be expressed as
an integer programming problem. We show how we
can approximate the maximum margin Markov net-
work learning task as a quadratic program that uses a
linear program (LP) relaxation of this integer program.
This quadratic program can be solved in polynomial
time using standard techniques. We show that when-
ever the MAP LP relaxation is guaranteed to return
integer solutions, the approximate max-margin QP
provides an optimal solution to the max-margin op-
timization task. In particular, for associative Markov
networks over binary variables (K = 2), this linear
program provides exact answers. For the non-binary
case (K > 2), the approximate quadratic program is
not guaranteed to be optimal, but our empirical re-
sults suggest that the solutions work well in practice.
To our knowledge, our method is the first to allow
training Markov networks of arbitrary topology.

2. Markov Networks

We restrict attention to networks over discrete vari-
ables Y = {Y1, . . . , YN}, where each variable corre-
sponds to an object we wish to classify and has K

possible labels: Yi ∈ {1, . . . , K}. An assignment of
values to Y is denoted by y. A Markov network for Y

defines a joint distribution over {1, . . . , K}N .

A Markov network is defined by an undirected
graph over the nodes Y = {Y1, . . . , YN}. In general, a
Markov network is a set of cliques C, where each clique
c ∈ C is associated with a subset Yc of Y. The nodes
Yi in a clique c form a fully connected subgraph (a
clique) in the Markov network graph. Each clique is
accompanied by a potential φc(Yc), which associates a
non-negative value with each assignment yc to Yc. The
Markov network defines the probability distribution:

Pφ(y) =
1

Z

∏

c∈C

φc(yc)

where Z is the partition function given by Z =
∑

y′

∏

c∈C φc(yc
′).

For simplicity of exposition, we focus most of our
discussion on pairwise Markov networks. We extend
our results to higher-order interactions in Sec. 3. A
pairwise Markov network is simply a Markov network
where all of the cliques involve either a single node or
a pair of nodes. Thus, in a pairwise Markov network
with edges E = {(ij)} (i < j), only nodes and edges
are associated with potentials φi(Yi) and φij(Yi, Yj).
A pairwise Markov net defines the distribution

Pφ(y) =
1

Z

N
∏

i=1

φi(yi)
∏

(ij)∈E

φij(yi, yj),

where Z is the partition function given by Z =
∑

y′

∏N

i=1 φi(y
′
i)
∏

(ij)∈E φij(y
′
i, y

′
j).

The node and edge potentials are functions of the
features of the objects xi ∈ ℜdn and features of the re-
lationships between them xij ∈ ℜde . In hypertext clas-
sification, xi might be the counts of the words of the
document i, while xij might be the words surround-
ing the hyperlink(s) between documents i and j. The
simplest model of dependence of the potentials on the
features is a log-linear combination: log φi(k) = wk

n ·xi

and log φij(k, l) = wk,l
e · xij , where wk

n and wk,l
e are

label-specific row vectors of node and edge parameters,
of size dn and de, respectively. Note that this formula-
tion assumes that all of the nodes in the network share
the same set of weights, and similarly all of the edges
share the same weights.

We represent an assignment y as a set of K ·N in-
dicators {yk

i }, where yk
i = I(yi = k). With these defi-

nitions, the log of conditional probability log Pw(y | x)



is given by:

N
∑

i=1

K
∑

k=1

(wk
n·xi)y

k
i +

∑

(ij)∈E

K
∑

k,l=1

(wk,l
e ·xij)y

k
i yl

j−logZw(x).

Note that the partition function Zw(x) above depends
on the parameters w and input features x, but not on
the labels yi’s.

For compactness of notation, we define the node
and edge weight vectors wn = (w1

n, . . . ,wK
n ) and

we = (w1,1
e , . . . ,wK,K

e ), and let w = (wn,we) be
a vector of all the weights, of size d = Kdn +
K2de. Also, we define the node and edge la-
bels vectors, yn = (. . . , y1

i , . . . , yK
i , . . .)⊤ and ye =

(. . . , y1,1
ij , . . . , y

K,K
ij , . . .)⊤, where y

k,l
ij = yk

i yl
j , and the

vector of all labels y = (yn,ye) of size L = KN +
K2|E|. Finally, we define an appropriate d×L matrix
X such that

log Pw(y | x) = wXy − log Zw(x).

The matrix X contains the node feature vectors xi and
edge feature vectors xij repeated multiple times (for
each label k or label pair k, l respectively), and padded
with zeros appropriately.

A key task in Markov networks is computing the
MAP (maximum a posteriori) assignment — the as-
signment y that maximizes log Pw(y | x). It is
straightforward to formulate the MAP inference task
as an integer linear program: The variables are the as-
signments to the nodes yk

i and edges y
k,l
ij which must be

in the set {0, 1}, and satisfy linear normalization and
agreement constraints. The optimization criterion is
simply the linear function wXy, which acorresponds
to the log of the unnormalized probability of the as-
signment y.

In certain cases, we can take this integer program,
and approximate it as a linear program by relaxing
the integrality constraints on yk

i , with appropriate con-
straints. For example, Wainwright et al. (2002) pro-
vides a natural formulation of this form that is guar-
anteed to produce integral solutions for triangulated
graphs.

3. Associative Markov Networks

We now describe one important subclass of prob-
lems for which the above relaxation is particularly use-
ful. These networks, which we call associative Markov
networks (AMNs), encode situations where related
variables tend to have the same value.

Associative interactions arise naturally in the con-
text of image processing, where nearby pixels are likely
to have the same label (Besag, 1986; Boykov et al.,
1999b). In this setting, a common approach is to use a

generalized Potts model (Potts, 1952), which penalizes
assignments that do not have the same label across the
edge: φij(k, l) = λij , ∀k 6= l and φij(k, k) = 1, where
λij ≤ 1.

For binary-valued Potts models, Greig et al. (1989)
show that the MAP problem can be formulated as a
min-cut in an appropriately constructed graph. Thus,
the MAP problem can be solved exactly for this class of
models in polynomial time. For K > 2, the MAP prob-
lem is NP-hard, but a procedure based on a relaxed
linear program guarantees a factor 2 approximation of
the optimal solution (Boykov et al., 1999b; Kleinberg
& Tardos, 1999). Kleinberg and Tardos (1999) extend
the multi-class Potts model to have more general edge
potentials, under the constraints that negative log po-
tentials − logφij(k, l) form a metric on the set of la-
bels. They also provide a solution based on a relaxed
LP that has certain approximation guarantees.

More recently, Kolmogorov and Zabih (2002)
showed how to optimize energy functions containing
binary and ternary interactions using graph cuts, as
long as the parameters satisfy a certain regularity con-
dition. Our definition of associative potentials below
also satisfies the Kolmogorov and Zabih regularity con-
dition for K = 2. However, the structure of our poten-
tials is simpler to describe and extend for the multi-
class case. We use a linear programming formulation
(instead of min-cut) for the MAP inference, which al-
lows us to use the maximum margin estimation frame-
work, as described below. Note however, that we can
also use min-cut to perform exact inference on the
learned models for K = 2 and also in approximate
inference for K > 2 as in Boykov et al. (1999a).

Our associative potentials extend the Potts model
in several ways. Importantly, AMNs allow different la-
bels to have different attraction strength: φij(k, k) =
λk

ij , where λk
ij ≥ 1, and φij(k, l) = 1, ∀k 6= l. This

additional flexibility is important in many domains,
as different labels can have very diverse affinities. For
example, foreground pixels tend to have locally coher-
ent values while background is much more varied.

The linear programming relaxation of the MAP
problem for these networks can be written as:

max
N
∑

i=1

K
∑

k=1

(wk
n · xi)y

k
i +

∑

(ij)∈E

K
∑

k=1

(wk,k
e · xij)y

k
ij (1)

s.t. yk
i ≥ 0, ∀i, k;

∑

k

yk
i = 1, ∀i;

yk
ij ≤ yk

i , yk
ij ≤ yk

j , ∀(ij) ∈ E, k.

Note that we substitute the constraint yk
ij = yk

i ∧ yk
j

by two linear constraints yk
ij ≤ yk

i and yk
ij ≤ yk

j .

This works because the coefficient wk,k
e · xij is non-



negative and we are maximizing the objective func-
tion. Hence,at the optimum yk

ij = min(yk
i , yk

j ) , which

is equivalent to yk
ij = yk

i ∧ yk
j .

In a second important extension, AMNs admit non-
pairwise interactions between variables, with poten-
tials over cliques involving m variables φ(yi1, . . . , yim).
In this case, the clique potentials are constrained to
have the same type of structure as the edge poten-
tials: There are K parameters φ(k, . . . , k) = λk

ij and
the rest of the entries are set to 1. In particular, using
this additional expressive power, AMNs allow us to en-
code the pattern of (soft) transitivity present in many
domains. For example, consider the problem of pre-
dicting whether two proteins interact (Vazquez et al.,
2003); this probability may increase if they both in-
teract with another protein. This type of transitivity
could be modeled by a ternary clique that has high λ

for the assignment with all interactions present.

We can write a linear program for the MAP prob-
lem similar to Eq. (1), where we have a variable yk

c for
each clique c and for each label k, which represents the
event that all nodes in the clique c have label k:

max

N
∑

i=1

K
∑

k=1

(wk
n · xi)y

k
i +

∑

c∈C

K
∑

k=1

(wk
c · xc)y

k
c (2)

s.t. yk
i ≥ 0, ∀i, k;

∑

k

yk
i = 1, ∀i;

yk
c ≤ yk

i , ∀c ∈ C, i ∈ c, k.

It can be shown that in the binary case, the relaxed
linear programs Eq. (1) and Eq. (2) are guaranteed to
produce an integer solution when a unique solution
exists.

Theorem 3.1 If K = 2, for any objective wX, the
linear programs in Eq. (1) and Eq. (2) have an integral
optimal solution.

See appendix for the proof. This result states that the
MAP problem in binary AMNs is tractable, regardless
of network topology or clique size. In the non-binary
case (K > 2), these LPs can produce fractional so-
lutions and we use a rounding procedure to get an
integral solution. In the appendix, we also show that
the approximation ratio of the rounding procedure is
the inverse of the size of the largest clique (e.g., 1

2 for
pairwise networks). Although artificial examples with
fractional solutions can be easily constructed by using
symmetry, it seems that in real data such symmetries
are often broken. In fact, in all our experiments with
K > 2 on real data, we never encountered fractional
solutions.

4. Max Margin Estimation

We now consider the problem of training the
weights w of a Markov network given a labeled train-
ing instance (x, ŷ). For simplicity of exposition, we
assume that we have only a single training instance;
the extension to the case of multiple instances is en-
tirely straightforward. Note that, in our setting, a
single training instance actually contains multiple ob-
jects. For example, in the hypertext domain, an in-
stance might be an entire website, containing many
inter-linked webpages.

The M3N Framework. The standard approach
of learning the weights w given (x, ŷ) is to maximize
the log Pw(ŷ | x), with an additional regularization
term, which is usually taken to be the squared-norm
of the weights w (Lafferty et al., 2001). An alternative
method, recently proposed by Taskar et al. (2003a), is
to maximize the margin of confidence in the true la-
bel assignment ŷ over any other assignment y 6= ŷ.
They show that the margin-maximization criterion
provides significant improvements in accuracy over a
range of problems. It also allows high-dimensional fea-
ture spaces to be utilized by using the kernel trick, as
in support vector machines. The maximum margin
Markov network (M3N) framework forms the basis for
our work, so we begin by reviewing this approach.

As in support vector machines, the goal in an M3N
is to maximize our confidence in the true labels ŷ rela-
tive to any other possible joint labelling y. Specifically,
we define the gain of the true labels ŷ over another
possible joint labelling y as:

log Pw(ŷ | x) − log Pw(y | x) = wX(ŷ − y).

In M3Ns, the desired gain takes into account the num-
ber of labels in y that are misclassified, ∆(ŷ,y), by
scaling linearly with it:

max γ s.t. wX(ŷ − y) ≥ γ∆(ŷ,y); ||w||2 ≤ 1.

Note that the number of incorrect node labels ∆(ŷ,y)
can also be written as N − ŷ⊤

n yn. (Whenever ŷi and
yi agree on some label k, we have that ŷk

i = 1 and
yk

i = 1, adding 1 to ŷ⊤
n yn.) By dividing through by γ

and adding a slack variable for non-separable data, we
obtain a quadratic program (QP) with exponentially
many constraints:

min
1

2
||w||2 + Cξ (3)

s.t. wX(ŷ − y) ≥ N − ŷ⊤
n yn − ξ, ∀y ∈ Y.

This QP has a constraint for every possible joint as-
signment y to the Markov network variables, resulting
in an exponentially-sized QP. Taskar et al. show how
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Figure 1. Exact and approximate constraints on the max-
margin quadratic program. The solid red line represents
the constraints imposed by integer y’s, whereas the dashed
blue line represents the stronger constraints imposed by the
larger set of fractional y’s. The fractional constraints may
coincide with the integer constraints in some cases, and be
more stringent in others. The parabolic contours represent
the value of the objective function.

structure in the dual of this QP can be exploited to al-
low an efficient solution when the underlying network
has low treewidth.

M3N relaxations.

As an alternative to the approach of Taskar et al.,
we now derive a more generally applicable approach
for exploiting structure and relaxations in max-margin
problems. As our first step, we replace the exponen-
tial set of linear constraints in the max-margin QP
of Eq. (3) with the single equivalent non-linear con-
straint:

wXŷ − N + ξ ≥ max
y∈Y

wXy − ŷ⊤
n yn.

This non-linear constraint essentially requires that we
find the assignment y to the network variables which
has the highest probability relative to the parameter-
ization wX − ŷ⊤

n . Thus, optimizing the max-margin
QP contains the MAP inference task as a component.

As we discussed earlier, we can formulate the MAP
problem as an integer program, and then relax it into
a linear program. Inserting the relaxed LP into the
QP of Eq. (3), we obtain:

min
1

2
||w||2 + Cξ (4)

s.t. wXŷ − N + ξ ≥ max
y∈Y′

wXy − ŷ⊤
n yn.

where Y ′ is the space of all legal fractional values for
y. In effect, we obtain a QP with a continuum of
constraints, one for every fractional assignment to y.

It follows that, in cases where the relaxed LP is
guaranteed to provide integer solutions, the integer
and relaxed constraint sets coincide, so that the ap-
proximate QP is computing precisely the optimal max-
margin solution. In the general case, the linear re-
laxation strengthens the constraints on w by poten-
tially adding constraints corresponding to fractional
assignments y. Fig. 1 shows how the relaxation of

the max subproblem reduces the feasible space of w

and ξ. Note that for every setting of the weights w

that produces fractional solutions for the LP relax-
ation, the approximate constraints are tightened be-
cause of the additional fractional assignments y. In
this case, the fractional MAP solution is better than
any integer solution, including ŷ, thereby driving up
the corresponding slack ξ. By contrast, for weights w

for which the MAP LP is integer-valued, the margin
has the standard interpretation as the difference be-
tween the probability of ŷ and the MAP y (according
to w). As the objective includes a penalty for the slack
variable, intuitively, minimizing the objective tends to
drive the weights w away from the regions where the
solutions to the MAP LP are fractional.

While this insight allows us to replace the MAP
integer program within the QP with a linear program,
the resulting QP does not appear tractable. However,
here we can exploit fundamental properties of linear
programming duality (Bertsimas & Tsitsiklis, 1997).
Assume that our relaxed LP for the inference task has
the form:

max
y

wBy s.t. y ≥ 0, Ay ≤ b. (5)

for some polynomial-size A,B,b. (For example,
Eq. (1) and Eq. (2) can be easily written in this com-
pact form.) The dual of this LP is given by:

min
z

b⊤z s.t. z ≥ 0,A⊤z ≥ (wB)⊤. (6)

When the relaxed LP is feasible and bounded, the
value of Eq. (6) provides an upper bound on the pri-
mal that achieves the same value as the primal at its
minimum. If we substitute Eq. (6) for Eq. (5) in the
QP of Eq. (4), we obtain a quadratic program over w,
ξ and z with polynomially many linear constraints:

min
1

2
||w||2 + Cξ (7)

s.t. wXŷ − N + ξ ≥ b⊤z;

z ≥ 0, A⊤z ≥ (wB)⊤.

Our ability to perform this transformation is a di-
rect consequence of the connection between the max-
margin criterion and the MAP inference problem. The
transformation is useful whenever we can solve or ap-
proximate MAP using a compact linear program.

5. Max Margin AMNs

The transformation described in the previous sec-
tion applies to any situation where the MAP problem
can be effectively approximated as a linear program.
In particular, the LP relaxation of Eq. (1) provides



us with precisely the necessary building block to pro-
vide an effective solution for the QP in Eq. (4) for the
case of AMNs. As we discussed, the MAP problem is
precisely the max subproblem in this QP. In the case
of AMNs, this max subproblem can be replaced with
the relaxed LP of Eq. (1). In effect, we are replacing
the exponential constraint set — one which includes
a constraint for every discrete y, with an infinite con-
straint set — one which includes a constraint for every
continuous vector y in

Y ′ = {y : yk
i ≥ 0;

∑

k

yk
i = 1; yk

ij ≤ yk
i ; yk

ij ≤ yk
j }

as defined in Eq. (1).

Stating the AMN restrictions in terms of the pa-
rameters w, we require that wk,l

e = 0, ∀k 6= l and
wk,k

e ·xij ≥ 0. To ensure that wk,k
e ·xij ≥ 0, we simply

assume (without loss of generality) that xij ≥ 0, and
constrain wk,k

e ≥ 0. Incorporating this constraint, we
obtain our basic AMN QP:

min
1

2
||w||2 + Cξ (8)

s.t. wXŷ − N + ξ ≥ max
y∈Y′

wXy − ŷn · yn;

we ≥ 0.

We can now transform this QP as specified in
Eq. (7), by taking the dual of the LP used to represent
the interior max. Specifically, maxy∈Y′ wXy− ŷn ·yn

is a feasible and bounded linear program in y, with a
dual given by:

min

N
∑

i=1

zi (9)

s.t. zi −
∑

(ij),(ji)∈E

zk
ij ≥ wk

n · xi − ŷk
i , ∀i, k;

zk
ij + zk

ji ≥ wk,k
e · xij , zk

ij , z
k
ji ≥ 0, ∀(ij) ∈ E, k.

In the dual, we have a variable zi for each normaliza-
tion constraint in Eq. (1) and variables zk

ij , z
k
ji for each

of the inequality constraints.

Substituting this dual into Eq. (8), we obtain:

min
1

2
||w||2 + Cξ (10)

s.t. wXŷ − N + ξ ≥

N
∑

i=1

zi; we ≥ 0;

zi −
∑

(ij),(ji)∈E

zk
ij ≥ wk

n · xi − ŷk
i , ∀i, k;

zk
ij + zk

ji ≥ wk,k
e · xij , zk

ij , z
k
ji ≥ 0, ∀(ij) ∈ E, k.

For K = 2, the LP relaxation is exact, so
that Eq. (10) learns exact max-margin weights for

Markov networks of arbitrary topology. For K > 2,
the linear relaxation leads to a strengthening of the
constraints on w by potentially adding constraints cor-
responding to fractional assignments y. Thus, the op-
timal choice w, ξ for the original QP may no longer be
feasible, leading to a different choice of weights. How-
ever, as our experiments show, these weights tend to
do well in practice.

The dual of Eq. (10) provides some insight into the
structure of the problem:

max

N
∑

i=1

K
∑

k=1

(1 − ŷk
i )µk

i (11)

−
1

2

K
∑

k=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

N
∑

i=1

xi(Cŷk
i − µk

i )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

−
1

2

K
∑

k=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λk
e +

∑

(ij)∈E

xij(Cŷk
ij − µk

ij)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

s.t. µk
i ≥ 0, ∀i, k;

∑

k

µk
i = C, ∀i;

µk
ij ≥ 0, µk

ij ≤ µk
i , µk

ij ≤ µk
j , ∀(ij) ∈ E, k;

λe ≥ 0.

As in the original M3N optimization, the dual vari-
ables have an intuitive probabilistic interpretation. In
the binary case, the set of the variables µk

i , µk
ij cor-

responds to marginals of a distribution (normalized
to C) over the possible assignments y. (This asser-
tion follows from taking the dual of the original ex-
ponential size QP in Eq. (3).) Then the constraints
that µk

ij ≤ µk
i and µk

ij ≤ µk
j can be explained by

the fact that P (yi = yj = k) ≤ P (yi = k) and
P (yi = yj = k) ≤ P (yj = k) for any distribution
P (y). For K > 2, the set of the variables µk

i , µk
ij may

not correspond to a valid distribution.

The primal and dual solution are related by:

wk
n =

N
∑

i=1

xi(Cŷk
i − µk

i ), (12)

wk,k
e = λk

e +
∑

(ij)∈E

xij(Cŷk
ij − µk

ij). (13)

One important consequence of these relationships is
that the node parameters are all support vector ex-
pansions. Thus, the terms in the constraints of the
form wnx can all be expanded in terms of dot products
x⊤

i xj ; the objective (||w||2) can be expanded similarly.
Therefore, we can use kernels K(xi,xj) to define node
parameters. Unfortunately, the positivity constraint
on the edge potentials, and the resulting λk

e dual vari-
able in the expansion of the edge weight, prevent the
edge parameters from being kernelized in a similar way.
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Figure 2. (a) Comparison of test error of SVMs and AMNs on four categories of Reuters articles, averaged over 7-folds;
(b) Comparison of test error of SVMs, RMNs and AMNs on four WebKB sites.

6. Experimental Results

We evaluated our approach on two text classifica-
tion domains, of very different structure.

Reuters. We ran our method on the ModApte set
of the Reuters-21578 corpus. We selected four cate-
gories containing a substantial number of documents:
crude, grain, trade, and money-fx. We eliminated doc-
uments labeled with more than one category, and rep-
resented each document as a bag of words. The re-
sulting dataset contained around 2200 news articles,
which were split into seven folds where the articles in
each fold occur in the same time period. The reported
results were obtained using seven-fold cross-validation
with a training set size of ∼ 200 documents and a test
set size of ∼ 2000 documents.

The baseline model is a linear kernel SVM using a
bag of words as features. Since we train and test on
articles in different time periods, there is an inherent
distribution drift between our training and test sets,
which hurts the SVM’s performance. For example,
there may be words which, in the test set, are highly
indicative of a certain label, but are not present in the
training set at all since they were very specific to a
particular time period (see (Taskar et al., 2003b)).

Our AMN model uses the text similarity of two ar-
ticles as an indicator of how likely they are to have the
same label. The intuition is that two documents that
have similar text are likely to share the same label in
any time period, so that adding associative edges be-
tween them would result in better classification. Such
positive correlations are exactly what AMNs represent.
In our model, we linked each document to its two clos-
est documents as measured by TF-IDF weighted cosine
distance. The TF-IDF score of a term was computed
as: (1+ log tf) log N

df
where tf is the term frequency, N

is the number of total documents, and df is the doc-
ument frequency. The node features were simply the
words in the article corresponding to the node. Edge
features included the actual TF-IDF weighted cosine
distance, as well as the bag of words consisting of union
of the words in the linked documents.

We trained both models (SVM and AMN) to pre-
dict one category vs. all remaining categories. Fig. 2(a)
shows that the AMN model achieves a 13.5% average
error reduction over the baseline SVM, with improve-
ment in every category. Applying a paired t-test com-
paring the AMN and SVM over the 7 folds in each
category, crude, trade, grain, money-fx, we obtained p-
values of 0.004897, 0.017026, 0.012836, 0.000291 re-
spectively. These results indicate that the positive in-
teractions learned by the AMN allow us to correct for
some of the distribution drift between the training and
test sets.

Hypertext. We tested AMNs on collective hy-
pertext classification, using the variant of the We-
bKB dataset (Craven et al., 1998) used by Taskar et
al. (2002). This data set contains web pages from
four different Computer Science departments: Cornell,
Texas, Washington, and Wisconsin. Each page is la-
beled as one of course, faculty, student, project, other.
Our goal in this task is to exploit the additional struc-
tured information in hypertext using AMNs.

Our flat model is a multiclass linear-kernel SVM
predicting categories based on the text content of the
webpage. The words are represented as a bag of words.
For the AMN model, we used the fact that a web-
page’s internal structure can be broken up into dis-
joint sections. For example, a faculty webpage might
have one section that discusses research, with a list
of links to relevant research projects, another section
with links to student webpages, etc. Intuitively, if we
have links to two pages in the same section, they are
likely have the same topic. As AMNs capture pre-
cisely this type of positive correlation, we added edges
between pages that appear as hyperlinks in the same
section of another page. The node features for the
AMN model are the same as for the multiclass SVM.

In performing the experiments we train on the
pages from three of the schools in the dataset and test
on the remaining one. The results, shown in Fig. 2(b),
demonstrate a 30% relative reduction in test error
as a result of modeling the positive correlation be-



tween pages in the AMN model. The improvement
is present when testing on each of the schools. We
also trained the same AMN model using the RMN ap-
proach of Taskar et al. (2002). In this approach, the
Markov network is trained to maximize the conditional
log-likelihood, using loopy belief propagation (Yedidia
et al., 2000) for computing the posterior probabilities
needed for optimization. Due to the high connectiv-
ity in the network, the algorithm is not exact, and not
guaranteed to converge to the true values for the poste-
rior distribution. In our results, RMNs achieve a worse
test error than AMNs. We note that the learned AMN
weights never produced fractional solutions when used
for inference, which suggests that the optimization suc-
cessfully avoided problematic parameterizations of the
network, even in the case of the non-optimal multi-
class relaxation.

7. Conclusion

In this paper, we provide an algorithm for max-
margin training of associative Markov networks, a
subclass of Markov networks that allows only posi-
tive interactions between related variables. Our ap-
proach relies on a linear programming relaxation of
the MAP problem, which is the key component in the
quadratic program associated with the max-margin
formulation. We thus provide a polynomial time algo-
rithm which approximately solves the maximum mar-
gin estimation problem for any associative Markov
network. Importantly, our method is guaranteed to
find the optimal (margin-maximizing) solution for all
binary-valued AMNs, regardless of the clique size or
the connectivity. To our knowledge, this algorithm is
the first to provide an effective learning procedure for
Markov networks of such general structure.

Our results in the binary case rely on the fact that
the LP relaxation of the MAP problem provides exact
solutions. In the non-binary case, we are not guar-
anteed exact solutions, but we can prove constant-
factor approximation bounds on the MAP solution re-
turned by the relaxed LP. It would be interesting to
see whether these bounds provide us with guarantees
on the quality (e.g., the margin) of our learned model.

The class of associative Markov networks appears
to cover a large number of interesting applications. We
have explored only two such applications in our exper-
imental results, both in the text domain. It would be
very interesting to consider other applications, such
as image segmentation, extracting protein complexes
from protein-protein interaction data, or predicting
links in relational data.

However, despite the prevalence of fully associa-
tive Markov networks, it is clear that many applica-
tions call for repulsive potentials. For example, the

best classification accuracy on the WebKB hypertext
data set is obtained in a maximum margin frame-
work (Taskar et al., 2003a), when we allow repulsive
potentials on linked webpages (representing, for ex-
ample, that students tend not to link to pages of stu-
dents). While clearly we cannot introduce fully gen-
eral potentials into AMNs without running against the
NP-hardness of the general problem, it would be in-
teresting to see whether we can extend the class of
networks we can learn effectively.
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A. Binary AMNs

Proof (For Theorem 3.1) Consider any fractional, fea-
sible y. We show that we can construct a new feasible
assignment z which increases the objective (or leaves
it unchanged) and furthermore has fewer fractional en-
tries.

Since θk
c ≥ 0, we can assume that yk

c = mini∈c yk
i ;

otherwise we could increase the objective by increasing
yk

c . We construct an assignment z from y by leaving
integral values unchanged and uniformly shifting frac-
tional values by λ:

z1
i = y1

i − λI(0 < y1
i < 1), z2

i = y2
i + λI(0 < y2

i < 1),

z1
c = y1

c − λI(0 < y1
c < 1), z2

c = y2
c + λI(0 < y2

c < 1),

where I(·) is an indicator function.

Now consider λk = mini:yk

i
>0 yk

i . Note that if λ =

λ1 or λ = −λ2, z will have at least one more integral zk
i

than y. Thus if we can show that the update results in
a feasible and better scoring assignment, we can apply
it repeatedly to get an optimal integer solution. To
show that z is feasible, we need z1

i + z2
i = 1, zk

i ≥ 0
and zk

c = mini∈c zk
i .

First, we show that z1
i + z2

i = 1.

z1
i + z2

i = y1
i − λI(0 < y1

i < 1) + y2
i + λI(0 < y2

i < 1)

= y1
i + y2

i = 1.

Above we used the fact that if y1
i is fractional, so is

y2
i , since y1

i + y2
i = 1.

To show that zk
i ≥ 0, we prove mini zk

i = 0.

min
i

zk
i = min

i

[

yk
i − ( min

i:yk

i
>0

yk
i )I(0 < yk

i < 1)

]

= min

(

min
i

yk
i , min

i:yk

i
>0

[

yk
i − min

i:yk

i
>0

yk
i

])

= 0.

Lastly, we show zk
c = mini∈c zk

i .

z1
c = y1

c − λI(0 < y1
c < 1)

= (min
i∈c

y1
i ) − λI(0 < min

i∈c
y1

i < 1) = min
i∈c

z1
i ;

z2
c = y2

c + λI(0 < y1
c < 1)

= (min
i∈c

y2
i ) + λI(0 < min

i∈c
y2

i < 1) = min
i∈c

z2
i .

We have established that the new z are feasible,
and it remains to show that we can improve the objec-
tive. We can show that the change in the objective is
always λD for some constant D that depends only on
y and θ. This implies that one of the two cases, λ = λ1

or λ = −λ2, will necessarily increase the objective (or

leave it unchanged). The change in the objective is:

N
∑

i=1

∑

k=1,2

θk
i (zk

i − yk
i ) +

∑

c∈C

∑

k=1,2

θk
c (zk

c − yk
c )

= λ

[

N
∑

i=1

(D1
i − D2

i ) +
∑

c∈C

(D1
c − D2

c)

]

= λD

Dk
i = θk

i I(0 < yk
i < 1), Dk

c = θk
c I(0 < yk

c < 1).

Hence the new assignment z is feasible, does not
decrease the objective function, and has strictly fewer
fractional entries.

B. Multi-class AMNs

For K > 2, we use the randomized rounding pro-
cedure of Kleinberg and Tardos (1999) to produce an
integer solution for the linear relaxation, losing at most
a factor of m = maxc∈C |c| in the objective function.
The basic idea of the rounding procedure is to treat
yk

i as probabilities and assign labels according to these
probabilities in phases. In each phase, we pick a label
k, uniformly at random, and a threshold α ∈ [0, 1] uni-
formly at random. For each node i which has not yet
been assigned a label, we assign the label k if yk

i ≥ α.
The procedure terminates when all nodes have been
assigned a label. Our analysis closely follows that of
Tardos (1999).

Lemma B.1 The probability that a node i is assigned
label k by the randomized procedure is yk

i .

Proof The probability that an unassigned node is as-
signed label k during one phase is 1

K
yk

i , which is pro-

portional to yk
i . By symmetry, the probability that a

node is assigned label k over all phases is exactly yk
i .

Lemma B.2 The probability that all nodes in a clique
c are assigned label k by the procedure is at least 1

|c|y
k
c .

Proof For a single phase, the probability that all
nodes in a clique c are assigned label k if none of the
nodes were previously assigned is 1

K
mini∈c yk

i = 1
K

yk
c .

The probability that at least one of the nodes will be
assigned label k in a phase is 1

K
(maxi∈c yk

i ). The prob-
ability that none of the nodes in the clique will be as-
signed any label in one phase is 1− 1

K

∑K

k=1 maxi∈c yk
i .

Nodes in the clique c will be assigned label k by
the procedure if they are assigned label k in one phase.
(They can also be assigned label k as a result of sev-
eral phases, but we can ignore this possibility for the
purposes of the lower bound.) The probability that all
the nodes in c will be assigned label k by the procedure



in a single phase is:

∞
∑

j=1

1

K
yk

c

(

1 −
1

K

K
∑

k=1

max
i∈c

yk
i

)j−1

=
yk

c
∑K

k=1 maxi∈c yk
i

≥
yk

c
∑K

k=1

∑

i∈c yk
i

=
yk

c
∑

i∈c

∑K

k=1 yk
i

=
yk

c

|c|
.

Above, we first used the fact that for d < 1,
∑∞

i=0 di = 1
1−d

, and then upper-bounded the max of

the set of positive yk
i ’s by their sum.

Theorem B.3 The expected cost of the assignment
found by the randomized procedure given a solu-
tion y to the linear program in Eq. (2) is at least
∑N

i=1

∑K

k=1 θk
i yk

i +
∑

c∈C
1
|c|

∑K

k=1 θk
c yk

c .

Proof This is immediate from the previous two lem-
mas.

The only difference between the expected cost of
the rounded solution and the (non-integer) optimal so-
lution is the 1

|c| factor in the second term. By picking

m = maxc∈C |c|, we have that the rounded solution
is at most m times worse than the optimal solution
produced by the LP of Eq. (2).

We can also derandomize this procedure to get a
deterministic algorithm with the same guarantees, us-
ing the method of conditional probabilities, similar in
spirit to the approach of Kleinberg and Tardos (1999).

Note that the approximation factor of m applies,
in fact, only to the clique potentials. Thus, if we com-
pare the log-probability of the optimal MAP solution
and the log-probability of the assignment produced by
this randomized rounding procedure, the terms cor-
responding to the log-partition-function and the node
potentials are identical. We obtain an additive error
(in log-probability space) only for the clique potentials.
As node potentials are often larger in magnitude than
clique potentials, the fact that we incur no loss pro-
portional to node potentials is likely to lead to smaller
errors in practice. Along similar lines, we note that the
constant factor approximation is smaller for smaller
cliques; again, we observe, the potentials associated
with large cliques are typically smaller in magnitude,
reducing further the actual error in practice.


