Optimal Resilience for Erasure-Coded Byzantine Distributed

Storage
Christian Cachin Stefano Tessaro
IBM Research ETH Zurich
Zurich Research Laboratory Department of Computer Science
CH-8803 Rischlikon, Switzerland CH-8092 Zurich, Switzerland
cca@zurich.ibm.com tessaros@student.ethz.ch

February 6, 2005

Abstract

We analyze the problem of efficient distributed storage of information in a message-passing envi-
ronment where both less than one third of the servers, as well as an arbitrary number of clients,
might exhibit Byzantine behavior, and where clients might access data concurrently. In particular,
we provide a simulation of a multiple-writer multiple-reader atomic read/write register in this set-
ting which uses erasure-coding for storage-efficiency and achieves optimal resilience. Additionally,
we give the first implementation of non-skipping timestamps which provides optimal resilience and
withstands Byzantine clients; it is based on threshold cryptography.

1 Introduction

Recent advances in the development of networked storage systems, such as Network-Attached Stor-
age (NAS), Object Storage [14, 4], and Storage-Area Networks (SAN), combined with the increasing
availability of fast networks, have made it very attractive to store large amounts of information in a
distributed storage systenSuch systems may use replication in order to enhance their security and
fault-tolerance.

We consider a set of servers implementing the storage system itself, and a possibly unbounded
set ofclients accessing the storage system for reading and writing data. Servers and clients commu-
nicate by exchanging messages over a fully conneasgdchronousietwork. This model is suitable
for heterogeneous and wide-area networks, and, furthermore, avoids timing assumptions, which may
otherwise become a vulnerability of the system.

These servers are subject to failures, and the system has to be designed in order to tolerate them.
Moreover, we do not want to limit ourselves to “benign” crashes opmties i.e., servers and clients,
because a malicious entity might take control over some of them and launch a coordinated attack. For
this reason, we consid&yzantine failureand assume that up toservers and any number of clients
may deviate from the protocol in an arbitrary way.

A distributed storage system needs to hamdlecurrentaccess by clients. A good abstraction for a
concurrent storage system isralltiple-writer multiple-reader read/write regist¢t9]. Such a register
is a shared object which can be used by many clients in order to store and retrieve a value. A complete
storage system can be modeled as an array of these registers. Thus, the problem of implementing a stor-
age system can be formalized as the problem of simulating a multiple-writer multiple-reader read/write
register by the servers. Despite the simplicity of such a register, it is notimmediately clear how it should

*Work done at IBM Research, Zurich Research Laboratory.

behave if accessed concurrently. Lamport [19] has introduced three types of consistency conditions for
registers:safety regularity, andatomicity. Atomicity is the strongest one, requiring every execution to
appear sequential, and it is the one considered here.

Previous fault-tolerant simulations of registers in a message-passing environment are iapéd on
cation of data [3, 21, 23, 5], where each server keeps a complete copy of the data. An approach that
wastes less resources is basednformation dispersal25] anderasure codingHere, the data is split
into blocks such that each server stores exactly one block, and the information stored at the honest
servers is enough to reconstruct the original data.

Most prior solutions for information dispersal in the Byzantine-failure model do not support concur-
rent access to the stored data. Only the recent protocol of Goodson et al. [15] addresses this question,
but still allows malicious clients to write inconsistent data to the servers, and recovering from such
inconsistent writes might be expensive. On the other hand, Cachin and Tessaro [9)vdedfiable
information dispersalwhere the servers will detect if inconsistent information is stored. This avoids
expensive operations for recovery, but their protocol does not allow for concurrent updates.

In this paper, we provide a new fault-tolerant simulation of an atomic register for data that is not
self-verifying [23]. We give a definition of an atomic register simulation protocol in an asynchronous
message-passing model, where both servers and clients are subject to Byzantine faults. We also give the
first protocol for storage-efficient distributed simulation ohaltiple-writer multiple-reader read/write
registerthat providesatomic semanticandoptimal resiliencei.e., tolerates the failure of up to one third
of the servers and of an arbitrary number of clients [23]. It follows the “listeners’ pattern” proposed by
Martin et al. [23], but uses asynchronous verifiable information dispersal [9] and asynchronous reliable
broadcast for tolerating Byzantine clients. Our protocol improves the storage and communication effi-
ciencies of Martin et al.’s protocol for the simulation of atomic registers [23] and improves the resilience
and the storage complexity of Goodson et al.'s solution for erasure-encoded storage [15], and avoids po-
tentially expensive recovery operations. Like some of the previous work, our protocol uses interaction
among the servers.

The challenge with using erasure coding in the concurrent setting is that no server stores the entire
data, and in order to read correctly, a client must receive data blocks belonging to the same data item
from multiple servers. A possible way for keeping track of multiple concurrently written versions of
the data is provided bftogical) timestampsWhenever a new data item is written, it receives a higher
timestamp. Malicious parties, however, may be able to mount a denial-of-service attack by making
timestamps arbitrarily large. Bazzi and Ding [5] considered this problem and solved it by introducing
so-callednon-skipping timestampsvhere the value of every timestamp is bounded by the number of
writes that have been executed previously in the system and where no timestamp value can be “skipped.”
We provide an improved implementation of non-skipping timestamps based on threshold signatures that
withstands the Byzantine failure of clients and of up to one third of the servers. Our solution uses
cryptographic digital signatures, but key management is much easier than in previous solutions: We
require the single public key of the service to be stored at the clients, but no client keys at the servers.

1.1 Related work

Rabin’s work [25] introduces the concept of information dispersal algorithms (IDA) for splitting large
files, but does not address protocol aspects for implementing IDA in distributed systems.

IDA is extended by Krawczyk [18] using a technique caltdstributed fingerprintingn order to
ensure the integrity of data in case of alterations of the stored blocks by malicious servers. The same
idea is subsequently improved by Alon et al. [1, 2].

Garay et al. [13] propose an information dispersal schemsyfiochronousetworks that tolerates
Byzantine server failures. Their model does not allow Byzantine clients, even though some attacks
are tolerated. Because of its inherent synchrony, this protocol cannot be translated to an asynchronous
network.

A solution for erasure-coded storage in an asynchronous network with robustness against Byzantine
serversand clients has recently been proposed by Goodson et al. [15]. Their scheme is able to detect
inconsistently written data only at read-time; the content of the storage system must then be rolled back
to the last correctly written state. The major drawback of this approach is that retrieving data can be
very inefficient in the case of several faulty write operations, and that consistency depends on a correct
client. The protocol requirels< 7 and ensures atomic semantics.

Cachin and Tessaro [9] introduce the concept of verifiable information dispersal in asynchronous
networks, which guarantees that, once the storage a file has been accepted by the servers, the data is
stored consistently. This is analogous to verifiability in secret sharing [11, 12, 24].

Among these cited works, only Goodson et al. [15] address the question of concurrent access to data
for systems based on information dispersal and with Byzantine failures of clients and servers.

Many simulations of read/write registers in the message-passing model based on replication have
been given, most of them considering only a bounded number of client processes or being restricted to
crash failures (see e.g. the work of Attiya et al. [IPhalanx[21] is a practical system for survivable
coordination that also provides a simulatiorsaferead/write registers based on replication and tolerates
Byzantine failures of both clients ard< % servers.

Martin et al. [23] proposed a replication-based simulation of an atomic register in the message-
passing model, where< 3 servers might be Byzantine. A drawback of this solution is the ability of
faulty servers to make timestamps as large as they wish. Recently, Bazzi and Ding [5] have improved this
solution in order to implement non-skipping timestamps at the price of lower resilience, supporting the
Byzantine failure of < 7 servers. Our protocol closes this gap and achieves both: optimal resilience
and non-skipping timestamps. Furthermore, it is the first solution for the case where an arbitrary number
of Byzantine clients may collude with the Byzantine-faulty servers.

1.2 Ouitline of this paper

Section 2 presents the model and introduces our tools, in particular, the system model, cryptographic
primitives like threshold signatures, and information dispersal schemes. In Section 3, we define a simu-
lation protocol for an atomic register, present a protocol that implements it, and prove it correct. Finally,
we extend the protocol to provide non-skipping timestamps, and give a complexity analysis.

2 Preliminaries

2.1 System model

We use a model which is equivalent to the one of Cachin et al. [8]. The network consists of a set of

servers{P;,..., P,} and a set otlients{C1, Cs, ...}, which are all probabilistic interactive Turing

machines (PITM) with running time bounded by a polynomial in a given security paramegarvers

and clients together are callgzhrties There is amadversary which is a PITM with running time

bounded by a polynomial ir. Servers and clients can be controlled by the adversary. In this case,

they are calledorrupted otherwise they are calldtbnest An adversary that controls up tservers is

called¢-limited. We are not assuming any bounds on the number of clients that can be corrupted. The

adversary istatic that is, it must choose the parties it corrupts before starting the protocol. Additionally,

there is an initialization algorithm, which is run by some trusted party before the system actually starts.
Every pair of servers is linked bysecure asynchronous chantieht provides privacy and authentic-

ity with scheduling determined by the adversary. Moreover, every client and every server are linked by

a secure asynchronous channel. We restrict the adversary such thatemeithe system isomplete

i.e., every message sent by an honest party and addressed to another honest party is delivered before the

adversary terminates. We refer to this property when we say that a message is “eventually” delivered.
Whenever the adversary delivers a message to an honest party, this @atiyased In this case,

the message is put in a so called input buffer, the party reads then the content of its buffer, performs

some computation, and generates one or more response messages, which are written on the output tape
of the party.

Protocols can be invoked either by the adversary, or by other protocols. Every protocol instance is
identified by a unique strintD, called thetag, which is chosen arbitrarily by the adversary if it invokes
the protocol, or which contains the tag of the calling protocol as a prefix if the protocol has been invoked
by some other protocol. There may be several threads of execution for a given party, but only one of
them is allowed to be active concurrently. When a party is activated, all threads wagtistates
which specify a condition defined on the received messages contained in the input buffer. If one or more
threads are in a wait state whose condition is satisfied, one of these threads is scheduled (arbitrarily) and
this thread runs until it reaches another wait state. This process continues until no more threads are in
a wait state whose condition is satisfied. Then, the activation of the party is terminated and the control
returns to the adversary.

The memory of each party consistslotal andglobal variables The former are used during the
execution of a single thread, and erased at the end of the execution of the thread, whereas the latter are
associated to a certain protocol instance and accessible to all threads of this instance.

We distinguish betweelocal eventswhich are eitheinput actions(that is, messages of the form
(ID,in ,type,...)) or output actiongmessages of the forfiD, out , type, . ..)), and othemprotocol
messageswhich are ordinary protocol messages of the fqid, type, . ..) to be delivered to other
parties. All messages of this form that are generated by honest parties are sasbsotiatedo the
protocol instancéD.

The interaction between the adversary and the honest parties defines a logical sequence of events,
which we use as impliciglobal clock We refer to it by saying that an event takes takes place at a certain
point in time

We use the following syntax for specifying our protocols. To enter a wait state, a thread executes
a command of the formvait for condition There is a global implicitvait for statement that every
protocol instance repeatedly executes: it matches any afhditionsgiven in the clauses of the form
upon condition block

The following complexity measures are used in the analysis of protocols. Complexities are always
defined with respect to a single instance of a protocol.

e The message complexityf a protocol is defined as the number of messages associated to an
instance of the protocol.

e The communication complexityf a given protocol is defined as the bit length of all messages
associated to an instance of the protocol.

e Thestorage complexitgf a protocol is defined as the size of the global variables associated to an
instance of the protocol.

Finally, a functione(«) is callednegligibleif for all ¢ > 0 there exists & such thak(x) < - for
all k > ko.
2.2 Cryptographic tools

We will make use of anon-interactive threshold signature schenfenon-interactive(n, ¢)-threshold
signature schem&SS consists of the following algorithms:

e A key generation algorithrgenerate(x, n, t) which returns gublic keyP K, as well as grivate
key share SKand alocal verification key/ K ; for each serveP;, wherej € [1,n].

¢ A signing algorithmsign(m, PK, SK;), wherem is some message, which returnsignature
sharep; of serverP; onm.

¢ A share verification algorithnverify-share(m, ., PK, VK;) that returns a boolean value. We
say that a signature shagg from P; onm is valid if verify-share(m, 11, PK,VK;) = true ,
andinvalid otherwise.

¢ A share combining algorithreombine(m, X, PK| [VKy, ..., VK,]), whereX is a set of at least
t + 1 valid signature shares an, which outputs aignatures onm.

¢ A signature verification algorithmerify(m, o, PK) which returns a boolean value. We say that a
signatures onm is valid if verify(m, o, PK) = true , andinvalid otherwise.

Assume the adversary plays the following game. Initially, a trusted dealer runs the key generation
algorithm and gives to each servgy the public keyPK, all local verification keys/Ky, ..., VK,, and
its private key shar&K;. The adversary then decides which servers it corrupts. Subsequently, the
adversary can submit messages to the honest servers, and each honest server answers by providing a
signature share on the submitted message to the adversary. Finally, givenatléasiggnature shares
for the same message, the adversary may combine them into a valid signature on the message.

We say that the scheme satisfiebustnessf it is computationally infeasible for the adversary to
producet + 1 valid signature shares such that the output of the share combining algorithm is not a
valid signature. Moreover, the scheme satisfies-forgeabilityif it is computationally infeasible for
the adversary to output a valid signature on a message that was never submitted as a signing request to
any honest server. A practical scheme satisfying these requirements (anttem-oraclemodel) has
been proposed by Shoup [26].

Additionally, a collision-resistant hash functiois a functionH : {0,1}* — {0,1}" with the
property that the adversary cannot generate two distinct stiiraged ' with H(z) = H(2'), except
with negligible probability. With a slight abuse of notation, we denoteé#ythe bit-size of the range
of the hash function, that i$H| := h. In practice,H could be implemented by SHA-1 (in this case,
|H| = 160).

2.3 Information dispersal

Information dispersal has been introduced by Rabin [25], and is based on the conceptasfuaa code
A (n, k)-erasure cod€ is given through aencoding algorithmencode, and adecoding algorithm
decode, such that the following holds:

e Given avalué I, encode(F') produces a vectd#, . . ., F,], where|Fj| ~ @ forall j € [1,n].

e Givenasetok pairsA := {(j1, Fj,), ..., (Jk, Fj,) }, whereyjy, . . ., j;, are distinct elements from
{1,...,n}, decode(.A) produces a valué”.

Moreover, assumg,, F,] is the vector produced bgncode(F'). Then, given any: components

(or blockg F};, with the corresponding indicgs decode must reconstruct the origin&l. That is, every
subset oft components of the encoded value is enough to reconstruct the value. For more details, the
reader is referred t@5, 9, 6].

In the following, we will make use of a slightly modified version of the dispersal protocol in the
AVID-RBC scheme of Cachin and Tessaro [9], callzidperse. (A review ofasynchronouserifiable
information dispersal is provided in Appendix A.) Our protocol makes use ¢fiah)-erasure codé
for k < n — t and of a collision-resistant hash functiéh

ProtocolDisperse is invoked at an honest cliedt; through an input actiofID, in , disperse
F), containing a valud’. In this case we say that clien; dispersest’. Assuming(Fy, ..., F,] =
encode(F'), the protocol behaves also like an asynchronous reliable broadcast (see Appendix B) of the
vectorD := [Dy,...,D,], whereD; := H(F;) for j € [1,n]. In particular, each honest servgy

!Because of our strong bias toward data storage, we usually think of valfikesas

outputs a messagdéD, out ,stored ,D, 1, F};), whereD is the vector delivered by reliable broadcast,
i is the identifier of the client that started the dispersal, &hds an erasure-code block satisfying
H(F;) = Dj. In this case we say thd; completes the dispersal wiflD, i, F;]. Since the reliable
broadcast provides agreement on the delivered value, all honest servers complete the dispersal with
the sameD, and the following holds, except with negligible probability: There exists a vafueith
encoding[F7,. .., F,| such tha{H (F}), ..., H(F})] = D and, for each serveP; having completed
the dispersalF; = Fj’ Moreover, ifC; is honest, therd” is the valueF' that it has originally dispersed
(except with negligible probability).

The communication complexity of the Protoddisperse is O (n|F| +n?|H|). Then?® H| term
can be reduced ta?log n| H| by usinghash treesnstead of hash vectors. For the sake of clarity, we
will avoid using this optimization in the following, even though the reader should be aware of the fact
that this optimization can be easily used in the proposed protocols in this paper, and we will indeed take
advantage of this fact in the complexity results.

3 Byzantine simulation of atomic shared registers

In this section, we first define protocols for the simulation of multiple-writer multiple-reader atomic

read/write registers (or “atomic register” for short) in the message passing model. After that, we give our
information-dispersal-based simulation of an atomic register, analyze it, and improve it to provide non-
skipping timestamps. Finally, we discuss the communication and storage complexities of our protocols.

3.1 Definitions

Recall that anultiple-writer multiple-reader atomic read/write registfl9] is a concurrent object that
supports a set of valueB with an initial valueFi,; € F, and provides read and write operations, both

of which can be invoked by an arbitrary number of clients. Every operation is required to eventually
terminate. An implementation of such a register muswvbg-freg i.e., ensure that every operation of an
honest client terminates independently of the speed of other clients accessing the register. We assume
all valuesF" stored in the register have the same $Zg

In the following, we want to define protocols for simulating a shared registeratatimic semantics
that can also be accessed by corrupted clients. Atomic semantics requires that for every execution, there
exists a total order such that the view of the clients is consistent with an execution where the operations
are executed sequentially according to the total order. Operations performed by Byzantine clients are
not necessarily well-formed and could potentially modify the state of the register arbitrarily. For this
reason, in a pure shared-memory model, there is no way to determine all operations altering the state of
the register, since we have access only to what honest client observe.

The philosophy of our definition is to exploit the capabilities of the message-passing model in order
to expose all operations that affect the state of the register. This concerns read and write operations
invoked at honest clients, but also write operations on behalf of corrupted clients, which modify the
value of the register. We capture them by requiring the servers to signal the completion of every write.
Our approach guarantees that the view of the honest clients is always consistent, even though corrupted
clients are active concurrently. Previous definitions of atomic semantics in a setting with Byzantine
clients have been given by Malkhi, Reiter and Lynch [22] with weaker guarantees in a pure shared-
memory model, and by Goodson et al. [15, 16], who adopt an ad-hoc approach without such an explicit
signal.

A protocolIl executed by: serversP,, . .., P, and an unbounded number of cliefitg, Co, . .. for
the simulation of an atomic register defines two types of operations available to cligitésoperations
andread operations For notational convenience, we identify each operation by a bit stithgcalled
the operation identifier which is chosen by the caller of the operation (that is, in our model, by the
adversary) and must be unique in the system. We assume the servers simulate more than one register

concurrently and identify every register by a 1&g

A write operation(or read operatio for registerID is invokedat an honest client’; with oper-
ation identifieroid when it receives an input actiqitD, in ,write ,oid, F') (or (ID,in ,read ,oid),
respectively) from the adversary. In the first case we say the a clientrites F' to registerlD with
operation identifienid, and in the second case we say that cliénteadsfrom registeD with opera-
tion identifieroid. Whenever an operation is invoked at a client, it starts executing the operation until it
generates an output action, and we say that the opetatiorinates In particular, a read operation for
ID with operation identifiepid generates an output acti¢id, out ,read , oid, F'); in this case, we say
that clientC; readsvalue F' from registenD with operation identifiepid, or that the readeturnsvalue
F. A write operation follD returns an output actiofiD, out , ack , oid, F'); in this case we sag; has
written value F' to registerlD with operation identifieoid.

An honest server magiccept a writeto registerlD with operation identifieid by generating an
output action(ID, out , write-accepted ,0id). We say that a write to registéd with operation
identifier oid takes effecif at least one honest server accepts the write with operation ideruitier
Every honest party must generate at most one output action for evdiy tagl operation identifiesid.

Given an adversary, let R'? andW'P be the set of operation identifiers of terminating read and
write operations, respectively, which are invoked at honest clients withDtdg a run of the system
with adversaryA. Let P be the set of operation identifiers of write operations which take effect with
tagID. Note that these sets are random variables whose distributions depend on the coin tosses of the
adversaryA and of the honest parties. Moreovét? might also contain identifiers of operations not
invoked at honest clients, but performed by the adversary through corrupted clients.

We say that an invocation (or the termination of an operatiakgs placet the point in time when
the corresponding input (or output) action is delivered to (or generated by) the party. According to our
model, no two events can take place at the same point in time.

Finally, we say that for two operations with identifiersl; , oidy € R'E U WLP, the first operation
precedeghe second one in a run of the system if the termination of the first operation takes place at an
earlier point in time than the invocation of the second one. Two operations are catiedrrentif none
of them precedes the other one. With a slight abuse of notation, we sometimes say that an operation
identifieroid; precedes another operation identifiédl;, if this holds for the corresponding operations.

The following definition captures the concept of an atomic register simulation protocol.

Definition 1. A protocolll, providing the interface described above, isanmic register simulation
protocolif, for all ¢-limited adversariesi and all tagdD, the following properties hold, except with
negligible probability:

Liveness: If an operation is invoked at an honest cligrit with tag ID and operation identifieoid,
then the operation eventually terminates, thabid, € R'E U WLE’. Moreover, every write to
registeriD invoked at an honest client eventually takes effect, thani§, C £'P.

Correctness: There exists a total order overR'? U €'P such that

(i) for every pairoid;,oidy € R'? U £'P such thabid,, oidy, € R'D? U W'D, if the operation
with identifieroid; precedes the operation with identif@d,, thenoid; < oids;

(i) for every read operation with identifi@id, € R'D returning some valué’, let oid,, be the
largest element Qf'AD (according to<) such thabid,, < oid,; then, every read operation
with identifieroid. € R'?, for whichoid,, < oid. < oid,, returnsF’; moreover, ifoid,, €
WE, then the write operation with identifieid,, writes F'.

In order to be formally correct, we would also have to take care of reading the initial value before
any write has taken effect. We avoid to deal with this special case by assuming that for Hll tHuere
is some write in the system that precedes all other operations and that kyites 7.

For an atomic register simulation protocol where values with a fixed|sizare stored, we define
the storage blow-ums the ratio of the storage complexity of the protocol gng

7

3.2 Simulation of an atomic register

In this section, we present an atomic register simulation protatahic in the model of Section 2.1.
The detailed description of the write and read operations is given in Figures 1 and 2, respectively.

Our protocol relies on Protoc@isperse as presented in Section 2.3, which makes use of a colli-
sion-resistant hash functiod and of an(n, k)-erasure cod€ with encoding functiorencode and
decoding functiordecode, respectively, wheré satisfiesk < n — ¢t. Our protocol also uses an asyn-
chronous reliable broadcast protocol that tolerates Byzantine faults to disseminate a value among the
servers, such as Bracha'’s protocol [7] (see Appendix B); its operations are denatbchgcastand
r-deliver, respectively, and-broadcastmay be executed by clients.

In our protocol, each value is written usingimestamp which is an integets € N acting as a
version number for this value. Since it is possible that two writers use the same timestamp, we break
ties by considering also the operation identifier, which is unique, and defimemesTAMP for a value
being written withoid as|ts, oid]. TIMESTAMPSare ordered lexicographically, that is, giviés) oid] and
ts, oid'], we define

[ts, 0id] <75 [ts, 0id] & (ts < tg) V (ts =t A 0id <,jg 0id'), (1)

where operation identifiers are ordered according to some canonical<osgefurthermore, one can
define the relation<ts in the usual way: for every twoIMESTAMPS TS TS, we setTS <15 TS <
(TSZ TS) V (TS<T3 TS)

We now outline the key elements of Protodtiomic. We start by describing the data structure
maintained by every honest server, and then provide a brief explanation of the write and read operations.

Data stored by servers. A value F stored in the system is encoded with {hek)-erasure codé into
avector F1, ..., F,]. Every honest servdp; maintains a global variablg, containingF; for every tag

ID. Note that at any point in time, distinct honest servers might store blocks of different values, as the
system is asynchronous. Additionall; storesD., a vector consisting of the hashesif, ..., F,,,

and aTIMESTAMP |ts., oid.] for the stored value. It also maintains a ggtcalled the set ofisteners

[23], which contains at any point in time a set of tuplel’, TS, 7’|, denoting the operation identifiers,
TIMESTAMPS, and client identifiers of the concurrently executing read operations that it is aware of.
Given Fin, let [F, . .., F,] be equal teencode(Fini). Initially, the variableF, of serverP; is set to

F;, D.is setto[H(F}), ..., H(F,)], and]ts., oid.] is set to[0, L].

Write operations. A client C; writing a value F' to registerlD with operation identifieroid first
gueries all servers for their most recent timestamps, and each server responds v@tice the client

has received — ¢ timestamps, it-broadcastghe largest one to all servers agidpersed” with Protocol
Disperse. When an honest servét; hasr-delivereda timestamgs andcompletedhe dispersal with
vectorD, client identifieri, and blockZ;, it increments the timestantp. Moreover, if[ts;, 0id.] <ts

[ts, oid], it replaces its stored valu¢B., F., ts., oid.] by [D, Fj, ts, oid]. In any case, the server checks
for entries inC with TIMESTAMP smaller tharits, oid], and sends@alue message to the corresponding
clients with the newD, Fj, and[ts, oid]. Finally, the server returns an acknowledgment message to the
client. The client waits fon — ¢ such messages and terminates.

Read operations. A client C; reading a value from registéd with operation identifieoid communi-
cates its intention to read to the servers mead message. Upon receipt of such a message, sétver
sends taC; the vectorD,, the blockF,, and theTIMESTAMP [ts., 0id.] in avalue message, unless
serverP; has received eead message for registéd with identifieroid at an earlier timeP; also adds
the vectorfoid, [ts., oid.], i] to L.

C; collectsvalue messages from servers and stores them in B.s8tich avzalue message could
also have been caused by a concurrent write operation. Onbas receivedh — ¢ value messages

Protocol Atomic for tag 1D

upon initialization: I ServerP;
[F1,..., E,] := encode(Fi)

D, :=[H(F),...,H(F,)], F. := Fj, ts. := 0, 0id, := 1, £ := ()
upon receivinga messagélD,in ,write ,oid, F'): /I ClientC;
forall j € [1,n] do
send(ID, get-ts , oid) to P;
wait for n — ¢t message8lD, ts , oid, ts;) from distinct servers>;
ts := max {ts; : a messag€éD,ts ,oid,ts;) has been receivéd
disperseF usingDisperse with tagID |dispoid andr-broadcast tawith tagID|rbc.oid
wait for n — t messageélD, ack , oid) from distinct servers
output (ID, out ,ack , oid, F')

upon receivinga messagélD, get-ts , oid) from C;: I ServerP;
send(ID, ts ,oid, ts.) to C;

upon completing IQdisp.oid with [D, 7, F;] andr-delivering tswith tagID|rbc.oid: Il Serverp;
ts:=ts+1

if [ts., 0id.] <ts|ts, oid] then
D.:=D, F, := F}, [ts;, 0id.] := [ts, oid]
for all [oid’, TS,i’] € £ such thaffS <+sts, oid] do
send(ID, value ,oid’, D, F}, [ts, oid]) to C;s
send(ID, ack , oid) to C;
output (ID, out , write-accepted ,0id)

Figure 1: ProtocolAtomic - initialization and write operation

Protocol Atomic for tag ID

upon receivinga messagéD, in ,read , oid): I ClientC;
B:=1{
forall j € [1,n] do
send(ID, read , oid) to P;
repeat
wait for a messagélD, value ,oid, D', F}, TS) from P; such thatfl (F}) = D)
B:=BuU{[j,D F},TS]}
until there exists aIMESTAMP TS a vectorD and a sefS C [1,n|
suchthaf|S| =n—t)A(Vj € S:3F;: [j,D,F;, TS € B)
forall j € [1,n] do
send(ID, read-complete ,oid) to P;
F :=decode({(j, Fj) : j € S})
output (ID,out ,read ,oid, F')

upon receivinga messagéD, read , oid) from C;: Il ServerP;
if £ does not contain any entrigsid, TS, 7’| for someTS andi’ then
L := L U {[oid, [ts., 0id.], 7]}
send(ID, value ,oid, D, F¢, [ts.,0id.]) to C;
upon receivinga messagélD, read-complete , oid) from C;: Il ServerpP;
remove fromZ all entries of the fornjoid, TS, i'] for someTS, i’

Figure 2: ProtocolAtomic - read operation

from distinct servers with the sammemESTAMP and hash vector, then it stops collecting messages and
decodes the received blocks to a valieBefore F' is output, the client communicates the termination
of its read to all servers inad-complete message, in order to let them remove the corresponding

entry from£. Once aread-complete message has been received, the servers also stop responding
to anyread message with the same operation identifier.

The memory needed by the clients for storffigs not of interest in our model. In practice, however,
one would use the elegant scheme of Martin et al. [23] that bounds the memory of the clients.

In the next section, we prove the following theorem.

Theorem 2. Under the assumption th& is a collision-resistant hash function addan (n, k)-erasure
code, ProtocoAtomic is an atomic register simulation protocol far> 3t and all1 < k <n —t.

3.3 Analysis

The proof of Theorem 2 consists of two parts, corresponding to the liveness and correctness properties
of an atomic register simulation protocol.

Let us first extend our terminology in order to hanti®ESTAMPS. We say that an honest server
accepts a write to register 1D with operation identifier oid anetheSTAMP TS = [ts, oid] (or simplywith
timestamp fswheneverP; accepts the write to registéd with identifier oid after havingr-delivered
a timestamp(ts — 1). A read operation with operation identifierd at an honest client’; is said to
return aTIMESTAMP TS and a valug’ for tag ID if the read returng” and theTIMESTAMPS of the
corresponding blocks, from which is decoded, are alS Furthermore, we say an honest cliént
uses ariIMESTAMP TS= [ts, 0id] in a write to registetD with operation identifiepid if it r-broadcasts
a timestampts — 1).

According to the agreement property of asynchronous reliable broadcast (see Appendix B), itis clear
that if an honest server accepts a write to regidewith operation identifiepid andTIMESTAMP TS
and a distinct honest server accepts a write to regiBtevith operation identifieoid and TIMESTAMP
TS, thenTS= TS. Therefore, we say that a write to registBrwith operation identifieoid takes effect
with TIMESTAMP TS(or with timestamp fsif at least one honest server accepts it witliESTAMP TS
(or with timestams, respectively). Observe that no two write operations can take effect with the same
TIMESTAMP since the operation identifier is part of themeSTAMP.

Liveness. It is easy to see that whenevemaite operation is invoked at an honest client, then this
operation also terminates, except with negligible probability: Since the client waits-fiots messages

and all honest servers eventually answer witts amessage, the client eventually receives enough
timestamps, and moreover, according to the termination property of asynchronous verifiable information
dispersal and the validity property of asynchronous reliable broadcast, all honest servers eventually send
an acknowledgment message, except with negligible probability.

For read operations, note that since an honest client semda@ message to every server, every
honest server eventually replies withvalue message, unless the read operation has already termi-
nated. LefTS,.x be the largestiIMESTAMP contained in anyalue message sent by honest servers
as a reply to theead messages for a particular operation identifier. By the properties of asynchronous
reliable broadcast, all honest servers which have not sealtia message containinbS,.x Yet, even-
tually send avalue message witlTS,.x. The client receives these messages unless it has already
terminated the read operation. Moreover, by the properties of Prdbaspérse, the hash vectors sent
inthevalue messages witMMESTAMP TS, .« are the same, except with negligible probability. Thus,
the read operation eventually terminates.

Correctness. In order to show correctness, we first need some technical lemmas, which are conse-
guences of the implicit Byzantine quorum system [20] in the protocol.

Lemma 3. Assume either a write operation to register ID has terminated at an honest Cljeamid a
TIMESTAMP TS has been used, or a read operation from register ID has terminated at an honest client
C; returning aTIMESTAMP TS. Then, if at a later time a read operation from register ID is invoked at
an honest client’,, it does not return aIMESTAMP smaller than TS.

10

Proof. If such a write operation has terminated at an honest clignit meansC; has received, — ¢

ack messages. At least — 2t of these messages have been sent from honest servers, and by the
agreement property of reliable broadcast, these honest servers all delivered the same timestamp. These
honest servers send in everglue message in the subsequent read operatiomasTAMP which is

not smaller tharT'S Analogously, if such a read operation has terminated, the honest client has received

n — t value messages from distinct servers wittMESTAMP TS and at least — 2¢ of them have

been sent by honest servers. Hence, none of these honest servers willrseeg BAMP smaller than

TSin the subsequent read operatiorCat Sincen — t value messages from distinct servers and with

the sameriIMESTAMP are needed for the read to terminate, and at raost n — ¢ servers can send a
TIMESTAMP smaller thanrS the lemma follows. O

Lemma 4. Assume either a write operation to register ID has terminated at an honest Cljeamd a
TIMESTAMP TS has been used, or a read operation from register ID has terminated at an honest client
C; returning aTIMESTAMP TS. Then, if a write operation to register ID is invoked by an honest client
C, at a later time, the write useSEMESTAMP TS >15TS.

Proof. AssumeTS = [ts, oid]. With the same argument as in Lemma 3, at least2t > ¢ + 1 honest
servers will sends messages t6¢"’ in the subsequent write operation with a timestasip> ts. In
particular, in every set ofi — ¢t ts messages received l6y at least onds message must contain a
timestampts' > ts. But this means that” broadcasts a timestanig’ > ts' > ts, and thus uses a
TIMESTAMP TS >15 TS O

The following two lemmas state two additional important propertieSI®SfESTAMPS. a TIME-
STAMP is connected to a unique value, except with negligible probability, and, moreover, in order for a
TIMESTAMP to be read, it must have been written.

Lemma 5. Assume an honest client reads a valkievith TIMESTAMP TS, and some distinct honest
client reads a valué” with the samaIMESTAMP TS. ThenF' = F’, except with negligible probability.

Proof. AssumeTS= |ts, oid] and that indeed" # F’. Note that every honest server sends for a certain
TIMESTAMP only a possible hash vect® in its value messages (since there is a unique instance of
Disperse with tagID|dispoid). Moreovervalue messages from — ¢ distinct servers with the same
TIMESTAMP TSand the same hash vecrare needed for both clients to terminate the read. But since

any two sets of at least — ¢ servers have at least one honest server in their intersection, both clients
must have used the same hash vefdoin the read operation. However, as two different values have
been read according to our assumption, and only messages containing correct values according to the
hash vector are accepted, the adversary must have found a collisién for O

Lemma 6. Assume a read operation from register ID at an honest client retumsiasTAMP TS. Then
some write has taken effect withmESTAMP TS at an earlier time.

Proof. If no such write ever takes effect, only corrupted servers can senaithissTAMP. But since
there are at mogtof them, an honest client never returns suahnESTAMP. O

For every adversaryl and every tadD, we can now construct an orderover the operation identifiers
in R'P U £'P which ensures the correctness property.

e We order the operation identifiers EHAD according to therimesTampPs with which the corre-
sponding writes take effect. Given two distinct operation identifiéds andoids such that the
corresponding writes take effect withMESTAMPS TS, andTS;, we define

oid; < 0idy & TS <1sTS. (2)

11

e We order the operation identifiers m[E according to the returnediIMESTAMPS and thepre-
cedegelation established by the scheduler. In case two reads are concurrent and read the same
timestamp, we break ties by using the canonical total otdgy. Given two distinct operation
identifiersoid; andoids of reads at honest clients that rettmMeESTAMPS TS andTS;, respec-
tively, we define

oid; < oidy < (TS <15 TS)
V(TS =TS A oid; precede®ids;) 3)
V (TS = TS A (oide does not precedaid;) A oid; <gjq 0ida).

e For every operation identifiarid,, of a write operation which takes effect withmestampP TS,
and every operation identifieid, of a read operation which returngmmesTAMP TS, we define

oid, < oid, < TS, <1sTS 4)
oid. <oid, & TS <1sTS,. (5)

Observe thak is a total order, since it is easy to verify that every pair of distid{, oid, satisfies
eitheroid; < oid, or oids < oid; from (2), (3), (4) and (5). In the following, for every two operation
identifiersoid, , oidy, we say thabid; < oid, if either oid; = oids or 0id; < oids.

We are now ready to prove correctness. First observe that condition (i) is directly satisfied because
of Lemmas 3 and 4, and the definition of the total ordein order to prove (ii), assume a read operation
with identifier oid,. returns arIMESTAMP TS, and letoid,, be the largest identifier (according to the
total order<) of a write which takes effect and such tladl,, < oid,.. According to Lemma 6, there is
an operation identifienid!, € £'P such that a write operation with identifieid], andTIMESTAMP TS
takes effect. Note thatid), < oid,, because of (4), and asd,, is maximal,oid,, < oid,, < oid,.
Additionally, it follows from (2) and (4) that the write operation with identifed,, also takes effect
with TIMESTAMP TS, and this yieldsoid/,, = oid,,. Moreover, because of (3) and (4), every read
operation with identifiepid.. for oid,, < oid, < oid, returnsTIMESTAMP TS, and from Lemma 5 we
infer that these reads all return the same value except with negligible probability. Furthernoddg, if
is the identifier of a write operation at an honest client, since no other write operation can use the same
TIMESTAMP, it must have writterf’, except with negligible probability, because of the properties of the
Disperse protocol and becausH is collision-resistant.

3.4 Non-skipping timestamps

ProtocolAtomic above uses client-generated timestamps to keep track of the order of the values written
to the register. However, such timestamps are problematic since corrupted clients and servers may
increase the timestamp value arbitrarily. This does not affect the liveness or the correctness of the
protocol, but it opens a denial-of-service attack because the timestamps can waste memory at the honest
servers.

Suppose the servers use a predefined amount of storage for the timestamps, bounded by a fixed
polynomial in the security parameter. Then the adversary can cause overflows and harm the correctness
of a protocol by setting them directly to the largest available value. Timestamps that are bounded by
the number of writes that have already been executed have been maliezkippingby Bazzi and
Ding [5]. They additionally ensure that whenever a value is written with a particular timestamp, every
smaller timestamp has already been used at a previous point in time to write another value. And a
fixed, polynomial-sized non-skipping timestamp value can accommodate any polynomial number of
write operations.

In this section, we modify Protocéltomic by using threshold signatures to implement non-skipping
timestamps. Note that timestamps are not part of Definition 1. They are strictly related only to an
implementation of an atomic register simulation protocol because such a protocol might be based on

12

Protocol AtomicNS for tag ID

upon initialization: I ServerP;
[Fy,...,F,] == encode(Fnit)
F.:=F;,D.:=[H(I),...,H(F,)],ts. := 0, 0id, :=1, sig, :=L, L:=0

upon receivinga messagéD,in ,write ,oid, F'): Il ClientC;
forall j € [1,n] do
send(ID, get-ts , o0id) to P;
wait for n — ¢ messageflD, ts , 0id, ts;, ii;) from distinct servers; with valid o;
ts:= max {ts; : a messagélD,ts ,o0id,ts;, o;) has been receivéd
let o be a sighature correspondingto
disperseF usingDisperse with tagID |disp.oid andr-broadcast]ts, o] with tagID |rbc.oid
wait for n — t messageélD, ack , oid) from distinct servers
output (ID, out ,ack , oid, F)

upon receivinga messag€lD, get-ts , oid) from C;: Il ServerP;
send(ID, ts , oid, ts., sig,) to C;
upon completing IDdisp.oid with [D, 4, F;] andr-delivering ts, o] with tagID|rbc.oid: I ServerP;
if verify([ID,tg], o, PK) = true then
ts:=ts+1

;== sign([ID, ts], PK, SK;)
forall s € [1,n] do
send(ID, share ,oid, y;) to P,
wait for n — t message@lD, share , oid, i) from distinct serverd;
with verify-share([ID, tg, us, PK; VK;) = true
let X be the set of received valid signature shares
o := combine([ID, tg], X, PK, [VKy, ..., VK,])
if [ts., 0id.] <ts|[ts, oid] then
D. := D, F, := F}, [ts;, 0id.] := [ts, o0id], sig, := ¢
for all [oid’, TS,4’] € £ such thaffS <+s |ts, oid] do
send(ID, value ,oid’, D, F}, [ts, oid]) to C;s
send(ID, ack , oid, ts) to C,,
output (ID, out , write-accepted , oid)

Figure 3: ProtocolAtomicNS - initialization and write operation

other techniques (e.g., atomic broadcast from the clients to the servers to serialize the operations [17,
10, 8]). For this reason, we refrain from formally defining non-skipping timestamps for atomic register
simulations and rather show that the timestamps of our modified protocol are bounded.

We now describe our ProtocgltomicNS, in which the value of the timestamp in every accepted
write is bounded by the number of writes to the register. The idea is to enforce non-skipping increments
of the timestamp value by authenticating every timestamp with a threshold signatite tsh Honest
servers only accept, and subsequently increment, a timestamp if the client supplies a valid threshold
signature. In order to increment the timestamp, the servers generate a new threshold signature for the
timestamp by exchanging a round of messages containing signature shares. This ensures that the honest
servers determine the growth of the timestamp.

Suppose a non-interactive, t)-threshold signature schem¥@SsS as in Section 2.2 is available.

In particular, a trusted dealer initializes the system by generating a publi®Kegecret keysSK;
and public verification key¥K; for each serveP;. ServerP; receivesPK, VK, ... ,VK,, andSK;.
Additionally, every server stores a global varialig. which is a threshold signature db and the
current timestamgs... This variable is initialized tal, and without loss of generality we assumas a
valid signature fof. Otherwise, the setup is the same as for Protéd¢omic.

When a clientC; writes a valueF' to registedD with operation identifieoid, and queries all servers

13

in order to receive the most recent timestamps, it also receives a corresponding threshold signature
from every P;. Then it determines the largest timestata@nd the accompanying signature and
r-broadcastgts, |. When an honest servét; hasr-deliveredsuch a timestamp/signature pés; o],
verified thato is valid, and hagsompletedhe dispersal, it sets the timestampda- 1 and generates a
new signature share diD, ts+ 1]. Using ashare message, it sends the signature share to all servers
and then waits for enough signature shares from other servers in order to obtain a threshold signature
on[ID,ts+ 1]. Then, the server proceeds as before, but treatsa part of the timestamp, in particular,
it also updatesig, to o whents. is updated. The details of the write operation in Protad®oimicNS
are given in Figure 3; the read operation is the same as in Prodawiic (Figure 2).

Clearly, AtomicNS is an atomic register simulation protocol for &ll< n — ¢t andn > 3t, under
the assumption thall is collision-resistant and@ SS satisfies robustness. Liveness is satisfied since
every honest server signs the same timestamp value and generates a valid signature share; thus, the
additional round in whiclshare messages are exchanged completes and every honest server obtains a
valid threshold signature as+ 1.

Lemma 7. Assumingl SS satisfies non-forgeability, for every adversatythe following holds in every

run except with negligible probability: If some honest server has accepted a write operation to register
ID with operation identifier oid and timestamp ts, then for all timestampsassfyingd < ts' < ts,

there exists an oldsuch that a write to register ID has taken effect with identifief aitd timestamp ts

Proof. Towards a contradiction, assume there is an adversary and@ sagh that in some run a write
operation has been accepted by some honest server with timetsdoop for somes’ < ts, no write
operation to registelD has taken effect. Les” be the maximum timestamp wit < ts” < tssuch
that no write operation to registdd has been accepted with timestatdgh

Since a write operation has been accepted with timestdfvpl, some honest server hadelivered
a pair[ts’, "] with a valido” on [ID, ts"]. But by our assumption, no honest server has accepted a write
operation with timestampis”’. According to the protocol, this implies that no honest server has sent
ashare message containing a signature sharglbnts’] and no honest server has generated such
a share. Hencer” must have been generated by the adversary, creating a forgery for the threshold
signature schem&SsS. O

Lemma 7 combined with the agreement property of reliable broadcast implies that every write op-
eration takes effect with a unique timestamp, and it follows that the maximal value of a timestamp of
registerlD is bounded by the number of writes to regidter

3.5 Complexity analysis

In the following, we determine the storage complexity of ProtddomicNS and analyze the communi-

cation and message complexities of isolated read and write operations. Every message is associated with
either a read or a write operation according to the description in Figures 2 and 3. Since the complexity of
a write operation depends on the number of concurrent reads, a meaningful complexity analysis is only
possible by bounding the concurrency in the system. We therefore assume that at every honest server,
the size of the set of listenessis bounded by some value (Note that this violates the liveness of our
protocol.)

According to our system model, the adversary is polynomial-time bounded, and, therefore, the num-
ber of scheduled messages, the number of distinct operations, and the number of clients actively taking
part in a run of a protocol are all bounded by a polynomial in the security parameter. Hence, we may
assume w.l.0.g. that the tags and operation identifiers are small and bounéétbpy:). Because the
timestamps are non-skipping, the same holds for the size of the timestamps. Denote the maximal size
of a threshold signature or a threshold signature shaf8|gnd denote byH | the size of a hash value.

14

Complexity of write. Themessage complexitf a write operation is dominated by the complexity of
the underlying dispersal and reliable broadcast protocols, which geri2faté messages eact)(n?)
messages are also needed for the additional rousdadk messages. An honest server may also send
up to L value messages to reading clients. Thus, the message comple&ty.is+ nL).

The communication complexity is dominated by the dispersal of the value and by the reliable broad-
cast of the timestamp and the corresponding signature. Again, there ardbumtoe messages of
size(’)(@ + n|H|) each which can be sent by every server. Hence, the communication complexity of

a write operation is
F
O(n(n—i—L)‘k+n2(n+L)]H|+n2|S\). (6)

Using the maximak = n — ¢, the communication complexity i ((n + L)|F| + n*(n + L)|H| +
n2|5\). Note that using hash trees instead of hash vectors in the dispersal protocol according to [9], the
n?(n + L)|H| term can be reduced tolog n(n + L)|H]|.

Complexity of read. Only O(n) messagesre ever sent for a read operation. Tdwnmunication
complexityis dominated by thealue messages. Again, far= n — t, the communication complexity
of a read operation is

O(|F| +n®|H|). @)

As already noted in the previous paragraph, this can be redua@d it + nlogn|H]|) by using hash
trees instead of hash vectors.

Storage complexity. For a particulanD, every server stores a vecthr,, a block F,, a threshold
signature, and the set of listenelsThis amounts t@z% +n?|H| +n|S| + O(nLlog k) bits. Hence,
in the optimal casé = n — t thestorage complexitis

O(|F| +n*[H| +n|S| + nLlog k). (8)

Under the reasonable assumption {igt>> max{n|S|, n?|H|, nL log x}, the storage blow-up is"- +
o(1), which is nearly optimal. The use of hash trees can further reduce*tfig term ton log n|H|.

Note that in practice, storage systems often execute write operations without any concurrent reads.
In such anoptimistic case every honest server has = () and novalue messages are forwarded
during the write operations. Moreover, each read operation returns the value written with the largest
TIMESTAMP by a previous write operation.

References

[1] N. Alon, H. Kaplan, M. Krivelevich, D. Malkhi, and J. P. Stern, “Scalable secure storage when
half the system is faulty,” ifProc. 27th International Colloquium on Automata, Languages and
Programming (ICALP)U. Montanari, J. D. P. Rolim, and E. Welzl, eds.), vol. 1853 etture
Notes in Computer Sciengap. 576-587, Springer, 2000.

[2] N. Alon, H. Kaplan, M. Krivelevich, D. Malkhi, and J. P. Stern, “Addendum to scalable secure
storage when half the system is faultijformation and Computatiqr2004. To appear.

[3] H. Attiya, A. Bar-Noy, and D. Dolev, “Sharing memory robustly in message-passing systems,”
Journal of the ACMvol. 42, no. 1, pp. 124-142, 1995.

[4] A. Azagury, V. Dreizin, M. Factor, E. Henis, D. Naor, N. Rinetzky, O. Rodeh, J. Satran, A. Tavory,
and L. Yerushalmi, “Towards an object store,”"®Rmoc. IEEE/NASA Conference on Mass Storage
Systems & Technologies (MSST 20@8)03.

15

[5] R. Bazzi and Y. Ding, “Non-skipping timestamps for Byzantine data storage systeni3tdom
18th International Conference on Distributed Computing (DISC 20@R) Guerraoui, ed.),
vol. 3274 ofLecture Notes in Computer Scienpp. 405-419, 2004.

[6] R. E. Blahut,Theory and Practice of Error Control CodeReading: Addison-Wesley, 1983.

[7] G. Bracha, “An asynchronous [(n - 1)/3]-resilient consensus protocoRtdae. 3rd ACM Sympo-
sium on Principles of Distributed Computing (POD@p. 154-162, 1984.

[8] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup, “Secure and efficient asynchronous broad-
cast protocols (extended abstract),” Advances in Cryptology: CRYPTO 20QL Kilian, ed.),
vol. 2139 ofLecture Notes in Computer Scienep. 524-541, Springer, 2001. Full version avail-
able fromCryptology ePrint ArchiveReport 2001/00&http://eprint.iacr.org/

[9] C. Cachin and S. Tessaro, “Asynchronous verifiable information dispersal,” Tech. Rep. RZ 3569,
IBM Research, Dec. 2004.

[10] M. Castro and B. Liskov, “Practical Byzantine fault tolerance and proactive reco€i Trans-
actions on Computer Systemwsl. 20, pp. 398—-461, Nov. 2002.

[11] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch, “Verifiable secret sharing and achieving
simultaneity in the presence of faults,”Rroc. 26th IEEE Symposium on Foundations of Computer
Science (FOCSpp. 383—-395, 1985.

[12] P. Feldman, “A practical scheme for non-interactive verifiable secret sharingfom 28th IEEE
Symposium on Foundations of Computer Science (FOQ&pSH27-437, 1987.

[13] J. A. Garay, R. Gennaro, C. Jutla, and T. Rabin, “Secure distributed storage and reffiegal,”
retical Computer Sciengeol. 243, no. 1-2, pp. 363-389, 2000.

[14] G. A. Gibson and R. Van Meter, “Network attached storage architect@Gmimunications of the
ACM, vol. 43, pp. 37-45, Nov. 2000.

[15] G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Reiter, “Efficient Byzantine-tolerant erasure-
coded storage,” ifProc. International Conference on Dependable Systems and Networks (DSN-
2004) pp. 135-144, 2004.

[16] G.R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Reiter, “The safety and liveness properties of
a protocol family for versatile survivable storage infrastractures,” Tech. Rep. CMU-PDL-03-105,
Parallel Data Laboratory, Carnegie Mellon University, Mar. 2004.

[17] V. Hadzilacos and S. Toueg, “Fault-tolerant broadcasts and related problerbsstiitbuted Sys-
tems(S. J. Mullender, ed.), New York: ACM Press & Addison-Wesley, 1993. Expanded version
appears as Technical Report TR94-1425, Department of Computer Science, Cornell University,
Ithaca NY, 1994.

[18] H. Krawczyk, “Distributed fingerprints and secure information dispersaRrot. 12th ACM Sym-
posium on Principles of Distributed Computing (POD@). 207-218, 1993.

[19] L. Lamport, “On interprocess communication. Part ii: Algorithnidistributed Computingvol. 1,
no. 2, pp. 86-101, 1986.

[20] D. Malkhi and M. K. Reiter, “Byzantine quorum systemBjstributed Computingvol. 11, no. 4,
pp. 203-213, 1998.

[21] D. Malkhi and M. K. Reiter, “An architecture for survivable coordination in large distributed sys-
tems,”IEEE Transactions on Knowledge and Data Engineerira. 12, no. 2, pp. 187-202, 2000.

16

[22] D. Malkhi, M. Reiter, and N. Lynch, “A correctness condition for memory shared by byzantine
processes.” Manuscript, 1998.

[23] J.-P. Matrtin, L. Alvisi, and M. Dahlin, “Minimal Byzantine storage,” Rroc. 16th International
Conference on Distributed Computing (DISC 200R) Malkhi, ed.), vol. 2508 of.ecture Notes
in Computer Scien¢ep. 311-325, Springer, 2002.

[24] T. P. Pedersen, “Non-interactive and information-theoretic secure verifiable secret sharudy,” in
vances in Cryptology: CRYPTO 'qd. Feigenbaum, ed.), vol. 576 bécture Notes in Computer
Sciencepp. 129-140, Springer, 1992.

[25] M. O. Rabin, “Efficient dispersal of information for security, load balancing, and fault tolerance,”
Journal of the ACMvol. 36, no. 2, pp. 335-348, 1989.

[26] V. Shoup, “Practical threshold signatures,Advances in Cryptology: EUROCRYPT 2@B0Pre-
neel, ed.), vol. 1087 dfecture Notes in Computer Scienp®. 207—220, Springer, 2000.

A Review of asynchronous verifiable information dispersal

Information dispersal allows a client to store a value, usually calféd, & a distributed storage system.
Asynchronous verifiable information dispersels been introduced by Cachin and Tessaro [9] in the
model of Section 2.1 and extends previous approaches by introducing the notenifiability: servers
are always able to detect at the time of writing whether the information being stored is inconsistent.

An asynchronous verifiable information dispersal (AVID) schéona file F' consists of two proto-
cols:

The dispersal protocol: A client starts this protocol as it decides to store a certairHila the storage
system provided by the servers. Some redundancy is added to the file, which is then split into
different blocks, each one being stored by one ofittservers.

The retrieval protocol: A client (not necessarily the same which has written the Aije wanting to
retrieve file F', invokes this protocol in order to receive enough information from the servers to
reconstruct the filé". Moreover, the retrieval protocol can be repeated as many times as necessary.

In the general definition of asynchronous verifiable information dispersal, we do not address the
qguestions of concurrency and versioning. A fHecan be written only once, but retrieved again and
again. Since updates are not possible, concurrent reads and writes are not a problem. Stored files are
indexed using the tall of the instance of the dispersal protocol which wrote them. Therefore, running
the retrieval protocol folD simply means retrieving the file stored with the instance of the dispersal
protocol with tagiD.

We say that a cliendlispersesa file F' for ID if it starts the dispersal protocol with tdB with a
file F as an input, that is, it is activated through an input acti@n in , disperse , F'). Furthermore,

a server mayxompletethe dispersalD if it terminates the dispersal protocol fid with some output
of typestored , and it mayabort the dispersalD if it terminates the protocol with an output of type
abort . However, a server might neither complete nor abort the dispersal. Finally, arelb@mistructs
a file F’ for ID’ if it terminates the retrieval protocol for the file stored with i@y with an output
(ID,out ,retrieved | F’).

The verifiability property requires that either all servers complete the dispersal or no server com-
pletes the dispersal. This ensures that the servers always store consistent data once enough honest
servers have accepted. This is formalized in the following definition.

Definition 8. A (n, k)-asynchronous verifiable information dispersal sch€ie) is composed by
a dispersal and a retrieval protocol which satisfy, for atiynited adversary, aniD, and any client’;
starting the dispersal protocol fb, the following conditions, except with negligible probability:

17

Termination: If the clientC; is honest, then all honest servers eventually complete the dispersal

Agreement: If some honest server completes the dispdi@athen all honest servers eventually com-
plete the dispersdD.

Availability: If £ honest servers complete the dispetBgland an honest clierdt; starts the retrieval
protocol forlD, then it eventually reconstructs some fiié

Correctness: If k£ honest servers complete the dispet8glthere exists a fixed valu@ such that the
following holds:

1. If C; is honest and has dispersed a filaisingID, thenG = F.
2. If an honest clienf’; reconstructd” for ID, thenG = F.

B Review of asynchronous reliable broadcast

Given the model introduced in Section 2.1, a protocolfgynchronous reliable broadcaista protocol
where a party (called dealei) r-broadcastsa message: and all servers mardelivera valuem’. Such
a protocol satisfies the following properties:

Validity: If an honest dealer r-broadcasts a messagsome honest server eventually r-delivers

Agreement: If some honest server r-delivers a messagethen all honest servers eventually r-deli-
verm/'.

Authenticity: Every honest server r-delivers at most one messag®oreover, if the dealer is honest,
m was previously r-broadcast by the dealer.

Note that in contrast to the usual definition of reliable broadcast, where the dealer belongs to the set of
servers, the dealer is allowed to be a client in our context. This modification does not actually cause any
problems, and existing protocols for reliable broadcast can be easily adapted in order to satisfy this new
requirement.

The standard protocol for asynchronous reliable broadcast has been presented by Bracha [7]. When
broadcasting a messagg this protocol has message complexityn?) and communication complexity
O(n?/ml). Note that the message complexity is actually optimal, and we cannot expect to achieve
anything better.

Bracha’s protocol has been improved by Cachin et al. [8] using a hash fud€timnorder to reduce
the communication complexity in aptimistic setting That is, if messages among honest parties arrive
in time and if the servers controlled by the adversary are not actively interfering with the execution of
the protocol, the communication complexity is bounded®yn|m| + n?|H|), where|H]| is the size
of the hash function output. On the other hand, in the worst case, that is, if the corrupted servers cheat
actively and the network is slow, the communication complexity can be as high(a$(|m| + |H|)),
and no improvement with respect to Bracha’s protocol is achieved.

Cachin and Tessaro [9] propose an asynchronous reliable broadcast protocol with communication
complexityO(n|m| + n?logn|H]|).

18

