
Optimal Resilience for Erasure-Coded Byzantine Distributed
Storage

Christian Cachin
IBM Research

Zurich Research Laboratory
CH-8803 R̈uschlikon, Switzerland

cca@zurich.ibm.com

Stefano Tessaro∗

ETH Zurich
Department of Computer Science

CH-8092 Zurich, Switzerland
tessaros@student.ethz.ch

February 6, 2005

Abstract

We analyze the problem of efficient distributed storage of information in a message-passing envi-
ronment where both less than one third of the servers, as well as an arbitrary number of clients,
might exhibit Byzantine behavior, and where clients might access data concurrently. In particular,
we provide a simulation of a multiple-writer multiple-reader atomic read/write register in this set-
ting which uses erasure-coding for storage-efficiency and achieves optimal resilience. Additionally,
we give the first implementation of non-skipping timestamps which provides optimal resilience and
withstands Byzantine clients; it is based on threshold cryptography.

1 Introduction

Recent advances in the development of networked storage systems, such as Network-Attached Stor-
age (NAS), Object Storage [14, 4], and Storage-Area Networks (SAN), combined with the increasing
availability of fast networks, have made it very attractive to store large amounts of information in a
distributed storage system. Such systems may use replication in order to enhance their security and
fault-tolerance.

We consider a set ofn servers, implementing the storage system itself, and a possibly unbounded
set ofclients, accessing the storage system for reading and writing data. Servers and clients commu-
nicate by exchanging messages over a fully connectedasynchronousnetwork. This model is suitable
for heterogeneous and wide-area networks, and, furthermore, avoids timing assumptions, which may
otherwise become a vulnerability of the system.

These servers are subject to failures, and the system has to be designed in order to tolerate them.
Moreover, we do not want to limit ourselves to “benign” crashes of theparties, i.e., servers and clients,
because a malicious entity might take control over some of them and launch a coordinated attack. For
this reason, we considerByzantine failuresand assume that up tot servers and any number of clients
may deviate from the protocol in an arbitrary way.

A distributed storage system needs to handleconcurrentaccess by clients. A good abstraction for a
concurrent storage system is amultiple-writer multiple-reader read/write register[19]. Such a register
is a shared object which can be used by many clients in order to store and retrieve a value. A complete
storage system can be modeled as an array of these registers. Thus, the problem of implementing a stor-
age system can be formalized as the problem of simulating a multiple-writer multiple-reader read/write
register by the servers. Despite the simplicity of such a register, it is not immediately clear how it should

∗Work done at IBM Research, Zurich Research Laboratory.

1

behave if accessed concurrently. Lamport [19] has introduced three types of consistency conditions for
registers:safety, regularity, andatomicity. Atomicity is the strongest one, requiring every execution to
appear sequential, and it is the one considered here.

Previous fault-tolerant simulations of registers in a message-passing environment are based onrepli-
cation of data [3, 21, 23, 5], where each server keeps a complete copy of the data. An approach that
wastes less resources is based oninformation dispersal[25] anderasure coding. Here, the data is split
into blocks such that each server stores exactly one block, and the information stored at the honest
servers is enough to reconstruct the original data.

Most prior solutions for information dispersal in the Byzantine-failure model do not support concur-
rent access to the stored data. Only the recent protocol of Goodson et al. [15] addresses this question,
but still allows malicious clients to write inconsistent data to the servers, and recovering from such
inconsistent writes might be expensive. On the other hand, Cachin and Tessaro [9] defineverifiable
information dispersal, where the servers will detect if inconsistent information is stored. This avoids
expensive operations for recovery, but their protocol does not allow for concurrent updates.

In this paper, we provide a new fault-tolerant simulation of an atomic register for data that is not
self-verifying [23]. We give a definition of an atomic register simulation protocol in an asynchronous
message-passing model, where both servers and clients are subject to Byzantine faults. We also give the
first protocol for storage-efficient distributed simulation of amultiple-writer multiple-reader read/write
registerthat providesatomic semanticsandoptimal resilience, i.e., tolerates the failure of up to one third
of the servers and of an arbitrary number of clients [23]. It follows the “listeners’ pattern” proposed by
Martin et al. [23], but uses asynchronous verifiable information dispersal [9] and asynchronous reliable
broadcast for tolerating Byzantine clients. Our protocol improves the storage and communication effi-
ciencies of Martin et al.’s protocol for the simulation of atomic registers [23] and improves the resilience
and the storage complexity of Goodson et al.’s solution for erasure-encoded storage [15], and avoids po-
tentially expensive recovery operations. Like some of the previous work, our protocol uses interaction
among the servers.

The challenge with using erasure coding in the concurrent setting is that no server stores the entire
data, and in order to read correctly, a client must receive data blocks belonging to the same data item
from multiple servers. A possible way for keeping track of multiple concurrently written versions of
the data is provided by(logical) timestamps: Whenever a new data item is written, it receives a higher
timestamp. Malicious parties, however, may be able to mount a denial-of-service attack by making
timestamps arbitrarily large. Bazzi and Ding [5] considered this problem and solved it by introducing
so-callednon-skipping timestamps, where the value of every timestamp is bounded by the number of
writes that have been executed previously in the system and where no timestamp value can be “skipped.”
We provide an improved implementation of non-skipping timestamps based on threshold signatures that
withstands the Byzantine failure of clients and of up to one third of the servers. Our solution uses
cryptographic digital signatures, but key management is much easier than in previous solutions: We
require the single public key of the service to be stored at the clients, but no client keys at the servers.

1.1 Related work

Rabin’s work [25] introduces the concept of information dispersal algorithms (IDA) for splitting large
files, but does not address protocol aspects for implementing IDA in distributed systems.

IDA is extended by Krawczyk [18] using a technique calleddistributed fingerprintingin order to
ensure the integrity of data in case of alterations of the stored blocks by malicious servers. The same
idea is subsequently improved by Alon et al. [1, 2].

Garay et al. [13] propose an information dispersal scheme forsynchronousnetworks that tolerates
Byzantine server failures. Their model does not allow Byzantine clients, even though some attacks
are tolerated. Because of its inherent synchrony, this protocol cannot be translated to an asynchronous
network.

2

A solution for erasure-coded storage in an asynchronous network with robustness against Byzantine
serversand clients has recently been proposed by Goodson et al. [15]. Their scheme is able to detect
inconsistently written data only at read-time; the content of the storage system must then be rolled back
to the last correctly written state. The major drawback of this approach is that retrieving data can be
very inefficient in the case of several faulty write operations, and that consistency depends on a correct
client. The protocol requirest < n

4 and ensures atomic semantics.
Cachin and Tessaro [9] introduce the concept of verifiable information dispersal in asynchronous

networks, which guarantees that, once the storage a file has been accepted by the servers, the data is
stored consistently. This is analogous to verifiability in secret sharing [11, 12, 24].

Among these cited works, only Goodson et al. [15] address the question of concurrent access to data
for systems based on information dispersal and with Byzantine failures of clients and servers.

Many simulations of read/write registers in the message-passing model based on replication have
been given, most of them considering only a bounded number of client processes or being restricted to
crash failures (see e.g. the work of Attiya et al. [3]).Phalanx[21] is a practical system for survivable
coordination that also provides a simulation ofsaferead/write registers based on replication and tolerates
Byzantine failures of both clients andt < n

4 servers.
Martin et al. [23] proposed a replication-based simulation of an atomic register in the message-

passing model, wheret < n
3 servers might be Byzantine. A drawback of this solution is the ability of

faulty servers to make timestamps as large as they wish. Recently, Bazzi and Ding [5] have improved this
solution in order to implement non-skipping timestamps at the price of lower resilience, supporting the
Byzantine failure oft < n

4 servers. Our protocol closes this gap and achieves both: optimal resilience
and non-skipping timestamps. Furthermore, it is the first solution for the case where an arbitrary number
of Byzantine clients may collude with the Byzantine-faulty servers.

1.2 Outline of this paper

Section 2 presents the model and introduces our tools, in particular, the system model, cryptographic
primitives like threshold signatures, and information dispersal schemes. In Section 3, we define a simu-
lation protocol for an atomic register, present a protocol that implements it, and prove it correct. Finally,
we extend the protocol to provide non-skipping timestamps, and give a complexity analysis.

2 Preliminaries

2.1 System model

We use a model which is equivalent to the one of Cachin et al. [8]. The network consists of a set of
servers{P1, . . . , Pn} and a set ofclients{C1, C2, . . .}, which are all probabilistic interactive Turing
machines (PITM) with running time bounded by a polynomial in a given security parameterκ. Servers
and clients together are calledparties. There is anadversary, which is a PITM with running time
bounded by a polynomial inκ. Servers and clients can be controlled by the adversary. In this case,
they are calledcorrupted, otherwise they are calledhonest. An adversary that controls up tot servers is
calledt-limited. We are not assuming any bounds on the number of clients that can be corrupted. The
adversary isstatic, that is, it must choose the parties it corrupts before starting the protocol. Additionally,
there is an initialization algorithm, which is run by some trusted party before the system actually starts.

Every pair of servers is linked by asecure asynchronous channelthat provides privacy and authentic-
ity with scheduling determined by the adversary. Moreover, every client and every server are linked by
a secure asynchronous channel. We restrict the adversary such that everyrun of the system iscomplete,
i.e., every message sent by an honest party and addressed to another honest party is delivered before the
adversary terminates. We refer to this property when we say that a message is “eventually” delivered.

Whenever the adversary delivers a message to an honest party, this party isactivated. In this case,
the message is put in a so called input buffer, the party reads then the content of its buffer, performs

3

some computation, and generates one or more response messages, which are written on the output tape
of the party.

Protocols can be invoked either by the adversary, or by other protocols. Every protocol instance is
identified by a unique stringID, called thetag, which is chosen arbitrarily by the adversary if it invokes
the protocol, or which contains the tag of the calling protocol as a prefix if the protocol has been invoked
by some other protocol. There may be several threads of execution for a given party, but only one of
them is allowed to be active concurrently. When a party is activated, all threads are inwait states,
which specify a condition defined on the received messages contained in the input buffer. If one or more
threads are in a wait state whose condition is satisfied, one of these threads is scheduled (arbitrarily) and
this thread runs until it reaches another wait state. This process continues until no more threads are in
a wait state whose condition is satisfied. Then, the activation of the party is terminated and the control
returns to the adversary.

The memory of each party consists oflocal andglobal variables. The former are used during the
execution of a single thread, and erased at the end of the execution of the thread, whereas the latter are
associated to a certain protocol instance and accessible to all threads of this instance.

We distinguish betweenlocal events, which are eitherinput actions(that is, messages of the form
(ID, in , type, . . .)) or output actions(messages of the form(ID, out , type, . . .)), and otherprotocol
messages, which are ordinary protocol messages of the form(ID, type, . . .) to be delivered to other
parties. All messages of this form that are generated by honest parties are said to beassociatedto the
protocol instanceID.

The interaction between the adversary and the honest parties defines a logical sequence of events,
which we use as implicitglobal clock. We refer to it by saying that an event takes takes place at a certain
point in time.

We use the following syntax for specifying our protocols. To enter a wait state, a thread executes
a command of the formwait for condition. There is a global implicitwait for statement that every
protocol instance repeatedly executes: it matches any of theconditionsgiven in the clauses of the form
upon condition block.

The following complexity measures are used in the analysis of protocols. Complexities are always
defined with respect to a single instance of a protocol.

• The message complexityof a protocol is defined as the number of messages associated to an
instance of the protocol.

• The communication complexityof a given protocol is defined as the bit length of all messages
associated to an instance of the protocol.

• Thestorage complexityof a protocol is defined as the size of the global variables associated to an
instance of the protocol.

Finally, a functionε(κ) is callednegligibleif for all c > 0 there exists aκ0 such thatε(κ) < 1
κc for

all κ > κ0.

2.2 Cryptographic tools

We will make use of anon-interactive threshold signature scheme. A non-interactive(n, t)-threshold
signature schemeT SS consists of the following algorithms:

• A key generation algorithmgenerate(κ, n, t) which returns apublic keyPK, as well as aprivate
key share SKj and alocal verification keyV Kj for each serverPj , wherej ∈ [1, n].

• A signing algorithmsign(m, PK, SKj), wherem is some message, which returns asignature
shareµj of serverPj onm.

4

• A share verification algorithmverify-share(m,µj , PK, VKj) that returns a boolean value. We
say that a signature shareµj from Pj on m is valid if verify-share(m,µj , PK, VKj) = true ,
andinvalid otherwise.

• A share combining algorithmcombine(m,Σ, PK, [VK1, . . . , VKn]), whereΣ is a set of at least
t + 1 valid signature shares onm, which outputs asignatureσ onm.

• A signature verification algorithmverify(m, σ, PK) which returns a boolean value. We say that a
signatureσ onm is valid if verify(m,σ, PK) = true , andinvalid otherwise.

Assume the adversary plays the following game. Initially, a trusted dealer runs the key generation
algorithm and gives to each serverPj the public keyPK, all local verification keysVK1, . . . , VKn, and
its private key shareSKj . The adversary then decides which servers it corrupts. Subsequently, the
adversary can submit messages to the honest servers, and each honest server answers by providing a
signature share on the submitted message to the adversary. Finally, given at leastt + 1 signature shares
for the same message, the adversary may combine them into a valid signature on the message.

We say that the scheme satisfiesrobustnessif it is computationally infeasible for the adversary to
producet + 1 valid signature shares such that the output of the share combining algorithm is not a
valid signature. Moreover, the scheme satisfiesnon-forgeabilityif it is computationally infeasible for
the adversary to output a valid signature on a message that was never submitted as a signing request to
any honest server. A practical scheme satisfying these requirements (in therandom-oraclemodel) has
been proposed by Shoup [26].

Additionally, a collision-resistant hash functionis a functionH : {0, 1}∗ → {0, 1}h with the
property that the adversary cannot generate two distinct stringsx andx′ with H(x) = H(x′), except
with negligible probability. With a slight abuse of notation, we denote by|H| the bit-size of the range
of the hash function, that is,|H| := h. In practice,H could be implemented by SHA-1 (in this case,
|H| = 160).

2.3 Information dispersal

Information dispersal has been introduced by Rabin [25], and is based on the concept of anerasure code.
A (n, k)-erasure codeC is given through anencoding algorithm, encode, and adecoding algorithm,
decode, such that the following holds:

• Given a value1 F , encode(F) produces a vector[F1, . . . , Fn], where|Fj | ≈ |F |
k for all j ∈ [1, n].

• Given a set ofk pairsA := {(j1, Fj1), . . . , (jk, Fjk
)}, wherej1, . . . , jk are distinct elements from

{1, . . . , n}, decode(A) produces a valueF ′.

Moreover, assume[F1, . . . , Fn] is the vector produced byencode(F). Then, given anyk components
(or blocks) Fj , with the corresponding indicesj, decode must reconstruct the originalF . That is, every
subset ofk components of the encoded value is enough to reconstruct the value. For more details, the
reader is referred to[25, 9, 6].

In the following, we will make use of a slightly modified version of the dispersal protocol in the
AVID-RBC scheme of Cachin and Tessaro [9], calledDisperse. (A review ofasynchronousverifiable
information dispersal is provided in Appendix A.) Our protocol makes use of an(n, k)-erasure codeC
for k ≤ n− t and of a collision-resistant hash functionH.

ProtocolDisperse is invoked at an honest clientCi through an input action(ID, in , disperse ,
F), containing a valueF . In this case we say that clientCi dispersesF . Assuming[F1, . . . , Fn] :=
encode(F), the protocol behaves also like an asynchronous reliable broadcast (see Appendix B) of the
vectorD := [D1, . . . , Dn], whereDj := H(Fj) for j ∈ [1, n]. In particular, each honest serverPj

1Because of our strong bias toward data storage, we usually think of values asfiles.

5

outputs a message(ID, out , stored ,D, i, Fj), whereD is the vector delivered by reliable broadcast,
i is the identifier of the client that started the dispersal, andFj is an erasure-code block satisfying
H(Fj) = Dj . In this case we say thatPj completes the dispersal with[D, i, Fj]. Since the reliable
broadcast provides agreement on the delivered value, all honest servers complete the dispersal with
the sameD, and the following holds, except with negligible probability: There exists a valueF ′ with
encoding[F ′

1, . . . , F
′
n] such that[H(F ′

1), . . . ,H(F ′
n)] = D and, for each serverPj having completed

the dispersal,Fj = F ′
j . Moreover, ifCi is honest, thenF ′ is the valueF that it has originally dispersed

(except with negligible probability).
The communication complexity of the ProtocolDisperse is O

(
n|F |+ n3|H|

)
. Then3|H| term

can be reduced ton2 log n|H| by usinghash treesinstead of hash vectors. For the sake of clarity, we
will avoid using this optimization in the following, even though the reader should be aware of the fact
that this optimization can be easily used in the proposed protocols in this paper, and we will indeed take
advantage of this fact in the complexity results.

3 Byzantine simulation of atomic shared registers

In this section, we first define protocols for the simulation of multiple-writer multiple-reader atomic
read/write registers (or “atomic register” for short) in the message passing model. After that, we give our
information-dispersal-based simulation of an atomic register, analyze it, and improve it to provide non-
skipping timestamps. Finally, we discuss the communication and storage complexities of our protocols.

3.1 Definitions

Recall that amultiple-writer multiple-reader atomic read/write register[19] is a concurrent object that
supports a set of valuesF with an initial valueFinit ∈ F , and provides read and write operations, both
of which can be invoked by an arbitrary number of clients. Every operation is required to eventually
terminate. An implementation of such a register must bewait-free, i.e., ensure that every operation of an
honest client terminates independently of the speed of other clients accessing the register. We assume
all valuesF stored in the register have the same size|F |.

In the following, we want to define protocols for simulating a shared register withatomic semantics
that can also be accessed by corrupted clients. Atomic semantics requires that for every execution, there
exists a total order such that the view of the clients is consistent with an execution where the operations
are executed sequentially according to the total order. Operations performed by Byzantine clients are
not necessarily well-formed and could potentially modify the state of the register arbitrarily. For this
reason, in a pure shared-memory model, there is no way to determine all operations altering the state of
the register, since we have access only to what honest client observe.

The philosophy of our definition is to exploit the capabilities of the message-passing model in order
to expose all operations that affect the state of the register. This concerns read and write operations
invoked at honest clients, but also write operations on behalf of corrupted clients, which modify the
value of the register. We capture them by requiring the servers to signal the completion of every write.
Our approach guarantees that the view of the honest clients is always consistent, even though corrupted
clients are active concurrently. Previous definitions of atomic semantics in a setting with Byzantine
clients have been given by Malkhi, Reiter and Lynch [22] with weaker guarantees in a pure shared-
memory model, and by Goodson et al. [15, 16], who adopt an ad-hoc approach without such an explicit
signal.

A protocolΠ executed byn serversP1, . . . , Pn and an unbounded number of clientsC1, C2, . . . for
the simulation of an atomic register defines two types of operations available to clients:write operations
andread operations. For notational convenience, we identify each operation by a bit stringoid, called
the operation identifier, which is chosen by the caller of the operation (that is, in our model, by the
adversary) and must be unique in the system. We assume the servers simulate more than one register

6

concurrently and identify every register by a tagID.
A write operation(or read operation) for registerID is invokedat an honest clientCi with oper-

ation identifieroid when it receives an input action(ID, in , write , oid, F) (or (ID, in , read , oid),
respectively) from the adversary. In the first case we say the a clientCi writes F to registerID with
operation identifieroid, and in the second case we say that clientCi readsfrom registerID with opera-
tion identifieroid. Whenever an operation is invoked at a client, it starts executing the operation until it
generates an output action, and we say that the operationterminates. In particular, a read operation for
ID with operation identifieroid generates an output action(ID, out , read , oid, F); in this case, we say
that clientCi readsvalueF from registerID with operation identifieroid, or that the readreturnsvalue
F . A write operation forID returns an output action(ID, out , ack , oid, F); in this case we sayCi has
writtenvalueF to registerID with operation identifieroid.

An honest server mayaccept a writeto registerID with operation identifieroid by generating an
output action(ID, out , write-accepted , oid). We say that a write to registerID with operation
identifier oid takes effectif at least one honest server accepts the write with operation identifieroid.
Every honest party must generate at most one output action for every tagID and operation identifieroid.

Given an adversaryA, letRID
A andW ID

A be the set of operation identifiers of terminating read and
write operations, respectively, which are invoked at honest clients with tagID in a run of the system
with adversaryA. Let E ID

A be the set of operation identifiers of write operations which take effect with
tag ID. Note that these sets are random variables whose distributions depend on the coin tosses of the
adversaryA and of the honest parties. Moreover,E ID

A might also contain identifiers of operations not
invoked at honest clients, but performed by the adversary through corrupted clients.

We say that an invocation (or the termination of an operation)takes placeat the point in time when
the corresponding input (or output) action is delivered to (or generated by) the party. According to our
model, no two events can take place at the same point in time.

Finally, we say that for two operations with identifiersoid1, oid2 ∈ RID
A ∪W ID

A , the first operation
precedesthe second one in a run of the system if the termination of the first operation takes place at an
earlier point in time than the invocation of the second one. Two operations are calledconcurrentif none
of them precedes the other one. With a slight abuse of notation, we sometimes say that an operation
identifieroid1 precedes another operation identifieroid2 if this holds for the corresponding operations.

The following definition captures the concept of an atomic register simulation protocol.

Definition 1. A protocolΠ, providing the interface described above, is anatomic register simulation
protocol if, for all t-limited adversariesA and all tagsID, the following properties hold, except with
negligible probability:

Liveness: If an operation is invoked at an honest clientCi with tag ID and operation identifieroid,
then the operation eventually terminates, that is,oid ∈ RID

A ∪ W ID
A . Moreover, every write to

registerID invoked at an honest client eventually takes effect, that is,W ID
A ⊆ E ID

A .

Correctness: There exists a total order< overRID
A ∪ E ID

A such that

(i) for every pairoid1, oid2 ∈ RID
A ∪ E ID

A such thatoid1, oid2 ∈ RID
A ∪ W ID

A , if the operation
with identifieroid1 precedes the operation with identifieroid2, thenoid1 < oid2;

(ii) for every read operation with identifieroidr ∈ RID
A returning some valueF , let oidw be the

largest element ofE ID
A (according to<) such thatoidw < oidr; then, every read operation

with identifieroid′r ∈ RID
A , for which oidw < oid′r < oidr, returnsF ; moreover, ifoidw ∈

W ID
A , then the write operation with identifieroidw writesF .

In order to be formally correct, we would also have to take care of reading the initial value before
any write has taken effect. We avoid to deal with this special case by assuming that for all tagsID, there
is some write in the system that precedes all other operations and that writesFinit ∈ F .

For an atomic register simulation protocol where values with a fixed size|F | are stored, we define
thestorage blow-upas the ratio of the storage complexity of the protocol and|F |.

7

3.2 Simulation of an atomic register

In this section, we present an atomic register simulation protocolAtomic in the model of Section 2.1.
The detailed description of the write and read operations is given in Figures 1 and 2, respectively.

Our protocol relies on ProtocolDisperse as presented in Section 2.3, which makes use of a colli-
sion-resistant hash functionH and of an(n, k)-erasure codeC with encoding functionencode and
decoding functiondecode, respectively, wherek satisfiesk ≤ n − t. Our protocol also uses an asyn-
chronous reliable broadcast protocol that tolerates Byzantine faults to disseminate a value among the
servers, such as Bracha’s protocol [7] (see Appendix B); its operations are denoted byr-broadcastand
r-deliver, respectively, andr-broadcastmay be executed by clients.

In our protocol, each value is written using atimestamp, which is an integerts ∈ N acting as a
version number for this value. Since it is possible that two writers use the same timestamp, we break
ties by considering also the operation identifier, which is unique, and define theTIMESTAMP for a value
being written withoid as[ts, oid]. TIMESTAMPSare ordered lexicographically, that is, given[ts, oid] and
[ts′, oid′], we define

[ts, oid] <TS [ts′, oid′] ⇔ (ts < ts′) ∨ (ts = ts′ ∧ oid <oid oid′), (1)

where operation identifiers are ordered according to some canonical order<oid. Furthermore, one can
define the relation≤TS in the usual way: for every twoTIMESTAMPS TS, TS′, we setTS≤TS TS′ ⇔
(TS= TS′) ∨ (TS<TS TS′).

We now outline the key elements of ProtocolAtomic. We start by describing the data structure
maintained by every honest server, and then provide a brief explanation of the write and read operations.

Data stored by servers. A valueF stored in the system is encoded with the(n, k)-erasure codeC into
a vector[F1, . . . , Fn]. Every honest serverPj maintains a global variableFc containingFj for every tag
ID. Note that at any point in time, distinct honest servers might store blocks of different values, as the
system is asynchronous. Additionally,Pj storesDc, a vector consisting of the hashes ofF1, . . . , Fn,
and aTIMESTAMP [tsc, oidc] for the stored value. It also maintains a setL, called the set oflisteners
[23], which contains at any point in time a set of tuples[oid′, TS′, i′], denoting the operation identifiers,
TIMESTAMPS, and client identifiers of the concurrently executing read operations that it is aware of.
GivenFinit , let [F̃1, . . . , F̃n] be equal toencode(Finit). Initially, the variableFc of serverPj is set to
F̃j , Dc is set to[H(F̃1), . . . ,H(F̃n)], and[tsc, oidc] is set to[0,⊥].

Write operations. A client Ci writing a valueF to registerID with operation identifieroid first
queries all servers for their most recent timestamps, and each server responds withtsc. Once the client
has receivedn−t timestamps, itr-broadcaststhe largest one to all servers anddispersesF with Protocol
Disperse. When an honest serverPj hasr-delivereda timestampts andcompletedthe dispersal with
vectorD, client identifieri, and blockFj , it increments the timestampts. Moreover, if[tsc, oidc] <TS

[ts, oid], it replaces its stored values[Dc, Fc, tsc, oidc] by [D, Fj , ts, oid]. In any case, the server checks
for entries inLwith TIMESTAMP smaller than[ts, oid], and sends avalue message to the corresponding
clients with the newD, Fj , and[ts, oid]. Finally, the server returns an acknowledgment message to the
client. The client waits forn− t such messages and terminates.

Read operations. A client Ci reading a value from registerID with operation identifieroid communi-
cates its intention to read to the servers in aread message. Upon receipt of such a message, serverPj

sends toCi the vectorDc, the blockFc, and theTIMESTAMP [tsc, oidc] in a value message, unless
serverPj has received aread message for registerID with identifieroid at an earlier time.Pj also adds
the vector[oid, [tsc, oidc], i] toL.

Ci collectsvalue messages from servers and stores them in a setB. Such avalue message could
also have been caused by a concurrent write operation. OnceCi has receivedn − t value messages

8

Protocol Atomic for tag ID

upon initialization: // ServerPj

[F̃1, . . . , F̃n] := encode(Finit)
Dc := [H(F̃1), . . . ,H(F̃n)], Fc := F̃j , tsc := 0, oidc :=⊥, L := ∅

upon receivinga message(ID, in , write , oid, F): // ClientCi

for all j ∈ [1, n] do
send(ID, get-ts , oid) to Pj

wait for n− t messages(ID, ts , oid, tsj) from distinct serversPj

ts := max {tsj : a message(ID, ts , oid, tsj) has been received}
disperseF usingDisperse with tagID|disp.oid andr-broadcast tswith tagID|rbc.oid
wait for n− t messages(ID, ack , oid) from distinct servers
output (ID, out , ack , oid, F)

upon receivinga message(ID, get-ts , oid) from Ci: // ServerPj

send(ID, ts , oid, tsc) to Ci

upon completing ID|disp.oid with [D, i, Fj] andr-delivering tswith tagID|rbc.oid: // ServerPj

ts := ts+ 1
if [tsc, oidc] <TS [ts, oid] then

Dc := D, Fc := Fj , [tsc, oidc] := [ts, oid]
for all [oid′, TS′, i′] ∈ L such thatTS′ <TS [ts, oid] do

send(ID, value , oid′,D, Fj , [ts, oid]) to Ci′

send(ID, ack , oid) to Ci

output (ID, out , write-accepted , oid)

Figure 1: ProtocolAtomic - initialization and write operation

Protocol Atomic for tag ID

upon receivinga message(ID, in , read , oid): // ClientCi

B := ∅
for all j ∈ [1, n] do

send(ID, read , oid) to Pj

repeat
wait for a message(ID, value , oid,D′, F ′

j , TS′) from Pj such thatH(F ′
j) = D′

j

B := B ∪
{
[j,D′, F ′

j , TS′]
}

until there exists aTIMESTAMP TS, a vectorD and a setS ⊆ [1, n]
such that(|S| = n− t) ∧ (∀j ∈ S : ∃Fj : [j,D, Fj , TS] ∈ B)

for all j ∈ [1, n] do
send(ID, read-complete , oid) to Pj

F := decode({(j, Fj) : j ∈ S})
output (ID, out , read , oid, F)

upon receivinga message(ID, read , oid) from Ci: // ServerPj

if L does not contain any entries[oid, TS′, i′] for someTS′ andi′ then
L := L ∪ {[oid, [tsc, oidc], i]}
send(ID, value , oid,Dc, Fc, [tsc, oidc]) to Ci

upon receivinga message(ID, read-complete , oid) from Ci: // ServerPj

remove fromL all entries of the form[oid, TS′, i′] for someTS′, i′

Figure 2: ProtocolAtomic - read operation

from distinct servers with the sameTIMESTAMP and hash vector, then it stops collecting messages and
decodes the received blocks to a valueF . BeforeF is output, the client communicates the termination
of its read to all servers in aread-complete message, in order to let them remove the corresponding

9

entry fromL. Once aread-complete message has been received, the servers also stop responding
to anyread message with the same operation identifier.

The memory needed by the clients for storingB is not of interest in our model. In practice, however,
one would use the elegant scheme of Martin et al. [23] that bounds the memory of the clients.

In the next section, we prove the following theorem.

Theorem 2. Under the assumption thatH is a collision-resistant hash function andC an(n, k)-erasure
code, ProtocolAtomic is an atomic register simulation protocol forn > 3t and all1 ≤ k ≤ n− t.

3.3 Analysis

The proof of Theorem 2 consists of two parts, corresponding to the liveness and correctness properties
of an atomic register simulation protocol.

Let us first extend our terminology in order to handleTIMESTAMPS. We say that an honest serverPj

accepts a write to register ID with operation identifier oid andTIMESTAMP TS= [ts, oid] (or simplywith
timestamp ts) wheneverPj accepts the write to registerID with identifier oid after havingr-delivered
a timestamp(ts− 1). A read operation with operation identifieroid at an honest clientCi is said to
return a TIMESTAMP TS and a valueF for tag ID if the read returnsF and theTIMESTAMPS of the
corresponding blocks, from whichF is decoded, are allTS. Furthermore, we say an honest clientCi

uses aTIMESTAMP TS= [ts, oid] in a write to registerID with operation identifieroid if it r-broadcasts
a timestamp(ts− 1).

According to the agreement property of asynchronous reliable broadcast (see Appendix B), it is clear
that if an honest server accepts a write to registerID with operation identifieroid andTIMESTAMP TS,
and a distinct honest server accepts a write to registerID with operation identifieroid andTIMESTAMP

TS′, thenTS= TS′. Therefore, we say that a write to registerID with operation identifieroid takes effect
with TIMESTAMP TS(or with timestamp ts) if at least one honest server accepts it withTIMESTAMP TS
(or with timestampts, respectively). Observe that no two write operations can take effect with the same
TIMESTAMP since the operation identifier is part of theTIMESTAMP.

Liveness. It is easy to see that whenever awrite operation is invoked at an honest client, then this
operation also terminates, except with negligible probability: Since the client waits forn−t ts messages
and all honest servers eventually answer with ats message, the client eventually receives enough
timestamps, and moreover, according to the termination property of asynchronous verifiable information
dispersal and the validity property of asynchronous reliable broadcast, all honest servers eventually send
an acknowledgment message, except with negligible probability.

For read operations, note that since an honest client sends aread message to every server, every
honest server eventually replies with avalue message, unless the read operation has already termi-
nated. LetTSmax be the largestTIMESTAMP contained in anyvalue message sent by honest servers
as a reply to theread messages for a particular operation identifier. By the properties of asynchronous
reliable broadcast, all honest servers which have not sent avalue message containingTSmax yet, even-
tually send avalue message withTSmax. The client receives these messages unless it has already
terminated the read operation. Moreover, by the properties of ProtocolDisperse, the hash vectors sent
in thevalue messages withTIMESTAMP TSmax are the same, except with negligible probability. Thus,
the read operation eventually terminates.

Correctness. In order to show correctness, we first need some technical lemmas, which are conse-
quences of the implicit Byzantine quorum system [20] in the protocol.

Lemma 3. Assume either a write operation to register ID has terminated at an honest clientCi and a
TIMESTAMP TS has been used, or a read operation from register ID has terminated at an honest client
Ci returning aTIMESTAMP TS. Then, if at a later time a read operation from register ID is invoked at
an honest clientC`, it does not return aTIMESTAMP smaller than TS.

10

Proof. If such a write operation has terminated at an honest clientCi, it meansCi has receivedn − t
ack messages. At leastn − 2t of these messages have been sent from honest servers, and by the
agreement property of reliable broadcast, these honest servers all delivered the same timestamp. These
honest servers send in everyvalue message in the subsequent read operation aTIMESTAMP which is
not smaller thanTS. Analogously, if such a read operation has terminated, the honest client has received
n − t value messages from distinct servers withTIMESTAMP TS, and at leastn − 2t of them have
been sent by honest servers. Hence, none of these honest servers will send aTIMESTAMP smaller than
TSin the subsequent read operation atC`. Sincen− t value messages from distinct servers and with
the sameTIMESTAMP are needed for the read to terminate, and at most2t < n − t servers can send a
TIMESTAMP smaller thanTS, the lemma follows.

Lemma 4. Assume either a write operation to register ID has terminated at an honest clientCi and a
TIMESTAMP TS has been used, or a read operation from register ID has terminated at an honest client
Ci returning aTIMESTAMP TS. Then, if a write operation to register ID is invoked by an honest client
C` at a later time, the write uses aTIMESTAMP TS′ >TS TS.

Proof. AssumeTS= [ts, oid]. With the same argument as in Lemma 3, at leastn − 2t ≥ t + 1 honest
servers will sendts messages toC ′ in the subsequent write operation with a timestampts′ ≥ ts. In
particular, in every set ofn − t ts messages received byC ′ at least onets message must contain a
timestampts′ ≥ ts. But this means thatC ′ broadcasts a timestampts′′ ≥ ts′ ≥ ts, and thus uses a
TIMESTAMP TS′ >TS TS.

The following two lemmas state two additional important properties ofTIMESTAMPS: a TIME-
STAMP is connected to a unique value, except with negligible probability, and, moreover, in order for a
TIMESTAMP to be read, it must have been written.

Lemma 5. Assume an honest client reads a valueF with TIMESTAMP TS, and some distinct honest
client reads a valueF ′ with the sameTIMESTAMP TS. ThenF = F ′, except with negligible probability.

Proof. AssumeTS= [ts, oid] and that indeedF 6= F ′. Note that every honest server sends for a certain
TIMESTAMP only a possible hash vectorD in its value messages (since there is a unique instance of
Disperse with tag ID|disp.oid). Moreover,value messages fromn− t distinct servers with the same
TIMESTAMP TSand the same hash vectorD are needed for both clients to terminate the read. But since
any two sets of at leastn − t servers have at least one honest server in their intersection, both clients
must have used the same hash vectorD in the read operation. However, as two different values have
been read according to our assumption, and only messages containing correct values according to the
hash vector are accepted, the adversary must have found a collision forH.

Lemma 6. Assume a read operation from register ID at an honest client returns aTIMESTAMP TS. Then
some write has taken effect withTIMESTAMP TS at an earlier time.

Proof. If no such write ever takes effect, only corrupted servers can send thisTIMESTAMP. But since
there are at mostt of them, an honest client never returns such aTIMESTAMP.

For every adversaryA and every tagID, we can now construct an order< over the operation identifiers
in RID

A ∪ E ID
A which ensures the correctness property.

• We order the operation identifiers inE ID
A according to theTIMESTAMPS with which the corre-

sponding writes take effect. Given two distinct operation identifiersoid1 andoid2 such that the
corresponding writes take effect withTIMESTAMPS TS1 andTS2, we define

oid1 < oid2 ⇔ TS1 ≤TS TS2. (2)

11

• We order the operation identifiers inRID
A according to the returnedTIMESTAMPS and thepre-

cedesrelation established by the scheduler. In case two reads are concurrent and read the same
timestamp, we break ties by using the canonical total order<oid. Given two distinct operation
identifiersoid1 andoid2 of reads at honest clients that returnTIMESTAMPS TS1 andTS2, respec-
tively, we define

oid1 < oid2 ⇔ (TS1 <TS TS2)
∨ (TS1 = TS2 ∧ oid1 precedesoid2)
∨ (TS1 = TS2 ∧ (oid2 does not precedeoid1) ∧ oid1 <oid oid2).

(3)

• For every operation identifieroidw of a write operation which takes effect withTIMESTAMP TSw,
and every operation identifieroidr of a read operation which returns aTIMESTAMP TSr, we define

oidw < oidr ⇔ TSw ≤TS TSr (4)

oidr < oidw ⇔ TSr <TS TSw. (5)

Observe that< is a total order, since it is easy to verify that every pair of distinctoid1, oid2 satisfies
eitheroid1 < oid2 or oid2 < oid1 from (2), (3), (4) and (5). In the following, for every two operation
identifiersoid1, oid2, we say thatoid1 ≤ oid2 if eitheroid1 = oid2 or oid1 < oid2.

We are now ready to prove correctness. First observe that condition (i) is directly satisfied because
of Lemmas 3 and 4, and the definition of the total order<. In order to prove (ii), assume a read operation
with identifier oidr returns aTIMESTAMP TSr, and letoidw be the largest identifier (according to the
total order<) of a write which takes effect and such thatoidw < oidr. According to Lemma 6, there is
an operation identifieroid′w ∈ E ID

A such that a write operation with identifieroid′w andTIMESTAMP TSr

takes effect. Note thatoid′w < oidr, because of (4), and asoidw is maximal,oid′w ≤ oidw < oidr.
Additionally, it follows from (2) and (4) that the write operation with identifieroidw also takes effect
with TIMESTAMP TSr, and this yieldsoid′w = oidw. Moreover, because of (3) and (4), every read
operation with identifieroid′r for oidw < oid′r < oidr returnsTIMESTAMP TSr, and from Lemma 5 we
infer that these reads all return the same value except with negligible probability. Furthermore, ifoidw

is the identifier of a write operation at an honest client, since no other write operation can use the same
TIMESTAMP, it must have writtenF , except with negligible probability, because of the properties of the
Disperse protocol and becauseH is collision-resistant.

3.4 Non-skipping timestamps

ProtocolAtomic above uses client-generated timestamps to keep track of the order of the values written
to the register. However, such timestamps are problematic since corrupted clients and servers may
increase the timestamp value arbitrarily. This does not affect the liveness or the correctness of the
protocol, but it opens a denial-of-service attack because the timestamps can waste memory at the honest
servers.

Suppose the servers use a predefined amount of storage for the timestamps, bounded by a fixed
polynomial in the security parameter. Then the adversary can cause overflows and harm the correctness
of a protocol by setting them directly to the largest available value. Timestamps that are bounded by
the number of writes that have already been executed have been callednon-skippingby Bazzi and
Ding [5]. They additionally ensure that whenever a value is written with a particular timestamp, every
smaller timestamp has already been used at a previous point in time to write another value. And a
fixed, polynomial-sized non-skipping timestamp value can accommodate any polynomial number of
write operations.

In this section, we modify ProtocolAtomic by using threshold signatures to implement non-skipping
timestamps. Note that timestamps are not part of Definition 1. They are strictly related only to an
implementation of an atomic register simulation protocol because such a protocol might be based on

12

Protocol AtomicNS for tag ID

upon initialization: // ServerPj

[F̃1, . . . , F̃n] := encode(Finit)
Fc := Fj , Dc := [H(F̃1), . . . ,H(F̃n)], tsc := 0, oidc :=⊥, sigc :=⊥, L := ∅

upon receivinga message(ID, in , write , oid, F): // ClientCi

for all j ∈ [1, n] do
send(ID, get-ts , oid) to Pj

wait for n− t messages(ID, ts , oid, tsj , µj) from distinct serversPj with valid σj

ts := max {tsj : a message(ID, ts , oid, tsj , σj) has been received}
let σ be a signature corresponding tots
disperseF usingDisperse with tagID|disp.oid andr-broadcast[ts, σ] with tagID|rbc.oid
wait for n− t messages(ID, ack , oid) from distinct servers
output (ID, out , ack , oid, F)

upon receivinga message(ID, get-ts , oid) from Ci: // ServerPj

send(ID, ts , oid, tsc, sigc) to Ci

upon completing ID|disp.oid with [D, i, Fj] andr-delivering[ts, σ] with tagID|rbc.oid: // ServerPj

if verify([ID, ts], σ, PK) = true then
ts := ts+ 1
µj := sign([ID, ts], PK, SKj)
for all s ∈ [1, n] do

send(ID, share , oid, µj) to Ps

wait for n− t messages(ID, share , oid, µs) from distinct serversPs

with verify-share([ID, ts], µs, PK, VKs) = true
let Σ be the set of received valid signature shares
σ := combine([ID, ts],Σ, PK, [VK1, . . . , VKn])
if [tsc, oidc] <TS [ts, oid] then

Dc := D, Fc := Fj , [tsc, oidc] := [ts, oid], sigc := σ
for all [oid′, TS′, i′] ∈ L such thatTS′ <TS [ts, oid] do

send(ID, value , oid′,D, Fj , [ts, oid]) to Ci′

send(ID, ack , oid, ts) to Cm

output (ID, out , write-accepted , oid)

Figure 3: ProtocolAtomicNS - initialization and write operation

other techniques (e.g., atomic broadcast from the clients to the servers to serialize the operations [17,
10, 8]). For this reason, we refrain from formally defining non-skipping timestamps for atomic register
simulations and rather show that the timestamps of our modified protocol are bounded.

We now describe our ProtocolAtomicNS, in which the value of the timestamp in every accepted
write is bounded by the number of writes to the register. The idea is to enforce non-skipping increments
of the timestamp value by authenticating every timestamp with a threshold signature on[ID, ts]. Honest
servers only accept, and subsequently increment, a timestamp if the client supplies a valid threshold
signature. In order to increment the timestamp, the servers generate a new threshold signature for the
timestamp by exchanging a round of messages containing signature shares. This ensures that the honest
servers determine the growth of the timestamp.

Suppose a non-interactive(n, t)-threshold signature schemeT SS as in Section 2.2 is available.
In particular, a trusted dealer initializes the system by generating a public keyPK, secret keysSKj

and public verification keysVKj for each serverPj . ServerPj receivesPK, VK1, . . . , VKn, andSKj .
Additionally, every server stores a global variablesigc which is a threshold signature onID and the
current timestamptsc. This variable is initialized to⊥, and without loss of generality we assume⊥ is a
valid signature for0. Otherwise, the setup is the same as for ProtocolAtomic.

When a clientCi writes a valueF to registerID with operation identifieroid, and queries all servers

13

in order to receive the most recent timestamps, it also receives a corresponding threshold signatureσj

from everyPj . Then it determines the largest timestampts and the accompanying signatureσ, and
r-broadcasts[ts, σ]. When an honest serverPj hasr-deliveredsuch a timestamp/signature pair[ts, σ],
verified thatσ is valid, and hascompletedthe dispersal, it sets the timestamp tots+ 1 and generates a
new signature share on[ID, ts+ 1]. Using ashare message, it sends the signature share to all servers
and then waits for enough signature shares from other servers in order to obtain a threshold signatureσ
on [ID, ts+ 1]. Then, the server proceeds as before, but treatsσ as a part of the timestamp, in particular,
it also updatessigc to σ whentsc is updated. The details of the write operation in ProtocolAtomicNS
are given in Figure 3; the read operation is the same as in ProtocolAtomic (Figure 2).

Clearly,AtomicNS is an atomic register simulation protocol for allk ≤ n − t andn > 3t, under
the assumption thatH is collision-resistant andT SS satisfies robustness. Liveness is satisfied since
every honest server signs the same timestamp value and generates a valid signature share; thus, the
additional round in whichshare messages are exchanged completes and every honest server obtains a
valid threshold signature onts+ 1.

Lemma 7. AssumingT SS satisfies non-forgeability, for every adversaryA, the following holds in every
run except with negligible probability: If some honest server has accepted a write operation to register
ID with operation identifier oid and timestamp ts, then for all timestamps ts′ satisfying0 ≤ ts′ < ts,
there exists an oid′ such that a write to register ID has taken effect with identifier oid′ and timestamp ts′.

Proof. Towards a contradiction, assume there is an adversary and a tagID such that in some run a write
operation has been accepted by some honest server with timestampts, but for somets′ < ts, no write
operation to registerID has taken effect. Letts′′ be the maximum timestamp withts′ ≤ ts′′ < ts such
that no write operation to registerID has been accepted with timestampts′′.

Since a write operation has been accepted with timestampts′′+1, some honest server hasr-delivered
a pair[ts′′, σ′′] with a validσ′′ on [ID, ts′′]. But by our assumption, no honest server has accepted a write
operation with timestampsts′′. According to the protocol, this implies that no honest server has sent
a share message containing a signature share on[ID, ts′′] and no honest server has generated such
a share. Hence,σ′′ must have been generated by the adversary, creating a forgery for the threshold
signature schemeT SS.

Lemma 7 combined with the agreement property of reliable broadcast implies that every write op-
eration takes effect with a unique timestamp, and it follows that the maximal value of a timestamp of
registerID is bounded by the number of writes to registerID.

3.5 Complexity analysis

In the following, we determine the storage complexity of ProtocolAtomicNS and analyze the communi-
cation and message complexities of isolated read and write operations. Every message is associated with
either a read or a write operation according to the description in Figures 2 and 3. Since the complexity of
a write operation depends on the number of concurrent reads, a meaningful complexity analysis is only
possible by bounding the concurrency in the system. We therefore assume that at every honest server,
the size of the set of listenersL is bounded by some valueL. (Note that this violates the liveness of our
protocol.)

According to our system model, the adversary is polynomial-time bounded, and, therefore, the num-
ber of scheduled messages, the number of distinct operations, and the number of clients actively taking
part in a run of a protocol are all bounded by a polynomial in the security parameter. Hence, we may
assume w.l.o.g. that the tags and operation identifiers are small and bounded byO(log κ). Because the
timestamps are non-skipping, the same holds for the size of the timestamps. Denote the maximal size
of a threshold signature or a threshold signature share by|S| and denote by|H| the size of a hash value.

14

Complexity of write. Themessage complexityof a write operation is dominated by the complexity of
the underlying dispersal and reliable broadcast protocols, which generateO(n2) messages each.O(n2)
messages are also needed for the additional round ofshare messages. An honest server may also send
up toL value messages to reading clients. Thus, the message complexity isO(n2 + nL).

The communication complexity is dominated by the dispersal of the value and by the reliable broad-
cast of the timestamp and the corresponding signature. Again, there are up toL value messages of
sizeO(|F |

k + n|H|) each which can be sent by every server. Hence, the communication complexity of
a write operation is

O
(
n(n + L)

|F |
k

+ n2(n + L)|H|+ n2|S|
)
. (6)

Using the maximalk = n − t, the communication complexity isO
(
(n + L)|F | + n2(n + L)|H| +

n2|S|
)
. Note that using hash trees instead of hash vectors in the dispersal protocol according to [9], the

n2(n + L)|H| term can be reduced ton log n(n + L)|H|.

Complexity of read. Only O(n) messagesare ever sent for a read operation. Thecommunication
complexityis dominated by thevalue messages. Again, fork = n− t, the communication complexity
of a read operation is

O(|F |+ n2|H|). (7)

As already noted in the previous paragraph, this can be reduced toO(|F | + n log n|H|) by using hash
trees instead of hash vectors.

Storage complexity. For a particularID, every server stores a vectorDc, a blockFc, a threshold
signature, and the set of listenersL. This amounts ton |F |

k + n2|H|+ n|S|+O(nL log κ) bits. Hence,
in the optimal casek = n− t thestorage complexityis

O
(
|F |+ n2|H|+ n|S|+ nL log κ

)
. (8)

Under the reasonable assumption that|F | � max{n|S|, n2|H|, nL log κ}, the storage blow-up isn
n−t +

o(1), which is nearly optimal. The use of hash trees can further reduce then2|H| term ton log n|H|.
Note that in practice, storage systems often execute write operations without any concurrent reads.

In such anoptimistic case, every honest server hasL = ∅ and novalue messages are forwarded
during the write operations. Moreover, each read operation returns the value written with the largest
TIMESTAMP by a previous write operation.

References

[1] N. Alon, H. Kaplan, M. Krivelevich, D. Malkhi, and J. P. Stern, “Scalable secure storage when
half the system is faulty,” inProc. 27th International Colloquium on Automata, Languages and
Programming (ICALP)(U. Montanari, J. D. P. Rolim, and E. Welzl, eds.), vol. 1853 ofLecture
Notes in Computer Science, pp. 576–587, Springer, 2000.

[2] N. Alon, H. Kaplan, M. Krivelevich, D. Malkhi, and J. P. Stern, “Addendum to scalable secure
storage when half the system is faulty,”Information and Computation, 2004. To appear.

[3] H. Attiya, A. Bar-Noy, and D. Dolev, “Sharing memory robustly in message-passing systems,”
Journal of the ACM, vol. 42, no. 1, pp. 124–142, 1995.

[4] A. Azagury, V. Dreizin, M. Factor, E. Henis, D. Naor, N. Rinetzky, O. Rodeh, J. Satran, A. Tavory,
and L. Yerushalmi, “Towards an object store,” inProc. IEEE/NASA Conference on Mass Storage
Systems & Technologies (MSST 2003), 2003.

15

[5] R. Bazzi and Y. Ding, “Non-skipping timestamps for Byzantine data storage systems,” inProc.
18th International Conference on Distributed Computing (DISC 2004)(R. Guerraoui, ed.),
vol. 3274 ofLecture Notes in Computer Science, pp. 405–419, 2004.

[6] R. E. Blahut,Theory and Practice of Error Control Codes. Reading: Addison-Wesley, 1983.

[7] G. Bracha, “An asynchronous [(n - 1)/3]-resilient consensus protocol,” inProc. 3rd ACM Sympo-
sium on Principles of Distributed Computing (PODC), pp. 154–162, 1984.

[8] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup, “Secure and efficient asynchronous broad-
cast protocols (extended abstract),” inAdvances in Cryptology: CRYPTO 2001(J. Kilian, ed.),
vol. 2139 ofLecture Notes in Computer Science, pp. 524–541, Springer, 2001. Full version avail-
able fromCryptology ePrint Archive, Report 2001/006,http://eprint.iacr.org/ .

[9] C. Cachin and S. Tessaro, “Asynchronous verifiable information dispersal,” Tech. Rep. RZ 3569,
IBM Research, Dec. 2004.

[10] M. Castro and B. Liskov, “Practical Byzantine fault tolerance and proactive recovery,”ACM Trans-
actions on Computer Systems, vol. 20, pp. 398–461, Nov. 2002.

[11] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch, “Verifiable secret sharing and achieving
simultaneity in the presence of faults,” inProc. 26th IEEE Symposium on Foundations of Computer
Science (FOCS), pp. 383–395, 1985.

[12] P. Feldman, “A practical scheme for non-interactive verifiable secret sharing,” inProc. 28th IEEE
Symposium on Foundations of Computer Science (FOCS), pp. 427–437, 1987.

[13] J. A. Garay, R. Gennaro, C. Jutla, and T. Rabin, “Secure distributed storage and retrieval,”Theo-
retical Computer Science, vol. 243, no. 1–2, pp. 363–389, 2000.

[14] G. A. Gibson and R. Van Meter, “Network attached storage architecture,”Communications of the
ACM, vol. 43, pp. 37–45, Nov. 2000.

[15] G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Reiter, “Efficient Byzantine-tolerant erasure-
coded storage,” inProc. International Conference on Dependable Systems and Networks (DSN-
2004), pp. 135–144, 2004.

[16] G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Reiter, “The safety and liveness properties of
a protocol family for versatile survivable storage infrastractures,” Tech. Rep. CMU-PDL-03-105,
Parallel Data Laboratory, Carnegie Mellon University, Mar. 2004.

[17] V. Hadzilacos and S. Toueg, “Fault-tolerant broadcasts and related problems,” inDistributed Sys-
tems(S. J. Mullender, ed.), New York: ACM Press & Addison-Wesley, 1993. Expanded version
appears as Technical Report TR94-1425, Department of Computer Science, Cornell University,
Ithaca NY, 1994.

[18] H. Krawczyk, “Distributed fingerprints and secure information dispersal,” inProc. 12th ACM Sym-
posium on Principles of Distributed Computing (PODC), pp. 207–218, 1993.

[19] L. Lamport, “On interprocess communication. Part ii: Algorithms,”Distributed Computing, vol. 1,
no. 2, pp. 86–101, 1986.

[20] D. Malkhi and M. K. Reiter, “Byzantine quorum systems,”Distributed Computing, vol. 11, no. 4,
pp. 203–213, 1998.

[21] D. Malkhi and M. K. Reiter, “An architecture for survivable coordination in large distributed sys-
tems,”IEEE Transactions on Knowledge and Data Engineering, vol. 12, no. 2, pp. 187–202, 2000.

16

[22] D. Malkhi, M. Reiter, and N. Lynch, “A correctness condition for memory shared by byzantine
processes.” Manuscript, 1998.

[23] J.-P. Martin, L. Alvisi, and M. Dahlin, “Minimal Byzantine storage,” inProc. 16th International
Conference on Distributed Computing (DISC 2002)(D. Malkhi, ed.), vol. 2508 ofLecture Notes
in Computer Science, pp. 311–325, Springer, 2002.

[24] T. P. Pedersen, “Non-interactive and information-theoretic secure verifiable secret sharing,” inAd-
vances in Cryptology: CRYPTO ’91(J. Feigenbaum, ed.), vol. 576 ofLecture Notes in Computer
Science, pp. 129–140, Springer, 1992.

[25] M. O. Rabin, “Efficient dispersal of information for security, load balancing, and fault tolerance,”
Journal of the ACM, vol. 36, no. 2, pp. 335–348, 1989.

[26] V. Shoup, “Practical threshold signatures,” inAdvances in Cryptology: EUROCRYPT 2000(B. Pre-
neel, ed.), vol. 1087 ofLecture Notes in Computer Science, pp. 207–220, Springer, 2000.

A Review of asynchronous verifiable information dispersal

Information dispersal allows a client to store a value, usually called afile, in a distributed storage system.
Asynchronous verifiable information dispersalhas been introduced by Cachin and Tessaro [9] in the
model of Section 2.1 and extends previous approaches by introducing the notion ofverifiability: servers
are always able to detect at the time of writing whether the information being stored is inconsistent.

An asynchronous verifiable information dispersal (AVID) schemefor a fileF consists of two proto-
cols:

The dispersal protocol: A client starts this protocol as it decides to store a certain fileF in the storage
system provided by then servers. Some redundancy is added to the file, which is then split inton
different blocks, each one being stored by one of then servers.

The retrieval protocol: A client (not necessarily the same which has written the fileF), wanting to
retrieve fileF , invokes this protocol in order to receive enough information from the servers to
reconstruct the fileF . Moreover, the retrieval protocol can be repeated as many times as necessary.

In the general definition of asynchronous verifiable information dispersal, we do not address the
questions of concurrency and versioning. A fileF can be written only once, but retrieved again and
again. Since updates are not possible, concurrent reads and writes are not a problem. Stored files are
indexed using the tagID of the instance of the dispersal protocol which wrote them. Therefore, running
the retrieval protocol forID simply means retrieving the file stored with the instance of the dispersal
protocol with tagID.

We say that a clientdispersesa file F for ID if it starts the dispersal protocol with tagID with a
file F as an input, that is, it is activated through an input action(ID, in , disperse , F). Furthermore,
a server maycompletethe dispersalID if it terminates the dispersal protocol forID with some output
of typestored , and it mayabort the dispersalID if it terminates the protocol with an output of type
abort . However, a server might neither complete nor abort the dispersal. Finally, a clientreconstructs
a file F ′ for ID′ if it terminates the retrieval protocol for the file stored with tagID′ with an output
(ID, out , retrieved , F ′).

The verifiability property requires that either all servers complete the dispersal or no server com-
pletes the dispersal. This ensures that the servers always store consistent data once enough honest
servers have accepted. This is formalized in the following definition.

Definition 8. A (n, k)-asynchronous verifiable information dispersal scheme(k ≤ n) is composed by
a dispersal and a retrieval protocol which satisfy, for anyt-limited adversary, anyID, and any clientCi

starting the dispersal protocol forID, the following conditions, except with negligible probability:

17

Termination: If the clientCi is honest, then all honest servers eventually complete the dispersalID.

Agreement: If some honest server completes the dispersalID, then all honest servers eventually com-
plete the dispersalID.

Availability: If k honest servers complete the dispersalID, and an honest clientCj starts the retrieval
protocol forID, then it eventually reconstructs some fileF ′.

Correctness: If k honest servers complete the dispersalID, there exists a fixed valueG such that the
following holds:

1. If Ci is honest and has dispersed a fileF usingID, thenG = F .

2. If an honest clientCj reconstructsF ′ for ID, thenG = F ′.

B Review of asynchronous reliable broadcast

Given the model introduced in Section 2.1, a protocol forasynchronous reliable broadcastis a protocol
where a party (called adealer) r-broadcastsa messagem and all servers mayr-delivera valuem′. Such
a protocol satisfies the following properties:

Validity: If an honest dealer r-broadcasts a messagem, some honest server eventually r-deliversm.

Agreement: If some honest server r-delivers a messagem′, then all honest servers eventually r-deli-
verm′.

Authenticity: Every honest server r-delivers at most one messagem. Moreover, if the dealer is honest,
m was previously r-broadcast by the dealer.

Note that in contrast to the usual definition of reliable broadcast, where the dealer belongs to the set of
servers, the dealer is allowed to be a client in our context. This modification does not actually cause any
problems, and existing protocols for reliable broadcast can be easily adapted in order to satisfy this new
requirement.

The standard protocol for asynchronous reliable broadcast has been presented by Bracha [7]. When
broadcasting a messagem, this protocol has message complexityO(n2) and communication complexity
O(n2|m|). Note that the message complexity is actually optimal, and we cannot expect to achieve
anything better.

Bracha’s protocol has been improved by Cachin et al. [8] using a hash functionH, in order to reduce
the communication complexity in anoptimistic setting. That is, if messages among honest parties arrive
in time and if the servers controlled by the adversary are not actively interfering with the execution of
the protocol, the communication complexity is bounded byO

(
n|m|+ n2|H|

)
, where|H| is the size

of the hash function output. On the other hand, in the worst case, that is, if the corrupted servers cheat
actively and the network is slow, the communication complexity can be as high asO

(
n2(|m|+ |H|)

)
,

and no improvement with respect to Bracha’s protocol is achieved.
Cachin and Tessaro [9] propose an asynchronous reliable broadcast protocol with communication

complexityO(n|m|+ n2 log n|H|).

18

