
Secret-Key Authentication Beyond the Challenge-Response Paradigm:

Definitional Issues and New Protocols

Petros Mol ∗ Stefano Tessaro †

December 18, 2012

Abstract

Secret-key authentication is the task of one party proving to another party that they share the
same key. The problem has recently attracted widespread interest due to the existence of lightweight
protocols amenable to implementation on simple architectures, such as RFID tags. This paper revisits
and improves upon the large body of work on secret-key authentication in two different ways.

On the definitional side, we show that the notion of active security, the strongest attained by
existing lightweight protocols, is too weak and can be satisfied by protocols completely insecure with
respect to seemingly much weaker notions. We provide new, more apt definitions of active security,
and investigate relations among them, within a new general framework for fine-grained modeling of
the security of secret-key authentication protocols of independent interest. Moreover, we prove that
previous protocols following the so-called challenge-response paradigm remain secure with respect to
our new definitions as long as they are actively secure with respect to the old one.

In the second part of our paper, however, we also provide concrete evidence of the benefits of
going beyond this paradigm: We present new generic constructions of authentication protocols which
deviate from the challenge-response blueprint. On the one hand, we devise an actively-secure three-
round protocol based on a very weak MAC which only needs to be secure against a forger on a random

message when evaluated on random messages. The protocol admits efficient LPN- and CDH-based
instantiations. On the other hand, we provide a two-round generic construction of a Man-in-the-
Middle secure protocol based on weak MACs which enjoys an efficient instantiation based on the
qSDH assumption.

Keywords: Authentication, secret-key cryptography, provable security, lightweight cryptography.

∗Department of Computer Science & Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla,
California 92093, Email: pmol@cs.ucsd.edu.

†MIT CSAIL, 32 Vassar Street, Cambridge, MA 02139, Email: tessaro@csail.mit.edu.

1

1 Introduction

Consider two parties, Alice and Bob, sharing a secret key K, and taking the roles of a prover and a
verifier, respectively. Alice would like to prove to Bob that she knows the key K, but no adversary
Eve, without knowledge of K, should be able to persuade Bob that she knows K. Research on this
problem, known as symmetric authentication, has recently gained momentum, driven by the discovery
of lightweight authentication protocols suitable to implementation on RFID devices [30, 13, 19, 35, 24,
32, 33, 17].

In summary, the contributions of this paper are two-fold: On the one hand, we propose a refined
framework to capture security notions for secret-key authentication and exercise it both to surface
problems with existing security definitions for active security, which we show to capture too weak
security goals, and to define better and stronger security goals. On the other hand, for some of these
notions, we present new generic constructions of authentication protocols at the cost of weaker generic
assumptions with respect to previous work. Before turning to a detailed overview of our results, let us
first discuss some further background.

Secret-key authentication. Theoretical research on authentication protocols has been initially
concerned with the public-key setting, where a prover P in pocession of a public/secret-key pair (pk, sk)
wishes to prove its identity to a verifier V who only knows pk (such protocols have often been called
identification protocols). Starting from the seminal work of Fiat and Shamir [22], a long series of
protocols have been proposed (among others, cf. e.g. [27, 38, 36, 39]) mostly leveraging techniques from
zero-knowledge proofs [26, 21].

In the meanwhile, the design of authentication protocols in practice has followed a completely
different path. An increasing number of ubiquitous-computing applications (item-labeling, payment
systems, proximity cards just to name a few) requires the existence of RFID tags that are capable of
authenticating themselves to a reader. But such tags are extremely simple devices, typically circuits
with a few thousand gates, and extremely low hardware complexity. Unfortunately, implementing
public-key cryptography on such devices remains, even to date, beyond reach. Fortunately, secret-key
authentication is sufficient in many scenarios, and may generally enjoy much more efficient solutions.
For instance, the simplest protocol uses a block cipher E (such as DES or AES) with a secret key K
and consists of only 2 rounds: in the first round, the verifier sends a random challenge R to the prover,
which, upon receiving R, replies with EK(R). The verifier accepts if and only if the prover’s response
is the unique correct value. (Such protocols are known as challenge-response protocols.) Provided
the block cipher is a sufficiently strong message-authentication code, this simple protocol achieves the
strongest notion of man-in-the-middle (MIM) security: Roughly speaking, MIM security demands that
an adversary interacting at will with an arbitrary number of both prover and verifier instances cannot
later bring a further verifier instance to accept. Very general definitional frameworks modeling MIM
security have been first proposed by Bellare and Rogaway [7].1

Unfortunately, mainstream block-cipher designs such as AES are not amenable to lightweight hard-
ware implementation. Seeking for alternatives, Juels and Weis [30] were the first to point out that a very
simple protocol by Hopper and Blum [29] (called HB) can be implemented with very low hardware com-
plexity, and proven secure under the well-known Learning Parity with Noise (LPN) assumption.2 Yet,
HB happens to only satisfy a fairly weak notion of security, called passive security, where an adversary
observing transcripts of honest prover-verifier interactions cannot convince a further verifier instance
that she knows the key. Every attempt to design HB-like protocols with MIM security [13, 19, 35, 24]

1Bellare and Rogaway’s work in fact focused on mutual authentication, where both parties authenticate to each other;
yet their definitions are easily extended to the unilateral setting of interest in this paper.

2The (decisional) LPN assumption with error η asserts that for a random secret s ∈ {0, 1}n, it is computationally
hard to distinguish random independent (n+ 1)-bit strings from samples (a, 〈a, s〉+ e), where a ∈ {0, 1}n is random and
e ∈ {0, 1} is 1 with probability η.

2

turned out to miss a security proof, which, very often, resulted sooner or later in a fatal flaw being
found [23, 37]. All provably MIM-secure protocols to date [33, 17] are challenge-response protocols
derived from the construction of a suitable MAC.3 While these elegant constructions do improve upon
block-cipher based schemes, their hardware complexity remains far from that of the HB protocol.

The need for weaker security: Active security. To overcome the above gap, previous work has
focused on an intermediate security notion, called active security, where one asks that even an adversary
which can interact with the prover arbitrarily fails in later convincing a verifier that she knows the key.
This is a secret-key version of the standard security notion for public-key identification schemes dating
back to Fiat and Shamir [22]. Juels and Weis [30] proposed a three-round challenge-response4 protocol,
called HB+, which was shown to be secure against active attacks (the proof was later extended to hold
for parallel or concurrent executions by Katz, Shin, and Smith [32]) and which is known not to be MIM
secure [25]. Active security has then attracted further interest [33, 17, 28]. Simply put, active security
appears to have become a de-facto standard security notion, backed by the existence of very efficient
protocols achieving it, its widespread acceptance in the public-key setting, and the inherent hardness
of achieving anything stronger such as MIM security efficiently.

1.1 Our Contributions

1.1.1 Modeling Security for Secret Key Authentication

Revisiting active security. As our first main contribution, we revisit the notion of active security
for secret-key authentication protocols: We show that despite the common belief, and in sharp contrast
to the public-key setting, active security as formulated in the literature is too weak to be considered a
valid security target. We present new, stronger notions that should be targeted instead. To illustrate
said weakness, let us consider the following toy protocol: The prover and the verifier hold a pair
of secret values K = (K1,K2), and the verifier starts the protocol by sending K1 to the prover: If
the prover receives the correct value K1, it then gives back K2 to the verifier, which accepts if this
value is correct. This protocol cannot even be passively secure, yet it is actively secure according to
the traditional definition for the following reason: In the first stage, the only way an adversary can
“exploit” the prover is by guessing K1 which is rather unlikely. And without the help of the prover,
the adversary needs to guess K2 in the second stage in order to convince the verifier, which is also
information-theoretically hard.

Obviously, it is tempting to dismiss the issue by simply demanding passive security on top of active
security. But perhaps surprisingly, we will show that this by itself is not sufficient either. We exhibit
protocols which are both actively and passively secure, yet their security falls apart as soon as an active
attacker is given one honest transcript between the prover and the verifier. Moreover, this remains true
even if the protocol satisfies an even stronger notion of active security, where the adversary is allowed
multiple, alternating (yet non-overlapping), interactions with the prover and the verifier.

Motivated by this observation, we present a new notion which combines active and passive attacks
in a single security game by incorporating a corresponding transcript oracle, and advocate this to be
the appropriate way of defining active security for secret-key authentication. Moreover, we distinguish
between one and several alternating interactions with the prover or the verifier, the latter resulting
notion being in the following informally referred to as strong active security.

3With one exception, perhaps, being the protocol where the verifier sends the encryption of a random plaintext to the
prover under a OW-CCA-secure encryption scheme, and the prover returns its decryption; to the best of our knowledge,
however, no efficient instantiations of this paradigm are known.

4In the three-round case, this means that the first two messages are both random.

3

A flexible definitional framework. The above discussion highlights the importance of precise defi-
nitions of security. To this end, we present a general framework to treat security definitions for authen-
tication in secret-key protocols. We use the framework to study relations among security notions, the
above issues being only one part of our extensive investigation. Our framework refines the framework
of Bellare and Rogaway [7] (developed to provide security definitions in the context of mutual entity
authentication and key distribution, and tailored at MIM security) to the case of unilateral secret-key
authentication. In particular, the framework follows the adversary-is-the-network paradigm initially
introduced by Dolev and Yao [18] and subsequently adopted by several other works [8, 6]. Similarly
to [7], the adversary is given access to a collection of oracles representing either the parties participating
in the protocol (prover or verifier) or executions of the protocol (the latter is modeled with a designated
transcript oracle).

However, unlike [7], we want to model notions weaker than MIM security, and consequently do
not necessarily allow access to all available oracles. Rather, the adversaty might have access to some
oracles but not to others. Another difference is that we consider adversaries running in multiple phases
(stages). On the contrary, in the model of [7], multiple phases were meaningless since they offered no
more power to the adversary. Due to the above modifications, our framework can capture several attacks
that can emerge in practice, ranging from simple eavesdropping (passive attacks) to full control of the
entire communication (matching the definition of [7]). Even though adopting a conservative viewpoint
when defining security goals has several benefits, it is an unavoidable fact that existing protocols with
attractive implementation features fall short of achieving the strongest notions; our goal is to precisely
address what these protocols achieve instead.5

All existing security notions, including the stronger definitions of MIM security due to Vaudenay [40]
and Bellare and Rogaway [7] fit nicely into our framework. We also show that an other recurring folklore
claim [32, 33, 17], namely that security for attackers making one verification query implies security
for arbitrary (polynomial) verification queries, is also incorrect for protocols which are not challenge-
response. Once again, this contradicts intuition from the public-key setting. But to our rescue, we will
also show that many incorrect claims are indeed correct when restricting focus on challenge-response
protocols. For example, we prove that existing protocols [30, 32, 33], claimed to be actively secure, are
also secure with respect to the notion of strong active security.

1.1.2 Constructions Beyond the Challenge-Response Paradigm

One may question whether the current state of affairs is as problematic as we depict above. After all,
all protocols we are interested in are challenge-response. So, why bother too much? We provide a very
pragmatic answer to this question: We give protocols which fall outside the challenge-response paradigm,
and which improve on existing protocols proposed in the literature, exhibiting a better efficiency-security
trade off. For our new protocols, proving active security with respect to the traditional definition would
yield too weak security guarantees.

Active security from LPN and weak MACs. As a case study, we focus on the question of
achieving active security. Specifically, we consider protocols secure under the LPN assumption. Such
protocols are usually very attractive, being suitable for implementation on lightweight hardware, yet
we only know two such schemes to date: The HB+ [30] protocol and the recent two-round protocol by
Kiltz et al [33]. From the perspective of concrete security, both however suffer from drawbacks: On the
one hand, no “tight” security reduction to LPN is known for HB+. Roughly speaking, if LPN is ǫ-hard
for secret length n and complexity t, we can only prove that an active attacker with time complexity

5This phenomenon is especially pronounced in the case of RFID protocols where requiring very strong cryptography
drives the manufacturing of RFID tags to prohibitively high costs and slows down the widespread deployment of the
technology.

4

(roughly) t cannot break security of HB+ for key length 2n with probability larger than
√
ǫ. This is

problematic. For example, if we have t = 240 and ǫ = 2−40, an adversary attacking 220 independent
instances of the protocol may break at least one of them spending overall effort t′ = 260, which may still
be feasible. Also, we point out that this loss is the inevitable result of using rewinding in the security
reduction, and, at least from a theoretical perspective, that this makes it impossible to prove HB+

security against quantum attackers (based on the quantum hardness of LPN). Kiltz et al [33] did take
a substantial step towards solving this issue by presenting a protocol which enjoys a tight reduction to
LPN in terms of advantage ǫ, yet, if we assume as above that LPN is ǫ-hard for secret-size n, for their
protocol to be ǫ-secure too, even under the most optimistic instantiation of their parameters, their key
size becomes larger than 4n bits and the communication complexity is larger than the one of HB+.

We hence ask the question: Can we obtain the best of both worlds? In other words, under the
assumption that LPN is ǫ-hard for secret-size n, can we have an ǫ-secure protocol with key size and
complexity comparable to HB+? We answer this in the affirmative as long as we are interested in basic
active security (as opposed to strong active security). Concretely, we propose a new generic approach
to obtain the first efficient authentication protocol based on any weak MAC, i.e., a MAC which can be
evaluated on random messages and which must be unforgeable on fresh, random messages. This is the
weakest generic assumption on which such a protocol can be based, with previous generic constructions
being either from stronger MACs or from a Weak PRF [17]. Given such a MAC, our three-round
protocol, which we call DM (for Double Mac), is extremely simple. The secret key of the protocol
consists of two keys K1,K2 for the underlying MAC. In the first round, the prover sends a random
message r1 to the verifier, which replies with (MACK1(r1), r2), for a random message r2, in the second
round. The prover, upon receiving (τ1, r2), subsequently checks whether τ1 happens to be a valid tag
for r1, and if so, sends MACK2(r2) back to the verifier, which finally accepts if and only if it receives a
valid tag τ2 for r2 under key K2.

When instantiated with an LPN-based weak MAC, DM yields a three-round protocol with com-
munication complexity only minimally larger than HB+, but with the benefit of a tight reduction to
LPN. In addition, for the same security level, our protocol has lower communication complexity and at
least 2 times smaller keys than the protocol of Kiltz et al. Even more, the security of our LPN-based
DM scales significantly better than both HB+ and the protocol of Kiltz et al. in the face of multiple

verification attempts where, in the latter two protocols, an adversary essentially increases its success
probability by a factor which is linear in the number of interactions with the verifier. Finally, DM
is amenable to instantiation via a CDH-based weak MAC, yielding the most efficient actively secure
protocol based on CDH. En passant, we also obtain an efficient protocol based on Ring-LWE [34].

Of course, it is fair to note that a drawback of DM compared to the existing challenge-response
protocols is that it is not, in general, strongly actively secure, a clear advantage of existing challenge-
response protocols. However, we point out that, to the best of our knowledge, strong active security
was never considered prior to our work, hence indicating that (non-strong) active security is considered
sufficient in many settings.

Generic constructions for MIM-security. As explained above, existing efficient protocols secure
against man-in-the-middle attacks follow the challenge-response approach where the second message is
the MAC of the challenge. Man-in-the-middle security for these protocols requires that the underlying
MAC be unforgeable under chosen message attacks. We provide evidence of the potential advantages
of moving outside the challenge-response paradigm by presenting a new generic approach to build two-
round authentication protocols that resist man-in-the-middle attacks, yet are based on weak MACs
which are strongly unforgeable only when evaluated on random messages, a strictly weaker assumption
than what needed in challenge-response protocols. Once again, our protocol is fairly simple: The prover
and the verifier both share two independent MAC keys K1 and K2, and the verifier sends MACK1(r), r
to the prover, who first checks whether MACK1(r) is a valid MAC for r under K1, and if the check is

5

successful, replies with a valid MAC MACK2(r) for r.
The simple intuition is that a MIM adversary cannot bring the prover to successfully authenticate a

challenge r under K2 unless it can provide a valid tag for r under K1 in the first place, and the latter is
unlikely unless the adversary uses the same r that was output by the verifier. In other words, the first
MAC forces the adversary to stick to valid interactions. However, reducing MIM security of the above
protocol to the right security notion for MACs is surprisingly subtle. We illustrate an instantiation
of our approach based on the qSDH assumption (initially proposed by Boneh and Boyen [11]) which
requires only four exponentiations in a cyclic group.

Other important related work. A vast body of literature has focused on privacy concerns related
to RFID protocols [2, 16, 4, 31, 40, 15] and especially traceability of tags. Also, protocols for mutual

authentication [7] have been considered in the past. We do not consider these aspects in this work.
Rather, our goal here is to raise awareness with respect to subtleties related to the security of unilateral
secret-key authentication protocols.

In terms of security notions, Gilbert et al [24] have considered an intermediate model (aka GRS-
MIM model) in which an adversary can interact with both the tag and the reader in the first phase of
the attack, but can only modify messages from the reader. Even though security in the GRS-MIM is
strictly stronger than active security, the protocols that are known to achieve the former notion [24] are
either inefficient (RANDOM−HB#) or based on assumptions that are not well studied (HB#). It has
also been questioned whether there exist real-world attack scenarios in which an attacker can modify
messages from the reader but not from the tag – and in the full-fledged MIM case, none of the protocols
from [24] is secure [37]. Another interesting line of research studies the security of distance-bounding
RFID protocols initially introduced by Brands and Chaum [12] as a countermeasure against MIM
attacks. In this scenario, a verifier can measure roundtrip times between sending and receiving a message
in order to detect MIM attacks. Most related to our work is the framework developed by Durholz et

al [20] (building upon the work of Avoine et al [3]) to model security in distance-bounding protocols.
Despite their similarities (mostly due to the fact that both inherit from the Bellare and Rogaway
framework [7]), the model from [20] is incomparable to ours, since both the adversarial capabilities and
the security goals are different.

Finally, we mention that very recently Heyse et al [28] presented Lapin, a simple and elegant 2-
round protocol that is secure against active attacks. The security of Lapin relies on the assumption
that the Ring-LPN problem, a structured variant of the standard LPN problem, is hard. However, the
hardness of Ring-LPN is much less understood6 than the hardness of LPN and thus, given our current
understanding of algorithmic attacks, any comparison with LPN-based protocols is hardly meaningful
(see also a recent attack by Bernstein and Lange [10] which exploits the ring structure of Ring-LPN to
drastically reduce the resources needed for an active attack).

2 Preliminaries

Notation. We use Z,N and R for the sets of integer, natural and real numbers respectively. We
reserve lower case symbols for scalars, upper case for sets, bold lower case for vectors, bold upper
case for matrices and sans serif font for polynomials. We also use calligraphic letters for probability
distributions and (possibly randomized) algorithms. For a string x of length n, prefk(x) (k ≤ n) is the
prefix of x consisting of the first k symbols appearing in x. For a positive integer m, we write [m] for
the set of the first m postive integers, i.e. [m] = {1, . . . ,m}.
Games and Probability. We will often use games, as defined by Bellare and Rogaway [9], and adopt

6Ring-LPN can be also seen as a special case of Ring-LWE [34] with modulus q = 2. However, unlike Ring-LWE,
Ring-LPN is not backed by a worst-case/average-case connection with (ideal) lattices.

6

Game PRFO
F

proc. main:

K
$← KGen

for all x ∈ D
V [x]← ⊥

d← AO

oracle F(x):

Ret FK(x)

oracle R(x):

If V [x] = ⊥
V [x]

$←R
Ret V [x]

Game
SUF-CMAMAC

procedure main:

K
$← KGen

Forge← false

T ← ∅
Run ATag,Vrfy

MAC

Ret Forge

oracle Tag(m):

τ ← TAGK(m)
T ← T ∪ (m, τ)
Ret (m, τ)

oracle Vrfy(m, τ):

If (m, τ) ∈ T then
Ret ⊥

If VRFYK(m, τ) = 1 then

Forge← true

Ret 1

Ret 0

Figure 1: Definition of cryptographic primitives. On the left: Games PRFOF for O ∈ {F,R}. On
the right: Game MACsuf-cma

MAC .

their computational model and notational conventions. We write x
$← X for the operation of selecting x

according to a probability distribution X or by running probabilistic algorithm X . For any probability
distribution X over a set X and any value x ∈ X, Pr[x ← X] denotes the probability associated to x

by distribution X . When X is a well understood set, we overload notation and write x
$← X to mean

that x is an element sampled uniformly at random from X. The support of a distribution X is denoted
[X] = {x ∈ X

∣

∣ Pr [x← X] > 0}. We use Berη for the Bernoulli distribution with parameter η, i.e.
Berη is a distribution over bits such that Prb←Berη [b = 1] = η. Accordingly, Bermη is the distribution
over {0, 1}m where each bit is independently distributed according to Berη. For some of our bounds,
we use the binary entropy function, defined as H2(p) = −p · log2 p − (1 − p) · log2(1 − p) as well as the
(binary) relative entropy function with parameters p and q defined as

D(p || q) = p · log2

(

p

q

)

+ (1− p) · log2

(

1− p

1− q

)

.

Pr [X > p ·m] ≤ 2−D(p || q)·m . (1)

PRFs and MACs. A pseudorandom function (PRF) is a pair of algorithms F = (KGen, F) where
KGen is the randomized key generation algorithm, which outputs a key K from the keyspace K, and
F : K×D → R is a function. The security of a PRF is formally defined on the left of Figure 1. For all
adversaries A, the prf-advantage is defined as

Advprf
F (A) = Pr

[

(PRFFF)A ⇒ 1
]

− Pr
[

(PRFRF)A ⇒ 1
]

.

For integers t, q, the advantage function is defined as Advprf
F (t, q) = max

A
{Advprf

F (A)} where the

maximum is over all adversaries A running in time t and making q queries to the given oracle O ∈ {F,R}.
A message authentication code is a triple of algorithms MAC = (KGen,TAG,VRFY) where

− KGen is the key generation algorithm which outputs a key K from some understood keyspace K,

− TAG is the (possibly randomized) tagging algorithm taking as input a key K ∈ K and a message m
from the understood message space M and outputting a tag TAG(K,m) or TAGK(m) and

− VRFY is the (deterministic) verification algorithm taking as inputs a key K ∈ K, a message m ∈ M,
as well as a tag τ from the tag space T , and outputting a decision VRFYK(m, τ) ∈ {0, 1}.

The completeness error of MAC is defined as

ǫc = max
m∈M

Pr
[

K
$← KGen, τ ← TAGK(m) : VRFYK(m, τ) = 0

]

and is typically required to be small. The standard security notion for MACs is strong unforgeability

under chosen message attacks (suf-cma), formally defined in Figure 1. The corresponding advantage,

7

for an attacker A, is
Advsuf-cma

MAC (A) = Pr
[

SUF-CMAAMAC ⇒ true

]

,

and accordingly, we define Advsuf-cma
MAC (t, qTAG, qVRFY) = max

A
{Advsuf-cma

MAC (A)}, where the maximum is

over all adversaries A running in time t and making qTAG (resp. qVRFY) tag (resp. verification) queries.

3 Security Notions of Authentication Protocols

In Section 3.1, we introduce a framework for modeling security of secret-key authentication protocols
refining the framework of Bellare and Rogaway [7] to support fine-grained description of attack models.
Existing security notions fit within our framework and so do several new notions that we introduce in
this work. Section 3.2 applies the framework both to highlight subtleties and problems with existing
definitions and to study how several notions are related to each other. To that end, we show both
implications and separations.

3.1 A Unified Definitional Framework

Algorithms and protocols. A stateful algorithm A has an initial input, keeps a state, and processes
messages. Formally, A is a randomized algorithm A : {0, 1}∗ × {0, 1}∗ × {0, 1}∗ → ({0, 1}∗ ∪ {⊥}) ×
{0, 1}∗ × ({0, 1}∗ ∪ {⊥}), where (y, σ′,msg′)

$← A(x, σ,msg) means that starting from state σ, on initial
input x, and upon receipt of message msg, A changes its internal state to σ′, sends message msg′ and,
if y 6= ⊥, terminates with output y. Here, y = ε indicates termination without any output.

An interactive two-party protocol, is a pair (P1,P2) of interactive algorithms, where exactly one of
P1 and P2 accepts a special designated message start. (We assume that it is P1 in the following.) The
protocol execution is defined via the following procedure:

(P1 ↔ P2)(x):

msg0 ← start; i← 0

y1, y2 ← ⊥; σ1, σ2 ← ε

While y1 = ⊥ or y2 = ⊥ do

If i = 0 mod 2 and y1 = ⊥ then

(y1, σ1,msgi+1)
$← P1(x, σ1,msgi)

Else if y2 = ⊥ then

(y2, σ2,msgi+1)
$← P2(x, σ2,msgi)

i← i + 1

Ret true

We say that (P1,P2) is well-formed if the above procedure always terminates returning true. Moreover,

it is an r-round protocol if i = r + 1 upon termination. We denote as (y1, y2)
$← (P1 ↔ P2)(x) the

process of sampling the outputs of P1 and P2 after an interaction. We also overload notation by writing

Tran
$← (P1 ↔ P2)(x) for the process of sampling the transcript of the interaction between P1 and P2,

i.e., the sequence consisting of the messages (msg1, . . . ,msgr) exchanged. Notice that msg0 = start and
the very last message are not part of the transcript.

Authentication protocols. A (secret-key) authentication protocol is a triple Π = (K,P,V) such
that K is a randomized key generation algorithm that generates a key K, while P and V are interactive
algorithms, both taking as input a key K in the range of K, and such that (P,V) is a well-formed
interactive protocol. In addition, P always outputs ε, whereas V outputs a decision value d ∈ {A,R}.

8

Game AUTHS1,...,Sm

Π :

procedure main():

K
$← K; T ← ∅; ctr← 0; σ0 = ⊥

For all i = 1 to m do // phase i ∈ [m]
For all sid ∈ N do

state[sid]← ε; decision[sid]← ⊥
done[sid]← false

σi
$← ASi

i (σi−1)

If ∃sid ∈ SIDV : (decision[sid] = A)
∧ (∀sid′ ∈ SIDP : ¬Matching(T [sid′], T [sid]))

Ret true

Ret false

oracle T():

Tran
$← (P ↔ V)(K)

Ret Tran

oracle P(sid,msg):

If (sid /∈ SIDP) ∨ done[sid] Ret ⊥
Else

(state[sid],msg′, y′)
$← P(K, state[sid],msg)

T ← T ∪ {(sid, ctr,msg,msg′)}
ctr← ctr + 1
If y′ 6= ⊥ then

done[sid]← true

Ret msg′

oracle V(sid,msg):

If (sid /∈ SIDV) ∨ done[sid] Ret ⊥
Else

(state[sid],msg′, y′)
$← V(K, state[sid],msg)

T ← T ∪ {(sid, ctr,msg,msg′)}
ctr← ctr + 1
If y′ 6= ⊥ then

done[sid]← true ; decision[sid]← y′

Ret y′

Ret msg′

Figure 2: Pseudocode description of Game AUTHS1,...,Sm

Π : Here, Si ⊆ {P,T,V} for all i ∈ [m], Π =
(K,P,V) is an authentication protocol and A = (A1, . . . ,Am) is an m-phase adversary. The predicate
Matching(T [sid′], T [sid]) returns true if sid′ ∈ SIDP , sid ∈ SIDV and T [sid′], T [sid] are matching.

For any real value δ ∈ [0, 1], we say that the protocol Π is δ-complete (or has completeness δ) if

Pr
[

K
$← K, (ε, d)

$← (P ↔ V)(K) : d = A
]

≥ δ. We assume without loss of generality that the last

message is sent from P to V, which then terminates with a decision, and does not send any further
messages.

Security of authentication protocols. Let Π = (K,P,V) be an authentication protocol. To model
the security of Π, we consider adversaries that run in multiple phases (stages). More concretely, let
S1, . . . , Sm be such that Si ⊆ {P,V,T} for all i ∈ [m] and V ∈ Sm. The security of Π against an
adversary running in m phases, is defined via the game AUTHS1,...,Sm

Π shown in Figure 2. The game

AUTHS1,...,Sm

Π starts by sampling a key K
$← K, and allows the attacker to arbitrarily and concurrently

interact with instances of the prover P and the verifier V under key K, addressed via session ids sids
in SIDP and SIDV , respectively, for two understood disjoint sets of integers SIDP ,SIDV ⊂ N. We
remark that a session id sid characterizes an interaction between the adversary and an instance of P
(or V) and not (necessarily) between an instance of P and an instance of V. Also, the same key K is
shared accross all instance sid ∈ SIDP ∪SIDV . The global variables state[sid], decision[sid] and done[sid]
maintain information associated with each sid, i.e., the state of the corresponding instance, whether it
has accepted an interaction (in case sid ∈ SIDV) or whether it has terminated. The game consists of
m phases, each one of which involves a respective adversary Ai, where Ai can pass on arbitrary state
information to Aj for all j > i. In each phase, the corresponding adversary is granted access to a subset
of the following oracles according to Si:

− The prover oracle P accepts queries of the form (sid,msg) where sid ∈ SIDP and msg ∈ {0, 1}∗. Upon
such a query, it runs P(K, state[sid],msg), obtaining output (σ′,msg′, y). It then sets state[sid] to σ′,
and if y′ = ⊥, returns msg′ to the adversary; otherwise it returns (y′,msg′). In the latter case, P does
not accept any further queries of the form (sid, ∗) until the end of the current phase.

9

− The verifier oracle V operates as P, using V instead of P. In addition, upon terminating, i.e., when
returning (d,⊥) for d ∈ {A,R} after a query (sid,msg), it sets decision[sid]← d.

− The transcript oracle T samples a transcript Tran
$← (P ↔ V)(K) and returns it.

Specifically, for O ∈ {P,V,T}, access to oracle O ∈ {P,V,T} is given to Ai in phase i if and only
if O ∈ Si. Abusing notation, we will write Si for the set of oracles available at phase i. For instance
if S1 = {T,P} then S1 = {T,P}. At the beginning of each phase, AUTH resets all global variables
associated to all sids. In this way, sids can be reused in subsequent phases but do not maintain any
state from previous ones. To address the randomized nature of P and V, we assume that each oracle
has access to a fresh randomness source and that oracles associated with different sids (or with same
sids but accross different phases) use fresh random coins each time they are invoked.

In order to rule out trivial winning strategies for A when P is present in phase m, we use the
notion of matching conversations from [7]. In particular, queries to P and V are assigned numbers
in increasing order of occurrence via an auxiliary global variable ctr that measures relative time. A
query q = (sid,msg) to P (or V), answered by msg′, results in (sid, i,msg,msg′) being added to
T where i is the value of the global counter ctr at the time of the query and T is a global list
that keeps track of the entire communication associated with all sids. Let Π be an r-round au-
thentication protocol and assume the communication is initiated by P, i.e. P receives the mes-
sage start. For a pair of sids (sid, sid) ∈ SIDP × SIDV consider the communication associated with
each of them, T [sid] = {(sid, i0, start,msg′0), (sid, i2,msg2,msg′2), . . . , (sid, ir−1,msgr−1,msg′r−1)} and
T [sid] = {(sid, i1,msg1,msg′1), (sid, i3,msg3,msg′3), . . . , (sid, ir,msgr,msg′r)}. Following [7, 40], we say
that T [sid], T [sid] are matching if
- i0 < i1 < i2 < . . . < ir−1 < ir,

- for all odd i (1 ≤ i ≤ r), msgi = msg′i−1 and

- for all even i (1 ≤ i ≤ r), msgi = msg′i−1.

For sid ∈ SIDP and sid ∈ SIDV , the predicate Matching(T [sid], T [sid]), which returns true if and only if
T [sid], T [sid] are matching, captures the concept of an interleaved communication between the instances
corresponding to sid and sid. The AUTH game finally returns true if Am manages to make the verifier
accept in phase m for some sid (i.e., decision[sid] = A for some sid ∈ SIDV), and additionally, there is
no sid′ ∈ SIDP such that T [sid′] and T [sid] are matching.7 It returns false otherwise.

For any adversary A = (A1, . . . ,Am), we say that A makes qP,i queries to P in phase i if the number
of distinct sid ∈ SIDP that appear across all queries of the form (sid,msg) during phase i are qP,i. qV,i
is defined similarly. Queries to T are not interactive and hence qT,i is precisely the number of calls to
T during phase i. The (S1, . . . , Sm)-auth advantage of A is defined as

Adv
(S1,...,Sm)-auth
Π (A) = Pr

[

(AUTHS1,...,Sm

Π)A ⇒ true

]

.

Moreover, for all positive t and qT,i, qP,i, qV,i (for all i ∈ [m]) we define

Adv
(S1,...,Sm)-auth
Π (t, qT,1, qP,1, qV,1, . . . , qT,m, qP,m, qV,m) = max

A
{Adv

(S1,...,Sm)-auth
Π (A)} .

The maximum here is over all adversaries A running in time t and making qT,i, qP,i and qV,i queries to
the corresponding oracles (during phase i) where, by definition, qO,i = 0 if O /∈ Si. (We will usually omit
these quantities from the advantage measure but our notation will make unambiguous which oracles the
query numbers correspond to.) Informally, we will say that a protocol Π is (S1, . . . , Sm)-secure (or enjoys

(S1, . . . , Sm)-security) if for all efficient adversaries A,Adv
(S1,...,Sm)-auth
Π (A) is small. For multiple-phase

adversaries that get access to the same oracles alternately, we simplify the writing by adopting string-
style notation. For instance, for a protocol Π, subsets S, S′ ⊆ {T,P,V} and a 2ℓ-phase adversary A,

7Note that, since all global variables of all sids are reset at the beginning of phase m, if V is the only element of Sm,
checking the existence of a matching T [sid′] for sid′ ∈ SIDP is redundant.

10

{}, {P,V} {P,V}, {V} {T,P}, {V}
{T}, {V}

+
{P}, {V}

{P}, {V}

{T}, {V}

3.7
/

folklore
/

3.4
/

3.1/folklore/

3.5

Figure 3: Summary of relations among notions for two-phase adversaries. Thick solid arrows
indicate implications. Thin solid arrows with a slash depict separations. The number above each
separation indicates the theorem that proves it. Finally, the dashed arrow indicates implication for
Public Coin Verifier (PCV) protocols.

we write AUTH
({S},{S′})ℓ

Π (instead of AUTH
({S},{S′},{S},{S′},...,{S},{S′})
Π) for the corresponding security

game. Likewise, we informally use the notation ({S}, {S′})∗-security to indicate ({S}, {S′})ℓ security
for any (polynomially bounded) ℓ ∈ N.

On winning in the last phase. We note that our framework only yields adversarial victory if the
verifier is convinced in the last phase, whereas victory in earlier phases is not relevant. We could in fact
extend our notion to incorporate multiple designated phases where an adversary can win. However, we

will consider mostly games of the form AUTH
(S,{V})∗

Π , in which case it is not hard to see that checking
for winning in the last verification phase and checking for winning in all even {V}-phases are equivalent
via a simple hybrid-argument.

Existing notions and extensions. Given the framework as described above, defining existing se-
curity notions for authentication protocols is rather straightforward. The vast majority of the def-
initions appearing in the literature consider two-phase adversaries. For instance, passive security is
precisely ({T}, {V})-auth-security , active security is ({P}, {V})-auth security is active security, while
({P,V}, {V})-auth-security is man-in-the middle (MIM) security as used in the recent works (e.g.,
[23, 37, 33, 17]). Moreover, a stronger notion of MIM security was used by Vaudenay [40] and is
equivalent to ({P,V})-auth-security. This can also be seen as a special case of the notion of authenticity
for mutual authentication used by Bellare and Rogaway [7].

3.2 Relations Among Security Notions

We now turn to discussing relations. We focus mostly on security against two-phase adversaries, as
two-phase attacks have been the primary target of previous work. We note however that some of the
relations (or separations) can be extended to hold for multiple-phase adversaries. Whenever this is the
case, we explicitly state the result in its full generality from which the two-phase case can be derived as
a corollary. Figure 3 summarizes our findings for two-phase notions. Some of them highlight surprising
separations, one of them showing the existing definition of active security to be unsatisfactory, as well
as implications that hold only for certain classes of protocols. To maintain consistency with 2-phase
notation, for the most part of the current section, we use ({}, {P,V}) to denote strong MIM security.
However, in other parts, we often use ({P,V}) (omitting the first phase) interchangeably to mean the
exact same security notion.

11

Implications. All implications are depicted with a solid thick arrow in Figure 3 and can be easily
justified via the following observations: By definition, if S1, S

′
1, S2, S2 ⊆ {T,P,V} such that S′1 ⊆

S1 and S′2 ⊆ S2, then (S1, S2)-security implies (S′1, S
′
2)-security. Also ({P,V}, {V})-security implies

({T,P}, {V})-security since any adversary A can perfectly simulate the T oracle if given access to
oracles P and V. Indeed, for a T query, A simply forwards the replies of one oracle to the other
perfectly simulating a full interaction. Finally, it is not hard to observe that having access to P and V
during phase 2 gives an adversary no less8 power than having access to the same oracles during phase
1. In particular, any ({}, {P,V})-adversary A can simulate a ({P,V}, {V})-adversary B = (B1,B2) as
follows: A enters phase 2 directly and replies to all queries from B using its P,V oracles. Along the

simulation, A maintains a list SID
(1)
V that contains all sid ∈ SIDV that appear in queries (sid,msg) to V

made by B1. When B enters (its) phase 2 then for every query (sid,msg) to V by B2, A queries (sid′,msg)

to its V oracle for some sid′ /∈ SID
(1)
V , i.e., A never reuses an sid ∈ SIDV used in the first phase of B’s

attack. Notice that A simulates perfectly AUTH
({P,V},{V})
Π to B. The crucial observation is that, by

choosing fresh sids to reply to B2’s queries, A ensures that for all pairs (sid, sid′) ∈ SIDP×SIDV \SID(1)
V ,

Matching(T [sid], T [sid′]) is false. Therefore, if B wins in AUTH
({P,V},{V})
Π so does A in AUTH

({},{P,V})
Π .

Interestingly, the ideas described above can be extended to show that in fact ({P,V})-security is the
strongest possible notion, that is ({P,V})-security implies ({S1, . . . , Sm})-security for any Si ⊆ {T,P,V}.

On Active Security and the Necessity of the Transcript Oracle. Previous works suggest
the use of ({P}, {V})-security as an interesting and realistic security notion for practical secret-key
authentication protocols, and call this notion active security. Many efficient schemes [30, 32, 33, 17, 28]
are only proven to be ({P}, {V})-secure. Quite surprisingly, we now show that this notion, by itself, is
not a meaningful target: There exist protocols that are ({P}, {V})-secure, yet they are not even passively
secure. In fact, Theorem 3.1 describes an even stronger separation: There exist 3-round protocols that
are ({P}, {V})∗-secure but are not ({T}, {V})-secure even against adversaries that make a single query
to the transcript oracle.

Theorem 3.1. [({P}, {V})∗ 6⇒ ({T}, {V})] For any F : {0, 1}k × {0, 1}n → {0, 1}m, there exists a

three-round protocol Π = (K,PF ,VF) such that

− Adv
({T},{V})-auth
Π (c, 1, 1) = 1 for a constant c > 0, while

− For all ℓ ∈ N and all t, qP,1, qV,2, . . . , qP,2ℓ−1, qV,2ℓ > 0 9

Adv
({P},{V})2ℓ-auth
Π (t, qP,1, . . . , qV,2ℓ) ≤

ℓ−1
∑

k=0

Advsuf-cma
F (tk, q

k
V, qP,2k+1)

+

ℓ−1
∑

k=0

qP,2k+1(qP,2k+1 + qkV)

2n
+

ℓ−1
∑

k=1

Advkr-cma
F (tk, q

k
V, qV,2k)

where qkV =
∑k

j=1 qV,2j and tk = t +O(
∑k

j=0 qP,2j+1) for k ∈ [ℓ].

Proof. Consider protocol Π as shown in Figure 4(a) where K
$← K is an k-bit string and F : {0, 1}k ×

{0, 1}n → {0, 1}m is a function. On the one hand, it is easy to see that Π is not ({T}, {V})-secure
even against adversaries making a single T-query in phase 1 and a single V-query in phase 2. Indeed,

8In fact, as we prove in Theorem 3.7, it gives strictly more power.
9The last term of the right hand side corresponds to the key-recovery advantage under chosen message attacks. Formally

this is defined via a game KR-CMA proceeding similarly to SUF-CMA with the single difference that the adversary has
access to a key-verification oracle KVrfy (instead of the standard Vrfy oracle), which, on input a string z from the
keyspace of F returns 1 if and only if z = K. The advantage function is defined in a straightforward way, replacing the
queries to Vrfy with queries to KVrfy. It is easy to show that Advkr-cma

F (t, qT, qV) ≤ Advsuf-cma
F (t, qT, qV).

12

any T-query reveals K which can then be used, in the second phase, to make V accept (with a single
interaction). Clearly, the resulting adversary runs in constant time and has advantage 1.

On the other hand, if F is a suf-cma-secure MAC, an adversary A is unlikely to make the verifier
accept even if it can first repeatedly and alternately interact with instances of P and V (in isolation)
for the following reason: When interacting with P, A gets several fresh random r’s for which it needs
to guess FK(r) in order to learn the key. If A never guesses FK(r) for any of those r’s, then P is
of (almost) no use to A (from A’s point of view, P only outputs random n-bit strings that carry no
information about the key K). When given access to a verifier instance, A can get FK(r) for any r of
its choice. But again, by the suf-cma-security of F , this interaction reveals very little computationally

for K. Also, since A never gets access to P and V during the same phase, the evaluation of FK even at
chosen r’s does not help A guess FK(r′) on random r′ in the next phase. Details follow.

Let A = (A1, . . . ,A2ℓ) be a 2ℓ-phase adversary that runs in time t, has access to P during odd
phases 2k − 1 (making qP,2k−1 queries) for all k ∈ [ℓ] and to V during even phases 2k (making qV,2k
queries) for all k ∈ [ℓ]. We define a sequence of 2ℓ + 1 games as follows: Gi (i ∈ {0} ∪ [2ℓ]) runs in 2ℓ

phases just like AUTH
({P},{V})ℓ

Π . However P and V queries are replied differently: P queries that are
issued during all odd phases up to phase i and have the form (sid,msg) with msg 6= start (these queries
correspond to the second message in Π) are always replied by ⊥. Similarly all terminating queries (that
is, those that correspond to the third message of Π) to V issued during all even phases up to phase i
return R.

Notice that by definition G0 = AUTH
({P},{V})ℓ

Π . Also no adversary can win in G2ℓ since by definition
all interactions during the 2ℓ-th (final) phase are rejected. Therefore

Adv
({P},{V})ℓ-auth
Π (A) = Pr

[

GA0 ⇒ true

]

and Pr
[

GA2ℓ ⇒ true

]

= 0 . (2)

Claims 3.2 and 3.3 essentially assert that if F is suf-cma-secure then the probabilty A wins in Gi is not
much larger than the that of winning in Gi+1. Due to a slightly different security reduction we treat the
transition from Gi to Gi+1 differently depending on whether i is even (Claim 3.2) or odd (Claim 3.3).

Claim 3.2. For all k ∈ {0} ∪ [ℓ− 1], there exists an adversary Bk such that

Pr
[

GA2k ⇒ true

]

− Pr
[

GA2k+1 ⇒ true

]

≤ Advsuf-cma
F (Bk) +

qP,2k+1(qP,2k+1 +
∑k

j=1 qV,2j)

2n
. (3)

Also, Bk makes qkTAG =
∑k

j=1 qV,2j queries to its Tag oracle, qP,2k+1 queries to its Vrfy oracle and runs

in time tk = t +O(
∑k

j=0 qP,2j+1).

Proof. (of Claim 3.2) G2k and G2k+1 proceed identically during phases 1, 2, . . . , 2k and differ only in the
way P-queries are replied during phase 2k + 1. Let BAD be a flag that is set to true (in both games)
whenever at phase 2k + 1 a P-query (sid,msg) with msg 6= start is such that msg = FK(state[sid])
(that is the adversary returns a valid tag on the challenge previously sent by the specific P instance
corresponding to sid). After BAD is set to true, G2k returns K to A whereas G2k+1 returns ⊥.
G2k, G2k+1 are identical-until-bad and hence

Pr
[

GA2k ⇒ true

]

− Pr
[

GA2k+1 ⇒ true

]

≤ Pr [BAD]

Now consider an adversary Bk (against SUF-CMAF) that simulates G2k+1 to A. During phases

1, 3, . . . , 2k − 1 if A makes a P-query (sid, start), then Bk simply samples r
$← {0, 1}n and returns

it to A. If A makes a (sid,msg) query to P with msg 6= start, then Bk returns ⊥. During phases
2, 4, . . . , 2k for every (non-terminating) query (sid,msg), Bk queries its Tag oracle with msg and returns
the result to A. Also, Bk returns R to every (sid,msg) V-query for a terminating message msg. Finally,

during phase 2k + 1, if A makes a P-query (sid, start), Bk samples r
$← {0, 1}n, sets state[sid] to r and

returns r to A. When A makes a query (sid,msg) (for msg 6= start) Bk sends (state[sid],msg) as a

13

candidate forgery to its Vrfy oracle and replies with R to A. If Vrfy replies with 1, Bk aborts the
simulation.

First, it is straightforward to verify that Bk simulates perfectly G2k+1 to A (until phase 2k + 1).
Assume also, that during the simulation, the event BAD ← true happens. Let r1, . . . , rqP,2k+1

be the
messages sampled by Bk during P-queries of the form (sid, start) during phase 2k + 1. Define Col to be
the event that at least one of r1, . . . , rqP,2k+1

has previously been part of a V-query (sid,msg) issued by
A during phases 2, . . . , 2k. Clearly if Col does not happen, Bk has never invoked its Tag oracle in any
of r1, . . . , rqP,2k+1

and therefore whenever BAD is true, Bk wins in its SUF-CMAF game. We conclude
that

Pr
[

GA2k ⇒ true

]

− Pr
[

GA2k+1 ⇒ true

]

≤ Pr
[

BAD
∣

∣ ¬Col
]

+ Pr [Col]

≤ Advsuf-cma
F (Bk) +

qP,2k+1(qP,2k+1 +
∑k

j=1 qV,2j)

2n
.

Finally, for every V query from A, Bk makes one query to its Tag oracle, for every P query during
phases 1, 3, . . . , 2k−1, Bk needs only sample a random r whereas for every P-query during phase 2k+1
Bk queries in addition its Vrfy oracle once.

Claim 3.3. For all k ∈ [ℓ], there exists an adversary Ck such that

Pr
[

GA2k−1 ⇒ true

]

− Pr
[

GA2k ⇒ true

]

≤ Advkr-cma
F (Ck) (4)

where Ck makes qkTAG =
∑k

j=1 qV,2j queries to its Tag oracle, qV,2k queries to its KVrfy oracle and runs

in time tk = t +O(
∑k

j=1 qP,2j−1).

Proof. (of Claim 3.3) The proof is very similar to the proof of Claim 3.2. We only highlight the differences
here. First notice that G2k−1 and G2k are identical with respect to P queries. They only differ in the
way V-queries during phase 2k are answered. In particular if a terminating V-query (sid,msg) is such
that msg = K (call this event BAD), G2k−1 returns A whereas G2k returns R. It is not very hard to
device an adversary Ck that perfectly simulates G2k to A and wins whenever A causes the event BAD.
All P-queries (during odd-numbered phases) can be simulated by Ck without the use of any of its oracles
(on a query (sid,msg) to P, Ck returns a random n-bit string if msg = start and ⊥ otherwise). For
non-terminating V-queries (sid,msg), Ck uses it Tag oracle to reply, while for terminating queries, Ck
simply returns ⊥ (during phases 2, 4, . . . , 2k−2) or invokes its KVrfy oracle (during phase 2k). Clearly
if event BAD happens, Ck wins in its KR-CMA. Also for the simulation, Ck invokes its Tag oracle once
per V-query and its KVrfy oracle once per V-query but only during phase 2k.

The proof of the theorem follows by combining equations (2), (3) and (4).

The above makes it clear that despite its widespread usage in the existing literature, ({P}, {V})-
security is not an appropriate measure of security against active attacks. For this reason, we advocate
the use of ({T,P}, {V})-security and ({T,P}, {V})∗-security as more appropriate measures of active
security. (We refer to the latter as strong active security, and it is not hard to show that it is in
fact strictly stronger than ({T,P}, {V})-security.) It is tempting, however, to disqualify this issue by
demanding that the protocol is additionally passively secure, i.e. require both ({P}, {V})-security (or
even ({P}, {V})∗-security) and ({T}, {V})-security. The following theorem addresses this issue providing
a negative answer, showing the existence of protocols which are both ({P}, {V})-secure and ({T}, {V})-
secure, yet not ({T,P}, {V})-secure.

Theorem 3.4. [({P}, {V}) + ({T}, {V}) 6⇒ ({T,P}, {V})] For any F : {0, 1}k × {0, 1}n → {0, 1}m,

there exists a two-round protocol Π = (K,PF ,VF) such that

− Adv
({T,P},{V})-auth
Π (c, 1, 1, 1) = 1 for a constant c > 0, while

14

PF (K) VF (K)

r ← {0, 1}n r

τ ← FK(r)τ

If τ = FK(r)
z ← K

z
Accept iff

z = K

(a) protocol for ({P}, {V})∗ 6⇒ ({T}, {V}) (Thm. 3.1).
If the prover’s check fails, z is set to ⊥.

PF (K) VF (K)

r1, r2
$← {0, 1}n

b← 0; τ1 ← FK(r1)

(b, r1, r2, τ1)

If FK(r1) 6= τ1
Ret ⊥

If b = 1, τ2 ← K
Else τ2 ← FK(r2)

τ2 Accept iff
τ2 = FK(r2)

(b) protocol for ({P}, {V}) + ({T}, {V}) 6⇒ ({P,T}, {V}) (Thm. 3.4)

Figure 4: Protocols for Theorems 3.1 and 3.4

− Adv
({T},{V})-auth
Π (t, qT, qV) ≤ Advsuf-cma

F (t′, 2qT + qV, qV) + qV(2qT+qV)
2n , for all t, qT, qV > 0 where

t′ = t +O(qV + qT) and

− Adv
({P},{V})-auth
Π (t, qT, qV) ≤ Advsuf-cma

F (t1, 0, qP) +Advsuf-cma
F (t2, qV, qV) +

q2
V

2n , for all t, qT, qV > 0,
where t1 = t and t2 = t +O(qV).

Proof. Consider protocol Π shown in Figure 4(b) where F is a function F : {0, 1}k×{0, 1}n → {0, 1}m. Π
is not ({T,P}, {V})-secure: A simple adversary A first makes one T-query to obtain ((0, r1, r2, τ1), τ2).
It then makes a P-query (sid, (1, r1, r2, τ1)) for some sid ∈ SIDP , which reveals the secret key K.
Finally, in phase 2, A makes a query (sid′, start) to V (for some sid′ ∈ SIDV), obtaining (0, r∗1 , r

∗
2 , τ
∗
1),

and terminates by making a query (sid′, F (K, r∗2)) to V, which must then accept. Clearly, A runs in
constant time, makes 1 query to each of the T,P and V oracles and makes V accept with probability
1.

However, we show that Π is passively secure assuming F is a suf-cma-secure MAC: For every
adversary A = (A1,A2) against ({T}, {V})-security, we devise a suf-cma adversary B, simulating

AUTH
({T},{V})
Π to A as follows: Whenever A1 queries T, B generates r1, r2

$← {0, 1}n, and queries
its Tag oracle on both r1, r2, receiving replies τ1 and τ2. It then returns the transcript consisting of
((0, r1, r2, τ1), τ2) back to A1. Whenever A2 in Phase 2 asks for a query (sid, start) to V, B samples

rsid,1, rsid,2
$← {0, 1}n, queries rsid,1 to its Tag oracle, obtaining τsid,1, and returns (0, rsid,1, rsid,2, τsid,1)

to A2. When A2 then inputs (sid, τsid,2) to V, B queries (rsid,2, τsid,2) to its Vrfy oracle. During the
simulation, B makes 2 Tag queries for each T query by A1 and 1 Tag plus 1 Vrfy query for each V
query by A2. Therefore B makes in total 2qT + qV Tag queries and qV Vrfy queries to its oracles and
runs in time t′ = t+O(qV + qT). It remains to bound A’s advantage. Let BAD be the event that during
the simulation of the entire phase 2, B samples rsid,2 (as part of the reply to a V-query (sid, start) made
by A) such that rsid,2 has been previously input to a Tag query (made by B to its Tag oracle while
simulating A). For a single rsid,2 this probability is upper bounded by 2qT+qV

2n . Taking the union bound

across all qV queries we obtain Pr [BAD] ≤ qV(2qT+qV)
2n . Finally notice that, conditioned on BAD not

happening, B wins in its SUF-CMAF game whenever A wins in AUTH
({T},{V})
Π . Therefore

Adv
({T},{V})-auth
Π (A)−Advsuf-cma

F (B) ≤ Pr [BAD] ≤ qV(2qT + qV)

2n
.

We finally prove that Π is ({P}, {V})-secure. For that, we define two games G0, G1 and, throughout
the proof, fix an adversary A = (A1,A2) running is t steps and making qP, qV queries to P and V

respectively. G0 is precisely AUTH
({P},{V})
Π except from some internal bookkeeping within the P oracle.

In particular, if an (sid, b, r1, r2, τ1) query to P is such that FK(r1) = τ1, then a flag BAD1 is set to

15

true. The rest of the execution is exactly as in AUTH
({P},{V})
Π . Clearly, setting BAD1 to true does not

affect the adversarial view and hence

Adv
({P},{V})-auth
Π (A) = Pr

[

GA0 ⇒ true

]

. (5)

G1 is identical to G0 except, when BAD1 is set to true, P returns ⊥. We claim that there exists a
suf-cma-adversary C1 such that

Pr
[

GA0 ⇒ true

]

− Pr
[

GA1 ⇒ true

]

≤ Advsuf-cma
F (C1) . (6)

In addition C1 makes 0 Tag and qP Vrfy queries to its oracles and runs in time t. Notice that G0, G1

are equivalent-until-bad and therefore, by the fundamental lemma of game-playing,

Pr
[

GA0 ⇒ true

]

− Pr
[

GA1 ⇒ true

]

≤ Pr [BAD1] .

The adversary C1 for the game SUF-CMAF simulates the first phase of G0 to A1 as follows: On each
P query (sid, b, r1, r2, τ1) by A1, C1 simply queries its Vrfy oracle on input (r1, τ1). If Vrfy returns 1,
C1 terminates (successfully) . Otherwise, it returns ⊥ to A1. Clearly C1 simulates perfectly the first
phase of G0 to A1. Also BAD1 is set to true if and only if C1 forges, i.e., Pr [BAD] = Advsuf-cma

F (C1).
Finally, for every P query by A, C1 makes a single verification query to its Vrfy oracle.

We finally claim that the problem of A winning in G1 essentially reduces to the problem of forging
F in SUF-CMAF . In particular, we show that there exists a suf-cma-adversary C2 such that

Pr
[

GA1 ⇒ true

]

≤ Advsuf-cma
F (C2) +

q2V
2n

. (7)

In addition C2 makes qV Tag and qV Vrfy queries to its oracles and runs in time t+O(qV). C2 simulates
A = (A1,A2) as follows: For all P queries (sid, b, r1, r2, τ2) by A1 in phase 1, C2 returns ⊥. In phase

2, when A2 makes a query (sid, start) to V, C2 samples rsid,1, rsid,2
$← {0, 1}n, queries rsid,1 to its Tag

oracle and upon getting τsid,1, returns (0, rsid,1, rsid,2, τsid,1) to A2. If A2 makes a query (sid, τsid,2) to V,
C2 queries (rsid,2, τsid,2) to its Vrfy oracle. During the simulation, C2 makes 1 Tag plus 1 Vrfy query
for each V query by A2. Therefore C2 makes in total qV Tag and qV Vrfy queries and runs in time
t2 = t +O(qV). In order to bound C2’s advantage, let BAD2 be the event that during simulating phase
2 to A2, C2 samples rsid,2 (as part of the reply to a V-query (sid, start) made by A) such that rsid,2 has
been previously input to a Tag query. Notice that, C2 makes at most qV queries to its Tag oracle and
hence, for a single rsid,2 the probability of such a collision is upper bounded by qV

2n . Taking the union

bound across all qV queries we obtain Pr [BAD2] ≤ q2
V

2n . Finally, conditioned on BAD2 not happening,

C2 wins in its SUF-CMAF game assuming A wins in AUTH({P},{V}). The proof then follows from (5),
(6) and (7).

Extending to the case of ({P}, {V})∗ security. One can extend the above result to show that
there exists a protocol Π with the above properties, but which is additionally ({P}, {V})∗-secure. In the
following, let MAC be a suf-cma-secure MAC with message space M. The following protocol uses two
keys K and K ′, where K is a MAC key, whereas K ′ is a random element of M.

16

PMAC(K,K ′) VMAC(K,K ′)

r0
$←Mr0If r0 = K ′

r1 ← K

Else r1
$←M r1

r2
$←M

τ2
$← TAGK(r1)r2, τ1If VRFYK(r1, τ1) = 1

τ2
$← TAGK(r2)

s3 ← K ′
τ2, s3

Accept iff
VRFYK(r2, τ2) = 1

We omit the rather tedious formal proof. Informally, passive security holds because, except in the
unlikely even that r0 = K ′, no honest transcript reveals K. Therefore, the passive adversary is left
with the task of finding a valid MAC tag for a fresh random r2. Moreover, ({P}, {V})∗ security holds
because no adversary can even learn K ′ without either guessing at random or forging the MAC on a
fresh random r1. But the protocol is clearly insecure if given access to the transcript oracle and the
prover concurrently, as an honest transcript reveals K ′ and which can then be used when interacting
with the prover to acquire K.

We however now describe a fairly general class of protocols for which we prove that ({P}, {V})-
security does imply ({T,P}, {V})-security. We say that a protocol Π is Public-Coin Verifier (PCV)
if all (intermediate) messages sent from the verifier to the prover are chosen uniformly at random
independently of the messages sent by the prover. Luckily, all existing protocols in the literature that
follow the challenge-response (or the commit-challenge-response) paradigm and have been proven secure
in the sense of achieving ({P}, {V})-security are PCV (e.g. [30, 32, 33, 17, 28]). Theorem 3.5 essentially
states that for PCV protocols, access to the T oracle (besides P), does not add any more power to the
adversary. Interestingly, the latter remains true even if the adversary runs in multiple phases getting
access to either {T,P} or {V} alternately.

Theorem 3.5. [PCV : ({P}, {V}) ⇒ ({T,P}, {V})∗] Let Π be any r-round Public-Coin Verifier authen-

tication protocol. Then for all ℓ ∈ N and t, qT,1, qP,1, qV,2, . . . , qT,2ℓ−1, qP,2ℓ−1, qV,2ℓ > 0 ,

Adv
({T,P},{V})ℓ-auth
Π (t, qT,1, qP,1, qV,2, . . . , qT,2ℓ−1, qP,2ℓ−1, qV,2ℓ) ≤

ℓ−1
∑

k=0

Adv
({P},{V})-auth
Π (tk, q

k
P, q

k
V),

where qkP =
∑k+1

j=1(qT,2j−1 + qP,2j−1), q
k
V = qV,2(k+1) and tk = t +O(r · (∑k+1

j=1 qT,2j−1 +
∑k−1

j=1 qV,2j)).

Proof. LetA = (A1, . . . ,A2ℓ) be an adversary that makes qT,1, qP,1, qV,2, . . . , qT,2ℓ−1, qP,2ℓ−1, qV,2ℓ queries
to the corresponding oracles and runs in time t. We define a sequence of ℓ + 1 games as follows: Gk

k ∈ {0}∪[ℓ] runs in 2ℓ phases just like AUTH
({T,P},{V})ℓ

Π . Also, queries to T and P during odd-numbered

phases are replied exactly as in AUTH
({T,P},{V})ℓ

Π . The only difference lies in the way terminating queries
to V (those correspond to the r-th round of the protocol) are replied. In particular, in phases 2, 4, . . . , 2k
terminating queries to V are always answered with R. However, V queries in subsequent phases are

replied as specified in AUTH
({T,P},{V})ℓ

Π . Notice that by definition AUTH
({T,P},{V})ℓ

Π = G0. Also no
adversary can win in Gℓ since by definition all interactions during the 2ℓ-th (final) phase are rejected.
Therefore

Adv
({T,P},{V})ℓ-auth
Π (A) = Pr

[

GA0 ⇒ true

]

and Pr
[

GAℓ ⇒ true

]

= 0 . (8)

Consider two consecutive games Gk and Gk+1 for any k = 0, . . . , ℓ−1. Gk and Gk+1 proceed identically
during phases 1, 2 . . . , 2k + 1. In phase 2(k + 1), if a terminating query (sid,msg) to V results in V

17

accepting (decision[sid] = A), then both Gk and Gk+1 set a flag BAD to true. However, Gk returns A as
the reply to the query whereas Gk+1 returns R. That is the only difference between Gk and Gk+1. The
following claim asserts that, if Π is ({P}, {V})-secure then the probabilty A wins in Gk is not much
larger than that of winning in Gk+1.

Claim 3.6. There exists an adversary Bk such that

Pr
[

GAk ⇒ true

]

− Pr
[

GAk+1 ⇒ true

]

≤ Adv
({P},{V})-auth
Π (Bk) . (9)

Also, Bk makes qkP =
∑k

j=0(qT,2j+1 + qP,2j+1) queries to its P oracle and qV,2k to its V oracle and runs

in time tk = t +O(r · (∑k
j=0 qT,2j+1 +

∑k−1
j=0 qV,2j)).

Proof. (of Claim 3.6) Since Gk and Gk+1 are identical-until-bad, by the fundamental lemma of game
playing, we only need to bound the probability the flag BAD is set to true in game Gk+1. We do so by

proving that the probabilty BAD is set to true equals the probability Bk wins in its AUTH
({P},{V })-auth
Π

game. At a high level, Bk simulates A’s T queries during odd-numbered phases by using its own P
oracle and the fact that Π is PCV. Bk simulates V queries during phases 2, 4, . . . , 2k without using any
oracles by simply sampling at random all the intermediate messages and returning always R (reject) as
a reply to terminating queries. Finally Bk uses its V oracle for simulating phase 2(k + 1) to A. Details
follow.

In the beginning of the simulation, Bk enters the first phase in its (2-phase) game where he has
access only to P. Bk simulates A as follows: It maintains a list L (initialized to ∅) containing all sids
that it uses when simulating A’s T and P queries during the first 2k + 1 phases of A’s attack. On
every P-query (sid, start) by A where sid ∈ SIDP , Bk simply queries its P oracle on (sid′,msg) for
some sid′ /∈ L, returns the answer to A and updates L by adding sid′. We assume that Bk maintains
some map from SIDP to SIDP that associates the sids used in A’s queries with the sid′s that Bk uses
when forwarding queries to its own P oracle. For every T query by A, Bk produces a valid transcript
by “engaging” to a full protocol execution with a prover (via P queries to its oracle). More formally,
assume without loss of generality that Π is a r-round authentication protocol where r = 2j is even,
that is, the first message is sent from V to P. Bk initializes T ← ∅ and selects a new sid ∈ SIDP ,
that is, an sid that has not been previously used while simulating any P or T query issued by A. In
round 1 (i = 1), Bk simply samples msg1 uniformly at random and adds msg1 to T. It then queries
its P oracle on (sid,msg1) to get msg2 back which it also adds to T . Bk proceeds in a similar fashion
producing msg2j−1 by simply sampling them uniformly at random and msg2j by querying its P oracle
on (sid,msg2j−1). After producing r messages, Bk returns T = {msg1, . . . ,msgr} to A.

When A makes a V query (sid,msg) during an even-number phase 2i (with i ≤ k), Bk replies as
follows: If msg corresponds to an intermediate message in the protocol (that is a message different than
the r-th), Bk simply samples a message for the appropriate distribution (recall that Bk can do so since
Π is PCV) and returns it to A. If msg is corresponds to the r-th message of Π, then Bk simply returns
R to A. The crucial observation is that Bk can perfectly simulate the first 2k + 1 phases of A without
ever entering its second phase.

When A enters phase 2k + 2, then Bk enters phase 2 in its own game and uses its own V oracle to
reply to A’s queries. However all terminating queries by A are replied with R. Notice that Bk simulates
perfectly Gk+1 to A and that if the event BAD← true in phase 2(k + 1) happens, then Bk wins in its

AUTH
({P},{V })-auth
Π game. Finally, Bk makes 1 query to its P oracle for each P and each T query by A

(in any phase) and 1 query to its V oracle for each V query by A but only during phase 2(k + 1). Also
for a single T query by A, Bk needs to sample r/2 new messages and the same holds for V queries by A
during phases 2, 4, . . . , 2k. Therefore, Bk makes in total

∑k+1
j=1(qT,2j−1 + qP,2j−1) queries to its P oracle

and qV,2(k+1) queries to its V oracle and runs in time tk = t +O(r · (∑k+1
j=1 qT,2j−1 +

∑k−1
j=1 qV,2j)).

18

The proof of the theorem follows then easily by combining equations (8) and (9).

On Man-In-the-Middle Security. Typically, the notion of MIM security considered in the literature
is ({P,V}, {V})-security [33, 17]. Other works [7, 40] have also used (in a slightly different setting)
({}, {P,V})-security to measure resistance against MIM attacks. The following theorem shows that
({P,V}, {V})-security is a strictly weaker notion than ({}, {P,V})-security.

Theorem 3.7. [({P,V}, {V}) 6⇒ ({}, {P,V})] For any F : {0, 1}k × {0, 1}n → {0, 1}m, there exists a

2-round protocol Π = (K,PF ,VF) such that

− Adv
({},{P,V})-auth
Π (c, 1, 1) = 1, for a small constant c > 0, while

− Adv
({P,V},{V})-auth
Π (t, qP, qV,1, qV,2) ≤ Advprf

F (t′, qP + qV,1 + qV,2) +
qV,2(qP+qV,1+qV,2−1)

2n +
qV,2
2m for all

t, qP, qV,1, qV,2, where t′ = t +O(qP + qV,1 + qV,2).

Proof. Consider the 2-round protocol shown in Figure 6(a) where K
$← K is n k-bit string and F :

{0, 1}k ×{0, 1}n → {0, 1}m is a function. It is not hard to see that Π is not ({}, {P,V})-secure. Indeed,
consider an adversary A that first queries V with (sid, start) to get r. A then queries P with (sid′, r).
Let y = y′ || 0 the value returned. Then A queries V on (sid, y′ || 1). Clearly, A wins since, by the
definition of the protocol, prefm(y′ || 1) = y′ = FK(r) and there is no matching conversation between P
and V (P returns y′ || 0 while A queries V on y′ || 1). Therefore A wins with a single P and a single V
query while running in a constant number of steps.

We now prove that Π is ({P,V}, {V})-secure. For the proof, fix an adversary A = (A1,A2) running
in time t and making qP and qV,1, qV,2 queries to its P and V oracles (in phases 1 and 2) respectively.
We use the games shown in Figure 5 where, for compactness, we have omitted all checks for correct
input format inside the code. We have also removed the condition for matching conversations, since P

is not present in phase 2 of the attack. G0 is exactly AUTH
({P,V},{V})
Π . By definition

Adv
({P,V},{V})-auth
Π (A) = Pr

[

GA0 ⇒ true

]

. (10)

G1 is similar to G0 except that every call to FK has been replaced by a call to a random function, i.e.
a function that returns random m-bit strings when queried on fresh inputs while being consistent on
previously queried inputs. We claim that there exists a prf-adversary B against F such that

Advprf
F (B) = Pr

[

(PRFF)B
]

− Pr
[

(PRFR)B
]

= Pr
[

GA0 ⇒ true

]

− Pr
[

GA1 ⇒ true

]

. (11)

B has access to O where O is either F or R and uses A as follows (we assume that, during the simulation,
B performs all necessary checks and bookeeping and omit related details): in phase 1, on every P query
(sid,msg) from A1, B queries O on msg and, upon receiving y′, returns y′ || 0 to A1. When A1 makes

a (sid,msg) query to V in phase 1, if msg = start, then B samples r
$← {0, 1}n and sends it to A. If

msg 6= start, B recovers r from state[id], parses msg as y′ || b, queries O with r and accepts if and only
if the result returned by O equals y′. V queries in phase 2 are answered the same way, except, if the
value returned by O on input r matches y′, B terminates and outputs 1. Otherwise, if A terminates
without that happening, B terminates and outputs 0.

It is not hard to see that if O = F, then B simulates G0 perfectly to A while if O = R, B simulates
G1. Also, notice that B outputs 1 when O = F (resp. O = R) exactly when A wins G0 (resp. G1).
This proves (11). Finally, the extra overhead of the simulation is constant per query. So B runs in
O(qP + qV,1 + qV,2) more steps than A.

It remains to bound Pr
[

GA1 ⇒ true

]

. Let BAD be the event that during phase 2, a query (sid, start)
to V returns a value r that has been either part of a (sid, r) query to P (in phase 1) or has been previously
returned after an (sid, start) query to V (in either phase). Notice that the i-th V query (i ∈ {1, . . . , qV,2})

19

procedure main: //G0, G1

K
$← K

For all x ∈ {0, 1}n do

V [x]← ⊥
For all sid ∈ N do

state[sid] = ǫ;

decision[sid] = ⊥;

done[sid] = false

phase 1 : σ1

$← AP,V
1

For all sid ∈ N do

state[sid] = ǫ;

decision[sid] = ⊥;

done[sid] = false

phase 2 : σ
$← AV

2 (σ1)

Ret ∃sid ∈ SIDV : (decision[sid] = A)

oracle P(id,msg): //G0

y′ ← FK(msg)
y ← y′ || 0
state[id]← msg || y
done[id]← true

Ret y

oracle V(id,msg): //G0

If (msg = start)

r
$← {0, 1}n

state[id]← r
Ret r

Else
done[sid]← true

y′ ← prefm(msg)
r ← state[sid]
If y′ = FK(r)
decision[id]← A

Ret A

Ret R

oracle P(id,msg): //G1

If V [msg] = ⊥
V [msg]

$← {0, 1}m
y ← V [msg] || 0
state[id]← msg || y
done[id]← true

Ret y

oracle V(id,msg): //G1

If (msg = start)

r
$← {0, 1}n ; state[id]← r

Ret r
Else

done[id]← true

y′ ← prefm(msg)
r ← state[sid]
If V [r] = ⊥
V [r]

$← {0, 1}m
z ← V [r]
If y′ = z
decision[sid]← A

Ret A

Ret R

Figure 5: Sequence of games for the proof of Theorem 3.7

in phase 2 results in a fresh value r except with probability at most (qP + qV,1 + i − 1)/2n. Using the
union bound across all qV,2 queries in phase 2, we obtain

Pr [BAD] ≤
qV,2
∑

i=1

qP + qV,1 + i− 1

2n
≤ qV,2(qP + qV,1 + qV,2 − 1)

2n
.

Also, conditioned on ¬BAD, every (sid, y′ || 0) query to V in phase 2, results on a freshly chosen

z
$← {0, 1}m and hence y′ 6= z except with probaility 1/2m. Taking the union bound across all qV,2

queries to V in phase 2, we get

Pr
[

GA1 ⇒ true

∣

∣ ¬BAD
]

≤ qV,2
2m

Therefore

Pr
[

GA1 ⇒ true

]

≤ Pr
[

GA1 ⇒ true

∣

∣ ¬BAD
]

+ Pr [BAD] ≤ qV,2
2m

+
qV,2(qP + qV,1 + qV,2 − 1)

2n
. (12)

The proof of Theorem 3.7 follows from (10), (11) and (12).

One vs Multiple Verification Queries. Another commonly found folklore observation states that
security for one verification query implies security for multiple verification queries (up to a linear in
the number of verification queries decrease in the success probability). Once again, we show that this
common belief is false. In fact, in Theorem 3.8, we show a much stronger statement: There exist
three-round protocols which are secure against man-in-the-middle attacks, i.e. enjoy ({P,V}, {V})-
security, when only one verification query is allowed in Phase 2, yet they are not even secure against a
verification-only attack (i.e. ({}, {V})) merely consisting of two queries.

20

PF (K) VF (K)

r
$← {0, 1}nr

y ← FK(r) || 0
y

accept iff
prefm(y) = FK(r)

(a) 2-round protocol for ({P,V}, {V}) 6⇒ ({}, {P,V})
(Theorem 3.7)

PMAC(K) VMAC(K)

r1
$←M r1

τ1
$← TAGK(r1);

r2
$←Mr2, τ1

If VRFYK(r1, τ1) = 1

τ2
$← TAGK(r2) τ2

Accept iff
VRFYK(r2, τ2) = 1

(b) Protocol for 1 vs many verification queries separation
(Thm. 3.8)

Figure 6: Protocols for Theorems 3.7 and 3.8

Theorem 3.8. [1 vs multiple verification queries] Let MAC be a suf-cma-secure10 MAC with

message space M and completeness 1. Then, there exist 3-round protocols Π = (K,PMAC,VMAC) such

that

− Adv
({},{V})-auth
Π (c, 2) = 1, for a small constant c > 0, while

− Adv
({P,V},{V})-auth
Π (t, qP, qV, 1) ≤ Advsuf-cma

MAC (t′, qP + qV + 1, qP + qV) + qP+qV+1
|M| , for all t, qP, qV > 0,

where t′ = t +O(qP + qV).

Proof. Let MAC = (KGen,TAG,VRFY) be a suf-cma-secure mac with keyspace K, message spaceM and
tag space T . Consider the protocol Π as shown in Figure 6(b).

We first show that Π is insecure under a verification-only attack where the adversary can make

2 verification queries. Consider A that operates as follows: it first picks r1
$← M and queries V on

(sid, r1) (1st query). Upon receiving r2, τ1, A simply makes a new V-query (sid′, r2) where sid′ 6= sid

(this is the 2nd and final query by A). Let r3, τ2 be the values returned. A then sends τ2 as candidate
for TAGK(r2), that is A makes a (sid, τ2) query to V. Notice that, by the perfect completeness of MAC,
A brings the instance of V corresponding to id to accept, i.e. decision[id] = A.

We show however that Π is ({P,V}, {V})-secure when a single verification query is allowed in phase
2. For that, consider an adversary A = (A1,A2) running in time t and making qP and qV queries to P

and V respectively in phase 1 and a single verification query in phase 2. Let G0 = AUTH
({P,V},{V})−-auth
Π .

By definition

Adv
({P,V},{V})-auth
Π (A) = Pr

[

GA0 ⇒ true

]

. (13)

Now consider G1 that differs only in the way the message in the second round of phase 2 is selected (in
the description given above, this corresponds to message r2 sent during the single V query of phase 2).
G1 maintains a list L initialized to ∅. For every (sid, r2 || τ1) query to P in phase 1, r2 is added to L.
Likewise, for every (sid,msg) query to V (where state[sid] = ε) msg is added to L. In phase 2, the value
r1 from (id, r1) (where state[sid] = ǫ and sid is the unique sid ∈ SIDV queried in phase 2) is added to L.

Finally, in phase 2, the unique query (id,msg) is answered by sampling r∗
$←M\L (instead of r∗

$←M
as per game G0). Notice that |L| ≤ qV + qP + 1. Also, from an adversary’s point of view, G0 and G1

are identical except from the distribution of r∗. It is not hard to see that for any A (even unbounded)

Pr
[

GA0 ⇒ true

]

− Pr
[

GA1 ⇒ true

]

≤ |L||M| ≤
qV + qP + 1

|M| . (14)

10Weaker notions of MACs are sufficient but we use suf-cma for ease of exposition.

21

We finally claim that the advantage of A in G1 is upper bounded by the the advantage of some adversary
B playing in game SUF-CMA. In particular, there exists adversary B such that

Pr
[

GA1 ⇒ true

]

≤ Advsuf-cma
MAC (B) (15)

where B makes qP + qV + 1 Tag queries, qP + qV Vrfy queries and the extra overhead of running A
is O(qP + qV) steps. B works as follows:11 It first initiates a list L ← ∅. In the first phase, on every

(sid, start) query to P, B picks r1
$←M, sends it to A1 and updates state[sid] to r1. On every (sid,msg)

query (with msg 6= start), B parses msg as r2 || τ1, retrieves r1 from state[sid] and queries its VRFY

oracle on (r1, τ1). If the later query returns 1, then B queries its Tag oracle on r2, sets L ← L ∪ {r2}
and returns the result (say τ2) to A1. Replies to V queries during phase 1 proceed in a similar way. On
a V query (sid,msg) from A1, B first checks that state[id] = ε. If so, B sets L ← L ∪ {msg}, queries

its Tag oracle on msg to get τ1, then samples r2
$←M, returns (r2, τ1) to A1 and updates state[id] to

r1 || τ1 || r2. If state[id] 6= ε, then B recovers r2 from state[id], queries its VRFY oracle on (r2,msg) and,
if VRFY returns 1, B sets decision[id] = A and informs A1.

In phase 2, A2 can make only V queries and only for a single id. On such a query (id,msg), B
checks again if state[id] = ε and if so, it queries its Tag oracle on msg and adds msg to L. Let τ1 be

the output of the Tag oracle. B then samples r∗
$←M \ L, sends (r∗, τ1) to A2 and updates state[id]

to r1 || || τ1 || r2. If state[sid] 6= ε, B retrieves r∗ from state[sid], and outputs (r∗,msg) as the candidate
forgery. This completes the description of the simulation.

For B’s running time, notice that, in phase 1, for every P query from A, B makes one Tag query
and one Vrfy query and the same holds for every V query by A. Finally, B makes a single Tag query
in phase 2. Therefore, B makes qT + qV + 1 queries to Tag and qT + qV queries to Vrfy. We conclude
by analyzing Advsuf-cma

MAC (B). It is straightforward to check that B simulates perfectly G1. Also notice
that at the end of the simulation, B outputs a candidate forgery (r∗, τ∗) for a message r∗ that has never
been an input in any previous Tag query (recall that L contains all such queries and B explicitly picks
r∗ /∈ L). The above justify (15). The proof of Theorem 3.8 follows from (13), (14) and (15).

Interestingly, the protocol used in the proof of Theorem 3.8 deviates from the (commit-)challenge-
response paradigm. In particular, the message sent from the verifier to the prover (in round 2) depends
on the shared secret. Theorem 3.9 essentially states that any authentication protocol Π for which secu-
rity under multiple verification queries separates from security under a single verification query should

involve key-dependent messages from the verifier to the prover. In other words, if all (intermediate)
messages from V to P in Π are independent of K and P’s messages, then multiple verification queries
do not increase by much the success probability of an adversary in breaking the security of Π.

Theorem 3.9. [1 vs Many Verification Queries for Public-Coin Verifier Protocols] Let Π

be any Public-Coin Verifier (PCV) r-round authentication protocol with completeness 1. Then ∀ S1 ⊆
{T,P,V} and12 S2 ⊆ {P,V},

Adv
(S1,S2)-auth
Π (t, qT,1, qP,1, qV,1, qP,2, qV,2) ≤ qV,2 ·Adv

(S1,S2)-auth
Π (t, qT,1, qP,1, qV,1, qP,2, 1), (16)

where t′ = t + qV,2 · O(r + qP,2).

11In order to keep the core steps of the simulation clean, in the description we omit details such as checking that the
input is in the correct format or that the ids queried are valid.

12We assume without loss of generality that the T oracle is not present in phase 2. Since queries to T are not adaptive
(in particular there is no input provided by the adversary), we may assume that the adversary makes all its queries to T

in phase 1 without the security of the underlying protocol being affected.

22

Proof. Let Π be a Public-Coin Verifier authentication protocol. We will show that, for any S1, S2 ⊆
{T,P,V} and any adversary A against the (S1, S2)-security of Π making qV,2 queries to V during phase
2, there exists an adversary B against the (S1, S2)-security of Π that makes a single query to V in phase
2 and succeeds with probability which is smaller than A’s success probabilty by at most qV,2. At a high
level, B picks a random sid ∈ SIDV out of the qV,2 sids that A uses in its V queries and sets that as its
target sid (the one to be used in the single V-query B is allowed to make during phase 2). B simulates
the answers to the queries corresponding to the rest of the sids using the fact Π is PCV. However, in

order for B to faithfully simulate AUTH
(S1,S2)-auth
Π to A, extra care needs to be taken when A makes

a query (sid,msg) for a terminal message msg (that is the message corresponding to round r). More
specifically, B should be able to detect (and reply accordingly in) the event of matching conversations
between instances of P and V. Details follow.

Without loss of generality we assume that the protocol is initiated by the verifier, i.e. calV gets
a message (sid, start). (The proof can be easily adapted to the case where the protocol is initiated by
the prover.) Also, as always, we assume that the last message is sent from the prover to the verifier.
B simulates A = (A1,A2) as follows: During phase 1, B simply forwards the queries from A to its
corresponding oracles (B has access to the exact same oracles as A and can query them as many times

as A during phase 1). After the end of phase 1, B picks at random r
$← {1, . . . , qV,2} and initiates a set

I ← ∅ and a string sid∗ ← ⊥. It also resets all global variables (state, decision, done etc.) and enters the
simulation of phase 2. Queries by A to P are answered in the exact same way as in phase 1 (recall that
B can make the same number of queries as A to its P oracle). Along the simulation, B also records the
queries (sid,msg) to P for sid ∈ SIDP as well as the messages msg′ returned as replies to these queries.
Queries to V during phase 2 are answered differently: let (sid, start) be the starting query to V issued
by A. B first adds sid to I and then checks whether r = |I| and if so, B sets sid∗ ← sid (this will be the
single sid on which B will be querying its V oracle). To determine the reply to any query (sid,msg), we
distinguish the following 2 cases:

1. id = sid∗ : In that case B simply forwards the query to its V oracle and returns the result to A. If
msg corresponds to the last message sent from the prover to the verifier and B’s V oracle returns
A, then B terminates.

2. id 6= sid∗ : If msg corresponds to an intermediate message (i.e. a message other than the last
message sent from the prover to the verifier), then B simply samples msg′ from the correct dis-
tribution (this is possible due to the fact that Π is PCV), returns the result to A and performs
all necessary bookeeping. The trickiest part of the simulation is when msg is the last message
sent to the verifier by the prover. In that case, B needs to be consistent and simulate perfectly
V. At a given time t, we say that an sid is live in phase i if Ai has previously made a query
(sid, ∗). For any query (sid,msg) to V, where msg is a terminating message, B computes the
predicate Matching(T [sid′], T [sid]) for all live sid′ ∈ SIDP . If there exists sid′ ∈ SIDP such that
Matching(T [sid′], T [sid]) is true, then B returns A to A and sets decision[sid] ← A.13 If no such
sid′ exists, B simply returns R.

Let F be the random variable taking the value of the first (chronologically) id ∈ SIDV such that: (a)
decision[sid] = A after a (sid,msg) query (for a terminal message msg) AND (b) for all sid′ ∈ SIDP that
are live up to that point ¬Matching(T [sid′], T [sid]).14 If no such sid exists, then F takes the special value

⊥. Notice that, by definition Pr [F 6= ⊥] = Adv
(S1,S2)-auth
Π (A). Also, if B has guessed F correctly, that

13Notice that, due to the fact that Matching(T [sid′], T [sid]) is true for some sid′ ∈ SIDP , A does not necessarily win

AUTH
(S1,S2)-auth
Π . However, by having B return A to A in such an event, we guarantee that B simulates V properly.

14The ability to simulate perfectly all queries before the terminal query corresponding to sid∗ lies also in the heart of
a similar argument by Bellare et al. [5]. In particularly, [5] show that (unlike uf-cma-secure MACs), for suf-cma-secure
MACs, multiple verification queries do not help much.

23

Game
UF-RMRCMAC

procedure main:

K
$← KGen

Forge← false

C ← ∅
Run ATag,Chal,Vrfy

MAC

Ret Forge

oracle Tag():

m
$←M

τ ← TAGK(m)
Ret (m, τ)

oracle Chal():

m
$←M

C ← C ∪ {m}
Ret m

oracle Vrfy(m, τ):
If m /∈ C

Ret ⊥
C ← C \ {m}
If VRFYK(m, τ) = 1

Forge← true

Ret 1

Ret 0

Game LPNn,η

procedure main:

s
$← Zn

2

d← ASample

oracle Sample():

a
$← Zn

2

e← Berη
Ret (a, a · s + e)

Figure 7: Left: Game UF-RMRCMAC. Right: Game LPNn,η.

is F = sid∗, then the simulation provided to A from B is perfect. Indeed, all queries to P are answered
using B’s P oracle. Also, the fact that Π is PCV allows B to answer correctly all queries of the form
(sid,msg) to V for non-terminating messages. Finally, consider a (sid,msg) query to V for terminating
msg. By definition of the random variable F, for a query (sid,msg), either their exists sid′ ∈ SIDP such
that Matching(T [sid′], T [sid]) (which can be detected by B and answered properly) or the query should
be rejected. In either case B provides the correct answer. Therefore

Adv
(S1,S2)-auth
Π (B) = Pr [sid∗ = F ∧ F 6= ⊥] = Pr

[

sid∗ = F
∣

∣ F 6= ⊥
]

·Pr [F 6= ⊥] =
Adv

(S1,S2)-auth
Π (A)

qV,2

Finally, the extra overhead simulating A comes from the V queries in phase 2. For every such query,
B needs to sample O(r) messages and check accross all live sid ∈ SIDP for matching conversations.
Therefore, B runs in time t′ = t + qV,2 · O(r + qP,2).

4 Generic Constructions of Authentication Protocols

In this section, we present generic constructions of authentication protocols based on weak variants of
MACs, and which deviate from the challenge-response paradigm. We start by presenting a 3-round
({T,P}, {V})-secure (i.e., actively secure) protocol in Section 4.1, for which we also present efficient
instantiations from LPN and CDH. In Section 4.2, we devise a 2-round protocol that attains the
strongest notion of MIM security, namely ({}, {P,V})-security. We also present an efficient instantiation
based on qSDH.

4.1 Active Security from Random-Message-Random-Challenge-Secure MACs

For a MAC protocol MAC = (KGen,TAG,VRFY), we define unforgeability under random message-

random challenge attacks (uf-rmrc) via the game UF-RMRC depicted on the left of Figure 7: Tag
queries return pairs (m,TAGK(m)) for fresh random messages m. Moreover, Vrfy queries are only
allowed if of the form (m, τ) for m previously output by the random challenge generator oracle Chal,
and only a single verification query to Vrfy per valid challenge is allowed. For t, qT, qC, qV > 0, the
uf-rmrc advantage function is defined as

Advuf-rmrc
MAC (t, qT, qC, qV) = max

A
{Pr

[

(UF-RMRCMAC)A ⇒ true

]

} ,

where the maximum is over all adversaries A running in time t and making qT, qC and qV queries to
Tag, Chal and Vrfy, respectively.

24

The DM protocol. Our new 3-round authentication protocol, DM[MAC] = (K,P,V) (DM stands for
Double Mac) proceeds as follows where K1,K2 are generated using KGen.

P(K1,K2) V(K1,K2)

r1
$←M r1

τ1
$← TAGK1(r1) ;

r2
$←Mr2, τ1

If VRFYK1(r1, τ1) = 1

τ2
$← TAGK2(r2) τ2 Accept iff

VRFYK2(r2, τ2) = 1

The intuition behind the proof is fairly simple: Each prover instance commits to a value r1, and hence,
in order for the prover to do something useful for an active adversary, such as tagging an arbitrary
message under K2, the attacker must provide a valid tag for r1 under K1. Yet, the attacker can only
obtain valid tags through the transcript oracle in the first phase, and the used r′1 values are very unlikely
to collide with one of the values the prover instances commit to. Hence, with very high probability, the
attacker never goes past the second round when interacting with the prover. The proof of the following
theoremformalizes this intuition, but requires some care, mainly due to the interplay between the roles
of the keys K1 and K2 in the reduction.

Theorem 4.1. [Security of DM] For all t, qT, qP, qV > 0,

Adv
({T,P},{V})-auth
DM (t, qT, qP, qV) ≤ Advuf-rmrc

MAC (t1, qT, qP, qP) + Advuf-rmrc
MAC (t2, qT, qV, qV) (17)

where t1 = t +O(qT · tTAG), t2 = t +O((qT + qV) · tTAG) and tTAG is the time to evaluate a single tag.

Proof. The proof uses the games G0 and G1, whose main procedure and oracles are described in Figure 8.
In order to avoid overloading our presentation, we omit the checks for correct input format in all games
and assume that any input in incorrect format results in ⊥. Also, throughout this proof, let us fix an
adversary A = (A1,A2) making qT queries to T, qP queries to P, qV queries to V and running in t
steps.

Game G0 is a compact representation of AUTH
({T,P},{V})
DM , without all unnecessary steps. In particular,

because S2 = {V}, the “no matching conversation” condition trivially holds (P is not present during
phase 2). Therefore,

Adv
({T,P},{V})-auth
DM (A) = Pr

[

GA0 ⇒ true

]

. (18)

Moreover, note that the game G0, whenever a valid query msg = r2 || τ1 is made to P in the sec-
ond round, it sets the flag BAD if τ1 is a valid tag for state[sid] = r1 sent in the first round, i.e.,
VRFYK1(state[sid], τ1) = 1. The second game, Game G1, is identical to G0, with the sole difference
that no query (sid,msg) with msg 6= start made to P is accepted, i.e., they are all replied with ⊥.
The following claim bounds the difference between the probabilities of A winning games G0 and G1,
respectively.

Claim 4.2. There exists an adversary B such that

Pr
[

GA0 ⇒ true

]

− Pr
[

GA1 ⇒ true

]

≤ Advuf-rmrc
MAC (B) . (19)

In particular, B makes qT queries to Tag and qP queries to Chal and Vrfy, and runs in time t′ =
t +O(qT · tTAG), where tTAG is the time needed to evaluate TAG.

25

procedure main: //G0, G1

K1,K2

$← KGen

For all sid ∈ N do

state[sid] = ε; decision[sid] = ⊥
done[sid] = false

σ1

$← AP,T
1 // Phase 1

AV
2 (σ1) // Phase 2

Ret (∃sid ∈ SIDV : decision[sid] = A)

oracle V(sid,msg): // G0, G1

If (sid /∈ SIDV) ∨ done[sid] then
Ret ⊥

If state[sid] = ǫ then // 2nd round

τ1
$← TAGK1

(msg)

state[sid]
$←M

Ret state[sid] || τ1
Else // decision

done[sid]← true

If VRFYK2
(state[sid],msg) = 1 then

decision[sid]← A

Else
decision[sid]← R

Ret decision[sid]

oracle T(): // G0, G1

r1
$←M; τ1

$← TAGK1
(r1)

r2
$←M; τ2

$← TAGK2
(r2)

Ret (r1, (τ1, r2), τ2)

oracle P(id,msg): // G0, G1

If (sid /∈ SIDP) ∨ done[sid] then
Ret ⊥

If state[sid] = ε then // 1st round
If msg 6= start then

Ret ⊥
state[sid]

$←M
Ret state[sid]

Else // 3rd round
done[id]← true

r2 || τ1 ← msg

If VRFYK1
(state[id], τ1) = 1 then

BAD← true

τ2
$← TAGK2

(r2)

τ2 ← ⊥
Ret τ2

Ret ⊥.

Figure 8: Games G0 and G1 used in the proof of Theorem 4.1. Above, a || b← msg denotes the
operation of parsing the string msg as the concatenation of the strings a and b of understood lengths.

Proof. First note that G0 and G1 are equivalent-until-bad. By the fundamental lemma of game playing,

Pr
[

GA0 ⇒ true

]

− Pr
[

GA1 ⇒ true

]

≤ Pr
[

GA1 sets BAD
]

.

We now construct the adversary B for the UF-RMRCMAC game. The crucial observation here is that
as long as we are only concerned about the probability of BAD being set, we only need to look at the
first phase of the game, which will in particular avoid the reduction simulating the second phase. The

adversary B simulates the interaction of the adversary A1 in the first phase of the game AUTH
({T,P},{V})
DM

as follows: First, it selects K2
$← KGen. Upon receiving a T query from A1, B makes a query to its Tag

oracle to get a pair r1, τ1 and also computes (r2, τ2) by sampling r2
$←M and setting τ2

$← TAGK2(r2)
(recall that B can compute TAGK2(·) using the K2 it has chosen for the simulation). It then returns
(r1, (τ1, r2), τ2) as a transcript to A1. On every P query (sid, start), B makes a query to its Chal oracle,
which returns a message message r1. Then, B sends r1 to A1 and upon receiving (sid, τ1, r2), for the
same sid, B sends τ1 as a forgery for r1 (that is, B makes a query (r1, τ1) to its Vrfy oracle), but returns
⊥ to A1. It is straightforward to verify that B simulates perfectly the first phase of G1 to A1, and that
the probability that BAD is set is exactly the probability that B forges. Finally, for the simulation, B
calls its Tag oracle qT times, and its Chal and Vrfy oracles, each, qP times, and also needs to compute
qT tags by itself.

To conclude the proof, we reduce the problem of A winning the game G1 to forging MAC in the game
UF-RMRCMAC. Specifically, we build an adversary C such that

Pr
[

GA1 ⇒ true

]

= Pr
[

UF-RMRCCMAC ⇒ true

]

. (20)

26

The adversary C simulates an interaction of A = (A1,A2) with the game G1 as follows: It first chooses

K1
$← KGen. When A1 makes a query to T, C first generates r1

$←M and τ1
$← TAGK1(r1), then samples

a pair (r2, τ2) by querying its own Tag oracle and finally returns (r1, (r2, τ1), τ2) to A. Moreover, every

query (sid,msg) to P is replied as follows: If msg = start, then C simply samples r
$←M and returns it

to A1. If msg = r′ ||τ ′, C replies with ⊥. Finally, whenever A2 makes a query (sid, r1) to V, C queries its

Chal oracle, obtaining a value r2. It then samples τ1
$← TAGK1(r1), and returns r2 || τ1. If A2 queries

V again for the same sid, with a value τ2, then C submits (r2, τ2) to Vrfy, and returns the outcome to
A2. It is not hard to see that the probability that C forges is exactly the probability that A = (A1,A2)
wins the game G1. Also, C has running time t2 = t +O((tT + tV) · tTAG), and makes qT queries to Tag
and qV queries to Chal and Vrfy.

It is worth mentioning that the security of DM is based on a very weak assumption. Previous generic
constructions require either a much stronger MAC allowing for chosen-message queries, and giving a
challenge-response protocol directly, or a weak PRF [17], which is a strictly stronger assumption, as
a weak PRF yields a (deterministic) uf-rmrc-secure MAC. Also, in contrast to the weak-PRF based
protocol of [17], our proof avoids rewinding, hence yielding an essentially tight reduction.

Instantiation from LPN. We instantiate DM using the Learning Parity with Noise (LPN) assump-
tion. (A further instantiation using Ring-LWE is presented in Appendix A.) In the game LPNn,η

(shown on the right of Figure 7), the Sample oracle, given a secret s
$← Z

n
2 , returns pairs (a,as + e)

for a random a ∈ Z
n
2 and e

$← Berη upon each invocation, where as denotes scalar product in Z2. The
(decisional) LPN is the problem of distinguishing LPNn,η from LPNn,1/2. For t, q > 0, we define the lpn

advantage function as

Advlpn
n,η(t, q) = max

{

Pr
[

LPNAn,η ⇒ 1
]

− Pr
[

LPNAn,1/2 ⇒ 1
]}

(21)

where the maximum is taken over all adversaries A running in time t and making q queries to the
Sample oracle.

We now define MACLPN = (KGen,TAG,VRFY) with keyspace K = Z
n
2 , message space M = Z

m×n
2

and tag space T = Z
m
2 , parametrized by constants η, η′ such that 0 < η < η′ < 1/2:

KGen :

Ret s
$← Z

n
2 .

TAG(s,A) :

e
$← Bermη ; Ret t = As + e.

VRFY(s,A, t) :

If hw(t−As) < η′ ·m then Ret 1 else Ret 0.

The expected hamming weight of the vector t−As is η ·m. Therefore the completeness error of MACLPN

can be upper bounded by the Chernoff bound (1) as

ǫc = Pr
[

hw(e) > η′ ·m
]

≤ 2−D(η′ || η)m . (22)

The following lemma states that MACLPN is uf-rmrc-secure assuming LPN is hard. Its proof uses ideas
similar to the ones used in the proof that the HB protocol is secure against passive attacks [32]. Similar
ideas are also implicit in the LPN-based randomized weak PRF construction by Applebaum et al [1].

Lemma 4.3. [Security of MACLPN] Let η̄ = η+η′−2ηη′ and η′′ such that15 0 < η̄ < η′′ < 1/2. Then,

for all t, qT, qC, qV > 0,

Advuf-rmrc
MACLPN

(t, qT, qC, qV) ≤ Advlpn
n,η(t′, q) + qV ·

(

2−D(η′′ || η̄)m + 2−(1−H2(η′′))m
)

,

where t′ = t +O(qC) and q = (qT + qC) ·m.

15For constants η, η′ ∈ (0, 1/2), a constant η′′ within that range always exists.

27

procedure main: //G0 −G4

Let η̄ = η + η′ − 2ηη′

η′′ ∈ (η̄, 1/2)

s
$← Zn

2

Forge← false

C ← ∅
Run ATag,Chal,Vrfy

Ret Forge

oracle Chal(): //G0 −G4

A
$← Z

m×n
2

C ← C ∪ {A}
Ret A

oracle Vrfy(A∗, t∗): //G0

If A∗ /∈ C

Ret ⊥
C ← C \ {A∗}
e∗ ← Bermη
If hw(t∗ −A∗s) ≤ η′m

Forge← true

If hw(t∗ −A∗s− e∗) > η′′m

BAD← true

Ret 1

Ret 0

oracle Tag(): //G0 −G3

A
$← Z

m×n
2

e← Bermη
t← As + e
Ret (A, t)

oracle Vrfy(A∗, t∗): //G1, G2

If A∗ /∈ C

Ret ⊥
C ← C \ {A∗}
e∗ ← Bermη
If hw(t∗ −A∗s) ≤ η′m

Forge← true

If hw(t∗ −A∗s− e∗) > η′′m

BAD← true

Forge← false

Ret 0

Ret 1

If hw(t∗ −A∗s− e∗) ≤ η′′m

Forge← true

Ret 1

Ret 0

oracle Vrfy(A∗, t∗): //G3

If A∗ /∈ C

Ret ⊥
C ← C \ {A∗}
e∗ ← Bermη
If hw(t∗ −A∗s− e∗) ≤ η′′m

Forge← true

Ret 1

Ret 0

oracle Tag(): //G4

A
$← Z

m×n
2

t
$← Zm

2

Ret (A, t)

oracle Vrfy(A∗, t∗): //G4

If A /∈ C

Ret ⊥
C ← C \ {A∗}
r

$← Zm
2

if hw(t∗ − r) ≤ η′′ ·m
Forge← true

Ret 1

Ret 0

Figure 9: Sequence of games for the proof of Lemma 4.3

Proof. We use the sequence of games whose main procedure and oracles are shown in Figure 9. Through-
out the proof, we fix an adversary A making qT, qC and qV queries to Tag, Chal and Vrfy respectively.
Game G0 is equivalent to UF-RMRCMACLPN

. All extra commands in the code of the Vrfy oracle serve
as internal bookkeeping and do not affect adversary’s view. Therefore

Advuf-rmrc
MACLPN

(A) = Pr
[

GA0 ⇒ true

]

. (23)

Game G1 is identical to G0 except in the way queries to Vrfy are answered. However, whenever Forge

is set to true in G0, so is in G1 and thus

Pr
[

GA0 ⇒ true

]

≤ Pr
[

GA1 ⇒ true

]

. (24)

Games G2, G1 are clearly equivalent-until-bad. Below, we compute the probabilty that the BAD← true

happens in G2. Let y = t∗ −A∗s and y′ = t∗ −A∗s − e∗. Consider a single query (A∗, t∗) to Vrfy.
Then

Pr [BAD← true] = Pr
[

(hw(y′) > η′′m) ∧ (hw(y) ≤ η′m)
]

≤ Pr
[

hw(y′) > η′′m
∣

∣ hw(y) ≤ η′m
]

.

Each coordinate y′i of y′ is an independent random variable with E
e∗i

[y′i] = (1 − 2η)yi + η. Therefore

(since hw(y) ≤ η′m)

E
e∗

[

hw(y′)
]

= (1− 2η)hw(y) + η ·m ≤ (η + η′ − 2ηη′) ·m = η̄ ·m .

28

Since η′′ > η̄, by applying Chernoff bound, we get Pr [hw(y′) > η′′m] ≤ 2−D(η′′ || η̄)m. Using the
fundamental lemma of game playing and the union bound across qV queries to Vrfy we get that for
every A (even unbounded)

Pr
[

GA1 ⇒ true

]

− Pr
[

GA2 ⇒ true

]

≤ Pr [BAD← true] ≤ qV · 2−D(η′′ || η̄)m . (25)

G3 is essentially a compact rewriting of G2. The view of any adversary A (even unbounded) is exactly
the same in both games. Therefore

Pr
[

GA2 ⇒ true

]

= Pr
[

GA3 ⇒ true

]

. (26)

G4 differs from G3 with respect to both Tag and Vrfy oracles. We claim that there exists an adversary
B against LPN such that

Pr
[

GA3 ⇒ true

]

− Pr
[

GA4 ⇒ true

]

= Advlpn
n,η(B) . (27)

B maintains a set C (initialized to ∅) that contains all messages A for which A is allowed to query the
oracle Vrfy and replies to A’s queries as follows: For each query to Tag by A, B makes m queries to
its Sample oracle. Let {(ai, zi)}i∈[m] be the samples returned. B then sends (A, z) to A where A is an

m × n matrix with the i-th row being ai and z = (z1, . . . , zm)T . On each Chal query by A, B gets m
more samples (A∗, z∗) and returns A∗ to A. At the same time, B adds A∗ to C along with z∗. On a
(A∗, t∗) query to Vrfy, B first checks that A∗ ∈ C and if so, recovers the vector z∗ that corresponds
to A∗. It then checks whether hw(t∗ − z∗) ≤ η′′m and if so, it outputs 1 and terminates. Otherwise it
returns 0 to A, removes A∗ and z∗ from C and resumes the simulation. Clearly, if B is playing in game
LPNn,η, then it simulates G3 perfectly to A whereas if it is playing in game LPNn,1/2, then it simulates
G4 perfectly to A. Thus

Pr
[

GA3 ⇒ true

]

− Pr
[

GA4 ⇒ true

]

= Pr
[

LPNBn,η ⇒ 1
]

− Pr
[

LPNBn,1/2 ⇒ 1
]

= Advlpn
n,η(B) .

Moreover, for each Tag and each Chal query by A, B makes m queries to its Sample oracle. Hence,
B makes (qT + qC)m queries in total to its oracle and runs in time t +O(qC).
Finally, the view of A in G4 is completely independent of s. Consider again a single query (A∗, t∗) to
Vrfy. It is straightforward to verify that t∗−r is uniform and random over Zm

2 . Therefore the probabilty
a verification query causes Vrfy to return 1 is

2−m
⌊η′′m⌋
∑

i=0

(

m

i

)

≤ 2−(1−H2(η′′))m .

Using the union bound,
Pr
[

GA4 ⇒ true

]

≤ qV · 2−(1−H2(η′′))m . (28)

Proof then follows combining (23), (24), (25), (26), (27) and (28).

Instantiating DM with MACLPN yields a protocol DMLPN whose secret key consists of two vectors

s1, s2 ∈ Z
n
2 . The prover first selects a random matrix A1

$← Z
m×n
2 and sends it to the verifier. The

verifier then selects another matrix A2
$← Z

m×n
2 and a noise vector e1

$← Bermη , and sends (A2,A1s1+e1)
to the prover. Upon receiving a pair (A2, z1), the prover checks whether hw(z1 −A1s1) ≤ η′ ·m, and

if so, samples e2
$← Bermη , and sends A2s2 + e2 back to the verifier. Finally, the verifier, on input z2,

accepts iff hw(z2 −A2s2) < η′ ·m.

29

Protocol #rounds
Complexity

LPN size Security bound
keysize Communication Computation

HB+ [30] 3 2n 2nm + n Θ(n ·m) n qV ·
√
ǫ

KP+ [33] 2 ≥ 4.2n ≥ 2.1nm Θ(n ·m) n qV · ǫ
This work 3 2n 2nm + 2n Θ(n ·m) n ǫ

Table 1: (Asymptotic) comparison of known LPN-based active secure protocols. Here, n
is the secret-size for the underlying LPN problem and ǫ is the assumed hardness of LPN given q =
(qP + qV + qT)m samples.

The overall advantage of our DMLPN protocol can be computed, combining (17) and Lemma 4.3, as

Adv
({T,P},{V})-auth
DMLPN

(t, qT, qP, qV) ≤ Advlpn
n,η(t1, q1) + Advlpn

n,η(t2, q2)

+ (qP + qV)
[

2−D(η′′ || η̄)m + 2−(1−H2(η′′))m
]

(29)

where q1 = (qT + qP)m, q2 = (qT + qV)m, t1 = t + O(qT + qP) · tTAG, t2 = t + O(qT + qV) · tTAG and
tTAG is the time to compute a single LPN mac. It is easy to see that this bound is superior to the one
of HB+ [30, 32], due to their use of rewinding, which results in a loose security reduction. Comparing
with KP+ [33] is more complicated. For that, we use the bound provided in their security reduction [33,
Thm. 1]. Moreover, we use Theorems 3.5 and 3.9 to adapt their security bound to the case where both
transcript and multiple verification queries are allowed. When the keysize of KP+ is 2ℓ, then the overall
bound can be computed as

Adv
({T,P},{V})-auth
KP+ (t, qT, qP, qV) ≤ qV ·Advlpn

d,η(t′, q) + qV

[

(qP + qT)m

2g+1
+ (qP + qT)2−c1·ℓ + 2−c2·m

]

(30)

where t′ = t + O(qP + qT), q = (qP + qT)m, c1, c2 are constants, and d, g are parameters such that
d + g ≤ ℓ/2.1. Also, for keysize 2ℓ, KP+ has communication complexity 2ℓ + mℓ + m. Notice that the
security of KP+ (with keysize 2ℓ) is based on the hardness of LPN with secret size d < ℓ/2.1. In contrast,
DMLPN with keysize 2n relies on the hardness of LPN with secret size n. Moreover, too small values for
g affect negatively the security of KP+ and in practice one might have to choose g = d < ℓ/4.2. This
means that, even in the most optimistic case (ℓ = 2.1d), for the same security level, i.e. LPN with the
same secret size, DMLPN requires a substantially smaller key than KP+ and incurs lower communication
complexity.

The comparison with both HB+ and KP+ is even more in our favor when multiple verification
queries are considered. Indeed, the bounds for HB+ and KP+ increase linearly with the number of
verification queries.

Based on the above analysis, Table 1 provides an asymptotic comparison of our LPN-based authen-
tication protocol with HB+ and KP+. In the table, we have used LPN with fixed secret size n as the
underlying hardness assumption across all three protocols.

A CDH-based scheme. For a cyclic group G with generator g, and an adversary A, the CDH

advantage function is Advcdh
G,g(t) = max

{

Pr
[

x, y
$← Z|G| : A(g, gx, gy) = gxy

]}

, where the maximum

is over all adversaries A running in time t. For a group G, MACCDH = (KGen,TAG,VRFY) has keyspace
K = Z|G|, message space M = G and tag space T = G and is defined as follows:

KGen :

Ret K
$← Z|G|

TAG(K,m) :

Ret h← mK

VRFY(K,m, h) :

If h = mK then Ret 1 else Ret 0.

30

It is straightforward to verify that MACCDH has completeness 1. Lemma 4.4 asserts that MACCDH is
uf-rmrc-secure assuming CDH is hard.

Lemma 4.4. [Security of MACCDH] For all t, qT, qC, qV > 0,

Advuf-rmrc
MACCDH

(t, qT, qC, qV) ≤ qC ·Advcdh
G,g(t′),

where t′ = t +O(qT + qC) · texp and texp is the cost of one exponentiation in G.

Proof. Fix an adversary A against the uf-rmrc-security of MACCDH that runs in time t and makes qT, qC
and qV queries to Tag, Chal and Vrfy oracles respectively. We construct an adversary B that uses A
to find a solution to CDH. B gets as input a triple (g, h1 = gx, h2 = gy) ∈ G

3 where x, y are chosen

uniformly at random from Z|G|. It first samples z
$← {1, . . . , qC} and initializes a list C to ∅ (this will

contain all challenges that A can use in its verification queries). On every Tag query by A, B samples

r
$← Z|G| and returns (gr, hr1) to A. On the i-th query to Chal, B replies as follows: If i 6= z then B

samples ri
$← Z|G|, returns gri to A and then adds gi = gri along with hi = hri1 to C. If i = z, B sends h2

to A. Finally, if A makes a query (g∗, h∗) to Vrfy, B first checks if g∗ ∈ C and rejects if not. Otherwise,
if g∗ = h2, B returns h∗ to its oracle as the candidate value for gxy and halts. If g∗ = gi 6= h2, B recovers
hi = hri1 from C and returns 1 if and only if h∗ = hi.

Notice that, since the pairs (gr, hr1) = (gr, (gr)x) are distributed exactly as (m, τ) pairs from MACCDH

(with m = gr and K = x), B provides a perfect simulation to A. It remains to compute the advantage
of B. Let F be a random variable that takes as value the index of the Chal query made by A that
results in the first Vrfy query that returns 1 (F = 0 if no Vrfy query returns 1). Notice, that if z = F
and F 6= 0, then B wins in its CDH game. Indeed, in that case h∗ = gxz = hx2 = gxy. Therefore

Advcdh
G,g(B) ≥ Pr [z = F ∧ F 6= 0] = Pr

[

z = F
∣

∣ F 6= 0
]

· Pr [F 6= 0] =
Advuf-rmrc

MACCDH
(A)

qC
.

Finally, for the simulation, B makes 2 exponentiations for each Tag and each Chal query by A.

The resulting authentication protocol proceeds as follows: The secret key consists of two elements

s1, s2 ∈ Z|G|. The prover selects a random element r1
$← G, and sends it to the verifier. The verifier,

on input r1, samples a random element r2
$← G, and sends the pair (r2, r

s1
1) to the prover. On input

(r2, z1), the prover checks whether z1 = rs11 , and if so, sends rs22 back to the verifier. Finally, the verifier,
on input z2, accepts iff z2 = rs22 .

The execution of the protocol requires two exponentiations for each of the prover and the verifier.
Moreover, the overall communication complexity amounts to 4 group elements. We note that the only
alternative construction based on CDH is due to Dodis et al [17], which is much less efficient, requiring
in total 8 exponentiations in G, but achieves a stronger notion of security. In the same paper, the
authors present a (strongly) actively secure protocol that requires the same number of exponentiations
as ours but only exchanges 3 groups elements. Yet, its security relies on the stronger DDH assumption.
Moreover, their proof of security uses rewinding techniques leading to a looser security reduction.

4.2 A Generic Construction of a 2-Round MIM-Secure Protocol

In this section, we present a generic construction of a 2-round MIM-secure authentication protocol, which
is ({}, {P,V})-secure, i.e. satisfies the strongest notion of MIM security. The protocol MM[MAC] =
(K,P,V) (MM stands for Mirror-Mac), using MAC = (KGen,TAG,VRFY) is as follows, where K1,K2

are generated by KGen:

31

Game SUF-RMCCMAC

procedure main:

K
$← KGen

Forge← false

S ← ∅ ; M ← ∅
Run ATag,Vrfy

MAC

Ret Forge

oracle Tag():

m
$←M

M ←M ∪ {m}
τ

$← TAGK(m)
S ← S ∪ {(m, τ)}
Ret (m, τ)

oracle ReTag(m):

If m /∈M
Ret ⊥

τ
$← TAGK(m)

S ← S ∪ {(m, τ)}
Ret τ

oracle Vrfy(m, τ):
If VRFYK(m, τ) = 1

If (m, τ) /∈ S

Forge← true

Ret 1
Ret 0

Figure 10: Pseudocode description of Game SUF-RMCCMAC

P(K1,K2) V(K1,K2)

r
$←M;

τ1 ← TAGK1(r) ;

r, τ1
If VRFYK1(r, τ1) = 1

τ2 ← TAGK2(r)

τ2
Accept iff
VRFYK2(r, τ2) = 1

The main idea here is that if MAC is a sufficiently strong MAC, no adversary can even get to input
to the prover values which have not been output by the verifier, hence forcing the attacker to behave
correctly. The catch is, however, that a secure MAC gives a challenge-response secure protocol in the
first place, so the question is how far can we weaken the assumption on the MAC so that the protocol
remains secure? It turns out that it suffices to require MAC to be what we call strongly unforgeable under

random-message-chosen-challenge attacks (suf-rmcc), a notion which is weaker than suf-cma-security in
the sense that the adversary gets to see tags for messages that are random rather than of its choosing.

Formally, suf-rmcc-security is defined via the game SUF-RMCC shown in Figure 10. Queries to
Tag oracle return pairs (m,TAGK(m)) for fresh random messages m not controlled by the adversary.
However, once a message m has been sampled during a Tag query, the adversary can ask for multiple
tags for m. This is modeled by giving the adversary access to a special oracle ReTag, that accepts
an input m ∈ M and returns TAGK(m) only if m has been previously returned after a Tag query
(otherwise ReTag returns ⊥). Finally the adversary gets access to a verification oracle Vrfy which
it can invoke on inputs (m, τ) of its choosing. The suf-rmcc advantage function of a MAC for integers
t, qT, qRT, and qV is defined as

Advsuf-rmcc
MAC (t, qT, qRT, qV) = max

A

{

Pr
[

(SUF-RMCCMAC)A ⇒ true

]}

where the maximum is over all adversaries A making qT, qRT and qV queries to Tag, ReTag and Vrfy
oracles respectively and running in time t.

One vs. multiple verification queries. Requiring strong unforgeability (i.e. the fact that a pair
(m, τ) is considered a forgery even if (m, τ ′) with τ ′ 6= τ has previously been output by a tag query)
is sufficient to ensure that the advantage of an adversary making multiple verification queries grows
only linearly in the number of verification queries. We remark that this is in contrast with (weak)
unforgeability under chosen message attacks (uf-cma) as first noticed by Bellare et al. [5]. Lemma 4.5
formalizes the aforementioned property for suf-rmcc-secure MACs. The proof is essentially identical to
the proof of [5, Theorem 5.1] and hence omitted.

Lemma 4.5. [1 vs. multiple ver. queries for suf-rmcc-secure MACs] Let MAC = (KGen,TAG,VRFY)
be a MAC. Then for all positive integers t, qT, qRT and qV

Advsuf-rmcc
MAC (t, qT, qRT, qV) ≤ qV ·Advsuf-rmcc

MAC (t, qT, qRT, 1) .

32

The following theorem summarizes the concrete security of MM.

Theorem 4.6. [Security of MM] Let M be the message space of MAC = (KGen,TAG,VRFY). Then

for all t, qP, qV > 0,

Adv
({},{P,V})-auth
MM[MAC] (t, qP, qV) ≤ Advsuf-rmcc

MAC (t1, qV, 0, qP) + (qV + 1)Advsuf-rmcc
MAC (t2, qV, qP, qV) +

q3V
2|M| ,

where t1 = t +O(tKGen + qP · tTAG + qV · tVRFY) and t2 = t +O(tKGen + qP · tVRFY + qV · tTAG).

Proof. For the proof, fix an adversary A against MM that makes qP (resp. qV) queries to P (resp. V)
and runs in time t. The proof relies on games G0 and G1 shown in Figure 11 to simplify exposition.

Game G0 is a stripped down version of game AUTH
({},{P,V})
Π , where all unnecessary notation has been

removed. Therefore,

Adv
({},{P,V})-auth
Π (A) = Pr

[

GA0 ⇒ true

]

. (31)

In addition, G0 keeps track of pairs (r, τ1) generated by verifier instances upon invocation from the
adversary via V queries, adding them to a set S. The game G0 is such that whenever the prover oracle
P is invoked on a message r || τ1 such that VRFYK1(r, τ1) = 1 and (r, τ1) /∈ S (i.e., a corresponding
message-tag pair was not previously returned as a reply to a V-query (sid, start)), the flag BAD is set.
Game G1 is identical to G0 except that if the flag BAD is set in the P queries, then it returns ⊥. The
following claim shows that the probability of any adversary A winning in Game G0 cannot be much
bigger than the corresponding probability in G1, upper bounding it via the suf-rmcc-security of MAC.

Claim 4.7. There exists adversary B such that

Pr
[

GA0 ⇒ true

]

− Pr
[

GA1 ⇒ true

]

≤ Advsuf-rmcc
MAC (B), (32)

where B makes qV, 0 and qP queries to its Tag, ReTag and Vrfy oracles respectively and has running

time t1 = t +O(tKGen + qP · tTAG + qV · tVRFY).

Proof. (of Claim 4.7.) Notice that G0 and G1 are identical until the flag BAD is set to true. Therefore,
by the fundamental lemma of game playing

Pr
[

GA0 ⇒ true

]

− Pr
[

GA1 ⇒ true

]

≤ Pr
[

GA1 sets BAD
]

.

The event BAD← true happens if the condition VRFYK1(r, τ1) = 1 is satisfied in G1 within a P query,
yet (r, τ1) /∈ S. This event can be reduced fairly directly to a forgery in the suf-rmcc-security game.

The suf-rmcc adversary B simulates game G1 to A as follows: First it picks K2
$← KGen. On every

V-query (sid, start) by A, B gets a pair (r, τ1) by invoking its Tag oracle in game SUF-RMCCMAC and
then returns (r, τ1) to A. For every V-query (sid,msg) with msg 6= start, B uses K2 (recall that K2 was
chosen by B) to check whether VRFYK2(state[sid],msg) = 1 and returns the answer to A. Likewise, P
queries are handled so that VRFYK1(r, τ1) is checked by invoking the Vrfy oracle from the underlying
SUF-RMCCMAC game, whereas tag generation with respect to K2 can be done, since B knows K2. It is
not hard to see that B is simulating perfectly G1 to A. Also, A provoking BAD← true results precisely
to B provoking a forgery (and hence winning) its SUF-RMCCMAC game.

Finally, for every P query by A, B makes 1 query to its Vrfy oracle and computes a tag by itself,
whereas for every V query by A, B makes 1 query to its Tag oracle and has to compute VRFY once.

Now, to conclude the proof, it remains to upper bound the probability Pr
[

GA1 ⇒ true

]

via the
forgery probability in the game SUF-RMCCMAC. Let (sid∗, τ∗2) (sid∗ ∈ SIDV) be the first V-query which
makes A win in G1 and assume that this query was made at (relative) time ik. This query is associated

33

procedure main: //G0, G1

K1,K2
$← KGen; S ← ∅;

T ← ∅; i← 0

For all sid ∈ N do

state[sid] = ε;

decision[sid] = ⊥;

done[sid] = false

AP,V

Ret ∃sid ∈ SIDV : (decision[sid] = A)
∧ (∀sid′ ∈ SIDP : ¬Matching(T [sid′], T [sid]))

oracle P(sid,msg): // G0, G1

If (done[sid] = true) then Ret ⊥
i← i + 1
r || τ1 ← msg

If VRFYK1(r, τ1) = 1 then

τ2
$← TAGK2(r)

If (r, τ1) /∈ S then
BAD← true

τ2 ← ⊥
done[id]← true

T [sid]← T [sid] ∪ {(sid, i, r || τ1, τ2)}
Ret τ2

Ret ⊥

oracle V(sid,msg): // G0, G1

If (done[sid] = true) then Ret ⊥
i← i + 1
If state[sid] = ε then // 1st round

If msg 6= start then Ret ⊥
state[sid]

$←M
τ1

$← TAGK1(state[sid])
S ← S ∪ {(state[sid], τ1)}
T ← T ∪ {(sid, i, start, r || τ1)}
Ret (state[sid], τ1)

Else // final decision
done[sid]← true

If VRFYK2(state[sid],msg) = 1 then
decision[sid]← A

Else decision[sid]← R

T ← T ∪ {(sid, i,msg, decision[sid]}
Ret decision[sid]

Figure 11: Games G0, G1 used in the proof of Theorem 4.6.

with a V-query (sid∗, start) made at time i0 < ik. Let r∗ || τ∗1 be the reply to (sid∗, start). These 2
queries have resulted to entries (sid∗, i0, start, r

∗ || τ∗1) and (sid∗, ik, τ
∗
2 ,A) in the global list T that keeps

track of all the queries and replies. By definition of winning, we know that: (a) VRFYK2(r∗, τ∗2) = 1 and
(b) ∀ sid ∈ SIDP and ∀i ∈ N with i0 < i < ik if (sid, i,msg,msg′) ∈ T then (msg,msg′) 6= (r∗ || τ∗1 , τ∗2)
((b) stems from the requirement that the verifier instance corresponding to sid∗ has not engaged to a
matching conversation with any of the prover instances). We consider the following two cases:

(i) There exists a P-query (sid, r∗ || τ∗1) at time i (i0 < i < ik). Call this event E1. By the no matching
conversation requirement any such query must have returned τ ′2 6= τ∗2 as a reply. We build an adverary
C against SUF-RMCCMAC (with underlying key K2) with success probability not much smaller than
Pr
[

GA1 ⇒ true ∧ E1

]

. C maintains two sets16 S1, S2 (initialized to ∅) for bookkeeping and operates

as follows: It first selects K1
$← KGen, and then simulates the game G1 to A. On a query (sid, start)

to V, C invokes its Tag oracle obtaining (r, τ2), sets state[sid]← r, computes τ1
$← TAGK1(r) (recall

that C has chosen K1 itself), returns τ1 to A and finally adds (r, τ1) to S1 and (r, τ2) to S2. On every
V-query (sid,msg) (msg 6= start), C invokes its Vrfy oracle on (state[sid],msg). If Vrfy returns 1 and
(state[sid],msg) /∈ S2 then C aborts (in such a case (state[sid],msg) is a valid forgery and hence C wins

16Roughly, S1 and S2 keep track of all message-tag pairs that have been produced by TAGK1
and TAGK2

respectively
during the simulation.

34

its SUF-RMCCMAC game). Otherwise, C simply returns the reply to A. Moreover, when A makes
a P-query (sid, r′ || τ ′1), C first checks (using its own K1) whether VRFYK1(r′, τ ′1) = 1 and returns ⊥
if this is not the case. It also returns ⊥ if (r′, τ ′1) /∈ S1. Otherwise, C operates as follows: If r′ has
not appeared before in any P-query, C, recovers the entry (r′, τ ′2) from S2 and returns τ ′2 to A (notice
that, since (r′, τ ′1) ∈ S1, by simulation, r′ must have been part of a reply (r′, ∗) from C’s Tag oracle
and hence S2 must contains such an entry (r′, τ ′2)). If r′ has appeared before as part of a P-query, C
simply uses its ReTag oracle to get τ ′′2 , returns it to A and adds (r′, τ ′′2) to S2 (again, (r′, τ ′1) ∈ S1

implies that r′ must have been previously output by C’s Tag oracle and therefore C is entitled to ask
its ReTag oracle on r′.) It is not hard to see that C simulates perfectly G1 to A. Also C makes (at
most) 1 ReTag query and 1 VRFY computation for each P-query by A and 1 query to each of its
Tag and Vrfy oracles and 1 TAG computation for each V-query by A.
It remains to compute C’s probability in winning SUF-RMCCMAC. Let Col be the event that, during
the simulation, there exists (at least) two distinct queries to Tag that returned (r, ∗) for the same
value r. Assume that Col does not happen during the simulation. Then S1 contains at most one pair
(r, τ) ∀ r ∈ M. In particular, at time i0, (r∗, τ∗1) is added to S1 and that is the only pair of the form
(r∗, ∗) ever added to S1. Therefore the only P-queries that involve r∗ and do not return ⊥, should
necessarily be of the form (sid, r∗ || τ∗1) and must happen at relative time i > i0. Each such query
returns τ ′2 6= τ∗2 (by the no matching conversation requirement) and results in a pair (r∗, τ ′2) added
to S2. This means that (r∗, τ∗2) /∈ S2 and therefore (r∗, τ∗2) is a valid forgery in C’s SUF-RMCCMAC

game. To conclude

Pr
[

GA1 ⇒ true ∧ E1

]

≤ Pr
[

GA1 ⇒ true ∧ E1 ∧ ¬Col
]

+ Pr [Col]

≤ Pr
[

SUF-RMCCCMAC ⇒ true

]

+
qV(qV − 1)

2|M| . (33)

(ii) All P-queries (sid,msg) at relative time i (i0 < i < ik) are such that msg 6= r∗ || τ∗1 . Call this
event E2. We further decompose E2 into E1

2 ∨ E2
2 ∨ . . . ∨ E

qV
2 where E

j
2 is the event that (sid∗, start)

was the j-th V instance queried by A. (Stated differently, before making the query (sid∗, start) to
V, A has made queries (sid, start) to V for exactly j − 1 distinct sid ∈ SIDV .) We show below that
for each j ∈ {1, . . . , qV}, there exists adversary Cj against SUF-RMCCMAC with success probability

approximately equal to Pr
[

GA1 ⇒ true ∧ E
j
2

]

. Cj simulates G1 to A precisely as in case (i) with

one important difference: When A makes a V-query (sid, start) for the j-th new distinct sid ∈ SIDV ,

Ci generates r∗
$←M by itself (without invoking its Tag oracle). Let τ∗1 be the reply to such a query

(τ∗1 is computed similarly to case (i)). The rest of the simulation is the same. Notice that conditioned
on Col not happening, (r∗, τ∗1) is the only entry in S1 that involves r∗ and, by hypothesis, r∗ || τ∗1 is
never queried to P. Therefore S2 contains no pair (r∗, ∗) which in turn implies that (r∗, τ∗2) is a valid
forgery for Cj when participating in its SUF-RMCCMAC game. That is,

Pr
[

GA1 ⇒ true ∧ E
j
2

]

≤ Pr
[

SUF-RMCC
Cj
MAC ⇒ true

]

+
qV(qV − 1)

2|M|

where Cj runs in the same time and makes the same number of oracle queries as in case (i). Summing
up, we obtain

Pr
[

GA1 ⇒ true ∧ E2

]

=

qV
∑

j=1

Pr
[

GA1 ⇒ true ∧ E
j
2

]

≤ qVAdvsuf-rmcc
MAC (t, qV, qP, qV)+

q2V(qV − 1)

2|M| (34)

35

Overall, Pr
[

GA1 ⇒ true

]

is upper bounded using (33) and (34) as

Pr
[

GA1 ⇒ true

]

= Pr
[

GA1 ⇒ true ∧ E1

]

+ Pr
[

GA1 ⇒ true ∧ E2

]

≤ (qV + 1)Advsuf-rmcc
MAC (t2, qV, qP, qV) +

q3V
2|M| (35)

The proof then follows from (31), (32) and (35).

An instantiation based on qSDH. We present an instantiation of our MM protocol based on the
hardness of the q-Strong Diffie-Hellman (qSDH) problem introduced by Boneh and Boyen [11]. For a
cyclic group G of prime order p, qSDH is the problem of computing a pair (c, g1/(c+x)) (for some c ∈ Zp

of the adversary’s choice) given (g, gx, gx
2
, . . . , gx

q
), for a given random generator g. Formally, for any

adversary A, we define the qSDH advantage function (parametrized by q) as

Advq-sdh
G,q (t) = max

A

{

Pr
[

g
$← G, x

$← Zp : A(g, gx, gx
2
, . . . , gx

q

) = (c, g1/(x+c))
]}

,

where the maximum is taken over all adversaries running in t steps. We devise a qSDH-based suf-rmcc-
secure MAC MACqSDH = (KGen,TAG,VRFY) with message spaceM = Zp and tag space T = G, which
is reminiscent of the weakly-secure signature scheme of [11], and defined via the following:

KGen :

Ret (g,K)
$← G×Zp.

TAG((g,K),m) :

Return h = g
1

m+K ∈ G

VRFY((g,K),m, h) :

If h = g1/(m+K) then Ret 1 else Ret 0.

Clearly, MACqSDH has completeness 1. The following lemma states that MACqSDH is also suf-rmcc-
secure under the assumption that qSDH in G is hard. The proof of Lemma 4.8 follows closely the proof
from [11, Lemma 9] and is given in Appendix B. Interestingly, unlike the case of signatures [11], we do
not need pairings to prove suf-rmcc security.

Lemma 4.8. [Security of MACqSDH] For all t, qT, qRT and qV > 0,

Advsuf-rmcc
MACqSDH

(t, qT, qRT, qV) ≤ qV ·Advq-sdh
G,qT

(t′),

where t′ = t +O(q2T · texp) and texp is the cost of a single exponentiation in G.

Let us now instantiate MM with MACqSDH: The secret key of the scheme consists of two random

integers s1, s2
$← Z|G|, and two random generators g1, g2

$← G. In the first round, the verifier picks

r
$← Z|G|, and sends (r, g

1
s1+r

1) to the prover. The prover, given (r, τ1) checks whether g
1

s1+r

1 = τ1, and

if so, sends back g
1

s2+r

2 . Finally, the verifier, upon receiving τ2, accepts iff τ2 = g
1

s2+r

2 .
Regarding complexity, our qSDH-based protocol needs two exponentiations by the prover and two

exponentiations by the verifier. Overall, two group elements and one integer modulo |G| are exchanged.
The communication and computational complexities are comparable to the recent MIM-secure challenge-
response scheme by Dodis et al [17] based on Gap-CDH, assuming equal group size. The key size is
also comparable. Of course, we stress that a fair comparison should take into account the hardness of
Gap-CDH and qSDH, but very little is known about them being easier than standard CDH (qSDH was
studied in [14]). In any case, we find our approach a promising alternative, which may pave the way to
further instantiations based on q-strong type assumptions.

36

References

[1] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast Cryptographic Primitives
and Circular-Secure Encryption Based on Hard Learning Problems. In CRYPTO, pages 595–618,
2009.

[2] Gildas Avoine. Adversarial Model for Radio Frequency Identification. IACR Cryptology ePrint

Archive, 2005:49, 2005.

[3] Gildas Avoine, Muhammed Ali Bingöl, Süleyman Kardaş, Cédric Lauradoux, and Benjamin Martin.
A Framework for Analyzing RFID Distance Bounding Protocols. Journal of Computer Security,
19(2):289–317, April 2011.

[4] Gildas Avoine, Etienne Dysli, and Philippe Oechslin. Reducing Time Complexity in RFID Systems.
In Selected Areas in Cryptography, pages 291–306, 2005.

[5] Mihir Bellare, Oded Goldreich, and Anton Mityagin. The Power of Verification Queries in Message
Authentication and Authenticated Encryption. Cryptology ePrint Archive, Report 2004/309, 2004.

[6] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated Key Exchange Secure
against Dictionary Attacks. In EUROCRYPT, pages 139–155, 2000.

[7] Mihir Bellare and Phillip Rogaway. Entity Authentication and Key Distribution. In CRYPTO,
pages 232–249, 1993.

[8] Mihir Bellare and Phillip Rogaway. Provably Secure Session Key Distribution: The Three Party
Case. In STOC, pages 57–66, 1995.

[9] Mihir Bellare and Phillip Rogaway. The Security of Triple Encryption and a Framework for Code-
Based Game-Playing Proofs. In EUROCRYPT, pages 409–426, 2006.

[10] Daniel J. Bernstein and Tanja Lange. Never Trust a Bunny. Cryptology ePrint Archive, Report
2012/355, 2012.

[11] Dan Boneh and Xavier Boyen. Short Signatures Without Random Oracles and the SDH Assumption
in Bilinear Groups. J. Cryptology, 21(2):149–177, 2008.

[12] Stefan Brands and David Chaum. Distance-Bounding Protocols (Extended Abstract). In EURO-

CRYPT93, Lecture Notes in Computer Science 765, pages 344–359. Springer-Verlag, 1993.

[13] Julien Bringer, Hervé Chabanne, and Emmanuelle Dottax. HB++: a Lightweight Authentication
Protocol Secure against Some Attacks. In SecPerU, pages 28–33, 2006.

[14] Jung Hee Cheon. Security Analysis of the Strong Diffie-Hellman Problem. In EUROCRYPT, pages
1–11, 2006.

[15] Ivan Damg̊ard and Michael Østergaard Pedersen. RFID Security: Tradeoffs between Security and
Efficiency. In CT-RSA, pages 318–332, 2008.

[16] Tassos Dimitriou. A Lightweight RFID Protocol to protect against Traceability and Cloning at-
tacks. In SecureComm, pages 59–66, 2005.

[17] Yevgeniy Dodis, Eike Kiltz, Krzysztof Pietrzak, and Daniel Wichs. Message Authentication, Re-
visited. In EUROCRYPT, 2012.

37

[18] Danny Dolev and Andrew Chi-Chih Yao. On the Security of Public Key Protocols (Extended
Abstract). In FOCS, pages 350–357, 1981.

[19] Dang N. Duc and Kwangjo Kim. Securing HB+ Against GRS Man-in-the-Middle Attack. In SCIS,
2007.

[20] Ulrich Duerholz, Marc Fischlin, Michael Kasper, and Cristina Onete. A Formal Approach to
Distance-Bounding RFID Protocols. Cryptology ePrint Archive, Report 2011/321, 2011.

[21] Uriel Feige, Amos Fiat, and Adi Shamir. Zero-Knowledge Proofs of Identity. J. Cryptology,
1(2):77–94, 1988.

[22] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. 263:186–194, 1986.

[23] Henri Gilbert, Matthew J. B. Robshaw, and Yannick Seurin. Good Variants of HB+ Are Hard to
Find. In Financial Cryptography, pages 156–170, 2008.

[24] Henri Gilbert, Matthew J. B. Robshaw, and Yannick Seurin. HB#: Increasing the Security and
Efficiency of HB+. In EUROCRYPT, pages 361–378, 2008.

[25] Henri Gilbert, Matthew J. B. Robshaw, and Hervé Sibert. An Active Attack Against HB+ - A
Provably Secure Lightweight Authentication Protocol. IACR Cryptology ePrint Archive, 2005:237,
2005.

[26] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
proof systems. SIAM J. Comput., 18(1):186–208, 1989.

[27] Louis C. Guillou and Jean-Jacques Quisquater. A ”paradoxical” indentity-based signature scheme
resulting from zero-knowledge. In Advances in Cryptology - CRYPTO ’88, volume 403 of Lecture
Notes in Computer Science, pages 216–231, 1988.

[28] Stefan Heyse, Eike Kiltz, Vadim Lyubashevsky, Christof Paar, and Krzysztof Pietrzak. Lapin: An
Efficient Authentication Protocol Based on Ring-LPN. In FSE, 2012.

[29] Nicholas J. Hopper and Manuel Blum. Secure Human Identification Protocols. In ASIACRYPT,
pages 52–66, 2001.

[30] Ari Juels and Stephen A. Weis. Authenticating Pervasive Devices with Human Protocols. In
CRYPTO, pages 293–308, 2005.

[31] Ari Juels and Stephen A. Weis. Defining Strong Privacy for RFID. IACR Cryptology ePrint

Archive, 2006:137, 2006.

[32] Jonathan Katz, Ji Sun Shin, and Adam Smith. Parallel and Concurrent Security of the HB and
HB+ Protocols. J. Cryptology, 23(3):402–421, 2010.

[33] Eike Kiltz, Krzysztof Pietrzak, David Cash, Abhishek Jain, and Daniele Venturi. Efficient Authen-
tication from Hard Learning Problems. In EUROCRYPT, pages 7–26, 2011.

[34] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On Ideal Lattices and Learning with Errors
over Rings. In EUROCRYPT, pages 1–23, 2010.

[35] Jorge Munilla and Alberto Peinado. HB-MP: A Further Step in the HB-Family of Lightweight
Authentication Protocols. Computer Networks, 51(9):2262–2267, 2007.

38

[36] Tatsuaki Okamoto. Provably Secure and Practical Identification Schemes and Corresponding Sig-
nature Schemes. In CRYPTO, pages 31–53, 1992.

[37] Khaled Ouafi, Raphael Overbeck, and Serge Vaudenay. On the Security of HB# Against a Man-
in-the-Middle Attack. In ASIACRYPT, pages 108–124, 2008.

[38] Claus-Peter Schnorr. Efficient signature generation by smart cards. J. Cryptology, 4(3):161–174,
1991.

[39] Jacques Stern. A New Paradigm for Public Key Identification. IEEE Transactions on Information

Theory, 42(6):1757–1768, 1996.

[40] Serge Vaudenay. On Privacy Models for RFID. In ASIACRYPT, pages 68–87, 2007.

A An RLWE-based MAC

For an integer n17 and a prime p let Rp = Zp[x]/〈xn + 1〉 be the quotient ring of polynomials modulo
the ideal 〈p, xn + 1〉. Let also χ be a distribution with support [χ] = Rp. RLWEn,p,χ is the problem of
distinguishing between several samples of the form (a, a · s + e) (where s is a secret element from Rp,

a
$← Rp and e ← χ) and random samples (a, u)

$← Rp × Rp. Figure 12 provides a formal definition of
RLWE.

Game RLWEn,p,χ

procedure main:

s
$← Rp

d← ASample

oracle Sample():

a
$← Rp

e← χ
Ret (a, a · s + e)

Figure 12: Pseudocode description for game RLWEn,p,χ . A has access to Sample and at the end of
the game outputs a value d ∈ {0, 1}.

Similar to LPN, the advantage function for RLWEn,p,χ is defined as

Advrlwe
n,p,χ(t, q) = max

A

{

Pr
[

RLWEAn,p,χ⇒ 1
]

− Pr
[

RLWEAn,p, U(Rp)
⇒ 1

]}

(36)

where U(Rp) is the uniform distribution over Rp and the maximum is over all adversaries A receiving q
samples and running in time t.

We describe a uf-rmrc-secure MAC based on the hardness of RLWE. We first present the construction
for arbitrary distribution χ over Rp. For a polynomial a, we use ‖a‖2 to denote the l2 (Euclidean) norm
of a under the standard coefficient embedding. MACRLWE = (KGen,TAG,VRFY) has keyspace, message
space and tag space K =M = T = Rp and is defined as follows:

Parameters: n = n(κ), prime p, distribution χ with [χ] = Rp, X ∈ R
+ such that Pre←χ [‖e‖2 > X] is

small.

KGen(1κ) : Pick s
$← Rp.

TAG(s, a) : Sample e← χ ; return y = a · s + e.

VRFY(s, a, t) : Return 1 iff ‖t− a · s‖2 < X.

17For security, n is typically chosen to be a power of 2.

39

Lemma A.1 states the security of MACRLWE for a specific distribution χ and bound X. We omit the
proof since it is essentially identical to the proof of Lemma 4.3.

Lemma A.1. [Security of MACRLWE] For prime p, let p̃ = ⌊√p/2⌋, χ = U(Zn
p̃) and X =

√
np̃/2.

Consider also the MACRLWE as defined above. Then for all positive integers t, qT, qC and qV

Advuf-rmrc
MACRLWE

(t, qT, qC, qV) ≤ Advrlwe
n,p,χ(t′, q) + qV · 2−0.2n

where t′ = t +O(qC + qV) and q = qT + qC. Also, MACRLWE has completeness 1, i.e. ǫc = 0.

B Proof of Lemma 4.8 (Security of MACqSDH)

Let A be an adversary against the suf-rmcc-security of MACqSDH that runs in t steps making qT queries
to Tag, qRT queries to ReTag and a single verification query.18 We will show that there exists an
adversary B that uses A and solves qSDH (with q = qT) with advantage not much smaller than the
advantage of A.
B maintains a list M (initialized to ∅) for bookeeping and upon receiving as input (g, h1 = gx, h2 =

gx
2
, . . . , hq = gx

q
), uses A as follows: first it picks m1,m2, . . . ,mq uniformly at random from Zp and

computes the polynomial a(X) = Πq
i=1(X + mi). Let a(X) = a0 + . . . + aq−1X

q−1 + Xq be the power

expansion of a. B also picks z
$← Zp \ {0}. On the i-th Tag query by A (i ∈ {1, . . . , q}), B computes the

values

a(i)(X) =
a(X)

X + mi
=

q−1
∑

j=0

a
(i)
j ·Xj and τi ←

q−1
∏

j=0

h
a
(i)
j
·z

j ,

sends (m1, τi) to A and also adds (mi, τi) to M . Whenever A makes a query m to ReTag, B first checks
whether there exists an entry (m, τ) in M (for any τ) and if not returns ⊥. Otherwise, it returns the
τ that appears in (m, τ) to A (notice that MACqSDH is deterministic and hence if such an entry exists,
then it is unique). Let (m∗, τ∗) by the (single) Vrfy query (forgery attempt) by A. Since TAGqSDH is
deterministic, we may assume without loss of generality that m∗ /∈ {m1, . . . ,mq}. On input such a pair,
B first computes (using Eucledean division) u(X) = u0 + u1 · X + . . . + uq−1 · Xq−1 and v0 such that
a(X) = u(X)(X + m∗) + v0. It finally returns

(m∗, h∗) where h∗ =

(

(τ∗)1/z
q−1
∏

i=0

(hi)
−ui

)1/v0

as the candidate solution to the qSDH instance.19

First notice that the output to the Tag queries have the correct distribution where K = x is
randomly distributed in Zp and g̃ = gz·a(x) is a random generator of G. Indeed

τi =

q−1
∏

j=0

h
a
(i)
j ·z

j =

q−1
∏

j=0

(gx
j

)a
(i)
j ·z =

(

gz·a(x)
)

1
x+mi = g̃

1
x+mi .

Also, assume that (m∗, τ∗) is a valid forgery, i.e. τ∗ = g̃
1

x+m∗ . Then

h∗ =

(

(τ∗)1/z
q−1
∏

i=0

(hi)
−ui

)1/v0

=

(

(

g̃
1

x+m∗

)1/z
g−u(x)

)1/v0

=

(

g
a(x)

x+m∗ · g−u(x)
)1/v0

= g
1

x+m∗

18Without loss of generality we assume that A makes exactly qT queries to Tag.
19Notice that h∗ is well defined since z 6= 0 and v0 6= 0 (because m∗ /∈ {m1, . . . ,mq}) and hence (X +m∗) 6 | a(X).

40

which implies that B solves its qSDH instance whenever A returns a valid forgery. Therefore

Advsuf-rmcc
MACqSDH

(t, qT, qRT, qV) ≤ qV ·Advsuf-rmcc
MACqSDH

(t, qT, qRT, 1) ≤ qV ·Advq-sdh
G,qT

(t′)

where for the first inequality we used Lemma 4.5
Finally B needs O(q2T) time to compute the polynomial expansions of a, a(1), . . . , a(q) and qT · texp steps
per TAG query to compute τi where texp is the cost of a single exponentiation in G. Therefore B runs in
t′ = t +O(q2T · texp) steps.

41

