Asynchronous Verifiable Information Dispersal

Christian Cachin Stefano Tessaro

IBM Research
Zurich Research Laboratory
CH-8803 Rischlikon, Switzerland
{cca,tes }@zurich.ibm.com

November 15, 2004

Abstract

Information dispersahddresses the question of storing a file by distributing it among a set of servers

in a storage-efficient way. We introduce the problenveffiableinformation dispersal in aasyn-
chronousnetwork, where up to one third of the servers as well as an arbitrary number of clients
might exhibit Byzantine faults. Verifiability ensures that the stored information is consistent despite
such faults. We present a storage- and communication-efficient scheme for asynchronous verifiable
information dispersal that achieves an asymptotically optimal storage blow-up. Additionally, we
show how to guarantee the secrecy of the stored data with respect to an adversary that may mount
adaptive attacks. Our technique also yields a new protocol for asynchronous reliable broadcast that
improves the communication complexity by an order of magnitude on large inputs.

1 Introduction

With the increasing availability of fast networks, distributed storage systems have become an attractive
solution for managing large amounts of information. New technologies such as NAS and SAN connect
storage devices directly to clients. This development also introduces new security and dependability
problems because the devices may exhibit failures or become a target for attacks, which are not linked
to the clients.

With this background, we consider following problem: Some data has to be distributedlienta
among a set of servers of which up tot might be faulty exhibitingByzantinebehavior (that is, they
may deviate arbitrarily from the protocol), in such a way that clients can always recover the stored data
correctly, independently from the behavior of the faulty servers. One trivial but inefficient solution is to
usereplicationsuch that every server keeps a copy of the data. The classic alternative, as proposed by
Rabin [Rab89], is ainformation dispersal algorithnDA): using anerasure codgthe data is split into
blocks, so that each server holds exactly one block, and so that only a subset of the blocks is needed in
order to reconstruct the data.

A protocol for information dispersal based on IDA tolerating Byzantine servers has been proposed
by Garay et al. [GGJRO00]. It relies aynchronousetworks, which are adequate for tightly coupled
nodes such as clusters, but unrealistic for geographically distributed or heterogeneous systems. An
asynchronousetwork model is more appropriate for such settings.

One issue that has not received much attention so far is the preseBgeanitine clients A first
solution for erasure-coded storage in an asynchronous network that prevents some problems caused by
faulty clients has recently been proposed by Goodson et al. [GWGRO04]. However, it relies on correct
clients to establish a consistent state across the servers. We consider the consistency of the service state
to be a desirable goal in order to protect innocent clients from obtaining inconsistent values, although

one may also argue, from a client-oriented perspective, that problems caused by faulty clients such as
inconsistently stored data do not hurt the system.

In this paper, we introduce the notion wérifiability for information dispersal irmsynchronous
networks with a computationally bounded adversary. Intuitively, verifiability means that whenever the
honest servers accept to store some data, then the data is also consistent and no two distinct honest clients
can reconstruct different data. This notion of verifiability originates in the related context of secret
sharing, where various protocols feerifiable secret sharingxist, both in synchronous [Fel87, Ped92]
and asynchronous networks [CKLS02].

We propose a new scheme for asynchronous verifiable information dispersal that is also storage- and
communication-efficient and achieves optimal resiliehee 5. It combines an asynchronous reliable
broadcast protocol with erasure coding and achieves a communication compleity:(df|) bits for
storing a fileF, which is an order of magnitude more efficient than what results from the previously
known approach, which need¥n?|F|) bits. The storage blow-up of the scheme, i.e., the storage space
needed in relation tpF|, is asymptotically optimal.

Several optimizations of the scheme are presented, including one that usesoenoting codes
(ECC) for lowering the storage requirements; one of the optimized schemes leads directly to a commu-
nication-efficient protocol foasynchronous reliable broadcasith Byzantine faults. For broadcasting
a large message, this protocol communicates on)(n|m|) bits instead of)(n?|m)|).

We also consider how to providenfidentialityfor the stored data. Clients might want to store data
that should only be read by authorized users. We present an extension of our asynchronous verifiable
information dispersal scheme that incorporates a threshold cryptosystem for secrecy, but maintains the
communication and storage efficiencies of the scheme without confidentiality.

1.1 Related work

Erasure codes are well known in coding theory [Bla83]. Rabin’s work [Rab89] introduces the concept
of information dispersal algorithms (IDA) for splitting large files, but does not address protocol aspects
for implementing IDA in distributed systems.

IDA is extended by Krawczyk [Kra93] using a technique caltiistributed fingerprintingn order
to ensure the integrity of data in case of alterations of the stored blocks by malicious servers. The same
idea is subsequently improved by Alon et al. [AKRO, AKK04].

Garay et al. [GGJRO00] propose an information dispersal scheme for synchronous networks. Their
model does not allow Byzantine clients, even though some attacks are tolerated. A key concept is the so-
calledgateway an honest party through which clients access the servers comprising the storage system.
The gateway is actually implemented by one of the servers and might be corrupted, but additional
measures prevent it from causing too much damage: encryption hides the data from the gateway and a
time-out mechanism rotates the gateway function to another server, should the first server not respond
properly and in time. Clients only communicate with the gateway. Because of its inherent synchrony,
this protocol cannot be translated to an asynchronous network.

The dispersal protocol of Garay et al. consists of two steps: first, the file is broadcast to all servers;
then every server applies a (deterministic) information dispersal algorithm, which yidlldeks, one
for each server. Every server stores its own block and erases all others. An asynchronous dispersal
protocol without secrecy is easily obtained from this by eliminating the gateway and implementing
the broadcast using an asynchronous reliable broadcast protocol that tolerates Byzantine faults, such as
Bracha'’s protocol [Bra84]. We discuss this protocol in Section 3.2 and refer tasyashronous GGJR
below; it satisfies our verifiability property, but its communication blow-u@i®?).

A solution for erasure-coded storage in an asynchronous network with robustness against Byzantine
clients has recently been proposed by Goodson et al. [GWGRO04]. However, inconsistently written data
can only be detected at read-time; the content of the storage system is then rolled back to restore the
data to the last correctly written data. The major drawback of this approach is that retrieving data can

Scheme Model Storage Blow-up Communication Blow-up
[GWGRO04] t < %, no verifiability | = +o(1) O(1)

asynchronous GGJR | t < %, verifiability - +o(1) O(n?)

AVID (this paper) t < %, verifiability s 4 o(1) O(n)

AVID-RBC (this paper)| t < ¥, verifiability - +o(1) O(n)

AVID-ECC (this paper)| t < 7%, verifiability P O(n)

Table 1: Comparison of asynchronous information dispersal schemes for large files. Communication
blow-up refers to the dispersal protocol.

be very inefficient in the case of several failed write operations, and that consistency depends on correct
clients. The protocol requirgs< 7.

Table 1 summarizes the performance of the schemes discussed so far in terms of their storage blow-
up and the communication blow-up of the dispersal protocol. They are compared with the main scheme
of the paperAVID from Section 3.3), with the optimization using reliable broadcAstiD-RBC, Sec-
tion 3.7), and with the variation using ECBYID-ECC, Section 3.7). In all schemes the communication
blow-up of the retrieval protocol i©(1) (for the scheme of Goodson et al. [GWGRO04] this holds only
if no inconsistent data has been written).

Our main schem@VID achieves a better storage blow-up and tolerates more corrupted servers than
the protocol of Goodson et al. [GWGRO04], which has a better (i.e., constant) communication blow-up,
but does not provide verifiability. Obtaining verifiability seems to cause an increase by a faétor)of
in the communication complexity. Intuitively, it seems plausible that every honest server has to see the
whole file in order to decide whether its block is consistent with the rest or not, but we are not aware of
any formal lower bounds.

1.2 Outline of the paper

In Section 2 we introduce our asynchronous network model with Byzantine corruptions and give a
definition for asynchronous verifiable information dispersabection 3 is devoted to presenting our
asynchronous verifiable information dispersal scheme cANdD. Several optimizations are also pre-
sented in this section, and it is shown how to implement asynchroabaisle broadcasfrom verifiable
information dispersal. The verifiable information dispersal scheme with confidentiality, calld®,

is described in Section 4.

2 Definitions

In this section, we first introduce our system model for describing asynchronous protocols. We then give
a definition for asynchronous verifiable information dispersal and a refined definition for information
dispersal with confidentiality. The complexity measures used in the analysis of our protocols and a few
basic tools are also introduced.

2.1 System model

We use a model which is similar to the one in [CKPS01], even though we adopt some simplifications.
The network consists of a set sérvers{ P, ..., P,} and a set otlients{C, C», ...}, which are

all probabilistic interactive Turing machines (PITM) with running time bounded by a polynomial in a

given security parameter. Servers and clients together are calpagities There is aradversary which

is a PITM with running time bounded by a polynomialinServers and clients can be controlled by the
adversary. In this case, they are caltsrupted otherwise they are calldibnest An adversary that
controls up ta servers is calledtlimited. We are not assuming any bounds on the number of clients that
can be corrupted. The adversarystatic that is, it must choose the parties it corrupts before starting
the protocol. Additionally, there is an initialization algorithm, which is run by some trusted party before
the system actually starts.

Every pair of servers is linked bysecure asynchronous chanrleat provides privacy and authen-
ticity with scheduling determined by the adversary. In contrast to [CKPS01], we consider only a benign
adversary that may delay messages but will eventually deliver every message between honest parties.
Moreover, every client and every server are linked by a secure asynchronous channel.

Whenever the adversary delivers a message to an honest party, this @atiyased In this case,
the message is put in a so called input buffer, the party reads then the content of its buffer, performs
some computation, and generates one or more response messages, which are written on the output tape
of the party.

Protocols can be invoked either by the adversary, or by other protocols. Every protocol instance is
identified by a unique strintp, called thetag, which is chosen arbitrarily by the adversary if it invokes
the protocol, or which contains the tag of the calling protocol as a prefix if the protocol has been invoked
by some other protocol. There may be several threads of execution for a given party, but only one of
them is allowed to be active concurrently. When a party is activated, all threadsveaé gtateswhich
specify a condition defined on the received messages contained in the input buffer, as well as on some
local variables. If one or more threads are in a wait state whose condition is satisfied, one of these
threads is scheduled (arbitrarily) and this thread runs until it reaches another wait state. This process
continues until no more threads are in a wait state whose condition is satisfied. Then, the activation of
the party is terminated and the control returns to the adversary.

We distinguish betweelocal eventswhich are eithemput actions(that is, messages of the form
(ID,in ,type,...)) or output actiongmessages of the forfiD, out , type, . ..)), and othemprotocol
messagesvhich are ordinary protocol messages to be delivered to other parties (of thdBorigpe, . . .)).

All messages of this form that are generated by honest parties are said$sdmatedo the protocol
instanceD.

Whenever an output action is performed for one party, then the protocol terminates for this party,
that is all the threads of the same instance are stopped.

We use the following syntax for specifying our protocols. To enter a wait state, a thread executes
a command of the formwvait for condition There is a global implicitvait for statement that every
protocol instance repeatedly executes: it matches any afdhditionsgiven in the clauses of the form
upon condition block

2.2 Asynchronous verifiable information dispersal

The basic data item one client wants to store in a storage systeffilds An asynchronous verifiable
information dispersal (AVID) schenfier a file F' consists of two protocols:

The dispersal protocol: A client starts this protocol as it decides to store a certairfile the storage
system provided by the servers. Some redundancy is added to the file, which is then splitinto
different blocks, each one being stored by one ofitlservers.

The retrieval protocol: A client (not necessarily the same which has written the Aije wanting to
retrieve file F', invokes this protocol in order to receive enough information from the servers to
reconstruct the filé'. Moreover, the retrieval protocol can be repeated as many times as necessatry.

Note that we do not address the questions of concurrency and versioning. FAdde be written
only once, but retrieved again and again. Since updates are not possible, concurrent reads and writes are
not a problem. Stored files are indexed using thelEagf the instance of the dispersal protocol which

4

wrote them. Therefore, running the retrieval protocollidisimply means retrieving the file stored with
the instance of the dispersal protocol with t&y

We say that a cliendlispersesa file F' for ID if it starts the dispersal protocol with td® with a
file F' as an input, that is, it is activated through an input acti@n in , disperse , F'). Furthermore,
a server mayxompletethe dispersalD if it terminates the dispersal protocol ftld with some output
of typestored , and it mayabort the dispersalD if it terminates the protocol with an output of type
abort . However, a server might neither complete nor abort the dispersal. Finally, arelbemistructs
a file F’ for ID’ if it terminates the retrieval protocol for the file stored with #&y with an output
(ID,out ,retrieved , F”).

The verifiability property requires that either all servers complete the dispersal or no server com-
pletes the dispersal. This ensures that the servers always store consistent data once enough honest
servers have accepted. This is formalized in the following definition.

Definition 1. A (k, n)-asynchronous verifiable information dispersal schéine n) is composed by
a dispersal and a retrieval protocol which satisfy, for atiynited adversary, aniD, and any client’;
starting the dispersal protocol fib, the following conditions, except with negligible probability:

Termination: If the clientC; is honest, then all honest servers eventually complete the disjigrsal

Agreement: If some honest server completes the dispdi3athen all honest servers eventually com-
plete the dispersdD.

Availability: If £ honest servers complete the dispetBaland an honest clierit; starts the retrieval
protocol forID, then it eventually reconstructs some fHé

Correctness: If k& honest servers complete the dispetBalthere exists a fixed valug such that the
following holds:

1. If C; is honest and has dispersed a filaisingID, thenG = F.
2. If an honest clien€’; reconstructg” for ID, thenG = F”.

In order use information dispersal in applications where information must be kept secret, a scheme
must satisfy stronger requirements. First of all, one has to define who may retrieve a stored file and
who may not, since we want that a file can be retrieved not only by the client who stored it. To this
end, every filef' is stored with an associatedcess listC, consisting of the set of indices of the clients
allowed to retrieve’. We require that the adversary does not gain knowledge about the stored file unless
a corrupted client is in the access list of the file. The adversary may interact with the servers in arbitrary
ways apart from that, which allows it to mount the equivalent of an adaptive chosen-ciphertext attack.
This is captured by the following definition.

Definition 2. A (k,n)-asynchronous verifiable information dispersal scheme with confidentfality

n) is composed by a dispersal and a retrieval protocol which satisfy, for-timited adversary, aniD,

and any client; starting the dispersal protocol, the Termination, Agreement, and Availability properties
of Definition 1, as well as the following properties:

Correctness: If k£ honest servers complete the dispelgsl there exists a fixed valu@ and a fixed
access listM such that the following holds, except with negligible probability:

1. If C; has dispersed a fil&" with access listC usingID and is honest, thed’ = G and
L=M.

2. If Cj, j € M, is honest and reconstrudt for ID, thenF” = G.

3. If Cj, j ¢ M, is honest and reconstrudts for ID, thenF” =_1.

Confidentiality: Assuming there exists at least one honest client, the adversary plays the following
game calledCONF:

1. The adversary interacts with the honest parties in an arbitrary way.

2. The adversary outputs two filé$ and F; such thafFy| = |F}|, the index: of an honest
client, an access lisf not containing any corrupted servers, and a (unique)@aglient
C; (secretly) chooses a random hitand invokes theDisperse protocol for storing the file
Fy, with access lisiC and tagD.

3. The adversary continues to interact with the honest parties subject only to the condition that
no server inC starts a retrieval folD.

4. The adversary finally outputs a bit

The scheme satisfieonfidentiality if for all probabilistic polynomial-time adversaries playing
the CONF game,

“ 1
Pr [b = b} < 5+ neglx),
where negl is some negligible function in the security parameter

Recall that in our model the adversary is allowed to invoke protocols, and thus to trigger input
actions for clients. Therefore, the condition in step 3 that no server in the acceSsdistlowed to
retrieve the file that”; has stored withD is necessary, since the adversary could otherwise start the
retrieval forID and trivially obtain the file.

2.3 Complexity measures

We assume that parties can erase memory in the complexity analysis. This is justified by the fact that the
stored data has to be available over a longer time period and that we want to minimize the data stored
by the servers after completion of a dispersal protocol.

The following complexity measures are used in the analysis of information dispersal schemes. Com-
plexities are always defined with respect to a single instance of the scheme. (Recafistheiated
messagemiclude only messages generated by honest parties.)

e The message complexiyf a protocol is defined as the number of messages associated to an
instance of the protocol.

e The communication complexityf a given protocol is defined as the bit length of all messages
associated to an instance of the protocol.

e Thestorage complexitgf an information dispersal scheme is the overall bit length of the informa-
tion stored in the memory of the honest servers after they have completed the dispersal protocol.

It is clear that the information dispersal scheme must have storage complexity afleasten a
file F'is dispersed. The same holds for the communication complexity of the dispersal and the retrieval
protocols. We therefore also use the following, more compact complexity measures:

e Thestorage blow-umf an information dispersal scheme is the ratio of the storage complexity of
the dispersal protocol and’|.

e The communication blow-upf a protocol (such as the dispersal or the retrieval protocol) that
is part of an information dispersal scheme is the ratio of the communication complexity of the
protocol and F|.

The same definitions apply to schemes with confidentiality. Since we must always be able to reconstruct
the original data from the information provided hy- ¢ servers, the storage blow-up cannot be smaller
than-2-.

n—t

2.4 Tools

In the following, we will often refer to the problem afsynchronous reliable broadcaist our system
model (which is also known as tigyzantine generals problefhSP82]). A protocol for reliable broad-
cast allows a sender to broadcast a message all servers such that either all or no honest server
deliversm, even if the sender is faulty. A formal definition is provided in Appendix A. The standard
implementation for it is Bracha’s protocol [Brag4], which requié®8:?) messages and has communi-
cation complexityO(n?|m|).

A collision-resistant hash functiois a functionHd : {0,1}* — {0, 1}" with the property that the
adversary cannot generate two distinct strimgand 2’ with H(z) = H(z'), except with negligible
probability. With a slight abuse of notation, we denote|B§| the bit-size of the range of the hash
function, thatis|H| := h. In practice,H could be implemented by SHA-1 (in this casH,| = 160).

A symmetric cryptosysteis a tripleSE = (SG SE SD), whereSGis a key-generation algorithm,
andSEandSDare an encryption- and a decryption-algorithm, respectively, such that for all messages
m and all keysK generated according G SD(K,SE K, m)) = m. Observe the following game
played by the adversary, which we c3IE:

1. The adversary chooses two messaggsmi, where|mg| = |my
tion oracle

, and gives them to aancryp-

2. The encryption oracle secretly chooses a secretikeccording toSGand a random bib €
{0,1}. It then returns @iphertextc := SH K, m;,) to the adversary.

3. The adversary computes a hit

The symmetric cryptosystei€ is semantically securd and only if for all probabilistic polynomial-
time adversariesPr[b = b] < % + neglx), where negl is some negligible function in the security
parametek. Note that this simple security requirement will be sufficient for our purposes.

3 Aninformation dispersal scheme

In this section, our main scheme for asynchronous verifiable information dispersal is presented. The first
part of the section is devoted to a review of basic tools from coding theory that are needed in our scheme
and we also show a first simple solution for asynchronous verifiable information dispersal. Then, the
actual scheme, calle@VID, is introduced and analyzed. Several improvements and optimizations to
the scheme are presented subsequently, which reduce its communication and storage complexities. It
is also shown how to derive a communication-efficient protocol for asynchronous reliable broadcast
directly from our scheme. Finally, a variant of our scheme based on error-correcting codes is sketched;
its storage complexity depends arandt only, but it has a smaller resilience.

3.1 Tools from coding theory

We briefly review some basic tools from coding theory we will need in our scheme for asynchronous
verifiable information dispersal. We make use(bfn)-erasure codesver a finite fieldGF(q). Such
a code maps a vectan € GF(q)* to a vectorc € GF(q)" such that knowing: components ot
is enough in order to reconstruei. Despite some similarities, this is different from/a, n)-error-
correcting code where the components of the vectocan also be altered. Erasure codes are error-
correcting codes for erasure channels.

Rabin [Rab89] proposed a quite general approach for erasure coding. A very simple erasure-code is
based orpolynomial interpolationand is indeed a special case of Rabin’s IDA. Assymen. Given
a subset7 C {1,...,n}, |J| = k, we define the correspondirigagrange coefficientsvaluated at

x € GF(q) as

—/
X (z) = H % forallj € 7. (1)
teg\{j}
Then, with7 := {1,...,k}, we can encoden as
ci::Z)\f(i)‘mj fori=1,...,n. 2)
jed
Note thate; = m; fori = 1,...,k (such a code is callesystematiz The code can be also seen as a

(k,n)-linear code with generator matrix

1 N (k+1) - N (n)
G = : : € GF(q)". (3)
LM (k+1) - A (n)

Thus, encoding can alternatively be done through a matrix multiplicafios= m” - G, while decoding
from anyk components o€ can then be done efficiently through Lagrange interpolation, because the
components o are points on a polynomial of degree at mbst 1, and since the components used
are correct. When we say that interpolate a polynomial of degrée— 1 from a set with at least
elementswe mean to pick any elements in the set and to reconstruct the polynomial.

This code is actually a variant ofReed-Solomon Codé can be used for error correction as well.
It achieves a minimal distance af — k£ + 1, and according to th&ingleton boundthis distance is
optimal. Recall that an error-correcting code with minimal distalwce- 1 can correct up te errors.
For the above code, a polynomial-time error-correcting procedure can be given, but special variants of
Reed-Solomon codes allow for much more efficient error correction [Bla83]. In particular, for such a
Reed-Solomon Code with minimal distanéethere exist efficient algorithms correctiagerrorsand s
erasures, as long @s> 2¢ + s + 1.

A file F can be modeled as a vector of lengtlover some finite field7F'(¢), whereg is either a
prime or a prime power, so that it can be encoded by making use/afrg-erasure code. Following
the idea of Rabin [Rab89], each one of theervers receives one of theblocks of the encoded file.
A drawback of this approach is that it requires< n — ¢, since up ta servers might refuse to provide
their own blocks during retrieval. Thus, to store large files one has to choose g lavgiEh might be
very inefficient and unpractical. A solution for this is the following technique, which westating.
Assume a larger file is given, that is a vecfore GF(q)* for k' > k. We can split the file in := [%’1
flesF7,j =1,...,r, oflengthk each. Then, each file’ is encoded t@:’ using a(k, n)-erasure code.
Finally, we define each block of the encodiig= [G1, . ..,G,] of F as

G, =|[Gj,...,Gi] i=1,...,n. (4)

Clearly, k blocks of G are enough for reconstructirig.
However, note that in the following we simply model files as vector&'#(¢)* for compactness
reasons, even though it is not difficult to see that all results hold when striping is used.

3.2 Asimple scheme

As mentioned in the section on related work, the protocol of Garay et al. [GGJR00] can easily be
adapted to implement a simple asynchronous verifiable information dispersal scheme, which we call
asynchronous GGJR he idea is to replace the gateway byasynchronous reliable broadcast protocol
started by the client to senfl, which makes the scheme robust against corrupted clients. \Wtien
delivered to a server, it applies &m—t, n)-erasure code and computes the list of the hashes of all blocks

using a collision-resistant hash functiéh It keeps its own block in memory together with the list of

hashes and erases all other blocks. We can usRélmeve protocol given below withk = n — ¢ for

retrieval. It is easy to see that this implements an asynchronous verifiable information dispersal scheme.
In the analysis of this and other schemes, we assume that the size of the files to be stored is large

compared tox and|H|, in particular that 7’| > n?|H|. This assumption is reasonable afd > n?|H|

holds already for fileg” of size larger than 8kB, for example, when= 20 and|H| = 160. Under this

assumption, the storage blow-up of the asynchronous GGJR scheme is asymptotically optimal, that is,

equal to-"; + o(1) < % + o(1). However, the communication complexity of its dispersal protocol is

O(n?|F|), which means that its communication blow-ug1én?).

3.3 The main scheme

The scheme presented in this section, caldD, consists of two protocolBisperse andRetrieve
for dispersal and retrieval, respectively. The dispersal protocol integrates the steps of broadcasting the
file and computing the erasure code with each other. It is similar in this respect to the asynchronous
verifiable secret sharing protocol of Cachin et al. [CKLS02]. We assume a collision-resistant hash
function H is given. Furthermore, every server maintains @&sociative arraysData and Verify,
whose indices are tag® and which can be accessed by all protocol instances. All unused entries in the
arrays are initialized once with the value

A client C; wanting to disperse a file with td@ encodes it as a vect¢f, ..., F,] by using the
(k,n)-erasure code of Section 3.1. Additionally, it computesfthgerprintsof the data, which are
represented by a vectdy := [Dy, ..., D,], whereD; := H(F;) for j = 1,...,n. Such hash function-
based fingerprints have been introduced for information dispersal by Krawczyk [Kra93].

Areliable broadcast protocol similar to the one of Bracha [Bra84] is then used to let the servers agree
on the vectoD and distributeF". In particular,C; initially sends to each servét; the corresponding
block F;, as well as the vectdd. Then, two rounds of message exchanges among all servers follow, in
which every message sent from a ser#to a serverP; contains, besideB, the blockF;. A server
accepts only messages containing blocks which are correct according lio this way, every server
sees enough blocks in order to reconstruct its own block (should it be missing) and to guarantee the
consistency of all blocks. If the servers agree on s@nehen servet?; stores it inVerify{ID] and
stores the block; in Data[ID]. Finally, it generates an output message and erases all local variables.
In order to retrieve a file, a client has to make sure it receives correct blocks from enough servers that
agree on somB.

A detailed description of thBisperse andRetrieve protocols is given in Figures 1 and 2, respec-
tively. We are going to prove the following theorem in the next section:

Theorem 3. AVID is a (k, n)-asynchronous verifiable information dispersal scheme ferl < k£ <
n — 2t. For k = n — 2t, the storage blow-up of the dispersal protocol is bounded ¥y (1), while the
communication blow-up i©(n) for the dispersal protocol an@(1) for the retrieval protocol.

3.4 Analysis of the main scheme

The proof has structural similarity with the analysis of the AVSS protocol of [CKLS02], since both
exploit similar ideas. We note that the proof also holds foadaptive adversarythat is, an adversary
that chooses up tbservers to corrupt adaptively during the execution of the protocol.

For the reliable broadcast of the vecldr we use the following standard lemma [Bra84]:

Lemma 4. Suppose an honest senirsends aeady -message containinB () and a distinct honest
serverP; sends aeady -message containinB?), thenD) = DU,

We now prove that the schem®/ID satisfies the properties of Definition 1.

Protocol Disperse for tag ID

initialization : /I ServerP;
for all D do
ep :=0,mp :=0, Ap :=0
uponreceiving(ID, in , disperse , F): Il ClientC;

compute a polynomiaf (z) of degree at most — 1 such thatf(j) = F; for all j € [1, k]
D := [H(f(1),..., H(f(n))]
forall j € [1,n] do
send(ID,send , D, F}) to P;
upon receiving a messagéD, send , D, F;) for the first time: /] Servep;
if H(F;) = D; then
forall j € [1,n] do
send(ID, echo, D, F;) to P;
upon receiving a messagéD, echo , D, F},,) from P,, for the first time: I/l Servep;
if H(F),,) = D,, then
Ap = Ap U{(m, F},,)}
ep:=e€ep +1
if ep = max {[2H] &k} andrp < k then
interpolatef (z) of degree at most — 1 from Ap
Fj = f(j) forall j € [1,n]
if H(F;) = D; holds for allj € [1,n] then
forall j € [1,n] do
send(ID,ready ,D, ;) to P;
else
output(ID, out ,abort)

upon receiving a messagéD, ready , D, F},,) from P, for the first time: Il Servep;
if H(F,,) = D,, then
Ap == Ap U{(m, F,,)}
p:=1p+1
if ep < max { [%M] ,k} andrp = k then
interpolatef (z) of degree at most — 1 from Ap
Fj = f(j) forall j € [1,n]
if H(F;) = D; holds for allj € [1,n] then
forall j € [1,n] do
send(ID,ready ,D, F;) to P;
else
output(ID, out ,abort)
else ifrp = k + t then
Verify{ID] := D
Data[ID] := F;
output(ID, out ,stored).

Figure 1: AVID - Dispersal protocol

10

Protocol Retrieve for tag ID

upon receiving(ID, in ,retrieve ,ID’): /I ClientC;
forall j € [1,n] do
send(ID, retrieve ,ID’) to P;
wait for k messagedlD, block , F, D) from distinct servers
with the saméD andD; = H(Fj)
let 7 be the set of servers from which sucblack -message has been received
interpolate a polynomiaf’(z) of degree at most — 1 from {(j, F}) : j € J}
Fl=[f'(1),..., f'(k)
output(ID, out ,retrieved | F’)
upon receiving a messagéD, retrieve ,ID’) from clientC,,,: Il ServerP;

if Data[ID’] #.L then
send(ID, block , Data[ID’], Verify{ID']) to C,,,

Figure 2: AVID - Retrieval protocol

Termination. The termination property is trivially satisfied: if the dealer is honest, the only way one
malicious server can potentially make an honest server not accept is by producing a collision with respect
to H, which can happen with negligible probability only.

Agreement. We define aready -messagé€lD,ready ,D, F},,) from P,, to be valid if and only if
D,, = H(F,,). Assume an honest server completes the dispersal protocolerifig/ID] = D. Then it
has received at leaktt ¢ valid ready -messages with the sarfie At leastk of these have been sent by
honest servers. Since thdshonest servers have serneady -message to all servers, all honest servers
receive at least valid ready -messages witlD. But then every honest server sends a vedigdy -
message to every other server, except with negligible probability. This can be seen as follows: if this
is not true, then there has to be some honest server that abort®; betthe server which completed
the dispersal, and le?; be an honest server that aborts. Sifg@ever aborted, there is a polynomial
f@(x) of degree at most — 1 such thatH (£ (m)) = D, for all m = 1,...,n. But sinceP,
indeed aborts and because of Lemma 4, there must b@eng,,) € Ag) (the setdp of P;) such that
f@D(m) # F,, andH(F,,) = H(f%(m)). But this means the adversary has found a collisionffor
which can only occur with negligible probability. In the end, every honest server reeceivés> k +t
valid ready -messages, and by Lemnbathey all contairD.

Availability. Sincek honest servers have accepted, they also hold the same verification information
D, and thus the client is always able to reconstruct some value, bekcauset 1.

Correctness. LetJ C {1,...,n} be the set ok honest servers which complete the dispersaf’of
We define
Gi:=Y MN(i)-F; fori=1,...,n.
JjeT

Moreover,GG := [Gy, ..., Gyl

Assume an honest client has shared affilendF" # G. Then everyecho -message from an honest
P; to an honesP; containsD and F; as computed by the honest client. If the servergisomputed
their F; from theseecho -messages, theR; = F;. But sinceG # F, there must be an honest server
Pj with F; # Fj;. Thus, it must have received a vallig, # F,,, from a corrupted serveP,, (either in
anecho - or in aready -message), which it accepted. Since cledflyF,,,) = H(F],), the adversary
has found a collision fof{. But this can happen with negligible probability only.

11

For the second point, assume an honest client reconstructs aWVajéé€= using some seff’ # J
of k servers. Sincé& > t + 1, the value ofD the client chooses must be the unique one held by the
correct servers by Lemma 4. On the other hand'if£ GG, there has to be some valég, received by
some serveP,,, m € J' — J,with |, # G,,, butH(F),) = D,,. But we also havé{(G,,) = Dy,
except with negligible probability, since in order for a ser¥&rin J to accept, itsF; must be on a
polynomial f9) (z) of degree at most — 1: thus, in order for two honest servers to accept shares which
are on different polynomials the adversary must have found a collisiaH fétence, if the second point
is not satisfied, the adversary must have found a collisioiifagither in the dispersal protocol or in the
retrieval protocol.

Complexity analysis. As above, we assume that the size of the files to be stored is large compared to
n and|H|, in particular| F'| > n?|H|.

The message complexity of protoddisperse is O(n?) since the number of messages that every
honest server sends to every other server is bounded by a constant. All messages H%A/&SME!,
and thus the communication complexity of the dispersal protocﬁ](bsz% + n3|H|). The storage

complexity of the scheme %‘kﬂ + n?|H|. For the cas& = n — 2t, we obtain a communication blow-
up bounded byO(n) and a storage blow-up bounded By o(1). (Note that the storage blow-up is
suboptimal because &f< n — 2t.)

The message complexity of protodeétrieve is clearlyO(n). Since messages have S%é+n‘H’,
the communication complexity fdf = n — 2t is O(|F| + n?|H|). Recalling tha{F| > n?|H|, the
communication blow-up i©(1).

3.5 Reducing the storage and communication complexities

This section presents a more efficient information dispersal scheme &8llBdH, which reduces the
storage and communication complexities with respeéiiD.

We previously assumed thgf| > n?|H| in the complexity analyses and have ignored the size of
the hashes. But it makes sense to reduce the number of hash values that are used by the protocols and
need to be stored. We base our approach on so-csli&tlle trees an approach which has also been
suggested in by Alon et al. [AKKO04]. (That paper improved an earlier work of the same authors based
on expander graphs [AKK00].)

Assumen = 2! for somel € N and that some hash functidiiis given. The (binaryhash treeof a
vector[Fy, ..., F,] € GF(q)" is a complete binary tree with leaves. To every nodeof tree, a value
val(v) is assigned. Each leaffor i € [1,n], gets the valueal(:) := H(F;), while every inner node
v with childrenv; andw; receives the valueal(v) := H(val(vy),val(vs)). Let nowi € [1,n], then
there is a unique path from the ragt of the hash tree té which we denote by, = vy, v1,...,v, =1
and which has length= log n. For every; € [1,1], letw; be the unique child node af;_; such that
w; # v; (thatis,w; is the uniquesibling of v;). Then we define théngerprint for a blockF; as

FP(i) = [val(wy), . ..,val(wy)]. (5)

Thus, for everyi € [1,n], F; € GF(q), fingerprintFP = [hq,...,] and value of the rook,, we
define a predicateerify(i, F;, F'P, h,) which is computed by the following code:
h:= H(F;)
for j := 1 downtol do
h := H(h, h;) or h := H(hj, h) depending on the unique path frarto r
return h = h,

Lemma 5. Let H be a collision-resistant hash function. Assume two valllesd with fingerprints
FP, FP'are given such thaterify(i, I, F'P, h,.) = verify(i, F}, FP’, h,) =true for some common
h,, thenF; = F!, except with negligible probability.

12

Proof. At least one collision on the path froirto v,. must be found. This can happen with negligible
probability only. O

Itis now clear that we can reduce the storage complexity if every séhatores just the fingerprint
FP(1) and the value of the root hagh. It is less clear that also the communication complexity can be
reduced, but it follows by replacinD by the root hash for providing agreement.

The improved schem&VID-H is now obtained by modifyingVID as follows:

e The client, after encoding, computes the hash trdé'af. . ., F,].

e The underlying reliable broadcast protocol now is used to agree on the root hash value. In every
send, echo andready -message, the root hash and the fingerprint of the block are sent instead
of D.

e The index of the counters e and of the se#d is notD but the root hash.

e Checking of the hashes, i.e., the test th4tF;) = D,, is replaced by theerify predicate above.
When a server reconstructsfg, then it also reconstructs the corresponding hashes on the path
from j to the root, and uses then therify-predicate.

e Only the fingerprint and the root hash value are stored apart from the data block. For retrieval,
both are added to thelock -message, and the client selects among the responses according to
the root hash value.

Itis easy to see that the proof of Theorem 3 can be adapted to the improved protocol, based on Lemma 5.

Complexity analysis. The message complexity is stif?(n?). On the other hand, every message
has now sizé%‘ + (logn + 1)|H|. For this reason, the communication complexity is improved to
O(nQ% + n?logn|H|). Furthermore, the storage complexity is reduced@ + O(nlogn|H]).
Choosingk = n — 2t = ©(n), the communication complexity & (n|F| + n?logn|H|). Observe
that|F'| = O(klog q), since every component can be encoded uélipg ¢) bits. But because > n,
|F| = Q(nlogn). Hence, by substituting the logn term, the communication complexity can be
written asO(n|F|), under the assumption th@d | is a small constant. In this case, the communication
blow-up isO(n).

3.6 A communication-efficient protocol for reliable broadcast

Given an asynchronous verifiable information dispersal scheme, it is possible to derive from it a protocol
for asynchronous reliable broadcast: to broadcast a valube dealer starts the dispersal protocol for
afile F := m, and when a server accepts, it immediately starts the retrieval protocol in order to deliver
a valuem’. Using theAVID-H scheme of the previous section, we obtain the following result:

Theorem 6. Provided that < =, there exists an asynchronous reliable broadcast protocol with message
complexityO(n?) and communication complexi€y (n|m| + n?log n|H]|).

Note that with theAVID-H scheme, only a slight modification of ttidisperse protocol already
provides reliable broadcast because the servers do not need to iRattieve protocol for delivering
m’. Instead of storing one block of a file with the corresponding fingerprint, each server simply outputs
the whole reconstructed file = [F}, ..., F;] as the delivered messagg.

In Appendix A, this protocol is compared to related protocols for asynchronous reliable broad-
cast [Bra84, CKPSO01].

13

3.7 Further optimizations

We present now two further optimizations for tA€ID scheme. Note that these two ideas are mutually
exclusive.

Achieving the optimal storage blow-up. In Section 3.2, we have explained how a simple asyn-
chronous verifiable information dispersal scheme with asymptotically optimal storage blow-up can be
derived from an asynchronous reliable broadcast protocol. Therefore, by making use of the reliable
broadcast protocol provided by tBésperse protocol (see Section 3.6), instead of Bracha'’s protocol in
the construction of Section 3.2, we can realize an asynchronous verifiable information dispersal scheme
with the message and communication complexities ofAWtD-H scheme of Section 3.5, but whose
storage blow-up is asymptotically optimal. We call this sché&wD-RBC.

A possible drawback of this approach is of computational nature: erasure-coding has to be applied
twice to the data. In the first step, &m— 2¢, n)-erasure code is used for the broadcast, and in the second
step, ann — t,n)-erasure code is used in order to achieve the optimal storage blow-up.

Getting rid of the hashes fort small enough. In Section 3.5 we have seen how the communication
complexity can be reduced to roughty(n|F'|). However, for what regards the storage complexity,

one might object that the stored information for the hashes might still be large enough to cause some
problems. In this section, we show a technique for eliminating the hashes completely at the cost of lower
resilience. The storage blow-up is in general larger than when hashes are used, but the dependency on
|H | is completely eliminated.

The approach has been suggested in [Kra93] and can be translated to our setting with some care.
We will make use of error correcting codes, for example of a Reed-Solomon code allowing efficient
decoding when errors and erasures are present. Using the error correcting properties of such a code,
missing blocks are considered to be erasures and altered blocks are corrected.

When retrieving the blocks from a server, we can only expect to get atrmosif them. Since the
adversary can arbitrarily slow down the messages ftdranest servers, up tomodified blocks may
be received. Thus, up toerrorsandt erasures must be corrected. This requires a code with a minimal
distance ofn — k +1 > 2t +t + 1, thatisk < n — 3t (which requireg < 7, sincek > t).

The improved scheme, callé&V/ID-ECC, is obtained by modifying th&VID scheme as follows:

1. We sett = n — 3t, and use the same dispersal protocol, but encoding the data with an appropriate
Reed-Solomon code. At the end, only the blocks are stored, and not the hashes/fingerprints.

2. The retrieval protocol is modified to wait far— ¢ blocks, without any checking. After that, error
correction is applied.

The scheme achieves a storage blow-ug8f; < 4, which is constant and does not depend on any
extrao(1)-term.

4 Achieving confidentiality

Up to here we have used cryptography only for the sake of making the protocol robust against Byzantine
parties. The second requirement on information dispersal defined in Sectiamo2fidentiality This
property could, at a first glance, be satisfied very easily. $&t= (SG SE SD) be a symmetric
cryptosystem. A client who wants to store a filecan simply stor&H K, F') using a keyK that it keeps

to itself. However, this works only when no other client should ever retrieve the file; the client also has
to make sure that the key is not lost. In practice, the key should be stored by the system therefore, and
more sophisticated access policies are needed. Of course, it is not possible to simply store the key with
the dispersal protocol directly, since this would violate confidentiality. Garay et al. [GGJRO00] proposed
a solution for this on which our scheme builds.

14

4.1 Threshold cryptography

The protocol of Garay et al. [GGJR00] assumes that every client is associated with a public key for
a threshold public-key encryption scheme and that the corresponding secret key is shared among the
servers. Although this design reduces the trust assumptions on the client, the protocol needs a homo-
morphic encryption scheme that is “blindable” and therefore insecure against chosen-ciphertext attacks.
This is a consequence of the system model which mandates the use of a gateway for controlling access
to the servers.

In our model, we take a simpler approach and associate a threshold public key with the group of
servers such that only one decryption key is shared by the system. However, we need a hon-malleable
threshold cryptosystem, i.e., one with security against adaptive chosen-ciphertext attacks.

An (k,n)-threshold cryptosysteid consists of the following elements [SGO02]:

1. A probabilistic key generation algorithrthat generates a triplPK, VK, SK), wherePK is the
public key VK theverification keyandSK = [SK;, .. ., SK;] is the list ofprivate keys

2. A probabilistic encryption algorithnE' that takes as input a public k&K, a message:, and a
label ¢, and outputs a ciphertext= E(PK, m, /).

3. A probabilistic decryption-share algorithi® that takes as input a private k8Y;, a ciphertext,
and a label, and outputs aecryption sharer = D(SK;, ¢, {).

4. A share verification algorithnverify that takes as input the verification K&, a ciphertext, a
label?, and a decryption share and outputserify(PK, ¢, ¢, o) € {true ,false }.

5. A combining algorithntombine that takes as input the verification Kéi, a ciphertext, a label
¢, and a sefS of k decryption shares, and outputs a message combine(VK ¢, ¢, S), or the
symbol L.

Note that the ciphertext depends®rmin encryption of the same message with two different labels leads
to two distinct ciphertexts. We assume that the lahben be efficiently extracted from the ciphertext.

A threshold cryptosystem isorrect if for any messagen and label?, given a ciphertext :=
E(PK,;m,¢) and a setS of k valid decryption shares computed by= D(SK;, c,¢), we havem =
combine(VK¢, ¢, S).

In order to define security, consider the following game call€@CA2, where an adversary in our
system model statically corrupts< k servers.

1. The key generation algorithm is run by a trusted party.

2. The adversary interacts with the uncorrupted servers in an arbitrary fashion, feeding them cipher-
texts and obtaining decryption shares.

3. The adversary chooses two cleartexisandm;, where|mgy| = |m;/|, as well as a label, and
gives them to aencryption oracle The oracle chooses a biat random, encrypts;,, and returns
the resulting ciphertext.

4. The adversary continues to interact with the uncorrupted parties, feeding them ciphérexts
and receiving decryption shares.

5. The adversary outputs a bit

The threshold cryptosystemsecure against adaptive chosen-ciphertext attbick any polynomial-
time bounded adversary playif@CCA2, Pr[b = b] < % + neglx), where negl is a negligible function
in the security parameter.

We can make use of the threshold cryptosystem proposed by Shoup and Gennaro [SG02], which
is secure against chosen-ciphertext attack (in the random-oracle model), based on the hardness of the
computational DH-Problem.

15

4.2 The scheme

We propose the following scheme, calleVID, for asynchronous verifiable information dispersal with
confidentiality. It consists of two protocot®isperse andcRetrieve and is based on the schedyéID
from Section 3.

We use a symmetric cryptosyste®d = (SG SE SD) as well as a threshold cryptosystémand
assume that an honest dealer has set up the keys for the threshold cryptosystem, i.e., generated a triple
(PK, VK, SK) and share®Kamong the servers such thatknowsSK; fori =1,...,n

The cDisperse protocol works as follows. The client encrypts the file using the symmetric cryp-
tosystem with an ephemeral kéy and encryptd< using the threshold cryptosystem. It distributes the
ciphertext of the file using thBisperse protocol and broadcasts the encrypted ephemeral key together
with the access list. to the servers with a reliable broadcast protocol. During retrieval, every server
sends a block of the file together with a decryption share for the ephemeral key to the client.

The details are given in Figures 3 and 4. The dispersal protocol callBiiperse protocol of
AVID and also uses a protod@BC for reliable broadcast according to Section 2.4. However, using the
AVID scheme has the advantage that the reliable broadcast protocol can be integrateddvipetise
protocol and does not cause any additional messages. We also stress that the proposed construction is
general, and any other asynchronous verifiable information dispersal scheme can be used instead of
AVID. Two additional associative arrayéeyandAccessare used and can be accessed by all protocol
instances; they are also not erased at the end of the executionadigperse protocol.

Theorem 7. Provided€ is a (¢ + 1, n)-threshold cryptosystem that is secure against adaptive chosen-
ciphertext attack, and provideS¢ is semantically secure&AVID is a (k, n)-asynchronous verifiable
information dispersal scheme with confidentiality for 1 < k < n — 2t.

Proof. The proof forterminationand agreementfollows directly from the one of thé&VID scheme
and the properties of reliable broadcast. Recall, in the following, that we assume the channels are
authentic. Foavailability, observe that honest servers agree on a common access list, and therefore all
honest servers will either be sending some value or they will be rejecting the retrieval by sending an
unauthorized -message. The correctness conditions of the cryptosystems imply that the client can
retrieve the file.Correctnesslso follows easily from the correctness conditions of the AVID scheme
and the cryptosystems, as well as from the properties of reliable broadcast. Moreover, the authenticity
of the channels guarantees that non-authorized clients are not able to retrieve a file.

To showconfidentiality assume (toward a contradiction) that there is an adverédnyishing the
CONF game guessing with non-negligible probability ove%. Making use of a hybrid argument,
we show that we are able to construct a simulator which finisheS@@&A2 game for€ with a non-
negligible advantage or we construct a simulator which terminateS$hgame forS€ with a non-
negligible advantage. It is clear thainfidentialitythen follows.

Provided that for4, Pr[b = 13] > % + ¢, wheree = m we can infer by a standard argument that
‘Pr[iyzl\bzl}—Pr[l3:1|b:OH22€. (6)

LetD(ID, 1, K, F, L) be the event where cliedt; disperses the encrypted filkand broadcasts the key
K and the access ligt, making use of ta¢D. Let K, be such thaf}, := SE K, F3) forb € {0,1}, and
let ' be chosen according ®G but independently of; and K». Furthermore, denote(K, F) :=

Pr [?) = 1’D(ID, i, K, F, L‘)} . Equation 6 yields:

p(Ko, Fo) — (Klaﬁl)‘

‘ (Ko, Fy) — (K,Fo)]+\p(K,ﬁ’o)—p(K,Fl)‘Jr\p(K,Fl)—p(Kl,Fl). 0

One of the three terms of this last sum must be therefore at %eaéﬁence, we can distinguish three
cases:

16

Protocol cDisperse for tag ID

upon receiving(ID, in ,disperse | F, L): /I ClientC;
K :=S¢1")
F :=SHK,F)

K = E(PK K, ID)
dispersel” using theDisperse protocol with tagD |disp
broadcas{ X, £) to all servers using protoc®BC with tagID |bc

upon delivering(K’, £') from protocolRBC with tagID|bc

and having completed the dispertaldisp: Il ServerP;
if Key/ID] = AccesHD]| = then

Key(ID] := K’

AccesfiD] := [/

output(ID, out , stored)
else

output(ID, out ,abort)

Figure 3: cAVID - cDisperse protocol

Protocol cRetrieve for tag ID

upon receiving(ID, in ,retrieve ,ID’): /I ClientC;
forall j € [1,n] do
send(ID, cretrieve ,ID’) to P;

wait for k messageéD, block , F/,0;, D, K) from distinct servers?;
with the sameD, K) such thatD; = H(F}), andverify(VK, K, ID’,0;) = true ,
or k messageélD, unauthorized) from distinct servers

if k block -messages have been receitteeh
let J the set ofk servers for which a corretliock -message has been received.
S={oj:jeT}
K := combine(VK, K,ID,S)
interpolate a polynomiaf’(x) of degree at most — 1 from {(j, F}) : j € J}
F=[f'(1),..., f'(k))
output(ID, out ,retrieved ,SD(K, F"))

else
output(ID, out ,retrieved 1)

upon receiving a messagéD, cretrieve |, ID’) from clientC,,: /] ServerP;
if m € AccesfiD’] then
o; == D(SK;,Key[ID'],ID’)
send(ID, block , Data[ID’|disp], o;, Verify{ID'|disp|, KeylI D']) to D,,
else
send(ID, unauthorized) to C,,

Figure 4: cAVID - cRetrieve protocol

17

Case 1: [p(Ko, o) — p(K, Fp)| > 2e.

We construct a simulator which achieves an advanl?gmer% for the TCCA2 game of the
threshold cryptosyste. The simulator works as follows: during setup, it runs the key generation
algorithm of€. Then it simulates th€ONF game to the adversary by controllingn — ¢ honest
servers and any honest client. Whenever a decryption share is needed, the decryption is performed
through a request to the corresponding honest server iM@@A2 game. Whemd chooses

and Fy, L, ID, andi, the simulator additionally chooses two keks, K7 independently and
according toSG It then sendd<,,K; and the labelD to the encryption oracle of thECCA2
game, receiving a ciphertext,. Moreover, letFy, := SH K, ;). Now, the simulator simulates

C; dispersingFy with tagID|disp and broadcastingk’,, £) with tagID |be. That is, the client;
chooses a random bite {0,1}. In caseh = 0, C; stores the fil& regularly. On the other hand,

if b = 1, C; stores the encryption on an independent key, which is different from the one being
use to encrypf, with SE. Finally, whenA outputsb, the simulator outputs. Observe that the
guarantee of th@ CCA2 game is satisfied, since a retrieval fbris never started, and the tHg

is unigque for every dispersal.

Case 2: |p(K, Fy) — p(K, Fy)| > 2e

For this case, we construct a simulator which achieves an advant@gtm/e’r% in theSS game
for S€. The simulator works as follows: it simulates— ¢ honest servers and all honest clients
in the CONF game toA. It first initializes the threshold cryptosystefi) acting as the honest
dealer. WherA chooses two messagés, F1, a taglD and an access ligt, the simulator feeds
them to the encryption oracle of tt8S game, receiving a cipherteXt, back. The simulator
also generates independently a random keynd encrypts it using the public key &fwith
label ID, obtaining the ciphertexk. It simulates then clienf; dispersingE}, with tag ID|disp
and broadcastingk’, £) with tag ID|bc. That is, for both values df, the clientC; encrypts a
different, independently chosen kéy instead of the key used for the encryptionfgf Finally,
when A outputsb, the simulator outputs.

Observe that in this case only semantical security against passive attacks is ne&dedinge
at every use of the symmetric cryptosystem a new secret key is generated.

Case 3: This case is symmetrical ©ase 1

The desired advantages can in all cases be computed by a standard argument. O

Complexity analysis. The communication complexity depends on both the communication complex-
ities of the disperse and the reliable broadcast protocols. We assume the reliable broalicastiaf
takes place by appending the two values to every message Ditperse protocol. In general, they
are both very small, thus there is no need for a more efficient broadcast. For instance, the access list
can be given through some succinct representation (say, through a small program), rather than as a large
set of indices of clients. In particular, we assupf¢ > max{n?|K|,n?|L|, nlogn|H|}. Assuming
k = n — 2t and that we are using the scheA¥ID-H of Section 3.5, the communication complexity of
cDisperse is O (nz(%l +logn|H| + |K| + |£|)>, and the communication blow-up of tb®isperse
protocol isO(n). The storage complexity & (n('—i' +logn|H| + |K| + |£|)> , Wwhich means that the
storage blow-up is"5; + o(1).

Furthermore, making use of the scheMAD-RBC of Section 3.7, the storage blow-up can even be
reduced to-"5 + o(1).

18

Applications. ThecAVID scheme can be used in order to directly derive a protocaggnchronous
verifiable dual-threshold secret sharifgee [CKLS02]) fort+1 < k < n—2t which is storage-efficient
(that is, which leads to very short shares), using the same approach as [Kra94].

We assume now there is just a set of serdps, ..., P, } (that is, each party can be senard
client), and up ta < % of them can be corrupted by tistatic adversary. A dealer wanting to share
a secret simply invokes the protoariDisperse for storing the secret, choosingyin such a way that
every party is allowed to read a secret. Now it is clear that no coalition of atinsesters can gain any
information (in a computational sense) about the shared secret, but every set of atdeasirs has
enough information in order to reconstruct the secret.

This leads to shares of sii? + [, wherel is the size of the key chosen in thBisperse protocol.

The communication complexity '@(n2%).

References

[AKK T00] Noga Alon, Haim Kaplan, Michael Krivelevich, Dahlia Malkhi, and Julien P. Stern. Scal-
able secure storage when half the system is faulty. In Ugo Montanaé,DJoB. Rolim,
and Emo Welzl, editorsProc. 27th International Colloquium on Automata, Languages
and Programming (ICALR)volume 1853 ofLecture Notes in Computer Sciengeges
576-587. Springer, 2000.

[AKK *04] Noga Alon, Haim Kaplan, Michael Krivelevich, Dahlia Malkhi, and Julien P. Stern. Ad-
dendum to scalable secure storage when half the system is féftbymation and Com-
putation 2004. To appear.

[Bla83] Richard E. BlahutTheory and Practice of Error Control Codeaddison-Wesley, Reading,
1983.

[Brag4] Gabriel Bracha. An asynchronous [(n - 1)/3]-resilient consensus protocétrom 3rd
ACM Symposium on Principles of Distributed Computing (POp@pes 154-162, 1984.

[CKLS02] Christian Cachin, Klaus Kursawe, Anna Lysyanskaya, and Reto Strobl. Asynchronous
verifiable secret sharing and proactive cryptosystemsPréic. 9th ACM Conference on
Computer and Communications Security (CGQfajges 88—-97, 2002.

[CKPS01] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and efficient
asynchronous broadcast protocols (extended abstract). In Joe Kilian, Adit@ances in
Cryptology: CRYPTO 200Qvolume 2139 ofLecture Notes in Computer Sciengages
524-541. Springer, 2001. Full version available fr@myptology ePrint ArchiveReport
2001/006 http://eprint.iacr.org/

[Fel87] Paul Feldman. A practical scheme for non-interactive verifiable secret sharifgodn
28th IEEE Symposium on Foundations of Computer Science (FQa8gs 427-437,
1987.

[GGJROO] Juan A. Garay, Rosario Gennaro, Charanjit Jutla, and Tal Rabin. Secure distributed storage
and retrieval. Theoretical Computer Scienc@43(1-2):363—-389, 2000.

[GWGRO04] Garth R. Goodson, Jay J. Wylie, Gregory R. Ganger, and Michael K. Reiter. Efficient
Byzantine-tolerant erasure-coded storagePioc. International Conference on Depend-
able Systems and Networks (DSN-20@é&ges 135-144, 2004.

[Kra93] Hugo Krawczyk. Distributed fingerprints and secure information dispers&rdo. 12th
ACM Symposium on Principles of Distributed Computing (POp@pes 207—-218, 1993.

19

[Kra94] Hugo Krawczyk. Secret sharing made short. In Douglas R. Stinson, eddaances
in Cryptology: CRYPTO '93volume 773 ofLecture Notes in Computer Sciengmges
136-146. Springer, 1994.

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals problem.
ACM Transactions on Programming Languages and Syst{85382—-401, July 1982.

[Ped92] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret shar-
ing. In Joan Feigenbaum, editgdvances in Cryptology: CRYPTO '9dolume 576 of
Lecture Notes in Computer Scienpages 129-140. Springer, 1992.

[Rab89] Michael O. Rabin. Efficient dispersal of information for security, load balancing, and fault
tolerance.Journal of the ACM36(2):335-348, 1989.

[SGO02] Victor Shoup and Rosario Gennaro. Securing threshold cryptosystems against chosen ci-
phertext attackJournal of Cryptology15(2):75-96, 2002.

A Reliable broadcast and verifiable information dispersal

Given the model introduced in Section 2.1, a protocolfgynchronous reliable broadcaista protocol
where a client (called dealer broadcastsa messagen and all the servers mageliver a valuem’.
Such a protocol satisfies the following properties:

Validity: If an honest dealer broadcasts a messagsome honest server eventually delivers
Agreement: If some honest server delivers a messaggthen all honest servers eventually deliver

Authenticity: Every honest server delivers at most one messag®loreover, if the dealer is honest,
m was previously broadcast by the dealer.

Termination: If the dealer is honest, then all honest servers eventually deliver a message.

Note that in contrast to the usual definition of reliable broadcast, where the dealer belongs to the set of
servers, the dealer is a client in our context. This modification does not actually cause any problems, and
existing protocols for reliable broadcast can be easily adapted in order to satisfy this new requirement.

The standard protocol for asynchronous reliable broadcast has been presented by Bracha [Bra84].
When broadcasting a message this protocol has message complexi®fn?) and communication
complexityO(n?|m|). Note that the message complexity is actually optimal, and we cannot expect to
achieve anything better.

Bracha's protocol has been improved by Cachin et al. [CKPS01] using a hash fuHgtioorder to
reduce the communication complexity in@gtimistic setting That is, if messages among honest parties
arrive in time and if the servers controlled by the adversary are not actively interfering with the execution
of the protocol, the communication complexity is boundedbfn|m| + n? H|), where| H| is the size
of the hash function output. On the other hand, in the worst case, that is, if the corrupted servers cheat
actively and the network is slow, the communication complexity can be as high(a$(|m| + |H|)),
and no improvement with respect to Bracha’s protocol is achieved.

In Section 3.6 we showed that a communication-efficient reliable broadcast protocol can be derived
from theDisperse protocol of theAVID-H scheme for asynchronous verifiable information dispersal.
This protocol has communication complexity(n|m| + n?logn|H]|). In contrast to the optimistic
protocol of Cachin et al. [CKPS01], the communication complexity does not dependTdrerefore,
our protocol has a much smaller communication complexity than the optimistic protocol in the worst
case and in any case an only slightly higher complexity than the optimistic protocol in the best case.

As a final remark, note that the since asynchronous verifiable information dispersal can be derived
from asynchronous reliable broadcast as explained in Section 3.2, and because the converse also holds
(as shown in Section 3.6), the two problems are equivalent.

20

