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Abstract

Information dispersaladdresses the question of storing a file by distributing it among a set of servers
in a storage-efficient way. We introduce the problem ofverifiableinformation dispersal in anasyn-
chronousnetwork, where up to one third of the servers as well as an arbitrary number of clients
might exhibit Byzantine faults. Verifiability ensures that the stored information is consistent despite
such faults. We present a storage- and communication-efficient scheme for asynchronous verifiable
information dispersal that achieves an asymptotically optimal storage blow-up. Additionally, we
show how to guarantee the secrecy of the stored data with respect to an adversary that may mount
adaptive attacks. Our technique also yields a new protocol for asynchronous reliable broadcast that
improves the communication complexity by an order of magnitude on large inputs.

1 Introduction

With the increasing availability of fast networks, distributed storage systems have become an attractive
solution for managing large amounts of information. New technologies such as NAS and SAN connect
storage devices directly to clients. This development also introduces new security and dependability
problems because the devices may exhibit failures or become a target for attacks, which are not linked
to the clients.

With this background, we consider following problem: Some data has to be distributed by aclient
among a set ofn servers, of which up tot might be faulty exhibitingByzantinebehavior (that is, they
may deviate arbitrarily from the protocol), in such a way that clients can always recover the stored data
correctly, independently from the behavior of the faulty servers. One trivial but inefficient solution is to
usereplicationsuch that every server keeps a copy of the data. The classic alternative, as proposed by
Rabin [Rab89], is aninformation dispersal algorithm(IDA): using anerasure code, the data is split into
blocks, so that each server holds exactly one block, and so that only a subset of the blocks is needed in
order to reconstruct the data.

A protocol for information dispersal based on IDA tolerating Byzantine servers has been proposed
by Garay et al. [GGJR00]. It relies onsynchronousnetworks, which are adequate for tightly coupled
nodes such as clusters, but unrealistic for geographically distributed or heterogeneous systems. An
asynchronousnetwork model is more appropriate for such settings.

One issue that has not received much attention so far is the presence ofByzantine clients. A first
solution for erasure-coded storage in an asynchronous network that prevents some problems caused by
faulty clients has recently been proposed by Goodson et al. [GWGR04]. However, it relies on correct
clients to establish a consistent state across the servers. We consider the consistency of the service state
to be a desirable goal in order to protect innocent clients from obtaining inconsistent values, although
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one may also argue, from a client-oriented perspective, that problems caused by faulty clients such as
inconsistently stored data do not hurt the system.

In this paper, we introduce the notion ofverifiability for information dispersal inasynchronous
networks with a computationally bounded adversary. Intuitively, verifiability means that whenever the
honest servers accept to store some data, then the data is also consistent and no two distinct honest clients
can reconstruct different data. This notion of verifiability originates in the related context of secret
sharing, where various protocols forverifiable secret sharingexist, both in synchronous [Fel87, Ped92]
and asynchronous networks [CKLS02].

We propose a new scheme for asynchronous verifiable information dispersal that is also storage- and
communication-efficient and achieves optimal resiliencet < n

3 . It combines an asynchronous reliable
broadcast protocol with erasure coding and achieves a communication complexity ofO(n|F |) bits for
storing a fileF , which is an order of magnitude more efficient than what results from the previously
known approach, which needsO(n2|F |) bits. The storage blow-up of the scheme, i.e., the storage space
needed in relation to|F |, is asymptotically optimal.

Several optimizations of the scheme are presented, including one that uses error-correctingcodes
(ECC) for lowering the storage requirements; one of the optimized schemes leads directly to a commu-
nication-efficient protocol forasynchronous reliable broadcastwith Byzantine faults. For broadcasting
a large messagem, this protocol communicates onlyO(n|m|) bits instead ofO(n2|m|).

We also consider how to provideconfidentialityfor the stored data. Clients might want to store data
that should only be read by authorized users. We present an extension of our asynchronous verifiable
information dispersal scheme that incorporates a threshold cryptosystem for secrecy, but maintains the
communication and storage efficiencies of the scheme without confidentiality.

1.1 Related work

Erasure codes are well known in coding theory [Bla83]. Rabin’s work [Rab89] introduces the concept
of information dispersal algorithms (IDA) for splitting large files, but does not address protocol aspects
for implementing IDA in distributed systems.

IDA is extended by Krawczyk [Kra93] using a technique calleddistributed fingerprintingin order
to ensure the integrity of data in case of alterations of the stored blocks by malicious servers. The same
idea is subsequently improved by Alon et al. [AKK+00, AKK+04].

Garay et al. [GGJR00] propose an information dispersal scheme for synchronous networks. Their
model does not allow Byzantine clients, even though some attacks are tolerated. A key concept is the so-
calledgateway, an honest party through which clients access the servers comprising the storage system.
The gateway is actually implemented by one of the servers and might be corrupted, but additional
measures prevent it from causing too much damage: encryption hides the data from the gateway and a
time-out mechanism rotates the gateway function to another server, should the first server not respond
properly and in time. Clients only communicate with the gateway. Because of its inherent synchrony,
this protocol cannot be translated to an asynchronous network.

The dispersal protocol of Garay et al. consists of two steps: first, the file is broadcast to all servers;
then every server applies a (deterministic) information dispersal algorithm, which yieldsn blocks, one
for each server. Every server stores its own block and erases all others. An asynchronous dispersal
protocol without secrecy is easily obtained from this by eliminating the gateway and implementing
the broadcast using an asynchronous reliable broadcast protocol that tolerates Byzantine faults, such as
Bracha’s protocol [Bra84]. We discuss this protocol in Section 3.2 and refer to it asasynchronous GGJR
below; it satisfies our verifiability property, but its communication blow-up isO(n2).

A solution for erasure-coded storage in an asynchronous network with robustness against Byzantine
clients has recently been proposed by Goodson et al. [GWGR04]. However, inconsistently written data
can only be detected at read-time; the content of the storage system is then rolled back to restore the
data to the last correctly written data. The major drawback of this approach is that retrieving data can
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Scheme Model Storage Blow-up Communication Blow-up

[GWGR04] t < n
4 , no verifiability n

n−3t + o(1) O(1)

asynchronous GGJR t < n
3 , verifiability n

n−t + o(1) O(n2)

AVID (this paper) t < n
3 , verifiability n

n−2t + o(1) O(n)

AVID-RBC (this paper) t < n
3 , verifiability n

n−t + o(1) O(n)

AVID-ECC (this paper) t < n
4 , verifiability n

n−3t O(n)

Table 1: Comparison of asynchronous information dispersal schemes for large files. Communication
blow-up refers to the dispersal protocol.

be very inefficient in the case of several failed write operations, and that consistency depends on correct
clients. The protocol requirest < n

4 .
Table 1 summarizes the performance of the schemes discussed so far in terms of their storage blow-

up and the communication blow-up of the dispersal protocol. They are compared with the main scheme
of the paper (AVID from Section 3.3), with the optimization using reliable broadcast (AVID-RBC, Sec-
tion 3.7), and with the variation using ECC (AVID-ECC, Section 3.7). In all schemes the communication
blow-up of the retrieval protocol isO(1) (for the scheme of Goodson et al. [GWGR04] this holds only
if no inconsistent data has been written).

Our main schemeAVID achieves a better storage blow-up and tolerates more corrupted servers than
the protocol of Goodson et al. [GWGR04], which has a better (i.e., constant) communication blow-up,
but does not provide verifiability. Obtaining verifiability seems to cause an increase by a factor ofΘ(n)
in the communication complexity. Intuitively, it seems plausible that every honest server has to see the
whole file in order to decide whether its block is consistent with the rest or not, but we are not aware of
any formal lower bounds.

1.2 Outline of the paper

In Section 2 we introduce our asynchronous network model with Byzantine corruptions and give a
definition for asynchronous verifiable information dispersal. Section 3 is devoted to presenting our
asynchronous verifiable information dispersal scheme calledAVID. Several optimizations are also pre-
sented in this section, and it is shown how to implement asynchronousreliable broadcastfrom verifiable
information dispersal. The verifiable information dispersal scheme with confidentiality, calledcAVID,
is described in Section 4.

2 Definitions

In this section, we first introduce our system model for describing asynchronous protocols. We then give
a definition for asynchronous verifiable information dispersal and a refined definition for information
dispersal with confidentiality. The complexity measures used in the analysis of our protocols and a few
basic tools are also introduced.

2.1 System model

We use a model which is similar to the one in [CKPS01], even though we adopt some simplifications.
The network consists of a set ofservers{P1, . . . , Pn} and a set ofclients{C1, C2, . . .}, which are

all probabilistic interactive Turing machines (PITM) with running time bounded by a polynomial in a
given security parameterκ. Servers and clients together are calledparties. There is anadversary, which
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is a PITM with running time bounded by a polynomial inκ. Servers and clients can be controlled by the
adversary. In this case, they are calledcorrupted, otherwise they are calledhonest. An adversary that
controls up tot servers is calledt-limited. We are not assuming any bounds on the number of clients that
can be corrupted. The adversary isstatic, that is, it must choose the parties it corrupts before starting
the protocol. Additionally, there is an initialization algorithm, which is run by some trusted party before
the system actually starts.

Every pair of servers is linked by asecure asynchronous channelthat provides privacy and authen-
ticity with scheduling determined by the adversary. In contrast to [CKPS01], we consider only a benign
adversary that may delay messages but will eventually deliver every message between honest parties.
Moreover, every client and every server are linked by a secure asynchronous channel.

Whenever the adversary delivers a message to an honest party, this party isactivated. In this case,
the message is put in a so called input buffer, the party reads then the content of its buffer, performs
some computation, and generates one or more response messages, which are written on the output tape
of the party.

Protocols can be invoked either by the adversary, or by other protocols. Every protocol instance is
identified by a unique stringID, called thetag, which is chosen arbitrarily by the adversary if it invokes
the protocol, or which contains the tag of the calling protocol as a prefix if the protocol has been invoked
by some other protocol. There may be several threads of execution for a given party, but only one of
them is allowed to be active concurrently. When a party is activated, all threads are inwait states, which
specify a condition defined on the received messages contained in the input buffer, as well as on some
local variables. If one or more threads are in a wait state whose condition is satisfied, one of these
threads is scheduled (arbitrarily) and this thread runs until it reaches another wait state. This process
continues until no more threads are in a wait state whose condition is satisfied. Then, the activation of
the party is terminated and the control returns to the adversary.

We distinguish betweenlocal events, which are eitherinput actions(that is, messages of the form
(ID, in , type, . . .)) or output actions(messages of the form(ID, out , type, . . .)), and otherprotocol
messages, which are ordinary protocol messages to be delivered to other parties (of the form(ID, type, . . .)).
All messages of this form that are generated by honest parties are said to beassociatedto the protocol
instanceID.

Whenever an output action is performed for one party, then the protocol terminates for this party,
that is all the threads of the same instance are stopped.

We use the following syntax for specifying our protocols. To enter a wait state, a thread executes
a command of the formwait for condition. There is a global implicitwait for statement that every
protocol instance repeatedly executes: it matches any of theconditionsgiven in the clauses of the form
upon condition block.

2.2 Asynchronous verifiable information dispersal

The basic data item one client wants to store in a storage system is afile. An asynchronous verifiable
information dispersal (AVID) schemefor a fileF consists of two protocols:

The dispersal protocol: A client starts this protocol as it decides to store a certain fileF in the storage
system provided by then servers. Some redundancy is added to the file, which is then split inton
different blocks, each one being stored by one of then servers.

The retrieval protocol: A client (not necessarily the same which has written the fileF ), wanting to
retrieve fileF , invokes this protocol in order to receive enough information from the servers to
reconstruct the fileF . Moreover, the retrieval protocol can be repeated as many times as necessary.

Note that we do not address the questions of concurrency and versioning. A fileF can be written
only once, but retrieved again and again. Since updates are not possible, concurrent reads and writes are
not a problem. Stored files are indexed using the tagID of the instance of the dispersal protocol which
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wrote them. Therefore, running the retrieval protocol forID simply means retrieving the file stored with
the instance of the dispersal protocol with tagID.

We say that a clientdispersesa file F for ID if it starts the dispersal protocol with tagID with a
file F as an input, that is, it is activated through an input action(ID, in , disperse , F ). Furthermore,
a server maycompletethe dispersalID if it terminates the dispersal protocol forID with some output
of typestored , and it mayabort the dispersalID if it terminates the protocol with an output of type
abort . However, a server might neither complete nor abort the dispersal. Finally, a clientreconstructs
a file F ′ for ID′ if it terminates the retrieval protocol for the file stored with tagID′ with an output
(ID, out , retrieved , F ′).

The verifiability property requires that either all servers complete the dispersal or no server com-
pletes the dispersal. This ensures that the servers always store consistent data once enough honest
servers have accepted. This is formalized in the following definition.

Definition 1. A (k, n)-asynchronous verifiable information dispersal scheme(k ≤ n) is composed by
a dispersal and a retrieval protocol which satisfy, for anyt-limited adversary, anyID, and any clientCi

starting the dispersal protocol forID, the following conditions, except with negligible probability:

Termination: If the clientCi is honest, then all honest servers eventually complete the dispersalID.

Agreement: If some honest server completes the dispersalID, then all honest servers eventually com-
plete the dispersalID.

Availability: If k honest servers complete the dispersalID, and an honest clientCj starts the retrieval
protocol forID, then it eventually reconstructs some fileF ′.

Correctness: If k honest servers complete the dispersalID, there exists a fixed valueG such that the
following holds:

1. If Ci is honest and has dispersed a fileF usingID, thenG = F .

2. If an honest clientCj reconstructsF ′ for ID, thenG = F ′.

In order use information dispersal in applications where information must be kept secret, a scheme
must satisfy stronger requirements. First of all, one has to define who may retrieve a stored file and
who may not, since we want that a file can be retrieved not only by the client who stored it. To this
end, every fileF is stored with an associatedaccess listL, consisting of the set of indices of the clients
allowed to retrieveF . We require that the adversary does not gain knowledge about the stored file unless
a corrupted client is in the access list of the file. The adversary may interact with the servers in arbitrary
ways apart from that, which allows it to mount the equivalent of an adaptive chosen-ciphertext attack.
This is captured by the following definition.

Definition 2. A (k, n)-asynchronous verifiable information dispersal scheme with confidentiality(k ≤
n) is composed by a dispersal and a retrieval protocol which satisfy, for anyt-limited adversary, anyID,
and any clientCi starting the dispersal protocol, the Termination, Agreement, and Availability properties
of Definition 1, as well as the following properties:

Correctness: If k honest servers complete the dispersalID, there exists a fixed valueG and a fixed
access listM such that the following holds, except with negligible probability:

1. If Ci has dispersed a fileF with access listL using ID and is honest, thenF = G and
L = M.

2. If Cj , j ∈M, is honest and reconstructsF ′ for ID, thenF ′ = G.

3. If Cj , j /∈M, is honest and reconstructsF ′ for ID, thenF ′ =⊥.
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Confidentiality: Assuming there exists at least one honest client, the adversary plays the following
game calledCONF:

1. The adversary interacts with the honest parties in an arbitrary way.

2. The adversary outputs two filesF0 andF1 such that|F0| = |F1|, the indexi of an honest
client, an access listL not containing any corrupted servers, and a (unique) tagID. Client
Ci (secretly) chooses a random bitb, and invokes thecDisperse protocol for storing the file
Fb with access listL and tagID.

3. The adversary continues to interact with the honest parties subject only to the condition that
no server inL starts a retrieval forID.

4. The adversary finally outputs a bitb̂.

The scheme satisfiesconfidentiality, if for all probabilistic polynomial-time adversaries playing
theCONF game,

Pr
[
b = b̂

]
≤ 1

2
+ negl(κ),

where negl is some negligible function in the security parameterκ.

Recall that in our model the adversary is allowed to invoke protocols, and thus to trigger input
actions for clients. Therefore, the condition in step 3 that no server in the access listL is allowed to
retrieve the file thatCi has stored withID is necessary, since the adversary could otherwise start the
retrieval forID and trivially obtain the file.

2.3 Complexity measures

We assume that parties can erase memory in the complexity analysis. This is justified by the fact that the
stored data has to be available over a longer time period and that we want to minimize the data stored
by the servers after completion of a dispersal protocol.

The following complexity measures are used in the analysis of information dispersal schemes. Com-
plexities are always defined with respect to a single instance of the scheme. (Recall thatassociated
messagesinclude only messages generated by honest parties.)

• The message complexityof a protocol is defined as the number of messages associated to an
instance of the protocol.

• The communication complexityof a given protocol is defined as the bit length of all messages
associated to an instance of the protocol.

• Thestorage complexityof an information dispersal scheme is the overall bit length of the informa-
tion stored in the memory of the honest servers after they have completed the dispersal protocol.

It is clear that the information dispersal scheme must have storage complexity at least|F | when a
file F is dispersed. The same holds for the communication complexity of the dispersal and the retrieval
protocols. We therefore also use the following, more compact complexity measures:

• Thestorage blow-upof an information dispersal scheme is the ratio of the storage complexity of
the dispersal protocol and|F |.

• The communication blow-upof a protocol (such as the dispersal or the retrieval protocol) that
is part of an information dispersal scheme is the ratio of the communication complexity of the
protocol and|F |.

The same definitions apply to schemes with confidentiality. Since we must always be able to reconstruct
the original data from the information provided byn− t servers, the storage blow-up cannot be smaller
than n

n−t .
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2.4 Tools

In the following, we will often refer to the problem ofasynchronous reliable broadcastin our system
model (which is also known as theByzantine generals problem[LSP82]). A protocol for reliable broad-
cast allows a sender to broadcast a messagem to all servers such that either all or no honest server
deliversm, even if the sender is faulty. A formal definition is provided in Appendix A. The standard
implementation for it is Bracha’s protocol [Bra84], which requiresO(n2) messages and has communi-
cation complexityO(n2|m|).

A collision-resistant hash functionis a functionH : {0, 1}∗ → {0, 1}h with the property that the
adversary cannot generate two distinct stringsx andx′ with H(x) = H(x′), except with negligible
probability. With a slight abuse of notation, we denote by|H| the bit-size of the range of the hash
function, that is,|H| := h. In practice,H could be implemented by SHA-1 (in this case,|H| = 160).

A symmetric cryptosystemis a tripleSE = (SG, SE, SD), whereSGis a key-generation algorithm,
andSEandSDare an encryption- and a decryption-algorithm, respectively, such that for all messages
m and all keysK generated according toSG, SD(K, SE(K, m)) = m. Observe the following game
played by the adversary, which we callSS:

1. The adversary chooses two messagesm0, m1, where|m0| = |m1|, and gives them to anencryp-
tion oracle.

2. The encryption oracle secretly chooses a secret keyK according toSGand a random bitb ∈R

{0, 1}. It then returns aciphertextc := SE(K, mb) to the adversary.

3. The adversary computes a bitb̂.

The symmetric cryptosystemSE is semantically secureif and only if for all probabilistic polynomial-
time adversaries,Pr[b = b̂] ≤ 1

2 + negl(κ), where negl is some negligible function in the security
parameterκ. Note that this simple security requirement will be sufficient for our purposes.

3 An information dispersal scheme

In this section, our main scheme for asynchronous verifiable information dispersal is presented. The first
part of the section is devoted to a review of basic tools from coding theory that are needed in our scheme
and we also show a first simple solution for asynchronous verifiable information dispersal. Then, the
actual scheme, calledAVID, is introduced and analyzed. Several improvements and optimizations to
the scheme are presented subsequently, which reduce its communication and storage complexities. It
is also shown how to derive a communication-efficient protocol for asynchronous reliable broadcast
directly from our scheme. Finally, a variant of our scheme based on error-correcting codes is sketched;
its storage complexity depends onn andt only, but it has a smaller resilience.

3.1 Tools from coding theory

We briefly review some basic tools from coding theory we will need in our scheme for asynchronous
verifiable information dispersal. We make use of(k, n)-erasure codesover a finite fieldGF (q). Such
a code maps a vectorm ∈ GF (q)k to a vectorc ∈ GF (q)n such that knowingk components ofc
is enough in order to reconstructm. Despite some similarities, this is different from a(k, n)-error-
correcting code, where the components of the vectorc can also be altered. Erasure codes are error-
correcting codes for erasure channels.

Rabin [Rab89] proposed a quite general approach for erasure coding. A very simple erasure-code is
based onpolynomial interpolation, and is indeed a special case of Rabin’s IDA. Assumeq > n. Given
a subsetJ ⊂ {1, . . . , n}, |J | = k, we define the correspondingLagrange coefficientsevaluated at
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x ∈ GF (q) as

λJj (x) :=
∏

`∈J\{j}

x− `

j − `
for all j ∈ J . (1)

Then, withJ̃ := {1, . . . , k}, we can encodem as

ci :=
∑
j∈J̃

λJ̃j (i) ·mj for i = 1, . . . , n. (2)

Note thatci = mi for i = 1, . . . , k (such a code is calledsystematic). The code can be also seen as a
(k, n)-linear code with generator matrix

G :=


1 λJ̃1 (k + 1) · · · λJ̃1 (n)

...
...

...

1 λJ̃k (k + 1) · · · λJ̃k (n)

 ∈ GF (q)k×n. (3)

Thus, encoding can alternatively be done through a matrix multiplicationcT := mT ·G, while decoding
from anyk components ofc can then be done efficiently through Lagrange interpolation, because the
components ofc are points on a polynomial of degree at mostk − 1, and since the components used
are correct. When we say thatwe interpolate a polynomial of degreek − 1 from a set with at leastk
elements, we mean to pick anyk elements in the set and to reconstruct the polynomial.

This code is actually a variant of aReed-Solomon Code. It can be used for error correction as well.
It achieves a minimal distance ofn − k + 1, and according to theSingleton bound, this distance is
optimal. Recall that an error-correcting code with minimal distance2e + 1 can correct up toe errors.
For the above code, a polynomial-time error-correcting procedure can be given, but special variants of
Reed-Solomon codes allow for much more efficient error correction [Bla83]. In particular, for such a
Reed-Solomon Code with minimal distanced, there exist efficient algorithms correctinge errorsands
erasures, as long asd ≥ 2e + s + 1.

A file F can be modeled as a vector of lengthk over some finite fieldGF (q), whereq is either a
prime or a prime power, so that it can be encoded by making use of a(k, n)-erasure code. Following
the idea of Rabin [Rab89], each one of then servers receives one of then blocks of the encoded file.
A drawback of this approach is that it requiresk ≤ n − t, since up tot servers might refuse to provide
their own blocks during retrieval. Thus, to store large files one has to choose a largeq, which might be
very inefficient and unpractical. A solution for this is the following technique, which we callstriping.
Assume a larger file is given, that is a vectorF ∈ GF (q)k′

for k′ > k. We can split the file inr := dk′

k e
filesF j , j = 1, . . . , r, of lengthk each. Then, each fileF j is encoded toGj using a(k, n)-erasure code.
Finally, we define each block of the encodingG = [G1, . . . , Gn] of F as

Gi :=
[
G1

i , . . . , G
r
i

]
i = 1, . . . , n. (4)

Clearly,k blocks ofG are enough for reconstructingF .
However, note that in the following we simply model files as vectors inGF (q)k for compactness

reasons, even though it is not difficult to see that all results hold when striping is used.

3.2 A simple scheme

As mentioned in the section on related work, the protocol of Garay et al. [GGJR00] can easily be
adapted to implement a simple asynchronous verifiable information dispersal scheme, which we call
asynchronous GGJR. The idea is to replace the gateway by anasynchronous reliable broadcast protocol
started by the client to sendF , which makes the scheme robust against corrupted clients. WhenF is
delivered to a server, it applies an(n−t, n)-erasure code and computes the list of the hashes of all blocks
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using a collision-resistant hash functionH. It keeps its own block in memory together with the list of
hashes and erases all other blocks. We can use theRetrieve protocol given below withk = n − t for
retrieval. It is easy to see that this implements an asynchronous verifiable information dispersal scheme.

In the analysis of this and other schemes, we assume that the size of the files to be stored is large
compared ton and|H|, in particular that|F | � n2|H|. This assumption is reasonable and|F | > n2|H|
holds already for filesF of size larger than 8kB, for example, whenn = 20 and|H| = 160. Under this
assumption, the storage blow-up of the asynchronous GGJR scheme is asymptotically optimal, that is,
equal to n

n−t + o(1) ≤ 3
2 + o(1). However, the communication complexity of its dispersal protocol is

O(n2|F |), which means that its communication blow-up isO(n2).

3.3 The main scheme

The scheme presented in this section, calledAVID, consists of two protocolsDisperse andRetrieve
for dispersal and retrieval, respectively. The dispersal protocol integrates the steps of broadcasting the
file and computing the erasure code with each other. It is similar in this respect to the asynchronous
verifiable secret sharing protocol of Cachin et al. [CKLS02]. We assume a collision-resistant hash
function H is given. Furthermore, every server maintains twoassociative arrays, Data and Verify,
whose indices are tagsID and which can be accessed by all protocol instances. All unused entries in the
arrays are initialized once with the value⊥.

A client Ci wanting to disperse a file with tagID encodes it as a vector[F1, . . . , Fn] by using the
(k, n)-erasure code of Section 3.1. Additionally, it computes thefingerprintsof the data, which are
represented by a vectorD := [D1, . . . , Dn], whereDj := H(Fj) for j = 1, . . . , n. Such hash function-
based fingerprints have been introduced for information dispersal by Krawczyk [Kra93].

A reliable broadcast protocol similar to the one of Bracha [Bra84] is then used to let the servers agree
on the vectorD and distributeF . In particular,Ci initially sends to each serverPj the corresponding
blockFj , as well as the vectorD. Then, two rounds of message exchanges among all servers follow, in
which every message sent from a serverPi to a serverPj contains, besidesD, the blockFi. A server
accepts only messages containing blocks which are correct according toD. In this way, every server
sees enough blocks in order to reconstruct its own block (should it be missing) and to guarantee the
consistency of all blocks. If the servers agree on someD, then serverPj stores it inVerify[ID] and
stores the blockFj in Data[ID]. Finally, it generates an output message and erases all local variables.
In order to retrieve a file, a client has to make sure it receives correct blocks from enough servers that
agree on someD.

A detailed description of theDisperse andRetrieve protocols is given in Figures 1 and 2, respec-
tively. We are going to prove the following theorem in the next section:

Theorem 3. AVID is a (k, n)-asynchronous verifiable information dispersal scheme fort + 1 ≤ k ≤
n− 2t. For k = n− 2t, the storage blow-up of the dispersal protocol is bounded by3 + o(1), while the
communication blow-up isO(n) for the dispersal protocol andO(1) for the retrieval protocol.

3.4 Analysis of the main scheme

The proof has structural similarity with the analysis of the AVSS protocol of [CKLS02], since both
exploit similar ideas. We note that the proof also holds for anadaptive adversary, that is, an adversary
that chooses up tot servers to corrupt adaptively during the execution of the protocol.

For the reliable broadcast of the vectorD, we use the following standard lemma [Bra84]:

Lemma 4. Suppose an honest serverPi sends aready -message containingD(i) and a distinct honest
serverPj sends aready -message containingD(j), thenD(i) = D(j).

We now prove that the schemeAVID satisfies the properties of Definition 1.
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Protocol Disperse for tag ID

initialization : // ServerPi

for all D do
eD := 0, rD := 0,AD := ∅

upon receiving(ID, in , disperse , F ): // ClientCi

compute a polynomialf(x) of degree at mostk − 1 such thatf(j) = Fj for all j ∈ [1, k]
D := [H(f(1)), . . . ,H(f(n))]
for all j ∈ [1, n] do

send(ID, send ,D, Fj) to Pj

upon receiving a message(ID, send ,D, Fi) for the first time: // ServerPi

if H(Fi) = Di then
for all j ∈ [1, n] do

send(ID, echo ,D, Fi) to Pj

upon receiving a message(ID, echo ,D, Fm) from Pm for the first time: // ServerPi

if H(Fm) = Dm then
AD := AD ∪ {(m,Fm)}
eD := eD + 1
if eD = max

{⌈
n+t+1

2

⌉
, k

}
andrD < k then

interpolatef̄(x) of degree at mostk − 1 fromAD

F̄j := f̄(j) for all j ∈ [1, n]
if H(F̄j) = Dj holds for allj ∈ [1, n] then

for all j ∈ [1, n] do
send(ID, ready ,D, F̄i) to Pj

else
output(ID, out , abort )

upon receiving a message(ID, ready ,D, Fm) from Pm for the first time: // ServerPi

if H(Fm) = Dm then
AD := AD ∪ {(m,Fm)}
rD := rD + 1
if eD < max

{⌈
n+t+1

2

⌉
, k

}
andrD = k then

interpolatef̄(x) of degree at mostk − 1 fromAD

F̄j := f̄(j) for all j ∈ [1, n]
if H(F̄j) = Dj holds for allj ∈ [1, n] then

for all j ∈ [1, n] do
send(ID, ready ,D, F̄i) to Pj

else
output(ID, out , abort )

else ifrD = k + t then
Verify[ID] := D
Data[ID] := F̄i

output(ID, out , stored ).

Figure 1: AVID - Dispersal protocol
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Protocol Retrieve for tag ID

upon receiving(ID, in , retrieve , ID′): // ClientCi

for all j ∈ [1, n] do
send(ID, retrieve , ID′) to Pj

wait for k messages(ID, block , F ′
j ,D) from distinct servers

with the sameD andDj = H(F ′
j)

letJ be the set of servers from which such ablock -message has been received
interpolate a polynomialf ′(x) of degree at mostk − 1 from {(j, F ′

j) : j ∈ J }
F ′ := [f ′(1), . . . , f ′(k)]
output(ID, out , retrieved , F ′)

upon receiving a message(ID, retrieve , ID′) from clientCm: // ServerPi

if Data[ID′] 6=⊥ then
send(ID, block , Data[ID′], Verify[ID′]) to Cm

Figure 2: AVID - Retrieval protocol

Termination. The termination property is trivially satisfied: if the dealer is honest, the only way one
malicious server can potentially make an honest server not accept is by producing a collision with respect
to H, which can happen with negligible probability only.

Agreement. We define aready -message(ID, ready ,D, Fm) from Pm to be valid if and only if
Dm = H(Fm). Assume an honest server completes the dispersal protocol withVerify[ID] = D. Then it
has received at leastk+t valid ready -messages with the sameD. At leastk of these have been sent by
honest servers. Since thesek honest servers have sent aready -message to all servers, all honest servers
receive at leastk valid ready -messages withD. But then every honest server sends a validready -
message to every other server, except with negligible probability. This can be seen as follows: if this
is not true, then there has to be some honest server that aborts. LetPi be the server which completed
the dispersal, and letPj be an honest server that aborts. SincePi never aborted, there is a polynomial
f (i)(x) of degree at mostk − 1 such thatH(f (i)(m)) = Dm for all m = 1, . . . , n. But sincePj

indeed aborts and because of Lemma 4, there must be one(m,Fm) ∈ A(j)
D (the setAD of Pj) such that

f (i)(m) 6= Fm andH(Fm) = H(f (i)(m)). But this means the adversary has found a collision forH,
which can only occur with negligible probability. In the end, every honest server receivesn− t ≥ k + t
valid ready -messages, and by Lemma4, they all containD.

Availability. Sincek honest servers have accepted, they also hold the same verification information
D, and thus the client is always able to reconstruct some value, becausek ≥ t + 1.

Correctness. Let J ⊂ {1, . . . , n} be the set ofk honest servers which complete the dispersal ofF .
We define

Gi :=
∑
j∈J

λJj (i) · F̄j for i = 1, . . . , n.

Moreover,G := [G1, . . . , Gk].
Assume an honest client has shared a fileF andF 6= G. Then everyecho -message from an honest

Pi to an honestPj containsD andFi as computed by the honest client. If the servers inJ computed
their F̄j from theseecho -messages, then̄Fj = Fj . But sinceG 6= F , there must be an honest server
Pj with F̄j 6= Fj . Thus, it must have received a valueF ′

m 6= Fm from a corrupted serverPm (either in
anecho - or in a ready -message), which it accepted. Since clearlyH(Fm) = H(F ′

m), the adversary
has found a collision forH. But this can happen with negligible probability only.
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For the second point, assume an honest client reconstructs a valueF ′ 6= G using some setJ ′ 6= J
of k servers. Sincek ≥ t + 1, the value ofD the client chooses must be the unique one held by the
correct servers by Lemma 4. On the other hand, ifF ′ 6= G, there has to be some valueF ′

m received by
some serverPm, m ∈ J ′ − J , with F ′

m 6= Gm, butH(F ′
m) = Dm. But we also haveH(Gm) = Dm,

except with negligible probability, since in order for a serverPj in J to accept, itsF̄j must be on a
polynomialf̄ (j)(x) of degree at mostk− 1: thus, in order for two honest servers to accept shares which
are on different polynomials the adversary must have found a collision forH. Hence, if the second point
is not satisfied, the adversary must have found a collision forH, either in the dispersal protocol or in the
retrieval protocol.

Complexity analysis. As above, we assume that the size of the files to be stored is large compared to
n and|H|, in particular|F | � n2|H|.

The message complexity of protocolDisperse is O(n2) since the number of messages that every
honest server sends to every other server is bounded by a constant. All messages have size|F |

k + n|H|,
and thus the communication complexity of the dispersal protocol isO(n2 |F |

k + n3|H|). The storage

complexity of the scheme isn|F |
k + n2|H|. For the casek = n− 2t, we obtain a communication blow-

up bounded byO(n) and a storage blow-up bounded by3 + o(1). (Note that the storage blow-up is
suboptimal because ofk ≤ n− 2t.)

The message complexity of protocolRetrieve is clearlyO(n). Since messages have size|F |
k +n|H|,

the communication complexity fork = n − 2t is O(|F | + n2|H|). Recalling that|F | � n2|H|, the
communication blow-up isO(1).

3.5 Reducing the storage and communication complexities

This section presents a more efficient information dispersal scheme calledAVID-H, which reduces the
storage and communication complexities with respect toAVID.

We previously assumed that|F | � n2|H| in the complexity analyses and have ignored the size of
the hashes. But it makes sense to reduce the number of hash values that are used by the protocols and
need to be stored. We base our approach on so-calledMerkle trees, an approach which has also been
suggested in by Alon et al. [AKK+04]. (That paper improved an earlier work of the same authors based
on expander graphs [AKK+00].)

Assumen = 2l for somel ∈ N and that some hash functionH is given. The (binary)hash treeof a
vector[F1, . . . , Fn] ∈ GF (q)n is a complete binary tree withn leaves. To every nodev of tree, a value
val(v) is assigned. Each leafi, for i ∈ [1, n], gets the valueval(i) := H(Fi), while every inner node
v with childrenv1 andv2 receives the valueval(v) := H(val(v1), val(v2)). Let nowi ∈ [1, n], then
there is a unique path from the rootvr of the hash tree toi, which we denote byvr = v0, v1, . . . , vl = i
and which has lengthl = log n. For everyj ∈ [1, l], let wj be the unique child node ofvj−1 such that
wj 6= vj (that is,wj is the uniquesiblingof vj). Then we define thefingerprint for a blockFi as

FP (i) := [val(w1), . . . , val(wl)]. (5)

Thus, for everyi ∈ [1, n], Fi ∈ GF (q), fingerprintFP = [h1, . . . , hl] and value of the roothr, we
define a predicateverify(i, Fi, FP, hr) which is computed by the following code:

h := H(Fi)
for j := l downto1 do

h := H(h, hj) or h := H(hj , h) depending on the unique path fromi to r
return h = hr

Lemma 5. Let H be a collision-resistant hash function. Assume two valuesFi, F ′
i with fingerprints

FP , FP ′ are given such thatverify(i, Fi, FP, hr) = verify(i, F ′
i , FP ′, hr) = true for some common

hr, thenFi = F ′
i , except with negligible probability.

12



Proof. At least one collision on the path fromi to vr must be found. This can happen with negligible
probability only.

It is now clear that we can reduce the storage complexity if every serverPi stores just the fingerprint
FP (i) and the value of the root hashhr. It is less clear that also the communication complexity can be
reduced, but it follows by replacingD by the root hash for providing agreement.

The improved schemeAVID-H is now obtained by modifyingAVID as follows:

• The client, after encoding, computes the hash tree of[F1, . . . , Fn].

• The underlying reliable broadcast protocol now is used to agree on the root hash value. In every
send , echo andready -message, the root hash and the fingerprint of the block are sent instead
of D.

• The index of the countersr, e and of the setA is notD but the root hash.

• Checking of the hashes, i.e., the test thatH(Fi) = Di, is replaced by theverify predicate above.
When a server reconstructs āFj , then it also reconstructs the corresponding hashes on the path
from j to the root, and uses then theverify-predicate.

• Only the fingerprint and the root hash value are stored apart from the data block. For retrieval,
both are added to theblock -message, and the client selects among the responses according to
the root hash value.

It is easy to see that the proof of Theorem 3 can be adapted to the improved protocol, based on Lemma 5.

Complexity analysis. The message complexity is stillO(n2). On the other hand, every message
has now size|F |

k + (log n + 1)|H|. For this reason, the communication complexity is improved to

O(n2 |F |
k + n2 log n|H|). Furthermore, the storage complexity is reduced ton |F |

k +O(n log n|H|).
Choosingk = n− 2t = Θ(n), the communication complexity isO(n|F |+ n2 log n|H|). Observe

that |F | = O(k log q), since every component can be encoded usingO(log q) bits. But becauseq > n,
|F | = Ω(n log n). Hence, by substituting then log n term, the communication complexity can be
written asO(n|F |), under the assumption that|H| is a small constant. In this case, the communication
blow-up isO(n).

3.6 A communication-efficient protocol for reliable broadcast

Given an asynchronous verifiable information dispersal scheme, it is possible to derive from it a protocol
for asynchronous reliable broadcast: to broadcast a valuem, the dealer starts the dispersal protocol for
a fileF := m, and when a server accepts, it immediately starts the retrieval protocol in order to deliver
a valuem′. Using theAVID-H scheme of the previous section, we obtain the following result:

Theorem 6. Provided thatt < n
3 , there exists an asynchronous reliable broadcast protocol with message

complexityO(n2) and communication complexityO
(
n|m|+ n2 log n|H|

)
.

Note that with theAVID-H scheme, only a slight modification of theDisperse protocol already
provides reliable broadcast because the servers do not need to run theRetrieve protocol for delivering
m′. Instead of storing one block of a file with the corresponding fingerprint, each server simply outputs
the whole reconstructed filēF = [F̄1, . . . , F̄k] as the delivered messagem′.

In Appendix A, this protocol is compared to related protocols for asynchronous reliable broad-
cast [Bra84, CKPS01].
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3.7 Further optimizations

We present now two further optimizations for theAVID scheme. Note that these two ideas are mutually
exclusive.

Achieving the optimal storage blow-up. In Section 3.2, we have explained how a simple asyn-
chronous verifiable information dispersal scheme with asymptotically optimal storage blow-up can be
derived from an asynchronous reliable broadcast protocol. Therefore, by making use of the reliable
broadcast protocol provided by theDisperse protocol (see Section 3.6), instead of Bracha’s protocol in
the construction of Section 3.2, we can realize an asynchronous verifiable information dispersal scheme
with the message and communication complexities of theAVID-H scheme of Section 3.5, but whose
storage blow-up is asymptotically optimal. We call this schemeAVID-RBC.

A possible drawback of this approach is of computational nature: erasure-coding has to be applied
twice to the data. In the first step, an(n−2t, n)-erasure code is used for the broadcast, and in the second
step, an(n− t, n)-erasure code is used in order to achieve the optimal storage blow-up.

Getting rid of the hashes fort small enough. In Section 3.5 we have seen how the communication
complexity can be reduced to roughlyO(n|F |). However, for what regards the storage complexity,
one might object that the stored information for the hashes might still be large enough to cause some
problems. In this section, we show a technique for eliminating the hashes completely at the cost of lower
resilience. The storage blow-up is in general larger than when hashes are used, but the dependency on
|H| is completely eliminated.

The approach has been suggested in [Kra93] and can be translated to our setting with some care.
We will make use of error correcting codes, for example of a Reed-Solomon code allowing efficient
decoding when errors and erasures are present. Using the error correcting properties of such a code,
missing blocks are considered to be erasures and altered blocks are corrected.

When retrieving the blocks from a server, we can only expect to get at mostn− t of them. Since the
adversary can arbitrarily slow down the messages fromt honest servers, up tot modified blocks may
be received. Thus, up tot errorsand t erasures must be corrected. This requires a code with a minimal
distance ofn− k + 1 ≥ 2t + t + 1, that isk ≤ n− 3t (which requirest < n

4 , sincek > t).
The improved scheme, calledAVID-ECC, is obtained by modifying theAVID scheme as follows:

1. We setk = n−3t, and use the same dispersal protocol, but encoding the data with an appropriate
Reed-Solomon code. At the end, only the blocks are stored, and not the hashes/fingerprints.

2. The retrieval protocol is modified to wait forn− t blocks, without any checking. After that, error
correction is applied.

The scheme achieves a storage blow-up ofn
n−3t < 4, which is constant and does not depend on any

extrao(1)-term.

4 Achieving confidentiality

Up to here we have used cryptography only for the sake of making the protocol robust against Byzantine
parties. The second requirement on information dispersal defined in Section 2 isconfidentiality. This
property could, at a first glance, be satisfied very easily. LetSE = (SG, SE, SD) be a symmetric
cryptosystem. A client who wants to store a fileF can simply storeSE(K, F ) using a keyK that it keeps
to itself. However, this works only when no other client should ever retrieve the file; the client also has
to make sure that the key is not lost. In practice, the key should be stored by the system therefore, and
more sophisticated access policies are needed. Of course, it is not possible to simply store the key with
the dispersal protocol directly, since this would violate confidentiality. Garay et al. [GGJR00] proposed
a solution for this on which our scheme builds.
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4.1 Threshold cryptography

The protocol of Garay et al. [GGJR00] assumes that every client is associated with a public key for
a threshold public-key encryption scheme and that the corresponding secret key is shared among the
servers. Although this design reduces the trust assumptions on the client, the protocol needs a homo-
morphic encryption scheme that is “blindable” and therefore insecure against chosen-ciphertext attacks.
This is a consequence of the system model which mandates the use of a gateway for controlling access
to the servers.

In our model, we take a simpler approach and associate a threshold public key with the group of
servers such that only one decryption key is shared by the system. However, we need a non-malleable
threshold cryptosystem, i.e., one with security against adaptive chosen-ciphertext attacks.

An (k, n)-threshold cryptosystemE consists of the following elements [SG02]:

1. A probabilistic key generation algorithmthat generates a triple(PK, VK, SK), wherePK is the
public key, VK theverification keyandSK= [SK1, . . . , SKn] is the list ofprivate keys.

2. A probabilistic encryption algorithmE that takes as input a public keyPK, a messagem, and a
label `, and outputs a ciphertextc = E(PK,m, `).

3. A probabilistic decryption-share algorithmD that takes as input a private keySKi, a ciphertextc,
and a label̀ , and outputs adecryption shareσ = D(SKi, c, `).

4. A share verification algorithmverify that takes as input the verification keyVK, a ciphertextc, a
label`, and a decryption shareσ, and outputsverify(PK, c, `, σ) ∈ {true , false }.

5. A combining algorithmcombine that takes as input the verification keyVK, a ciphertextc, a label
`, and a setS of k decryption shares, and outputs a messagem = combine(VK, c, `,S), or the
symbol⊥.

Note that the ciphertext depends on`. An encryption of the same message with two different labels leads
to two distinct ciphertexts. We assume that the label` can be efficiently extracted from the ciphertext.

A threshold cryptosystem iscorrect if for any messagem and label`, given a ciphertextc :=
E(PK,m, `) and a setS of k valid decryption shares computed byσ = D(SKi, c, `), we havem =
combine(VK, c, `,S).

In order to define security, consider the following game calledTCCA2, where an adversary in our
system model statically corruptst < k servers.

1. The key generation algorithm is run by a trusted party.

2. The adversary interacts with the uncorrupted servers in an arbitrary fashion, feeding them cipher-
texts and obtaining decryption shares.

3. The adversary chooses two cleartextsm0 andm1, where|m0| = |m1|, as well as a label̀, and
gives them to anencryption oracle. The oracle chooses a bitb at random, encryptsmb, and returns
the resulting ciphertextc.

4. The adversary continues to interact with the uncorrupted parties, feeding them ciphertextsc′ 6= c
and receiving decryption shares.

5. The adversary outputs a bitb̂.

The threshold cryptosystem issecure against adaptive chosen-ciphertext attackif for any polynomial-
time bounded adversary playingTCCA2, Pr[b = b̂] ≤ 1

2 + negl(κ), where negl is a negligible function
in the security parameterκ.

We can make use of the threshold cryptosystem proposed by Shoup and Gennaro [SG02], which
is secure against chosen-ciphertext attack (in the random-oracle model), based on the hardness of the
computational DH-Problem.
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4.2 The scheme

We propose the following scheme, calledcAVID, for asynchronous verifiable information dispersal with
confidentiality. It consists of two protocolscDisperse andcRetrieve and is based on the schemeAVID
from Section 3.

We use a symmetric cryptosystemSE = (SG, SE, SD) as well as a threshold cryptosystemE , and
assume that an honest dealer has set up the keys for the threshold cryptosystem, i.e., generated a triple
(PK, VK, SK) and sharedSKamong the servers such thatPi knowsSKi for i = 1, . . . , n.

The cDisperse protocol works as follows. The client encrypts the file using the symmetric cryp-
tosystem with an ephemeral keyK and encryptsK using the threshold cryptosystem. It distributes the
ciphertext of the file using theDisperse protocol and broadcasts the encrypted ephemeral key together
with the access listL to the servers with a reliable broadcast protocol. During retrieval, every server
sends a block of the file together with a decryption share for the ephemeral key to the client.

The details are given in Figures 3 and 4. The dispersal protocol calls theDisperse protocol of
AVID and also uses a protocolRBC for reliable broadcast according to Section 2.4. However, using the
AVID scheme has the advantage that the reliable broadcast protocol can be integrated with theDisperse
protocol and does not cause any additional messages. We also stress that the proposed construction is
general, and any other asynchronous verifiable information dispersal scheme can be used instead of
AVID. Two additional associative arrays,KeyandAccess, are used and can be accessed by all protocol
instances; they are also not erased at the end of the execution of thecDisperse protocol.

Theorem 7. ProvidedE is a (t + 1, n)-threshold cryptosystem that is secure against adaptive chosen-
ciphertext attack, and providedSE is semantically secure,cAVID is a (k, n)-asynchronous verifiable
information dispersal scheme with confidentiality fort + 1 ≤ k ≤ n− 2t.

Proof. The proof for terminationand agreementfollows directly from the one of theAVID scheme
and the properties of reliable broadcast. Recall, in the following, that we assume the channels are
authentic. Foravailability, observe that honest servers agree on a common access list, and therefore all
honest servers will either be sending some value or they will be rejecting the retrieval by sending an
unauthorized -message. The correctness conditions of the cryptosystems imply that the client can
retrieve the file.Correctnessalso follows easily from the correctness conditions of the AVID scheme
and the cryptosystems, as well as from the properties of reliable broadcast. Moreover, the authenticity
of the channels guarantees that non-authorized clients are not able to retrieve a file.

To showconfidentiality, assume (toward a contradiction) that there is an adversaryA finishing the
CONF game guessingb with non-negligible probability over12 . Making use of a hybrid argument,
we show that we are able to construct a simulator which finishes theTCCA2 game forE with a non-
negligible advantage or we construct a simulator which terminates theSS game forSE with a non-
negligible advantage. It is clear thatconfidentialitythen follows.

Provided that forA, Pr[b = b̂] ≥ 1
2 + ε, whereε = 1

poly(κ) , we can infer by a standard argument that∣∣∣Pr
[
b̂ = 1|b = 1

]
− Pr

[
b̂ = 1|b = 0

]∣∣∣ ≥ 2ε. (6)

LetD(ID, i, K̃, F̃ ,L) be the event where clientCi disperses the encrypted filẽF and broadcasts the key
K̃ and the access listL, making use of tagID. LetKb be such that̃Fb := SE(Kb, Fb) for b ∈ {0, 1}, and
let K be chosen according toSG, but independently ofK1 andK2. Furthermore, denotep(K̃, F̃ ) :=
Pr

[
b̂ = 1

∣∣∣D(ID, i, K̃, F̃ ,L)
]
. Equation 6 yields:

2ε ≤
∣∣∣p(K̃0, F̃0)− p(K̃1, F̃1)

∣∣∣
≤

∣∣∣p(K̃0, F̃0)− p(K̃, F̃0)
∣∣∣ +

∣∣∣p(K̃, F̃0)− p(K̃, F̃1)
∣∣∣ +

∣∣∣p(K̃, F̃1)− p(K̃1, F̃1)
∣∣∣ .

(7)

One of the three terms of this last sum must be therefore at least2
3ε. Hence, we can distinguish three

cases:
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Protocol cDisperse for tag ID

upon receiving(ID, in , disperse , F,L): // ClientCi

K := SG(1κ)
F̃ := SE(K, F )
K̃ := E(PK,K, ID)
disperseF̃ using theDisperse protocol with tagID|disp
broadcast(K̃,L) to all servers using protocolRBC with tagID|bc

upon delivering(K̃ ′,L′) from protocolRBC with tagID|bc
and having completed the dispersalID|disp: // ServerPi

if Key[ID] = Access[ID] =⊥ then
Key[ID] := K̃ ′

Access[ID] := L′
output(ID, out , stored )

else
output(ID, out , abort )

Figure 3: cAVID - cDisperse protocol

Protocol cRetrieve for tag ID

upon receiving(ID, in , retrieve , ID′): // ClientCi

for all j ∈ [1, n] do
send(ID, cretrieve , ID′) to Pj

wait for k messages(ID, block , F̃ ′
j , σj ,D, K̃) from distinct serversPj

with the same(D, K̃) such thatDj = H(F̃ ′
j), andverify(VK, K̃, ID′, σj) = true ,

or k messages(ID, unauthorized ) from distinct servers
if k block -messages have been receivedthen

letJ the set ofk servers for which a correctblock -message has been received.
S := {σj : j ∈ J }
K := combine(VK, K̃, ID,S)
interpolate a polynomial̃f ′(x) of degree at mostk − 1 from {(j, F̃ ′

j) : j ∈ J }
F̃ ′ := [f̃ ′(1), . . . , f̃ ′(k)]
output(ID, out , retrieved , SD(K, F̃ ′))

else
output(ID, out , retrieved ,⊥)

upon receiving a message(ID, cretrieve , ID′) from clientCm: // ServerPi

if m ∈ Access[ID′] then
σi := D(SKi, Key[ID′], ID′)
send(ID, block , Data[ID′|disp], σi, Verify[ID′|disp], Key[ID′]) to Dm

else
send(ID, unauthorized ) to Cm

Figure 4: cAVID - cRetrieve protocol

17



Case 1:
∣∣∣p(K̃0, F̃0)− p(K̃, F̃0)

∣∣∣ ≥ 2
3ε.

We construct a simulator which achieves an advantageε
3 over 1

2 for the TCCA2 game of the
threshold cryptosystemE . The simulator works as follows: during setup, it runs the key generation
algorithm ofE . Then it simulates theCONF game to the adversaryA by controllingn− t honest
servers and any honest client. Whenever a decryption share is needed, the decryption is performed
through a request to the corresponding honest server in theTCCA2 game. WhenA choosesF0

andF1, L, ID, andi, the simulator additionally chooses two keysK0,K1 independently and
according toSG. It then sendsK0,K1 and the labelID to the encryption oracle of theTCCA2
game, receiving a ciphertext̃Kb. Moreover, letF̃0 := SE(K0, F0). Now, the simulator simulates
Ci dispersingF̃0 with tagID|disp and broadcasting(K̃b,L) with tagID|bc. That is, the clientCi

chooses a random bitb ∈ {0, 1}. In caseb = 0, Ci stores the fileF0 regularly. On the other hand,
if b = 1, Ci stores the encryption on an independent key, which is different from the one being
use to encryptF0 with SE . Finally, whenA outputŝb, the simulator outputŝb. Observe that the
guarantee of theTCCA2 game is satisfied, since a retrieval forID is never started, and the tagID
is unique for every dispersal.

Case 2:
∣∣∣p(K̃, F̃0)− p(K̃, F̃1)

∣∣∣ ≥ 2
3ε

For this case, we construct a simulator which achieves an advantage ofε
3 over 1

2 in theSS game
for SE . The simulator works as follows: it simulatesn − t honest servers and all honest clients
in the CONF game toA. It first initializes the threshold cryptosystemE , acting as the honest
dealer. WhenA chooses two messagesF0, F1, a tagID and an access listL, the simulator feeds
them to the encryption oracle of theSS game, receiving a ciphertext̃Fb back. The simulator
also generates independently a random keyK and encrypts it using the public key ofE with
label ID, obtaining the ciphertext̃K. It simulates then clientCi dispersingF̃b with tag ID|disp
and broadcasting(K̃,L) with tag ID|bc. That is, for both values ofb, the clientCi encrypts a
different, independently chosen keyK instead of the key used for the encryption ofFb. Finally,
whenA outputŝb, the simulator outputŝb.

Observe that in this case only semantical security against passive attacks is needed bySE , since
at every use of the symmetric cryptosystem a new secret key is generated.

Case 3: This case is symmetrical toCase 1.

The desired advantages can in all cases be computed by a standard argument.

Complexity analysis. The communication complexity depends on both the communication complex-
ities of the disperse and the reliable broadcast protocols. We assume the reliable broadcast ofK̃ andL
takes place by appending the two values to every message of theDisperse protocol. In general, they
are both very small, thus there is no need for a more efficient broadcast. For instance, the access list
can be given through some succinct representation (say, through a small program), rather than as a large
set of indices of clients. In particular, we assume|F | ≥ max{n2|K̃|, n2|L|, n log n|H|}. Assuming
k = n− 2t and that we are using the schemeAVID-H of Section 3.5, the communication complexity of

cDisperse isO
(
n2( |F |

k + log n|H|+ |K̃|+ |L|)
)

, and the communication blow-up of thecDisperse

protocol isO(n). The storage complexity isO
(
n( |F |

k + log n|H|+ |K̃|+ |L|)
)

, which means that the

storage blow-up is n
n−2t + o(1).

Furthermore, making use of the schemeAVID-RBC of Section 3.7, the storage blow-up can even be
reduced to n

n−t + o(1).
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Applications. ThecAVID scheme can be used in order to directly derive a protocol forasynchronous
verifiable dual-threshold secret sharing(see [CKLS02]) fort+1 ≤ k ≤ n−2t which is storage-efficient
(that is, which leads to very short shares), using the same approach as [Kra94].

We assume now there is just a set of servers{P1, . . . , Pn} (that is, each party can be serverand
client), and up tot < n

3 of them can be corrupted by thestatic adversary. A dealer wanting to share
a secret simply invokes the protocolcDisperse for storing the secret, choosingL in such a way that
every party is allowed to read a secret. Now it is clear that no coalition of at mostt servers can gain any
information (in a computational sense) about the shared secret, but every set of at leastk servers has
enough information in order to reconstruct the secret.

This leads to shares of size|s|k + l, wherel is the size of the key chosen in thecDisperse protocol.

The communication complexity isO(n2 |s|
k ).
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A Reliable broadcast and verifiable information dispersal

Given the model introduced in Section 2.1, a protocol forasynchronous reliable broadcastis a protocol
where a client (called adealer) broadcastsa messagem and all the servers maydeliver a valuem′.
Such a protocol satisfies the following properties:

Validity: If an honest dealer broadcasts a messagem, some honest server eventually deliversm.

Agreement: If some honest server delivers a messagem′, then all honest servers eventually deliverm′.

Authenticity: Every honest server delivers at most one messagem. Moreover, if the dealer is honest,
m was previously broadcast by the dealer.

Termination: If the dealer is honest, then all honest servers eventually deliver a message.

Note that in contrast to the usual definition of reliable broadcast, where the dealer belongs to the set of
servers, the dealer is a client in our context. This modification does not actually cause any problems, and
existing protocols for reliable broadcast can be easily adapted in order to satisfy this new requirement.

The standard protocol for asynchronous reliable broadcast has been presented by Bracha [Bra84].
When broadcasting a messagem, this protocol has message complexityO(n2) and communication
complexityO(n2|m|). Note that the message complexity is actually optimal, and we cannot expect to
achieve anything better.

Bracha’s protocol has been improved by Cachin et al. [CKPS01] using a hash functionH, in order to
reduce the communication complexity in anoptimistic setting. That is, if messages among honest parties
arrive in time and if the servers controlled by the adversary are not actively interfering with the execution
of the protocol, the communication complexity is bounded byO

(
n|m|+ n2|H|

)
, where|H| is the size

of the hash function output. On the other hand, in the worst case, that is, if the corrupted servers cheat
actively and the network is slow, the communication complexity can be as high asO

(
n2(|m|+ |H|)

)
,

and no improvement with respect to Bracha’s protocol is achieved.
In Section 3.6 we showed that a communication-efficient reliable broadcast protocol can be derived

from theDisperse protocol of theAVID-H scheme for asynchronous verifiable information dispersal.
This protocol has communication complexityO(n|m| + n2 log n|H|). In contrast to the optimistic
protocol of Cachin et al. [CKPS01], the communication complexity does not depend ont. Therefore,
our protocol has a much smaller communication complexity than the optimistic protocol in the worst
case and in any case an only slightly higher complexity than the optimistic protocol in the best case.

As a final remark, note that the since asynchronous verifiable information dispersal can be derived
from asynchronous reliable broadcast as explained in Section 3.2, and because the converse also holds
(as shown in Section 3.6), the two problems are equivalent.
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