Cerebellum

Emo Todorov
Applied Mathematics
Computer Science and Engineering
University of Washington

Loops with cortex
Recurrent loops with specific cortical areas

(Stick)

Divisions of the cerebellum
Inputs and outputs

Output tracts from spinocerebellum
Repeated semi-topographic maps

Circuit diagram
More circuits

Simple and complex spikes in Purkinje cells

Parallel fibers Climbing fibers
Directional tuning of Purkinje cells

Summary data from 5 cells:
(Ebner)
Purkinje cell activity for grasping different objects

Role in active sensing
Basic model of learning

(Marr and Albus, many subsequent variations)

• mossy/parallel fibers carry information about everything (“context”)
• climbing fibers carry error/mismatch/surprise information
• complex spikes (caused by climbing fibers) reduce the strengths of parallel fiber -> Purkinje cell synapses, but only for parallel fibers that are active
• as a result, “punished” parallel fibers have less effect on the Purkinje cells

Lesions/inactivation abolish classical conditioning and reflex adaptation

Role in prism adaptation
Role in force field adaptation

(Shadmehr)

Learning to use new a “tool” (weird mouse)

(Imamizu et al)
Learning internal models

(Kawato)