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A Computational Model for Redundant Human Three-
Dimensional Pointing Movements: Integration of
Independent Spatial and Temporal Motor Plans Simplifies
Movement Dynamics
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Few computational models have addressed the spatiotemporal features of unconstrained three-dimensional (3D) arm motion. Empirical
observations made on hand paths, speed profiles, and arm postures during point-to-point movements led to the assumption that hand
path and arm posture are independent of movement speed, suggesting that the geometric and temporal properties of movements are
decoupled. In this study, we present a computational model of 3D movements for an arm with four degrees of freedom based on the
assumption that optimization principles are separately applied at the geometric and temporal levels of control. Geometric properties
(path and posture) are defined in terms of geodesic paths with respect to the kinetic energy metric in the Riemannian configuration space.
Accordingly, a geodesic path can be generated with less muscular effort than on any other, nongeodesic path, because the sum of all
configuration-speed-dependent torques vanishes. The temporal properties of the movement (speed) are determined in task space by
minimizing the squared jerk along the selected end-effector path. The integration of both planning levels into a single spatiotemporal
representation simplifies the control of arm dynamics along geodesic paths and results in movements with near minimal torque change
and minimal peak value of kinetic energy. Thus, the application of Riemannian geometry allows for a reconciliation of computational
models previously proposed for the description of arm movements. We suggest that geodesics are an emergent property of the motor
system through the exploration of dynamical space. Our data validated the predictions for joint trajectories, hand paths, final postures,
speed profiles, and driving torques.

Key words: forward control strategies; point-to-point arm movements; geodesics; minimal effort; minimum jerk;
minimum torque change

Introduction
A pointing movement toward a target in three-dimensional (3D)
space defines a highly redundant task at the geometric, kinematic,
and dynamic levels of control. An infinite number of possible
hand paths can be selected for moving the hand to the target, and
an infinite set of possible arm postures may be attained for every
fixed hand location in 3D space. In particular, many arm config-
urations may be adopted at the end of the movement. Moreover,
different speed profiles may be chosen along a given hand path,
and diverse patterns of muscle activation may generate the same
driving torques that ultimately move the hand toward the target.

The rules that the CNS applies to the control of movements
are, in fact, poorly understood. One major difficulty results from

the fact that the planning and control strategies cannot be directly
accessed, and only some kinematic and dynamic movement
properties can be measured under well defined experimental
conditions. Invariant kinematic and dynamic properties ob-
served during movement have provided some important insights
into possible motor control strategies used by the CNS but led to
a large number of different and apparently incompatible models
(Hermens and Gielen, 2004).

Most existing models are based on the assumption that move-
ments are planned before their execution. For example, it has
been proposed that arm movements are planned in terms of hand
Cartesian coordinates by maximizing motion smoothness (Flash
and Hogan, 1985) or in terms of intrinsic joint coordinates by
minimizing the squared change of joint torques (Uno et al., 1989;
Nakano et al., 1999; Wada et al., 2001) and by minimizing peak
value of kinetic energy (minimum peak work) (Soechting et al.,
1995). In addition, stochastic models have been proposed assum-
ing that the inherent noise in the motor system is minimized
(Harris and Wolpert, 1998) or that the noise is optimally distrib-
uted among different degrees of freedom (Todorov and Jordan,
2002).
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Experimental observations suggest that hand paths and arm
postures are invariant with respect to the scaling of movement
speed (Flash and Hollerbach, 1982; Boessenkool et al., 1998;
Nishikawa et al., 1999) and change in external forces (Atkeson
and Hollerbach, 1985; Flanders et al., 2003). It has been shown
that geometrically defined movement features can be acquired by
the human motor system (Sosnik et al., 2004), before the specifi-
cation of kinematic attributes such as movement speed (Torres
and Zipser, 2002, 2004). It is thus conceivable that separate plan-
ning constraints may be imposed at the geometric and temporal
levels. Both levels may subsequently be integrated into a complete
spatiotemporal representation.

The present study aimed at developing a model of the motion-
planning strategy underlying the generation of 3D pointing
movements. The model is based on Riemannian geometry and
accounts for hand paths, final arm postures, hand-speed profiles,
and driving torques. It results in arm movements along geodesic
paths that require less muscular effort than on any other, non-
geodesic path, while maximizing smoothness. Our model thus
reconciles different existing computational approaches into a
single framework.

Materials and Methods
Theoretical background
A possible interpretation for the experimentally observed invariance of
arm posture and hand path with changes in speed is the decoupling of
geometric and temporal aspects in the trajectory-planning process of 3D
arm movements. The objective of the computational model presented
here consists of the prediction of movement patterns as resulting from a
model that assumes that the geometric and temporal levels are indepen-
dently planned, and the comparison of the predicted movements with
experimentally observed trajectories. In the first stage, the geometrical
properties of the movement as expressed by the joint-angular path in
configuration space are determined. In the second stage, the temporal
features of the movement in terms of hand speed are selected. In the third
and final stage, the geometric and temporal features of the movement are
integrated together into a unique spatiotemporal representation of the
movement.

The approach for selecting the geometric properties of the movement
is based on Riemannian geometry. Most readers will be familiar with
Euclidean geometry, in which the squared distance between two nearby
points that are separated by the vector dx � (dx1, dx2, dx3)T is given by

ds2 � dx1
2 � dx2

2 � dx3
2, (1)

or written alternatively using a vector notation as

ds2 � dxTdx. (2)

One also recalls that the shortest distance between two points in Eu-
clidean space is a straight line. A train analogy is useful to further develop
our basic model assumptions. We first observe that for a train, the speed
is in principle independent of the shape of the specific railway track,
similar to the decoupling of movement path from movement speed. We
next consider the forces that act on the train in a hilly landscape. One
might ask the following question: What is the optimal geometrical path
between two stations A and B for laying a railway track in terms of forces
that act on the train? This problem can be addressed by passing from
Euclidean to Riemannian geometry.

In Riemannian geometry, the distance relationship is generalized with
a metric tensor g(x) that encodes the geometry of the hilly landscape
locally near the point x. The squared distance is given by

ds2 � dxTg(x)dx. (3)

Thus, Euclidean 3D space is a special case of a Riemannian manifold in
which

g � � 1 0 0
0 1 0
0 0 1

� . (4)

The optimal path for the train is given by the straightest possible path
through the hilly landscape, because for this path the centripetal forces
acting on the train are minimized. The determination of the straightest
path is a standard problem in Riemannian geometry and results in the
computation of the geodesic path connecting station A with B.

In the following paragraphs, we use Riemannian geometry to model
human pointing movements in space. Using the previous analogy, we
identify the arm with the train and the hilly landscape with the Rieman-
nian configuration space. Thus, we are interested in the answers to the
following questions: What is the optimal geometric path of the arm
between a given initial and final arm posture in configuration space in
terms of forces acting on the arm? What might be the optimal speed for
the arm to move along the chosen path?

Detailed mathematical analysis. To further elaborate on these ideas, we
have to provide some mathematical tools, which we present next. The
configuration space of the arm, Q, defines a Riemannian manifold when
endowed with a positive definite and symmetric metric tensor g with
components gij, (i, j � 1, . . ., n). A point in configuration space is denoted
by q with (local) coordinates q � (q 1, q 2, . . . , qn) � Q. Distances in arm
configuration space are defined as in Equation 3, which can alternatively
be written in terms of the coordinates as

d�2 � �
i�1

n �
j�1

n

gij�q�dqidqj, (5)

where we have used the letter � for distance in the Riemannian manifold,
and the letter s is preserved in the following for distance in Euclidean
space (Eq. 1). We make use in the following of the summation conven-
tion stating that repeated lower and upper indices imply a summation
from 1 to n; thus, Equation 5 can be rewritten as d� 2 � gij(q)dqidqj. The
metric tensor is symmetric, gij � gji, and assumed to be positive definite;
i.e., it is gijq

iqj � 0 for all q � 0, and thus it is invertible. The inverse of the
metric tensor g �1 has components ( g �1)ij � gij with

gikgkj � � 1 i � j
0 otherwise . (6)

In the Riemannian manifold, (Q, g), the length of a curve �: [a, b]3Q is
defined as the line integral

L��� � �d� � �
a

b �gij

dqi

d�

dqj

d�
d�, (7)

where � is an arbitrary parameter. Another quantity that is used in the
following is the energy of a curve, which is defined as

E��� �
1

2�
a

b

gij

dqi

d�

dqj

d�
d�. (8)

The name “energy” derives from the similarity of the integrand to the
kinetic energy of a physical system. However, it is important to note that
the energy of a curve is a geometrical quantity.

The curves that correspond to extremal paths in a Riemannian mani-
fold are called geodesics. Geodesics are curves that are locally of minimal
length. This means that any two points that are close enough are con-
nected along the geodesics by the shortest possible path. It is not difficult
to prove (do Carmo, 1992) that a curve of minimal length also minimizes
the energy function (Eq. 8).

A necessary condition for an extremum of the energy function (Eq. 8),
and thus for the length (Eq. 7), follows from the calculus of variation in
the form of the Euler–Lagrange equations. The Euler–Lagrange equa-
tions applied to Equation 8 lead to the geodesic equation (i � 1, . . ., n)
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gij

d2qj

d�2 � �ijk

dqj

d�

dqk

d�
� 0, i � 1,. . . ,n, (9)

where the Christoffel symbols of the first kind are defined by

�ijk �
1

2��gij

�qk �
�gik

�dqj �
�gkj

�qi� , i, j,k � 1, . . . ,n. (10)

We can rewrite Equation 9 using the “standard form” by multiplying it
with the inverse of the metric to obtain

d2qi

d�2 � � jk
i

dqj

d�

dqk

d�
� 0,i � 1, . . . ,n, (11)

where the Christoffel symbols of the second kind are defined by �jk
i �

gil�jk.
It is important to note that a geodesic curve is not only defined by the

shape of its path, but also by its parameterization. It can be easily shown
by using the geodesic Equation 11 that d�/d� � const, and thus, the
parameter � is linearly related to the arc length �; i.e., it is � � a� 	 b with
some constants a and b. A parameter � with this property is called affine
parameter, and thus geodesic curves are parameterized with respect to an
affine parameter. In particular, the arc length itself defines an affine
parameter (� � �) [the minimization of the energy function (Eq. 8) leads
automatically to the parameterization of the geodesic path in terms of an
affine parameter].

Of course, nothing prevents us from choosing any other, nonaffine
parameterization (e.g., time t) along the path. However, such a choice
implies that the geodesic Equation 11 is not satisfied. This can be shown
if we define a new curve parameterization by the functional relation t �
f(�), where � is the arc length in configuration space. Then the deriva-
tives are related according to the chain rule by

d

d�
� f


d

dt
,

d2

d�2 � f�
d

dt
� f
2

d2

dt2, (12)

where a prime denotes differentiation with respect to �. With the new
parameterization, the geodesic equation in standard form becomes

d2qi

dt2 � � jk
i

dqj

dt

dqk

dt
� �

f �

f 
2

dqk

dt
, i � 1,· · ·,n. (13)

The left side of Equation 13 defines the acceleration in curvilinear
coordinates and the term on the right side can be interpreted as a gener-
alized force. For t to be an affine parameter, f � must vanish; i.e., � and t
must be linearly related or d�/dt � const. In this case, the force term
vanishes, and Equation 13 transforms again into the geodesic equation
(Eq. 11). Because the expression d�/dt defines a speed (if t defines time),
we conclude that geodesic paths are force-free paths of constant speed.
Note that Equations 11 and 13 describe the same geodesic path but not
the same geodesic curve.

To close this section, it is instructive to evaluate some of the above
expressions in Euclidean geometry with coordinates x � (x1, x2, x3)T and
a metric defined by Equation 4. For example, the energy of the curve is
given by

E��� �
1

2�
a

b

�x�(�)�2d�. (14)

The geodesic equation (Eq. 11) transforms to x�(�) � 0, leading to the
well known result that geodesic paths of Euclidean space are straight
lines.

Implications for human trajectory formation. How are these general
mathematical considerations related to the model presented in the fol-
lowing sections? Our computational model assumes that the CNS adopts
geodesic paths at the geometrical level as part of the trajectory-planning
process. It will be shown in the following that geodesic paths with respect
to a suitably chosen metric in configuration space simplify the arm dy-
namics significantly. It is this link between geometry and dynamics that
makes the use of Riemannian geometry so attractive. We then hypothe-

size that at the temporal level, the CNS selects a speed profile along the
hand path in Euclidean task space, which in turn induces a nonconstant
speed in configuration space (d�/dt � 0). The latter corresponds to a
reparameterization of the geodesic paths in terms of a nonaffine param-
eter. This reparameterization does not change the shape of the geodesic
path, but leads to a movement that is not force-free, and therefore,
torques at the joints are required to drive the arm toward its final config-
uration. We will show in the following that the torques are reduced along
geodesic paths, because the sum of all configuration-speed-dependent
torques vanishes, whereas the remaining driving torques are to first-
order approximation linearly related to the hand acceleration. It is hy-
pothesized in this paper that these paths are an emerging property of the
system that seeks to reduce muscular efforts possibly based on proprio-
ceptive feedback.

The next sections present the computational model. First, the forward
and inverse kinematics of an arm with four degrees of freedom (DOFs)
are presented as necessary prerequisites for the formulation of the com-
putational model. This is followed by the details of the computational
model and the description of the experimental protocol.

Forward kinematics
The human arm is approximated as a linkage of rigid bodies, and an arm
configuration is parameterized by four joint angles q:� (	, 
, �, �)T � Q,
where we follow a parameterization of the arm configuration given in
Soechting et al. (1995). Q denotes the configuration space. The first three
angles describe the rotation around an ideally spherical shoulder joint,
namely, the elevation angle 	, the azimuthal angle 
, and the humeral
angle �, whereas the flexion angle � determines the rotation around the
elbow joint (Fig. 1 A). We neglected the three DOFs at the wrist, which is
assumed to be fixated. The shoulder joint is located at the origin of the
laboratory frame coordinate system (CS). Two fixed body frames, CS1

with axes x1, y1, z1 and CS2 with axes x2, y2, z2, are attached to the upper
arm and forearm segments, respectively, such that the z-axes are pointing
along the longitudinal limb axes of the upper and forearm, and the x- and
y-axes are in the transverse directions. In the zero configuration [q � (0,
0, 0, 0)T], the arm is fully extended in the direction of the (�z)-axis, and
the axis of the elbow joint is aligned with the x-axis. For the transforma-
tion of the arm from the zero configuration into an arbitrary configura-
tion, the order of rotations has to be specified. In this work, an arm
posture is defined as the sequence of the following rotations: (1) rotation
around the x1-axis by angle /2, (2) rotation around the y1-axis by angle

, (3) rotation around the x1-axis by angle 	 � /2, (4) rotation around
the z1-axis by angle �, and (5) rotation around the y2-axis by angle �,
where the sign of the rotation angle is defined by the right-hand rule. The
forward kinematics map defines the elbow and hand locations in the
laboratory frame CS as a function of the joint angles; i.e., xe � Fe(q) for
the elbow location and xh � Fh(q) for the hand location, where xe � (xe,
ye, ze)

T and xh � (xh, yh, zh)T. For the chosen parameterization, we obtain

xe � � lusin
sin	, (15)

ye � lucos
sin	, (16)

ze � � lucos	, (17)

and

xh � xe � lf �sin��cos�sin
cos	 � sin�cos
� � cos�sin
sin	, (18)

yh � ye � lf �sin��cos�cos
cos	 � sin�sin
� � cos�cos
sin	, (19)

zh � ze � lf �sin�cos�sin	 � cos�cos	, (20)

where lu and lf are the upper arm and forearm lengths, respectively. It
should be noted that the immobilization of the wrist motion, as was done
for the experimental data analyzed here, implies that the hand and the
wrist follow the same kinematics as one rigid link. Finally, for a given
hand path, xh � xh(�), the change in hand path can be determined
according to x
h(�) � Jh(q)q�(�), where (Jh)ij � dFh,i/dqj, i � 1, 2, 3; j � 1,
. . ., 4 is the hand Jacobian, and a prime denotes differentiation with
respect to �, where � is a parameterization of the path. Similar relation-
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ships hold for the elbow path. The components of the elbow and hand
Jacobian are given in Appendix A (the “hand Jacobian” defines the Jaco-
bian of the whole arm system, whereas the “elbow Jacobian” defines the
Jacobian of the upper arm segment).

Inverse kinematics
We determine next the inverse kinematic relation for the four DOF arm,
which defines the joint-angular vector as a function of the hand location.
As a result of the excess of one DOF in configuration space (four DOFs in
configuration space and three DOFs in external task space for an immo-
bilized wrist), there exists no unique map from hand to configuration
space. Indeed, for a fixed hand location, the arm can still rotate around an
axis going through the shoulder and the hand, implying that the elbow
location is constrained to move on a circle around this axis (Hollerbach,
1985). Changes in the elbow position along the circle do not influence the
hand location, and therefore, such changes do not contribute to the task
goal. If we denote the rotation angle of the elbow around this axis with

� � [0, 2), we can parameterize the elbow locations for a fixed hand
location xh as xe � xe(�; xh) (Fig. 1 B). An explicit expression for the
elbow location in terms of the angle parameter � and the hand location xh

is provided in Appendix B. Once the elbow and hand locations are fixed,
the whole arm configuration is determined; i.e., there exists a relation of
the form q � q(xe, xh). An explicit calculation assuming that �xe � xh� �
0 and �ze� � lu leads to

	 � acos� � ze

lu
� (21)


 � atan2� � xe,ye� (22)

� � atan2�lu�xeyh � xhye�,ye�yezh � yhze� � xe�zexh � zhxe�� (23)

� � acos�xh
2 � yh

2 � zh
2 � lu

2 � lf
2

2lulf
�, (24)

where we defined the function atan2(a, b):� atan(
a

b
) � sign(a)[1 �

sign(b)](


2
). The inverse kinematic relation follows then by inserting the

expression for the elbow locations, xe � xe(�; xh), in the relationship
expressing the joint-angular vector in terms of elbow and hand location,
q(xe, xh).Thus, the inverse kinematic relation has the form q � q(�, xh).
Note that the four components of the joint-angular vector are deter-
mined by the rotation angle � and by the three components of the hand
location.

Obviously, not all rotation angles � � [0, 2) lead to a realizable arm
posture. The subset of rotation angles that lead to postures inside the
biomechanically admissible joint range are determined by using biome-
chanical joint-range models. We assume that only joint angles that satisfy
the following inequalities lead to admissible arm configurations:

0 � 	 ��� � , (25)

�
3

4
 � 
��� �



3
, (26)

�ext�	,
� � ���� � �int�	,
�, (27)

0 � � � , (28)

where the external and internal humeral rotation of the upper arm, �ext

and �int, describe the maximal clockwise and counterclockwise rotations,
respectively, around the upper-arm axis as a function of upper-arm axis
orientation (when viewed from the subject). The external and internal
humeral rotations are derived from experimental data and are approxi-
mated by the curved surfaces shown in Figure 2 (Wang et al., 1998).

For each hand location in space, xh, the interval of possible rotation
angles, I(xh) � �, defines the arm posture constraints. The correspond-
ing joint-angular vectors associated with realistic arm postures at hand
location xh are thus specified by the one-parameter family of vectors
q(�) � q(xh, �) with � � I(xh).

Description of the computational model
The implementation of the geometric and temporal levels in the trajec-
tory planning process and the integration into a spatiotemporal repre-
sentation are described in the following sections.

Geometric level: prediction of the joint-angular path in configuration
space. The configuration space of the arm defines a Riemannian manifold
when assigning a suitable (positive definite and symmetric) metric tensor
in configuration space. A natural candidate for a metric in configuration
space is defined by the (in general, non-Euclidean) kinetic energy metric
M (or manipulator inertia matrix in the robotic literature); i.e., we set
gij � Mij, i, j � 1, . . ., 4 (Biess et al., 2001). The components of the kinetic
energy metric are given by

Mij(q)�
�K(q,q̇)

�q̇i�q̇j , (29)

Figure 1. Forward and inverse kinematics. A, General arm configuration defined by the

three shoulder angles (elevation, 	; azimuth, 
; and torsion, �) and the flexion angle � at the

elbow joint. The upper and forearm lengths are given by lu and lf, respectively. The elbow and

hand location, xe and xh, are determined via the forward kinematics map for given joint angles.

Inset, The zero arm configuration with the attached body-fixed coordinate systems, CS1 and CS2.

B, Specification of the elbow location xe for a given hand location xh of an arm with four degrees

of freedom used in the derivation of the inverse kinematics. All parameters are defined in

Appendix B.
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where K is the kinetic energy of the arm and qi, i � 1, . . ., 4, denote the
components of the joint-angular vector q � (	, 
, �, �)T. The explicit
form of the kinetic energy and the components of the kinetic energy
metric for a four DOF arm are provided in Appendix C.

The kinetic energy metric depends on the current arm configuration
and represents physically the instantaneous composite mass distribution
of the whole arm linkage in the current arm configuration (Asada and
Slotine, 1986). The use of this metric is motivated by studies of Soechting
et al. (1995) and Flanders et al. (2003) that showed the significance of
inertial properties of the whole arm for the selection of the arm configu-
ration in 3D space. The observed variability of hand-path curvature,
which depends on the location in the task space, makes the kinetic energy
metric attractive for the description of 3D point-to-point movements. In
addition, the kinetic energy metric is closely related to the dynamic equa-
tions of motion of the arm, as will be shown in Results. The line element
associated with the kinetic energy metric is, according to Equation 5,

d�2 � Mij�q)dqidqj. (30)

We can then compute the geodesic path for the kinetic energy metric
between an initial and final configuration, q0 and qf, respectively. In this
work, we define the affine parameter, �, of the geodesic path as follows: if
we denote with � the total arc length of the path in configuration space
between the initial and final configuration, we define the (dimensionless)
affine parameter by the normalized arc length � � �/�, which then takes
values between 0 and 1. The geodesic equation for the kinetic energy
metric is given as a result of Equation 9 by ( gij � Mij)

M�q)q�	C(q,q�)q��0, (31)

where q� � dq/d� and the components of, the Coriolis matrix, C � (Cij),
i, j � 1, . . ., 4, are defined by

Cij � �ijk

dqk

d�
�

1

2��Mij

�qk �
�Mik

�qj �
�Mkj

�qi �dqk

d�
. (32)

The specification of suitable boundary conditions is required for the
solution of the geodesic equation (Eq. 31). We set

q(0)�q0, (33)

q(1)�q(�;xf), ��I(xf). (34)

For this choice of boundary conditions, the complete initial arm config-
uration, q0, and the final hand location, xh � xf, are specified. However,
because of kinematic redundancy, the given final hand location corre-
sponds to a one-parameter family of possible final arm configurations,
namely, all the accessible arm configurations that are generated by a
rotation around the axis connecting the shoulder joint and the final hand
location. The final arm posture is thus not uniquely determined. Instead,
it is an outcome of the optimization procedure described below.

We remark that the computation of the solution of the geodesic equa-
tion (Eq. 31), subject to the set of boundary conditions in Equations 33

and 34, is not a trivial problem. Mathemati-
cally, it defines a nonlinear two-point boundary
value problem. A numerical solution for the
computation of the geodesics with a high de-
gree of accuracy was developed and presented
by Biess et al. (2006), and we refer the reader to
this work for additional details.

We describe next the computational steps to
determine the geometric prediction of the
model in terms of the optimal joint-angular
path in configuration space (Fig. 3). The con-
figuration space Q is visualized as a two-
dimensional surface. Each point in configura-
tion space corresponds to an arm posture. The
input to the model is given by the initial arm
configuration, q0, and the final target location
xf, where the latter corresponds to a one-
parameter family of final arm configurations.
To extract this set of final arm postures, we

compute first the circle C in task space, which contains the set of final
elbow locations. The set of final elbow locations determines together with
the fixed final hand location the set of possible final arm configurations.
In configuration space, this set can be represented as a one-dimensional
manifold. Next, we determine the set of admissible arm postures. For this
purpose, the final elbow positions on the circle C are discretized (by
variation of the angle � in steps of 3°), and the final elbow locations inside
(●) and outside (�) of the biomechanically admissible joint range are
derived from biomechanical joint-range models. These sets correspond
in configuration space to subsets of the one-dimensional manifold. In the
final step, we compute for each fixed value of the angle � � I(xh) the
geodesic path between the initial arm configuration, q0, and the final arm
configuration, qf(�) � q(�; xf), � � I(xf). The solution of Equation 31
subject to Equations 33 and 34 thus defines a one-parameter family of
geodesics in configuration space, ��: [0, 1]3Q, that all start at the same
point but end at different points in configuration space. In extrinsic task
space, this corresponds to a fixed initial arm posture, whereas many final
postures may be compatible with the given final hand location. Among
all geodesics that are compatible with the task constraints, we assume that
the CNS selects the geodesic path with the minimal length in configura-
tion space; i.e., we select the optimal path in joint configuration space as
the geodesic path with the property

��* � arg minE����,
��I�xf)

(35)

where the energy of the curve is given according to Equation 8 by

E���� �
1

2�
0

1

q�(�,�)TM��,��q�(�,�)d��
1

2�
0

1�d�

d��
2

d��
1

2
¥2(�),

(36)

and � � �* is the rotation angle that minimizes the energy of the curve.
�(�) denotes the arc length of path �� in configuration space. The opti-
mal joint-angular path is thus determined by the geodesic path ��*:
q*(�) � q(�, �*), and the optimal hand path in task space follows from
the forward kinematics map. The temporal properties of the movement
are determined by ascribing a speed profile along the hand path, as pre-
sented in the next section.

Temporal level: prediction of the speed profile in Euclidean task space.
The timing of the movement is derived in task space, where distance is
defined according to the Euclidean metric (Eq. 2). It is assumed that the
speed profile along the hand path is determined by minimization of
the squared jerk of the arc length s of the hand path integrated over the
movement time:

C � �
0

T

s�2dt, (37)

Figure 2. Definition and estimation of the external and internal humeral rotation, �ext and �int , as a function of the upper-arm

direction. The external and internal humeral rotation describe the maximal clockwise and counterclockwise rotations, respec-

tively, around the upper-arm axis as a function of upper-arm axis orientation (when viewed from the subject). The external and

internal humeral rotations are derived from experimental data and are approximated by the curved surfaces (Wang et al., 1998).
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subjected to the boundary conditions

s�0� � 0, s�T� � S,
ṡ�0� � 0, ṡ�T� � 0,
s̈�0� � 0, s̈�T� � 0,

	 (38)

where T is the measured total movement dura-
tion, S is the total Euclidean arc length of the
hand path, and a dot denotes differentiation
with respect to time. Note that Equations 37
and 38 correspond to a modified minimum-
jerk (MJ) model that is expressed in terms of
the arc length along the hand path rather than
in terms of the end-effector coordinates as in its
original formulation. Remember that the solu-
tion of the original minimum-jerk model re-
sulted in straight hand paths with a bell-shaped
velocity profile. In the modified minimum-jerk
model, we only determine the time course
(speed) along an a priori defined path that can
have any smooth shape.

The modified minimum-jerk model is moti-
vated by the observation that speed profiles of
point-to-point movements in 3D are roughly
bell shaped (Atkeson and Hollerbach, 1985).
This choice will be also motivated retrospec-
tively when discussing the dynamical proper-
ties of the resulting movement. The optimal so-
lution for position and speed is given by (Flash
and Hogan, 1985)

s*�t� � S�3�10 � 15� � 6�2�, (39)

v*�t� �
15

8 �S

T��4��1 � ��2. (40)

The total movement time is an input parameter taken from the measure-
ments, whereas the total arc length of the hand path is not known a priori
but can be computed from the joint-angular paths determined at the
geometrical level. The arc length of the hand path in Euclidean task space
follows from Equation 2 as

ds

d�
� �x
(�)�, (41)

which leads to

s��� ��
0

�

|x
(�)|d���
0

�

|J(q(�))q�(�)|d�, (42)

where we expressed the hand vector in terms of the joint-angular vector
using the hand Jacobian. The total arc length of the hand path in task
space follows then as S � s(1). It should be noted that the arc length of the
hand path as a function of path parameter is a monotonically increasing
function (ds/d� � 0) and thus can be inverted, leading to a function � �
�(s).

The relation between the speed in configuration space, �̇, and the
speed in task space, ṡ, is derived next. From Equation 41, we get

�̇ � ṡ�
�s�, (43)

where a dot and a prime denote differentiation with respect to time and
arc length s of the hand path, respectively. For later purposes, we also
derive the acceleration in configuration space, which follows by deriva-
tion of Equation 43 as

�̈ � s̈�
�s� � ṡ2���s�. (44)

Note that the kinetic energy of the arm is according to Equations 30 and
43 given by (� � �/�)

K �
1

2
�̇2 �

1

2
�¥�
�s��2ṡ2. (45)

Equation 45 is used in Appendix D for the derivation of the minimum-
peak kinetic energy (minimum peak work) model, which follows as an
outcome of our computational model.

Spatiotemporal level: integration of the geometric and temporal levels.
The spatiotemporal representation of the movement can be constructed
from the selected motion patterns at the geometric and temporal levels by
two successive transformations. First, the optimal joint-angular path,
q*(�), is reparameterized with respect to the arc length of the hand path;
i.e., q*(s) � q*(�(s)). Then, the optimal time profile is imposed along the
hand path, resulting in the optimal joint-angular trajectory, q*(t) �
q*(s*(t)), which defines the optimal movement kinematics. For brevity,
we refer in the following to the model with these temporal and geomet-
rical features as the geodesic (GEO) model. The implications of the GEO
model for the arm dynamics are presented in Results.

Experiments
Subjects. Four right-handed male volunteers (age range, 18 –32 years)
completed a series of natural unconstrained arm movements of two dif-
ferent types within a single session. None of the participants reported
having any clinical symptoms or any history of motor, sensory, or neu-
rological disorders. All participants gave their signed consent to partici-
pate in the experiment, as requested by the institutional ethics
committee.

Procedure. Subjects sat in front of a projection screen (a parafrontal
plane relative to their torso) with the shoulder at a distance of 1 m. They
were strapped to a chair by appropriate belts that minimized shoulder
displacements and fixated the torso throughout the experiment. The
height of the chair was adjusted such that the right shoulder was aligned

Figure 3. Description of the computational model in configuration space (left) and task space (right). The configuration space

Q is represented as a two-dimensional surface. Each point in configuration space corresponds to an arm posture. The input to the

model consists of the initial joint configuration q0 and the final target location xf. The circle C contains the final elbow locations,

which determine together with the fixed final hand location the set of possible final arm configurations (config). The set of final

arm configurations can be represented in configuration space as a one-dimensional manifold. The final elbow locations inside (●)

and outside (�) of the admissible joint range are determined from biomechanical joint-range models. These sets are represented

in configuration space as subsets of the one-dimensional manifold. A one-parameter family of geodesics, ��, between the initial

configuration q0 and the many possible final configurations qf (�; xf), � � I(xf) is computed. The optimal geodesic (for ���*)

is selected as the geodesic with minimal arc length in configuration space over all accessible final arm configurations. The optimal

hand path follows from the forward kinematics. A minimum-jerk speed profile is then assigned along the hand path, which

determines the temporal properties of the movement.
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with a fixed reference point in space. The subjects were naive to the
purpose of the experiment. They were instructed to point toward visual
targets that were randomly presented in different locations of the 3D task
space. All experiments were performed under dimmed lighting condi-
tions such that individuals were able to see their arm. Targets consisted of
5 cm balls that were projected on the screen. For this purpose, a 3D
virtual reality was generated using stereovision. For additional details, we
refer to Liebermann et al. (2006). The 3D positions of infrared emitting
diodes (IREDs) were recorded at a rate of 100 Hz with an accuracy �1
mm using two motion tracking cameras (Optotrak; Northern Digital,
Waterloo, Ontario, Canada). The IREDs were attached to the arm seg-
ments via exoskeletal metal frames. The center of the frame placed over
the acromion (a triangle of 10.7 cm base and 11 cm height) was the
assumed center of shoulder rotation. The center of the exoskeletal frame
placed on the distal end of the upper arm (18.5 cm height, 16.2 cm width)
was used to measure the elbow joint location. A third frame (11.4 cm
height, 11 cm width) was centered and attached to the wrist. The latter
was braced to eliminate any rotations of the radiocarpal joint (i.e., supi-
nation–pronation movements were only possible by rotating the forearm
about the radioulnar joint).

Experimental protocol. Data were collected during the performance of
radial and frontoparallel movements. Radial movements were defined as
the hand motion in the inward and outward directions relative to the
body’s longitudinal axis. In the radial condition, targets were presented at
fixed distances of 0.6 and 0.8 m from the location of the shoulder center,
at different heights. Pointing always started from a central position (0.3
m frontally and at 0 m horizontally and vertically relative to the shoul-
der). A set of radial movements consisted of 78 trials from the initial to
the final targets and vice versa (forward and backward movements). Each
set of movements was repeated five times, resulting in a total number of
78 � 2 � 5 � 780 movement trials.

Frontal plane movements were defined as movements between targets
lying on frontoparallel planes relative to the body. Targets were presented
in four frontoparallel planes at fixed distances of 0.30, 0.45, 0.60, and
0.75 m from the shoulder center. Each plane contained four initial targets
and 12 final targets presented at different heights (�0.4, 0, and 0.4 m
relative to the shoulder). It is important to note that the end effector was
not constrained to move in the virtual plane between an initial and a final
target. A set was comprised of 24 pointing movements from a fixed initial
target position to several final targets in the same frontal plane and their
reversals. The initial target within one of the four planes was changed
four times, and each set was repeated five times, resulting in a total
number of 5 � 16 � 24 � 1920 movements. In both movement condi-
tions, the subjects could choose freely the initial arm configuration at the
initial target.

Data analysis. During the data collection process, markers were not
always visible to the cameras, and data were lost. However, only if more
than one-third of the total number of samples obtained for the IRED
markers were lost during a movement was the trial excluded. In all other
cases, a data recovery process was initiated as follows. Geometric and
temporal information was used for recovering data. If one marker of an
exoskeleton at a certain time frame was missing, it could be simply re-
stored by geometrical considerations based on the rigidity of the exoskel-
etons. If marker signals were lost over a whole interval of frames, where
the maximal allowed contiguous missing segment was set to 15 frames �
150 ms, the missing markers were reconstructed by extrapolating from all
visible markers before and after the missing time frames. Raw displace-
ment data obtained from the markers were filtered (Butterworth, second
order). The cutoff frequency was chosen depending on whether position,
velocity, or acceleration data were generated (position: 6.0 Hz; velocity:
5.5 Hz; acceleration: 5.0 Hz) (Giakas and Baltzopoulos, 1997). The
movement onset and offset times are determined by optimally fitting
(least-square error) a superposition of minimum-jerk speed profiles to
the absolute hand velocity profile (Lee et al., 1997). Not more than two
minimum-jerk submovements were needed to extract the movement
onset and offset times. This procedure was only used to reconstruct the
segments of the experimental speed profiles near the beginning and the
end of the movement (approximately the segments of the speed profiles

for which v � 0.15vmax) and not to fit a minimum-jerk speed profile to
the data.

The estimation of the elbow locations from the marker positions of the
exoskeletons, which are attached to the limbs, is an essential part of the
data analysis. Skin movements and random measurement noise lead to
errors in the measured joint locations. In particular, errors occur in the
localization of the elbow joint because of the difficulties in attaching the
exoskeleton such that no relative motions between arm and grid occur
while moving. However, a reliable elbow position is required for the
determination of the joint angles and the length of the limbs. The esti-
mation of the elbow position was composed of three steps. First, the
marker coordinates were transformed to a coordinate system that moved
with the upper arm. Second, an optimal estimate of the elbow location in
the upper arm coordinate system was determined (Gamage and Lasenby,
2002). In this coordinate system, only the forearm moves, and the elbow
location is a fixed point that can be determined by geometric methods.
The estimated elbow locations in the shoulder-fixed coordinate system
followed then by back-transformation.

Results
The results of the Riemannian approach were compared with the
predictions of the Euclidean approach, where a Euclidean metric
is assumed in task and configuration space. Thus, the metric
M(q) is replaced by the identity matrix. The geodesic paths in
configuration space are then simply straight lines given by

q(�)�q0	�(qf � q0). (46)

This path is the optimal solution to the squared-joint derivative
cost (SJD),

CSJD � �
0

1

q
(�)Tq
(�)d�. (47)

The temporal prediction for the SJD model was assumed to result
from the minimum-jerk model for the arc length, as specified in
Equations 37 and 38.

In addition, the results of the two previous models were com-
pared with the predictions of the minimum torque-change
(MTC) model. This model minimizes the squared change of joint
torques integrated over the total movement time (Uno et al.,
1989). Boundary conditions for the MTC model were set accord-
ing to Equations 33 and 34, supplemented by zero joint-angular
velocities and accelerations at the beginning and end of the move-
ment. As for the geodesic model, the final arm posture was not
predefined, but rather resulted as an outcome of the optimiza-
tion. For the solution of the MTC model, an optimization
method based on the parameterization of joint-angular trajecto-
ries was used (Biess et al., 2006).

Simulated and observed data are compared in this section.
Results are presented in four subsections that addressed predic-
tions at the geometric, temporal, spatiotemporal, and dynamic
levels.

Geometric level: hand paths and final postures
Measured hand paths were persistently curved depending on the
location in the workspace. However, the curvature was small for
all types of movements. The curvature of the hand paths was
assessed by evaluating a global curvature index defined as CI �
S/L, where S denotes the total arc length of the hand path and L
the Euclidean distance between the initial and the final targets.
For straight hand paths, the curvature index is CI � 1, whereas
for a semicircular path, the index is CI � /2 � 1.57. The last
columns of Figures 9 and 10 show the distributions of the curva-
ture index for radial and frontoparallel movements, respectively.
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As can be seen from these figures, most of
the movements result in quasi-straight
hand paths with a curvature index CI �
1.05.

Typical examples of the measured and
predicted hand paths for the three models
(GEO, SJD, and MTC) in the radial condi-
tion are shown in Figure 4 and in the frontal
plane condition in Figure 5. Each row
shows the projections of the three dimen-
sional hand path of one movement into the
xy-, xz-, and yz-planes. These randomly
chosen examples from the data of our four
subjects show that the MTC model consis-
tently deviates from the observed paths in
all three planar projections of the 3D hand
movements. This was observed regardless
of the movement condition or direction. In
the same vein, it may be observed that the
GEO and SJD models are close to each
other. For the evaluation of the path predic-
tions, a (global) hand-path deviation index
(HPDI) based on the maximal value of the
minimal Euclidean distances between mea-
sured and predicted paths was calculated.
Such an index was used to quantify differ-
ences such as those observed in Figures 4
and 5. The measured path was divided into
M � 40 equidistant segments, which de-
fined M � 1 inner points. The minimal Eu-
clidean distances from the inner points to
the predicted path, Ri, i � 1, . . ., M � 1,
were determined, and the ratio of the max-
imal value R � maxi�1,. . . M�1{Ri} and the
distance between the initial and final targets
L was defined as the hand-path deviation
index, HPDI � R/L (Fig. 6A).

In all presented cases, the path predic-
tions of the GEO model were closer to the
measured hand paths, as indicated by the
mean HPDI scores presented in Table 1, than the path predic-
tions derived from the two other models. The paths resulting
from the GEO and SJD models were similar, whereas the latter led
to slightly larger HPDI values. In contrast, the hand paths result-
ing from the MTC model were strongly curved in most trials, and
thus, large HPDI values were obtained for the MTC model.

In the present experiments, the arm was free to adopt any
configuration among a large number of possibilities available
during pointing to visual targets, in particular, at the final target.
However, reproducible postural patterns were commonly ob-
served within a limited set. The present model was designed to
predict those arm postures that bring the hand to its final position
by the shortest geodesics that connects the initial and the final
arm posture in configuration space. The predicted versus the
measured final joint angles of the shoulder are shown in Figure 7
for the radial movements and in Figure 8 for movements in a
frontal parallel plane, together with the R 2 values for the GEO,
SJD, and MTC models. The figures show that the largest devia-
tions from the perfect fit, where all data points lie on the diagonal,
occur for the MTC model, whereas the GEO and the SJD model
lead to similar and less spread-out distributions around the re-
gression line. The analysis of the R 2 values resulted in the highest
score for the GEO model, although the torsional angles � were not

always predicted successfully. For example, in the case of subject
1 in the radial condition and subject 3 in the frontal-plane con-
dition, Figures 7 and 8 show respectively for each of these subjects
and conditions that the torsion angle was not predicted very well.
The origin of this large discrepancy for these subjects remained
unclear.

To further evaluate the predicted final arm postures, a relative
error measure of the form of the final posture deviation index
(FPDI) was determined as follows. At a given target location, the
arm can rotate around an axis going through the shoulder and the
final hand location. The rotation angle around this axis is given
by the angle � (Fig. 1B). The measured and predicted final arm
postures can thus be defined by the angles �exp and �pre, respec-
tively. The deviation index for each final arm posture follows then
as the ratio of the absolute difference between the predicted and
measured angles, �� � ��exp � �pre�, to the total anatomically
accessible range, ��tot � �I(�; xf)� at the final hand location xh �
xf. Note that the total anatomically accessible angular range de-
pends on the hand location and can be estimated from biome-
chanical joint-range models (Fig. 6B). As shown in Table 1, the
FPDI measures were smallest for the GEO model, followed by the
predictions of the SJD cost. In comparison, large values were
obtained for the MTC model.

Figure 4. Hand paths. Typical examples of measured and predicted 3D hand paths for different models in the radial move-

ment condition. The GEO and the SJD models lead to path predictions similar to experimental data, whereas the MTC model leads

to too-curved path predictions. Units are in millimeters.
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Temporal level: speed profiles
We first analyzed the characteristics of the observed tangential
hand-speed profiles and investigated whether our modeling as-
sumptions on the temporal level were justified. For this purpose,
the normalized speed profiles, ṽ(�) � v(�)/
v�, were analyzed,
where the average velocity is given by 
v� � S/T and � � t/T defines
normalized time. The normalization guarantees that all speed
profiles are independent of the distance traveled and satisfy the
following relationship: �0

1ṽ(�)d� � 1. To assess deviations from
the symmetric speed profile, we defined an asymmetry index as
the ratio (Sl � Sr)/S, where Sl is the distance traveled up to peak
time of velocity (acceleration phase) and Sr is the distance trav-
eled from peak time of velocity until the end of the movement
(deceleration phase). S denotes the total distance traveled. The
temporal evolution of hand paths according to the minimum-
jerk description assumes that the peak amplitude of the normal-
ized speed profile should invariably reach a value of 1.875 at time
� � 0.5. In addition, the bell-shaped minimum-jerk speed profile
has an asymmetry index of zero.

The distributions around the mean values (by subjects and
movement types) for peak amplitude, peak time, and asymmetry
index are given in Figure 9 for radial movements and in Figure 10
for frontoparallel movements. These distributions suggest that
the minimum-jerk model provides a reasonable fit to the mean

values of amplitude, peak time, and asym-
metry factor, although the amplitude for
3D arm movements may be better pre-
dicted by the minimum-snap model
(snap � fourth derivative of hand-
position vector), which would lead to a
value of 2.186 instead of 1.875 resulting
from the minimum-jerk model (Richard-
son and Flash, 2002). Measured accelera-
tion times were on average slightly shorter
than predicted by the minimum-jerk
model, as indicated by the peak times of
the hand-speed profiles. The mean asym-
metry factor of the speed profiles was small
and negative, showing that the distance
traveled during the deceleration phase was
slightly longer than the distance covered
during the acceleration phase. Overall,
the MJ model formulated for the arc
length of the hand path is a good approx-
imation, although it cannot explain all
temporal features of the measured hand
movements.

Randomly selected examples of pre-
dicted speed profiles resulting from the MJ
model along the hand path and the MTC
model, superimposed on measured speed
profiles, are shown in Figure 11 for the ra-
dial movement type and in Figure 12 for
movements on the frontal plane. The pre-
dicted MJ profiles are in good agreement
with the experimental data, although the
predicted peak amplitude slightly under-
shoots the experimental value, and the ob-
served small deviations from the symmet-
ric bell-shaped form cannot be explained
by the MJ model. In contrast, the peak am-
plitudes of the MTC speed profiles are in
general too small and show double peaks,

in disagreement with the observed data.
The speed profiles were further examined by using a global

error measure as in Nakano et al. (1999). The error measure was
based on the area that the normalized speed profile encloses with
the time axis. When comparing the predicted and measured nor-
malized speed profiles, the compounded area surrounded by the
two profiles was divided into a common and a noncommon por-
tion. The ratio of the noncommon area to the whole area defined
a speed deviation index (SDI) for each profile (Fig. 6C). The SDI
values for the different models are listed in Table 1. Note the large
difference for the SDI measures between the GEO and the MTC
model and the fact that the SDI values for the GEO and the SJD
model are identical.

The results of the mixed-design ANOVAs (3 models � 2 con-
ditions of movement) with repeated measures on the last factor
were performed using the different error measures as the depen-
dent variables. The results showed that regardless of the error
variable used to assess the model-observed differences, the fron-
tal and radial movement conditions did not significantly differ
from each other. The interactions shown in Figure 13 did not
achieve statistical significance either. However, a major effect of
models was found using path, speed, and posture error measures
( p � 0.001 in all cases). Post hoc pairwise comparison showed
that the model effects were caused by the larger discrepancies

Figure 5. Hand paths. Typical examples of measured and predicted 3D hand paths for different models in the frontoparallel

movement condition. Description as in the radial condition.
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when the MTC model was assessed regardless of the movement
type. The post hoc tests also showed that the MTC model differed
significantly ( p � 0.001) from the GEO and SJD models with
respect to the path, speed, and posture error measures. However,
the latter two were similar in terms of path error and identical in
speed error measures. The GEO and SJD models differed from
each other in terms of the posture error ( post hoc pairwise com-
parison shows a borderline value p � 0.0537), with an advantage
for the former model, suggesting that the GEO model was the best
to predict the posture of the arm. Finally, it is worthwhile men-
tioning that within the narrow error margins measured for path,
speed, and posture, subjects differed from each other. However,
all subjects showed the same relative differences with respect to
the predictions of the GEO, SDJ, and MTC models. Therefore,
the present results suggest that the MTC model is not successful

in predicting path, speed, or posture during point-to-point hand
movements in 3D. The GEO model proposed in the current study
yielded the best results.

Spatiotemporal level: joint-angular positions
The model presented here assumes that the two preplanned as-
pects of the movement are integrated at some stage into one
spatiotemporal representation. The joint-angular trajectories are
an outcome of this integration process and are computed as de-
scribed at the end of the model-description section.

Figures 14 and 15 show several examples selected at random of
predicted and measured joint-angular trajectories for the three
shoulder angles and the flexion angle at the elbow joint. Note that
the arm configuration at the end point was not specified a priori
in the computational model, and thus, the predicted and mea-
sured final joint angles may differ. In particular, several examples
show large deviations for the humeral angle � in the frontal plane
movement conditions. Calculations of the forward kinematics
from the predicted joint angles confirm that the large differences
in the predicted versus measured humeral rotation are compen-
sated by much smaller differences in other joint angles, such that
the discrepancy is indeed restricted to the null space and the
boundary condition of reproducing the final hand position has
been met. One explanation for this discrepancy might be that this
degree of freedom is least controlled by the system. Note that in
the case of a fully extended arm, the humeral angle � is identical to
the rotation angle � (up to a constant) around the axis going
through the shoulder location and the final hand location. Recall
that the angle � parameterizes the null space of the end-effector
location, and thus, changes in the angle � do not contribute to the
task goal.

Dynamic level: driving torques
The computational model derived at the temporal and geometric
levels leads to interesting properties at the dynamic level. These
properties will be derived next.

First, we analyze the driving torques needed to generate the
movement along the geodesic paths. The dynamic equations of
motion for the arm are given by

M(q)q̈	C(q,q̇)q̇	N(q)��, (48)

where N denotes the vector of gravitational torques. Frictional
torques are neglected. The joint torques, �, generated by muscle
forces are divided into the driving torques, �d, and the torques, �g,
that counterbalance the external torques generated by the gravi-
tational field. Thus, we assume that gravitation does not contrib-
ute to the driving torques along the path in configuration space,
but leads to a static posture maintenance at each location in task
space. Therefore, we decompose the torques as follows:

� � �d	�g, (49)

�g � N(q). (50)

With these assumptions, the dynamic equations (Eq. 48) trans-
form into

M(q)q̈	C(q,q̇)q̇��d. (51)

As pointed out in previous research works (Flash and Hollerbach,
1982; Atkeson and Hollerbach, 1985), the separation of torques
into posture maintenance torques and gravity-independent driv-
ing torques might be used by the motor system to simplify arm
dynamics. The advantage of such a strategy derives from the scal-
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Figure 6. Definition of error measures. A, The HPDI of measured and predicted hand paths is

the ratio of the maximum of minimal distances, R � maxi�1,. . . ,M�1{Ri}, between the two

paths and the distance, L, between the initial and the final target. B, At a fixed final hand

location xf, the elbow can still rotate around an axis going to the shoulder and the final hand

location. The measured and the predicted arm posture can thus be defined by the rotation

angles, �exp and �pred, respectively. The FPDI is the ratio of difference in rotation angle around

this axis between the measured and predicted posture, ��� ��exp � �pred�, and the total

anatomical accessible angular range,��tot, that the arm can sample at the given hand location

xf . Note that the total angular range depends on the hand location. The FPDI measure thus

defines a relative error for the final posture. C, The SDI is defined as the ratio of the noncommon

area that is enclosed by the speed profiles with the time axis and the total enclosed area.
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ing properties of the driving torques under a change of speed.
Consider a trajectory that results from a given trajectory by time
scaling t̃ � kt with some constant k.

Then, hand speed scales according to

�̃ �
ds̃� t̃�

dt̃
�

ds�t� t̃��

dt̃
�

ds�t�

dt

dt

dt̃
�

1

k
�. (52)

For k � 1, the movement speed is in-
creased, whereas for k � 1, the movement
is slowed down. The driving torques scale
according to Equation 51 as

�̃d�
1

k2�d. (53)

For example, to move the hand twice as
fast along a given hand path, the driving
torques have to be multiplied by a factor of
four.

We further analyze the driving torques
by assuming that the path in configuration
space is a priori specified and the joint-
angular trajectory can be represented in
the form q(t) � q(�(t)), where � � �/� is
the normalized arc length in configuration
space. Using the chain rule, the equations
of motion in Equation 51 can be written as

M�q�q
�̈ � �M�q�q� � C�q,q
�q
�̇2

� �d, (54)

where a prime and a dot denote differenti-
ation with respect to � and time,
respectively.

For movements along geodesic paths,
the term in brackets on the left side van-
ishes according to Equation 31. The van-
ishing expression consists of inertial
torques that depend on the speed in con-
figuration space, �2 � M(q)q��̇ 2, and the
torques that are commonly denoted as the
centrifugal and Coriolis torques (Flash
and Hollerbach, 1982), �3 � C(q, q�)q��̇ 2

� C(q, q̇)q̇; i.e., along geodesics, it is �2 	
�3 � 0. The remaining term �1 � M(q)q��̈
describes inertial torques that depend lin-
early on the acceleration in configuration
space. Thus, the arm dynamics for move-
ments along geodesic paths with noncon-
stant speed is governed by

�d��1�M(q)q��̈. (55)

Note that the movement along geodesic paths results in a much
simpler dynamics than given in Equation 48. We remark further
that the Coriolis and centrifugal interaction torques, �3, can still

Table 1. Mean deviation indices (� SD) for hand path, final posture, and hand speed for three models and four subjects in radial and frontal movement conditions

HPDI FPDI SDI

Subject GEO SJD MTC GEO SJD MTC GEO SJD MTC

Radial

1 0.0675 � 0.0355 0.0837 � 0.0417 0.2099 � 0.0984 0.0548 � 0.1481 0.0761 � 0.1739 0.1081 � 0.2259 0.1175 � 0.0902 0.1175 � 0.0902 0.3404 � 0.0993

2 0.0765 � 0.0450 0.0859 � 0.0492 0.1903 � 0.1178 0.0619 � 0.1732 0.1272 � 0.2297 0.1240 � 0.2313 0.1557 � 0.0995 0.1557 � 0.0995 0.3516 � 0.1019

3 0.0943 � 0.0629 0.0996 � 0.0660 0.2644 � 0.1219 0.0518 � 0.1404 0.0545 � 0.1468 0.1637 � 0.2857 0.1299 � 0.0861 0.1299 � 0.0861 0.4533 � 0.0917

4 0.0961 � 0.0655 0.0970 � 0.0657 0.2930 � 0.1102 0.0570 � 0.1643 0.0797 � 0.1906 0.1498 � 0.2696 0.1397 � 0.0949 0.1397 � 0.0949 0.4187 � 0.0985

Frontal

1 0.0770 � 0.0442 0.0878 � 0.0476 0.2586 � 0.0853 0.0346 � 0.1279 0.0675 � 0.1547 0.1102 � 0.2129 0.1014 � 0.0813 0.1014 � 0.0813 0.3490 � 0.1240

2 0.0748 � 0.0551 0.0811 � 0.0539 0.2454 � 0.0858 0.0628 � 0.1621 0.1685 � 0.2473 0.1954 � 0.2712 0.1742 � 0.1059 0.1742 � 0.1059 0.3561 � 0.1062

3 0.0927 � 0.0618 0.0977 � 0.0644 0.3781 � 0.1009 0.0604 � 0.1337 0.0817 � 0.1526 0.1591 � 0.2691 0.1622 � 0.1080 0.1622 � 0.1080 0.4193 � 0.0958

4 0.0955 � 0.0389 0.1053 � 0.0341 0.3536 � 0.0796 0.0315 � 0.1175 0.0344 � 0.0920 0.1022 � 0.2285 0.1799 � 0.1139 0.1799 � 0.1139 0.4590 � 0.1134

Figure 7. Final arm postures. Comparison of the model predictions for the elevation, azimuth, and torsion angles with the

experimental data in the radial movement condition for all four subjects S1–S4. The R 2 values for the three computational models

(GEO, SJD, and MTC) are given as insets in the figures. The GEO model led to the highest score in R 2 values followed by the SJD and

MTC models.
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be present for arm movements along geo-
desic paths as long as they compensate the
speed-dependent inertial torques �2.

To analyze further the dynamical prop-
erties of movements along a geodesic path,
we compare Equation 54 to Newton’s
equation of motion for a mass point m
along a prespecified path, x(s), where s is
the Euclidean arc length along the path.
Newton’s equation of motion, F � mẍ,
transforms with ẋ � sẋ
 and ẍ � s̈x� 	 ṡ 2x�
to

s̈t	�ṡ2n � F/m, (56)

where a dot and a prime denotes differen-
tiation with respect to time and arc length
s, respectively. The vectors t(s) � x�(s) and
n(s) � x�(s)/�(s) are the tangential and
normal vector to the path, respectively,
and �(s) denotes the curvature of the path.
Note the similar structure of Equations 54
and 56. If the mass point moves on a
straight path (geodesics in Euclidean
space) where x� � 0, accelerations act ac-
cording to Equation 56 only in directions
tangential to the path, whereas accelera-
tions normal to the path disappear.

Similar results hold for movements of
the arm according to Equation 54. For fur-
ther analysis, it is useful to multiply Equa-
tion 54 with the inverse of the metric, lead-
ing to

q
�̈	M�1(q)[M(q)q�	

C(q,q
)q
]�̇2�M�1(q)�d. (57)

For arm movements along geodesic paths
(“straight” paths in Riemannian configu-
ration space), the expression in the square
brackets of Equation 57 disappears, and
thus all accelerations act in direction tan-
gential to the path (i.e., along q�), whereas all nontangential ac-
celerations vanish. Movements along geodesics thus require less
muscular effort, because only forces that induce acceleration in
direction tangential to the path in configuration space have to be
provided by the muscles. Any deviation from the straight (geo-
desic) path requires additional muscle forces. These forces are
needed to keep the arm on the nongeodesic path (“curved” path
in Riemannian configuration space) comparable with the cen-
tripetal force needed to keep a mass point on a (curved) circular
path in Euclidean space.

Several examples of predicted and measured driving torques
in the radial and frontoparallel movement conditions are shown
in rows in Figures 16 and 17, respectively. The measured driving
torques were obtained by evaluating the left side of Equation 51
using the experimental data. The predicted driving torques were
derived from Equation 55 using the prediction of the GEO
model. The first column in Figures 16 and 17 shows the total
driving torque. The middle column shows the inertial torque �1,
and the last column depicts the sum of all configuration-speed-
dependent torques, �2 	 �3. Note that according to the GEO
model, �2 	 �3 � 0, and thus the inertial torque �1 is equal to the

total driving torque �d. The measured torque profiles resulted in
larger variability around the predicted curves. It is worth noting
that the sign and size of the torque amplitudes were well ac-
counted for by the model but the measured torque profiles
showed larger fluctuations. We can think of several reasons for
this discrepancy. First, the path does not always follow a geodesic
path, and thus, Equation 55 does not hold exactly. Second, ob-
served speed profiles show deviations from a symmetric profile,
and thus, the assumption of MJ speed profile along the hand path
is too stringent and cannot account for the small fluctuations in
the torque profiles. Finally, the extraction of torques from posi-
tion measurements is not trivial, and noise may be induced dur-
ing data processing. Also note that the sum of measured torques,
�2 	 �3, nearly vanishes in the presented examples, which sug-
gests that most of the driving torques can be attributed to the
torques �1. These results are in good agreement with the GEO
model.

The implication of Equation 55 in task space can be derived by
introducing the operational force F at the end effector and by
reparameterization with respect to arc length, s, of the Euclidean

Figure 8. Final arm postures. Comparison of the model predictions for the elevation, azimuth, and torsion angles with the

experimental data in the frontoparallel movement condition for all four subjects S1–S4. Description as in the radial condition.

13056 • J. Neurosci., November 28, 2007 • 27(48):13045–13064 Biess et al. • A Spatiotemporal Motor Integration Model



hand path. The driving torques �d are related to the operational
force F by the following fundamental relation (Kathib, 1987):

�d � Jh
TF. (58)

Inserting Equation 58 into Equation 57 and multiplying both
sides with the hand Jacobian leads for geodesic paths to

�̈x
 � JhM�1Jh
TF � WF, (59)

where we have used the relation x� � Jhq�,
the definition of the mobility matrix W �
JhM�1Jh

T, and the fact that the expression
in square brackets in Equation 57 disap-
pears along geodesic paths.

Next, we reparameterize Equation 59
with respect to Euclidean arc length s by
inserting the function � � �(s) and Equa-
tion 44 into Equation 59. With dx/d� �
(dx/ds)(ds/d�) � (dx/ds)(1/[�
(s)]), we
get

� s̈ �
���s�

�
�s�
ṡ2 t(s)�W(q(s))F(s),

(60)

where t � dx/ds is the unit tangent vector
to the hand path and a prime now denotes
differentiation with respect to s.

The second term in the square brackets
of Equation 60 depends on the curvature
of the hand path. For quasi-straight hand
paths, however, the term can be neglected,
because for such paths, ��(s) � 0; i.e.,

at � s̈t � WF, (61)

where at is the tangential acceleration.
Note also that for quasi-straight hand

paths, the driving torques along geodesic
paths in configuration space are according
to Equation 55 well approximated by

�d � M(q(s))q
(s)�s̈ �
��(s)

�
(s)
ṡ2 �

M(q(s))q�(s)s̈, (62)

resulting in a linear relation between the
hand acceleration s̈ and the driving
torques. The predictions of the GEO
model are compatible with the assump-
tion of quasi-straight hand paths as
shown in Figures 4 and 5 as well as the
experimental measured hand paths
that lead according to Figures 9 and 10 to
quasi-straight hand-path distributions
of the curvature index.

We conclude from Equation 61 that the
tangential acceleration in task space is
identical to the product of the mobility

matrix, which measures the ease of accelerating the hand in a
certain direction, and the actual force. Conversely, for move-
ments along quasi-straight hand paths that were derived from
geodesic paths in configuration space, the product of mobility
matrix and operational force (effective acceleration) is always
pointing in direction tangential to the hand path. The total accel-
eration of the end effector follows then as a � at 	 an, where an is
the normal acceleration given by an � �ṡ 2n. The vector n denotes
the normal vector and � the curvature of the hand path. It should
be noted that the tangential and normal vectors as well as the
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Figure 10. Descriptive hand-speed statistics and curvature index. Normalized speed profiles for the four subjects S1–S4 in the

frontoparallel movement condition. Description as in the radial condition.
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Figure 9. Descriptive hand-speed statistics and curvature index. Normalized speed profiles for the four subjects S1–S4 in the

radial movement condition. The distributions of peak amplitude, peak time, asymmetry factor, and curvature index are shown in

the subplots. The mean peak amplitude is always larger than that predicted by the MJ model (1.875), and peak time occurs slightly

before the prediction of the MJ model (0.5). The deviation of the mean asymmetry index from the MJ model (0) is small. Overall, the

MJ model formulated for the arc length of the hand path is a good model assumption. Most of the measured movements resulted

in quasi-straight hand paths with a curvature index CI � 1.05.
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curvature of the hand path are known
quantities that follow from the projection
of the geodesic path into task space.

We will next analyze what the selected
temporal feature (speed) of the computa-
tional model implies at the dynamical
level. We first consider the minimum
torque-change model (Uno et al., 1989;
Nakano et al., 1999; Wada et al., 2001). We
analyze what this criterion would imply
assuming that the movement is along a
geodesic path and the speed along the
hand path, ṡ(t), is the only free variable to
be determined. Along a geodesic path, the
cost associated with the minimum torque-
change model is

C �

�
0

T

�̇d
2dt��

0

T� d

dt
[M(q(s))q
(s)s̈]�2

dt

��
0

T� d

dt
[A(t)s̈]�2

dt3min, (63)

where we have used Equation 62 and de-
fined A(t) ' M(q(s(t)))q�(s(t)). We no-
ticed that for geodesic paths, Ȧ(t) � 0, and
thus the change of driving torque is to a
first approximation proportional to the
jerk of the arc length:

C � �A�2�
0

T

s�2dt3min. (64)

We conclude that the minimization of the
squared driving torque change integrated
over the movement is roughly equal to a
minimization of the squared jerk of the arc
length of the hand path integrated over the
movement time. The minimum-jerk model
and the minimum torque-change model are
thus compatible when restricted to geodesic
paths in configuration space. Moreover, as
shown in Appendix D, the chosen motor
patterns at the geometric and temporal levels
are equivalent to a minimization of the peak
value of the kinetic energy. Thus, the
minimum-peak kinetic energy model as
suggested by Soechting et al. (1995) is an ad-
ditional outcome of our model.

A second, alternative solution for the speed determination
along the geodesic path may consist of a cost in task space in the
form of the squared change in effective acceleration integrated
over the movement time, thus:

C � �
0

T� d

dt
(WF) 2

dt3min. (65)

The cost can be rewritten according to Equation 61 as

C � �
0

T

ȧt
2dt � �

0

T� d

dt
(s̈t(s))2

dt � �
0

T

[s�2

� (�(s)s̈ṡ)2]dt 3 min, (66)

S1

S2

S3

S4
 

0 0.5 1

200

400

600

0 0.5 1

200

400

600

0 0.5 1

200

400

600

0 0.5 1

200

400

600

0 0.5 1

200

400

600

0 0.5 1

200

400

600

0 0.5 1

200

400

600

0 0.5 1

200

400

600

0 0.5 1

200

400

600

800

0 0.5 1

200

400

600

800

0 0.5 1

200

400

600

800

0 0.5 1

200

400

600

800

0 0.5 1

200

400

600

800

0 0.5 1

200

400

600

800

0 0.5 1

200

400

600

800

0 0.5 1

200

400

600

800

exp
MJ
MTC

normalized time

sp
ee

d 
(m

m
/s

)

Figure 11. Hand speeds. Typical examples of measured and predicted speed profiles as derived from the MJ and MTC model for

the four subjects S1–S4 in the radial movement condition. The peak amplitudes of the MTC model are too small, and in several

cases, this model shows double-peaked speed profiles. The MJ model leads to peak amplitudes with small overshoots. Note that

the observed small deviations from the symmetric speed profile cannot be accounted for by the MJ model.
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Figure 12. Hand speeds. Typical examples of measured and predicted speed profiles as derived from the MJ and MTC models

for the four subjects S1–S4 in the frontoparallel movement condition. Description as in the radial condition.
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where we used the relationships t�(s) � �(s)n(s) and t(s) � n(s) �
0. Because for quasi-straight hand paths, � (s) �� 1, the second
term in the last expression of Equation 66 can be neglected, and
the cost transforms into the modified minimum-jerk model that
defined the temporal properties of the movement in the GEO
model.

Discussion
In this study, we derived a computational model for 3D point-to-
point movements that reconciles different existing models into
one computational framework. The observed invariance of path

and posture with changes in speed led to
the assumption that geometric and tem-
poral aspects of movement are decoupled.
This resulted in a model that predicted
geometric and temporal properties inde-
pendently. Geometric properties were de-
termined in configuration space that,
when equipped with a suitable metric, de-
fined a Riemannian manifold. The chosen
metric was the kinetic energy metric,
which relates closely to the arm dynamics.
The optimal joint-angular paths were as-
sumed to follow geodesic paths in this
metric space. The timing of the movement
was selected in task space by assigning a
minimum-jerk speed profile along the
hand path.

At the dynamic level, we have shown
that geodesic paths in configuration
space correspond to arm movements
with less muscular effort, because only
forces that induce acceleration in direc-
tion tangential to the geodesic path have
to be provided by the muscles. For any
other (nongeodesic) path, additional
muscle forces have to be provided to
generate the configuration-speed-
dependent interaction torques. Move-
ments along geodesic paths with quasi-
straight hand paths require driving
torques that are linearly related to the
tangential acceleration. It follows that
the arm dynamic equations along geode-
sic paths are significantly simplified.

Moreover, we have shown that geode-
sic paths together with a minimum-jerk
speed profile imposed along the extrin-
sic hand path corresponded to joint-
angular trajectories with minimal peak
kinetic energy over all final accessible
arm postures at the target location. Our
model is thus compatible with the mini-
mum peak-work model suggested by So-
echting et al. (1995), and predicts not
only the final arm posture as presented
by that model, but also the entire hand
path and the joint-angular trajectories.

Our study also provides a dynamic
interpretation of the minimum-jerk
model by showing that a maximal
smoothness criterion imposed on the
hand-speed profile leads to a near mini-

mization of the squared change of driving torques along the
selected geodesic path. The observed double-peaked torque
profiles may be the result of the simplified dynamics along
geodesics. Two prominent and apparently contradictory mod-
els, the minimum-jerk model (Flash and Hogan, 1985) and the
minimum torque-change model (Uno et al., 1989; Nakano et
al., 1999; Wada et al., 2001), could thus be reconciled within
the framework of geodesics.

We do not propose that the CNS has an internal representa-
tion of Riemannian geometry or geodesics. We hypothesized that
geodesics are an emerging property of the system that seeks to
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Figure 13. Interactions between models (SDJ, MTC, and GEO) and movement conditions (radial and frontal) using path, speed,

and posture error measures as the dependent variables in multiple ANOVAs. Note that the GEO and the SJD models both assume

an MJ speed profile, resulting in an identical SDI error measure.

Figure 14. Joint-angular trajectories. Typical examples of predicted (solid) joint-angular trajectories resulting from the inte-

gration of the optimal geodesic path in configuration space and the minimum-jerk speed profile along the hand path in task space

in the radial movement condition for all four subjects S1–S4. Dashed lines represent the measured joint-angular trajectories. Note

that the predicted final joint angles are an outcome of the model, and thus, may deviate from the measured final arm

configuration.
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reduce muscular efforts possibly based on
proprioceptive feedback. Along geodesic
paths, the sum of configuration-speed-
dependent inertial torques and centrifugal
and Coriolis torques disappears, and only in-
ertial torques that depend on the accelera-
tion in configuration space remain. It is
important to note that centrifugal or Co-
riolis interaction torques along geodesic
paths are still possible provided that the
net torques, i.e., the sum of the torques �2

and �3, disappear. These findings are inter-
esting in light of evidence suggesting that
during multijoint movements, muscle ac-
tivation and neural control strategies have
evolved to compensate for interaction
torques (Flash and Hollerbach, 1982; Sain-
burg et al., 1993; Gribble and Ostry, 1999).
An equilibrium trajectory control strategy
(Feldman, 1966, 1986; Flash, 1987) may
enable movement by continuously shift-
ing the arm’s equilibrium point along the
predefined geodesic path.

Validity of the proposed model
The predictions of the model for joint-
angular paths, final posture, hand paths,
and speed profiles were in good agreement
with our experimental data.

Among the three tested models, the
geodesic model accounted best for the ob-
served hand paths and final arm postures.
This seems to support previous results
demonstrating the role of inertial proper-
ties in the selection of the final arm posture
(Soechting et al., 1995; Flanders et al.,
2003) and the independence of final pos-
ture from movement speed and gravity (Nishikawa et al., 1999).
In contrast, the MTC model resulted in strongly curved hand
paths and unrealistic arm postures. The overall fit of the
minimum-jerk speed profile was very good, although observed
speed profiles frequently showed slightly larger amplitudes and
deviations from the symmetric shape. The speed profiles com-
puted from the MTC model resulted in too-small amplitudes that
showed in several cases unrealistic double peaks. The sign and
size of torque amplitudes were well accounted for by the model,
but all the fine details of the driving-torque profiles could not be
explained with the present model.

Simulation studies showed that the application of the geodesic
model to planar movements resulted in strongly curved hand
paths. This poses the question of whether there is a fundamental
difference in the planning and control of movements in 2D versus
3D space. One possible explanation for this discrepancy may lie
in the fact that planning of movements constrained to a horizon-
tal plane is more strongly influenced by visual feedback and by
the wish to move along straight lines as opposed to unconstrained
3D point-to-point movements and movements in the vertical
plane (Atkeson and Hollerbach, 1985; Desmurget et al., 1997).

Evidence for an independent control of temporal and spatial
aspects of movement in CNS
Neurophysiological evidence suggests that spatial aspects of
hand paths and their evolution over time may be planned at

different independent levels. For example, movement direc-
tion toward visual targets (Georgopoulos et al., 1988) and
changes in movement direction (Georgopoulos et al., 1989)
are encoded by directionally tuned cells within the primary
motor cortex (Kettner et al., 1988), suggesting that the motor
cortex may be one of the specific sites for processing spatial
information before the actual movement execution (Georgo-
poulos, 1995; Scott, 2000).

More complex spatial information related to movement (e.g.,
during drawing geometrical patterns) seems to be mediated via
neural activity in prefrontal and premotor regions (Moran and
Schwartz, 1999; Averbeck et al., 2002). In a recent study (Torres
and Andersen, 2006), the space–time separation has been shown
during the learning of an obstacle-avoidance task in monkeys. It
has been proposed that the geometric planning stage is per-
formed by the posterior parietal cortex.

On the other hand, timing is a fundamental feature of mo-
tor skill that seems to be widely represented in the CNS (Rao et
al., 1997). Previous neurophysiological and brain mapping
studies have described a highly distributed network of cortical
and subcortical areas that code temporal aspects of the move-
ments (Harrington et al., 1998; Bengtsson et al., 2005; Buhusi
and Meck, 2005; Xu et al., 2006). These subcortical areas may
include both the cerebellum and the basal ganglia. For exam-
ple, for simple movements, temporal information is encoded
in the anterior and posterior regions of the cerebellar cortex

Figure 15. Joint-angular trajectories. Typical examples of predicted (solid) joint-angular trajectories resulting from the inte-

gration of the optimal geodesic path in configuration space and the minimum-jerk speed profile along the hand path in task space

in the frontoparallel movement condition for all four subjects S1–S4. Description as in the radial condition.
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via climbing fibers [e.g., eyelid conditioned responses and
compensatory eye movements (Raymond et al., 1996); discon-
tinuous movements of the hand (Spencer et al., 2003); finger
tapping movements (Ivry and Spencer, 2004)].

Last, integration of different features of movement, such as
space and time, may be confined to premotor and frontal brain
regions, which interact with the cerebellum, cortical (e.g., motor
cortex), and subcortical (basal ganglia) motor-related areas (Sa-
kai et al., 2000, 2002; Garraux et al., 2005).

Effect of gravity
Our model assumed that gravity has no effect on the driving
torques. In previous studies, it has been reported that hand paths
of movements in the sagittal plane tend to be more curved in the
upward than in the downward direction (Atkeson and Holler-
bach, 1985; Papaxanthis et al., 2003). It has been concluded that
this effect can be assigned to the gravitational field that acts, re-
spectively, against and along the movement direction,
respectively.

Within the framework of our model,
however, the observed asymmetry in cur-
vature for upward versus downward
movements is caused by the different ini-
tial arm configurations in upward and
downward movements and not by the
presence of the gravitational field.

To conclude, we propose that the geo-
metrical movement properties are acquired
in non-Euclidean configuration space, inde-
pendently from the temporal ones, based
possibly on proprioceptive feedback, which
leads the arm to reduce muscular effort.
Once such properties are internalized, they
may form part of a trajectory formation
strategy that is implemented using feedfor-
ward control. Such a strategy integrates the
two independent levels into a third spatio-
temporal level. We showed that if the con-
troller adopts such a solution, the arm joints
move with near minimal torque change and
minimal peak work while bringing the hand
to the required location. Our data validated
this assumption. In the light of these results,
neurophysiologists may be encouraged to
determine in more detail the specific brain
regions involved in the space–time separa-
tion process during movement. Finally, our
study showed the use of Riemannian metric
spaces in the description of human arm
movements, and it resulted ultimately in a
computational model that reconciled seem-
ingly opposing models contrasted in the
literature.

Appendix A
The components of the elbow Jacobian for
the four DOF linkage arm model defined
by the joint angles q:� (	, 
, �, �)T � Q
can be derived from the forward kinematic
relations xe � Fe(q). The components of
the elbow Jacobian are then defined as Je,ij

� �Fe,i/�qj, (i � 1, 2, 3; j � 1, . . ., 4), leading
to the nonzero components

Je,11 � � lucos	sin
 (67)

Je,12 � � lucos
sin	 (68)

Je,21 � lucos
cos	 (69)

Je,22 � � lusin
sin	 (70)

Je,31 � lusin	, (71)

Similarly, for the hand Jacobian Jh,ij � �Fh,i/�qj, we obtain the
nonzero components

Jh,11 � � sin
��lu � lfcos��cos	 � lfcos�sin�sin	

(72)

Jh,12 � � cos
�lfcos	cos�sin� � �lu

� lfcos��sin	 � lfsin
sin�sin� (73)

Figure 16. Driving torques. Examples of predicted (solid) and measured (dashed) driving torques �� (�q, �
, ��, ��)T in the

radial movement condition. The first column shows the total driving torques, the middle column shows the inertial torques �1 ,

and the final column depicts the sum of torques �2 	 �3 that depend on speed in configuration space. The measured driving

torques followed by the evaluation of the individual terms of the left side of Equation 51 using the data. The predicted driving

torques resulted from the evaluation of the right side of Equation 55 using the prediction of the GEO model. Note that the GEO

model leads to �2 	�3 � 0, and thus the total driving torques are �d ��1 , which is in good agreement with the experimental

data.
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Jh,13 � lfsin�� � cos
cos�

� cos	sin
sin�� (74)

Jh,14 � lf�sin
sin�sin	

� cos��cos	cos�sin


� cos
sin�� (75)

Jh,21 � cos
��lu � lfcos��cos	

� lfcos�sin�sin	 (76)

Jh,22 � � sin
�lfcos	cos�sin� � �lu

� lfcos��sin	

� lfcos
sin�sin� (77)

Jh,23 � � lfsin��cos�sin


� cos
cos	sin�� (78)

Jh,24 � lf�cos
�cos�cos	cos�

� sin�sin	� � cos�sin
sin� (79)

Jh,31 � lfcos	cos�sin� � �lu

� lfcos��sin	 (80)

Jh,33 � � lfsin�sin	sin� (81)

Jh,34 � lf�cos	sin� � cos�cos�sin	�,

(82)

where lu and lf denote the length of the
upper and forearm, respectively.

Appendix B
For a flexed arm and a fixed hand position xh, the arm can still
rotate around an axis going through the shoulder and the fixed
hand position (Fig. 1B). The allowed elbow positions are con-
tained in a circle C around this axis (Hollerbach, 1985). The circle
can be obtained as the intersection between the sphere S1: x 2 � lu

2

around the origin with radius lu and the sphere S2: (x � xh) 2 � lf
2

around the hand location xh with radius lf, giving the elbow loca-
tion as a function of the rotation angle � � [0, 2) of the inter-
section circle C � S1 � S2. After algebraic manipulation, the
elbow location can be expressed as

xe��,xh� � Rz���Ry����uex � �er���, (83)

with the radial distance to the center of the intersection
circle u�(1/2d)(lu

2�lf
2	d 2), intersection circle radius

v�
1

2d�4d 2lu
2�(lu

2�lf
2	d 2) 2 and d � �xh�. Furthermore, it is � �

atan2( yh, xh), � � asin(zh/d), ex � (1, 0, 0)T, er(�) � (0, cos �, sin
�)T, where atan2(a, b):� atan (a/b) � sign(a)[1 � sign(b)](/2).
The angles �, �, and � are defined in Figure 1B. Ry, Rz define
rotation matrices around the y- and z-axes, respectively, and are
given by

Ry���

� � cos� 0 � sin�
0 1 0

sin� 0 cos�
�, Rz(�) � � cos� �sin� 0

sin� cos� 0
0 0 1

� .

(84)

Appendix C
The kinetic energy of a four DOF arm in terms of the coordinates
q � (	, 
, �, �)T � Q is determined by

K �
1

2
�I1��u, x

2 � �u,y
2 � � I2�u,z

2 � I3���u,ycos� � �u,zsin��2

� ��u, x � �̇�2� � I4��u;zcos� � �u,ysin��2

� 2A��u,y
2 cos� � �u, x

2 cos� � �u,y�u,zsin� � �u, x�̇cos��

(85)

with

�u � �
̇sin�sin	 � 	̇cos�,
̇cos�sin	 � 	̇sin�,
̇cos	 � �̇T

(86)

Figure 17. Driving torques. Examples of predicted (solid) and measured (dashed) driving torques �� (�q, �
, ��, ��)T in the

frontoparallel movement condition. Description as in the radial condition.
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and the constants I1 � Iu,x 	 muau
2 	 mflu

2, I2 � Iu,z, I3 � If,x 	
mfaf

2, I4 � If,z, A � mfluaf (Biess et al., 2001). The parameters mi,
Ii,x, Ii,y, Ii,z, li, ri, (i � u, f) denote mass, principal moments of
inertia around the x-, y-, and z-axes of the body-fixed coordinate
systems, length, and distance to the center of mass of the upper
and forearm, respectively. It was assumed that the (transversal) x
and y components of the moment of inertia for the upper arm
and forearm, respectively, are the same; i.e., Iu,x � Iu,y and If,x �
If,y. The kinetic energy is a quadratic form in the joint velocities
and can be written as

K�q,q̇� �
1

2
q̇TM�q�q̇. (87)

M � � 4�4 is the kinetic energy metric (manipulator inertia ma-
trix) with nonzero components

M11 � I1 � 2 Acos� � I3cos2� � I3cos2�sin2� � I4sin2�sin2�

(88)

M12 � � �� A � �I3 � I4�cos��cos	 � � � I3 �

I4�cos�sin�sin	�sin�sin� (89)

M13 � � � A � �I3 � I4�cos��sin�sin� (90)

M14 � �I3 � Acos��cos� (91)

M22 �
I1

2
�

I1

2
cos�2	� � cos2	 �I2 � I3sin2�� � I4cos2�sin2�sin2	

� cos2��I4cos2	 � I3cos2�sin2	� � Acos�sin�sin�2	�

� cos��A � Acos2	 � Asin2	 � �I3 � I4�cos�sin�sin�2	��

� I3sin2	sin2� (92)

M23 � cos	 �I2 � I4cos2� � I3sin2�� � �A � �I3

� I4�cos��cos�sin�sin	 (93)

M24 � �I3 � Acos��sin	sin� (94)

M33 � I2 � I4cos2� � I3sin2� (95)

M44 � I3 (96)

and Mij � Mji.

Appendix D
The selection of the motion pattern on the temporal and geomet-
rical as suggested in this work leads to the minimization of the
peak value of kinetic energy and is therefore in accordance with
the model suggested by Soechting et al. (1995). This result can be
derived from our computational model as follows. For each path
in configuration space, ��, � � I(xf), that connects a given initial
arm configuration with the set of accessible final arm configura-
tions compatible with a given hand location xf, the kinetic energy
is given by the following (derived from Eq. 45):

K�t,�� �
1

2� ¥���

�x
��,����
2

ṡ2,� � I�xf�, (97)

where � is the total arc length of the path in configuration space,
x�(�) denotes the derivative of the hand path, and s is the Euclid-
ean arc length of the hand path.

We determine next the single path out of the one-parameter

family of geodesics that has minimal peak kinetic energy. The
necessary condition for the peak value of the kinetic energy is

d

dt
K�t,�� �t�t* � 0, (98)

where t � t* denotes the peak time. If we assume that a
minimum-jerk profile is imposed on the temporal level, Equa-
tion 98 leads to

�*�1 � �*��1 � 2�*� � 0, (99)

resulting in �* � 1/2, where � is normalized time � � t/T. The
peak of the kinetic energy thus occurs in the middle of the move-
ment, which is in reasonable agreement with the experimental
data (Figs. 9, 10). The peak value of the kinetic energy, K̂, as a
function of the parameter �, follows then as

K̂��� � K�t*,�� �
1

2� 15S���

8T�x
��,����
2

¥2���,� � I�xf�,

(100)

where S(�) is the total length of the hand path corresponding to
path ��. For hand paths that are quasi-straight, as obtained in the
computational model, it is S(�)/�x�(�, �)� � �0

1�x�(�, �)�d�/�x�(�,
�)� � const, and the peak value of kinetic energy is proportional
to the squared arc length of the path in configuration space. The
geodesic with the shortest arc length that connects the initial and
the final arm configurations results thus in the minimization of
the peak value of kinetic energy.
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