Probability: Review

Pieter Abbeel
UC Berkeley EECS

Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics
Why probability in robotics?

- Often state of robot and state of its environment are unknown and only noisy sensors available
 - Probability provides a framework to fuse sensory information
 - Result: probability distribution over possible states of robot and environment

- Dynamics is often stochastic, hence can’t optimize for a particular outcome, but only optimize to obtain a good distribution over outcomes
 - Probability provides a framework to reason in this setting
 - Result: ability to find good control policies for stochastic dynamics and environments
Example 1: Helicopter

- **State:** position, orientation, velocity, angular rate

- **Sensors:**
 - GPS: noisy estimate of position (sometimes also velocity)
 - Inertial sensing unit: noisy measurements from
 - (i) 3-axis gyro [=angular rate sensor],
 - (ii) 3-axis accelerometer [=measures acceleration + gravity; e.g., measures (0,0,0) in free-fall],
 - (iii) 3-axis magnetometer

- **Dynamics:**
 - Noise from: wind, unmodeled dynamics in engine, servos, blades
Example 2: Mobile robot inside building

- **State:** position and heading

- **Sensors:**
 - Odometry (=sensing motion of actuators): e.g., wheel encoders
 - Laser range finder:
 - Measures time of flight of a laser beam between departure and return
 - Return is typically happening when hitting a surface that reflects the beam back to where it came from

- **Dynamics:**
 - Noise from: wheel slippage, unmodeled variation in floor
Axioms of Probability Theory

- $0 \leq \Pr(A) \leq 1$

- $\Pr(\Omega) = 1 \quad \Pr(\emptyset) = 0$

- $\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A \cap B)$

$\Pr(A)$ denotes probability that the outcome ω is an element of the set of possible outcomes A. A is often called an event. Same for B. Ω is the set of all possible outcomes. \emptyset is the empty set.
A Closer Look at Axiom 3

\[\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A \cap B) \]
Discrete Random Variables

- X denotes a random variable.
- X can take on a countable number of values in $\{x_1, x_2, ..., x_n\}$.
- $P(X=x_i)$, or $P(x_i)$, is the probability that the random variable X takes on value x_i.
- $P(\cdot)$ is called probability mass function.

E.g., X models the outcome of a coin flip, $x_1 =$ head, $x_2 =$ tail, $P(x_1) = 0.5$, $P(x_2) = 0.5$
Continuous Random Variables

- X takes on values in the continuum.
- $p(X=x)$, or $p(x)$, is a probability density function.

\[
\Pr(x \in (a, b)) = \int_a^b p(x) \, dx
\]

- E.g.
Joint and Conditional Probability

- \(P(X=x \text{ and } Y=y) = P(x,y) \)

- If \(X \) and \(Y \) are independent then
 \[
P(x,y) = P(x) \cdot P(y)
 \]

- \(P(x \mid y) \) is the probability of \(x \) given \(y \)
 \[
P(x \mid y) = \frac{P(x,y)}{P(y)}
 \]
 \[
P(x,y) = P(x \mid y) \cdot P(y)
 \]

- If \(X \) and \(Y \) are independent then
 \[
P(x \mid y) = P(x)
 \]

- *Same for probability densities, just \(P \rightarrow p \)*
Law of Total Probability, Marginals

Discrete case

\[\sum_{x} P(x) = 1 \]

\[P(x) = \sum_{y} P(x, y) \]

\[P(x) = \sum_{y} P(x \mid y) P(y) \]

Continuous case

\[\int p(x) \, dx = 1 \]

\[p(x) = \int p(x, y) \, dy \]

\[p(x) = \int p(x \mid y) p(y) \, dy \]
Bayes Formula

\[P(x, y) = P(x \mid y)P(y) = P(y \mid x)P(x) \]

\[\Rightarrow \]

\[P(x \mid y) = \frac{P(y \mid x)P(x)}{P(y)} = \frac{\text{likelihood} \cdot \text{prior}}{\text{evidence}} \]
Bayes Rule with Background Knowledge

\[P(x \mid y, z) = \frac{P(y \mid x, z) P(x \mid z)}{P(y \mid z)} \]
Simple Example of State Estimation

- Suppose a robot obtains measurement z
- What is $P(\text{open}|z)$?
Causal vs. Diagnostic Reasoning

- $P(open|z)$ is **diagnostic**.
- $P(z|open)$ is **causal**.
- Often **causal** knowledge is easier to obtain.
- Bayes rule allows us to use causal knowledge:

$$P(open \mid z) = \frac{P(z \mid open)P(open)}{P(z)}$$

count frequencies!
Bayes Filters

Pieter Abbeel
UC Berkeley EECS

Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics
Actions

- Often the world is dynamic since
 - actions carried out by the robot,
 - actions carried out by other agents,
 - or just the time passing by

change the world.

- How can we incorporate such actions?
Typical Actions

- The robot turns its wheels to move
- The robot uses its manipulator to grasp an object
- Plants grow over time...

- Actions are never carried out with absolute certainty.
- In contrast to measurements, actions generally increase the uncertainty.
Modeling Actions

- To incorporate the outcome of an action u into the current “belief”, we use the conditional pdf $P(x|u,x^{'})$.

- This term specifies the pdf that **executing u changes the state from x' to x**.
Integrating the Outcome of Actions

Continuous case:

\[P(x \mid u) = \int P(x \mid u, x') P(x') \, dx' \]

Discrete case:

\[P(x \mid u) = \sum P(x \mid u, x') P(x') \]
Measurements

- Bayes rule

\[
P(x | z) = \frac{P(z | x) P(x)}{P(z)} = \frac{\text{likelihood} \cdot \text{prior}}{\text{evidence}}
\]
Bayes Filters: Framework

- **Given:**
 - Stream of observations z and action data u:
 \[d_t = \{u_1, z_1 \ldots, u_t, z_t\} \]
 - Sensor model $P(z|x)$.
 - Action model $P(x|u,x')$.
 - Prior probability of the system state $P(x)$.

- **Wanted:**
 - Estimate of the state X of a dynamical system.
 - The posterior of the state is also called **Belief**:
 \[Bel(x_t) = P(x_t | u_1, z_1 \ldots, u_t, z_t) \]
Markov Assumption

Underlying Assumptions

- Static world
- Independent noise
- Perfect model, no approximation errors
Bayes Filters

\[\text{Bel}(x_t) = P(x_t \mid u_1, z_1 \ldots, u_t, z_t) \]

Bayes
\[= \eta P(z_t \mid x_t, u_1, z_1, \ldots, u_t) P(x_t \mid u_1, z_1, \ldots, u_t) \]

Markov
\[= \eta P(z_t \mid x_t) P(x_t \mid u_1, z_1, \ldots, u_t) \]

Total prob.
\[= \eta P(z_t \mid x_t) \int P(x_t \mid u_1, z_1, \ldots, u_t, x_{t-1}) P(x_{t-1} \mid u_1, z_1, \ldots, u_t) \, dx_{t-1} \]

Markov
\[= \eta P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) P(x_{t-1} \mid u_1, z_1, \ldots, u_t) \, dx_{t-1} \]

Markov
\[= \eta P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) P(x_{t-1} \mid u_1, z_1, \ldots, z_{t-1}) \, dx_{t-1} \]

\[= \eta P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \text{Bel}(x_{t-1}) \, dx_{t-1} \]
\[\text{Bel}(x_t) = \eta \ P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \text{Bel}(x_{t-1}) \ dx_{t-1} \]

1. Algorithm \textbf{Bayes_filter}(Bel(x), d):
2. \(\eta = 0 \)
3. If \(d \) is a \textit{perceptual} data item \(z \) then
4. For all \(x \) do
5. \(\text{Bel}'(x) = P(z \mid x) \text{Bel}(x) \)
6. \(\eta = \eta + \text{Bel}'(x) \)
7. For all \(x \) do
8. \(\text{Bel}'(x) = \eta^{-1} \text{Bel}'(x) \)
9. Else if \(d \) is an \textit{action} data item \(u \) then
10. For all \(x \) do
11. \(\text{Bel}'(x) = \int P(x \mid u, x') \text{Bel}(x') \ dx' \)
12. Return \(\text{Bel}'(x) \)
Example Applications

- Robot localization:
 - Observations are range readings (continuous)
 - States are positions on a map (continuous)

- Speech recognition HMMs:
 - Observations are acoustic signals (continuous valued)
 - States are specific positions in specific words (so, tens of thousands)

- Machine translation HMMs:
 - Observations are words (tens of thousands)
 - States are translation options
Bayes rule allows us to compute probabilities that are hard to assess otherwise.

Under the Markov assumption, recursive Bayesian updating can be used to efficiently combine evidence.

Bayes filters are a probabilistic tool for estimating the state of dynamic systems.
Example: Robot Localization

Sensor model: never more than 1 mistake

Know the heading (North, East, South or West)

Motion model: may not execute action with small prob.

Example from Michael Pfeiffer
Example: Robot Localization

Lighter grey: was possible to get the reading, but less likely because required 1 mistake

\[t=1 \]
Example: Robot Localization
Example: Robot Localization
Example: Robot Localization

\[t=4 \]

Prob

\[0 \rightarrow 1 \]

\[t=4 \]
Example: Robot Localization

t=5