
Lightweight Remote Procedure Call

BRIAN N. BERSHAD, THOMAS E. ANDERSON, EDWARD D. LAZOWSKA,
and HENRY M. LEVY
University of Washington

Lightweight Remote Procedure Call (LRPC) is a communication facility designed and optimized for
communication between protection domains on the same machine. In contemporary small-kernel
operating systems, existing RPC systems incur an unnecessarily high cost when used for the type of
communication that predominates-between protection domains on the same machine. This cost
leads system designers to coalesce weakly related subsystems into the same protection domain, trading
safety for performance. By reducing the overhead of same-machine communication, LRPC encourages
both safety and performance. LRPC combines the control transfer and communication model of
capability systems with the programming semantics and large-grained protection model of RPC.
LRPC achieves a factor-of-three performance improvement over more traditional approaches based
on independent threads exchanging messages, reducing the cost of same-machine communication to
nearly the lower bound imposed by conventional hardware. LRPC has been integrated into the Taos
operating system of the DEC SRC Firefly multiprocessor workstation.

Categories and Subject Descriptors: C.1.3. [Processor Architectures]: Other Architecture Styles-
capability architectures; D.3.3 [Programming Languages]: Language Constructs--modules, puck-
ages; D.4.1 [Operating Systems]: Process Management-concurrency, multiprocessing/multipro-
gramming, scheduling; D.4.4 [Operating Systems]: Communications Management; D.4.6 [Oper-
ating Systems]: Security and Protection--access controls, information flow controls; D.4.7 [Oper-
ating Systems]: Organization and Design; D.4.8 [Operating Systems]: Performance-
measurements

General Terms: Design, Measurement, Performance

Additional Key Words and Phrases: Modularity, remote procedure call, small-kernel operating
systems

1. INTRODUCTION

This paper describes Lightweight Remote Procedure Call (LRPC), a communi-
cation facility designed and optimized for communication between protection
domains on the same machine.

This paper was nominated for publication in Z’OCS by the Program Committee for ACM SIGOPS
Symposium on Operating Systems Principles, December 1989.
This material is based on work supported by the National Science Foundation under Grants CCR-
8619663, CCR-8700106, and CCR-8703049, the Naval Ocean Systems Center, U.S. WEST Advanced
Technologies, the Washington Technology Center, and Digital Equipment Corporation (the Systems
Research Center and the External Research Program). Anderson was supported by an IBM Graduate
Fellowship Award, and Bershad was supported by an AT&T Ph.D. Scholarship.
Authors’ address: Department of Computer Science and Engineering, University of Washington,
Seattle, WA 98195.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1990 ACM 0734-2071/90/0200-0037 $01.50

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990, Pages 37-55.

38 - B. N. Bershad et al.

L.RPC combines the control transfer and communication model of capability
systems with the programming semantics and large-grained protection model of
RPC. For the common case of same-machine communication passing small,
simple arguments, LRPC achieves a factor-of-three performance improvement
over more traditional approaches.

The granularity of the protection mechanisms used by an operating system
has a significant impact on the system’s design and use. Some operating systems
[lo, 131 have large, monolithic kernels insulated from user programs by simple
hardware boundaries. Within the operating system itself, though, there are no
protection boundaries. The lack of strong fire walls, combined with the size and
complexity typical of a monolithic system, makes these systems difficult to
modify, debug, and validate. Furthermore, the shallowness of the protection
hierarchy (typically only two levels) makes the underlying hardware directly
vulnerable to a large mass of complicated operating system software.

Capability systems supporting fine-grained protection were suggested as a
solution to the problems of large-kernel operating systems [5]. In a capability
system, each fine-grained object exists in its own protection domain, but all live
within a single name or address space. A process in one domain can act on an
object in another only by making a protected procedure call, transferring control
to the second domain. Parameter passing is simplified by the existence of a global
name space containing all objects. Unfortunately, many found it difficult to
efficiently implement and program systems that had such fine-grained protection.

In contrast to the fine-grained protection of capability systems, some distrib-
uted computing environments rely on relatively large-grained protection mecha-
nisms: Protection boundaries are defined by machine boundaries [12]. Remote
Procedure Call (RPC) [1] facilitates the placement of subsystems onto separate
machines. Subsystems present themselves to one another in terms of interfaces
implemented by servers. The absence of a global address space is ameliorated by
automatic stub generators and sophisticated run-time libraries that can transfer
arbitrarily complex arguments in messages. RPC is a system structuring and
programming style that has become widely successful, enabling efficient and
convenient communication across machine boundaries.

Small-kernel operating systems have borrowed the large-grained protection
and programming models used in distributed computing environments and have
demonstrated these to be appropriate for managing subsystems, even those not
primarily intended for remote operation [ll]. In these small-kernel systems,
separate components of the operating system can be placed in disjoint domains
(or address spaces), with messages used for all interdomain communication. The
advantages of this approach include modular structure, easing system design,
implementation, and maintenance; failure isolation, enhancing debuggability and
validation; and transparent access to network services, aiding and encouraging
distribution.

In addition to the large-grained protection model of distributed computing
systems, small-kernel operating systems have adopted their control transfer and
communication models-independent threads exchanging messages containing
(potentially) large, structured values. In this paper, though, we show that most
communication traffic in operating systems is (1) between domains on the same
machine (cross-domain), rather than between domains located on separate
ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

Lightweight Remote Procedure Call l 39

machines (cross-machine), and (2) simple rather than complex. Cross-domain
communication dominates because operating systems, even those supporting
distribution, localize processing and resources to achieve acceptable performance
at reasonable cost for the most common requests. Most communication is simple
because complex data structures are concealed behind abstract system interfaces;
communication tends to involve only handles to these structures and small value
parameters (Booleans, integers, etc.).

Although the conventional message-based approach can serve the communi-
cation needs of both local and remote subsystems, it violates a basic tenet of
system design by failing to isolate the common case [9]. A cross-domain procedure
call can be considerably less complex than its cross-machine counterpart, yet
conventional RPC systems have not fully exploited this fact. Instead, local
communication is treated as an instance of remote communication, and simple
operations are considered in the same class as complex ones.

Because the conventional approach has high overhead, today’s small-kernel
operating systems have suffered from a loss in performance or a deficiency in
structure or both. Usually structure suffers most; logically separate entities are
packaged together into a single domain, increasing its size and complexity. Such
aggregation undermines the primary reasons for building a small-kernel operating
system. The LRPC facility that we describe in this paper arises from these
observations.

LRPC achieves a level of performance for cross-domain communication that
is significantly better than conventional RPC systems, while still retaining their
qualities of safety and transparency. Four techniques contribute to the perfor-
mance of LRPC:

-Simple control transfer. The client’s thread executes the requested procedure
in the server’s domain.

-Simple data transfer. The parameter-passing mechanism is similar to that
used by procedure call. A shared argument stack, accessible to both client and
server, can often eliminate redundant data copying.

-Simple stubs. LRPC uses a simple model of control and data transfer, facili-
tating the generation of highly optimized stubs.

-Design for concurrency. LRPC avoids shared data structure bottlenecks and
benefits from the speedup potential of a multiprocessor.

We have demonstrated the viability of LRPC by implementing and integrating
it into Taos, the operating system for the DEC SRC Firefly multiprocessor
workstation [17]. The simplest cross-domain call using LRPC takes 157 ps on a
single C-VAX processor. By contrast, SRC RPC, the Firefly’s native communi-
cation system [16], takes 464 ps to do the same call; though SRC RPC has been
carefully streamlined and outperforms peer systems, it is a factor of three slower
than LRPC. The Firefly virtual memory and trap handling machinery limit the
performance of a safe cross-domain procedure call to roughly 109 ps; LRPC adds
only 48 ps of overhead to this lower bound.

The remainder of this paper discusses LRPC in more detail. Section 2 describes
the use and performance of RPC in existing systems, offering motivation for a
more lightweight approach. Section 3 describes the design and implementation

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

40 * 6. N. Bershad et al.

of LRPC. Section 4 discusses its performance, and Section 5 addresses some of
the concerns that arise when integrating LRPC into a serious operating system.

2. THE USE AND PERFORMANCE OF RPC SYSTEMS

In this section, using measurements from three contemporary operating systems,
we show that only a small fraction of RPCs are truly remote and that large or
complex parameters are rarely passed during nonremote operations. We also
show the disappointing performance of cross-domain RPC in several systems.
These results demonstrate that simple, cross-domain calls represent the common
case and can be well served by optimization.

2.1 Frequency of Cross-Machine Activity

We examined three operating systems to determine the relative frequency of
cross-machine activity:

(1) The V System. In V [2], only the basic message primitives (Send, Receive,
etc.) are accessed directly through kernel traps. All other system functions are
accessed by sending messages to the appropriate server. Concern for efficiency,
though, has forced the implementation of many of these servers down into the
kernel.

In an instrumented version of the V System, C. Williamson [20] found
that 97 percent of calls crossed protection, but not machine, boundaries.
Williamson’s measurements include message traffic to kernel-resident servers.

(2) Taos. Taos, the Firefly operating system, is divided into two major pieces.
A medium-sized privileged kernel accessed through traps is responsible for thread
scheduling, virtual memory, and device access. A second, multimegabyte domain
accessed through RPC implements the remaining pieces of the operating system
(domain management, local and remote file systems, window management,
network protocols, etc.). Taos does not cache remote files, but each Firefly node
is equipped with a small disk for storing local files to reduce the frequency of
network operations.

We measured activity on a Firefly multiprocessor workstation connected to a
network of other Fireflies and a remote file server. During one five-hour work
period, we counted 344,888 local RPC calls, but only 18,366 network RPCs.
Cross-machine RPCs thus accounted for only 5.3 percent of all communication
activity.

(3) lJNIX+NFS. In UNIX,’ a large-kernel operating system, all local system
functions are accessed through kernel traps. RPC is used only to access remote
file servers. Although a UNIX system call is not implemented as a cross-domain
RPC, in a more decomposed operating system most calls would result in at least
one such RPC.

On a diskless Sun-3 workstation running Sun UNIX+NFS [15], during a
period of four days we observed over 100 million operating system calls, but fewer
than one million RPCs to file servers. Inexpensive system calls, encouraging

’ UNIX is a trademark of AT&T Bell Laboratories.

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

Lightweight Remote Procedure Call l 41

Table I. Frequency of Remote Activity

Percentage of operations
that cross machine

Operating system boundaries

V 3.0

Taos 5.3

Sun UNIX+NFS 0.6

frequent kernel interaction, and file caching, eliminating many calls to remote
file servers, are together responsible for the relatively small number of cross-
machine operations.

Table I summarizes our measurements of these three systems. Our conclusion
is that most calls go to targets on the same node. Although measurements of
systems taken under different work loads will demonstrate different percentages,
we believe that cross-domain activity, rather than cross-machine activity, will
dominate. Because a cross-machine RPC is slower than even a slow cross-domain
RPC, system builders have an incentive to avoid network communication. This
incentive manifests itself in the many different caching schemes used in distrib-
uted computing systems.

2.2 Parameter Size and Complexity

The second part of our RPC evaluation is an examination of the size and
complexity of cross-domain procedure calls. Our analysis considers both the
dynamic and static usage of SRC RPC as used by the Taos operating system and
its clients. The size and maturity of the system make it a good candidate for
study; our version includes 28 RPC services defining 366 procedures involving
over 1,000 parameters.

We counted 1,487,105 cross-domain procedure calls during one four-day period.
Although 112 different procedures were called, 95 percent of the calls were to
10 procedures, and 75 percent were to just 3. None of the stubs for these three
were required to marshal complex arguments; byte copying was sufficient to
transfer the data between domains.’

In the same four days, we also measured the number of bytes transferred
between domains during cross-domain calls. Figure 1, a histogram and cumulative
distribution of this measure, shows that the most frequently occurring calls
transfer fewer than 50 bytes, and a majority transfer fewer than 200.

Statically, we found that four out of five parameters were of fixed size known
at compile time; 65 percent were 4 bytes or fewer. Two-thirds of all procedures
passed only parameters of fixed size, and 60 percent transferred 32 or fewer bytes.
No data types were recursively defined so as to require recursive marshaling
(such as linked lists or binary trees). Recursive types were passed through RPC

‘SRC RPC maps domain-specific pointers into and out of network-wide unique representations,
enabling pointers to be passed back and forth across an RPC interface. The mapping is done by a
simple table lookup and was necessary for two of the top three problems.

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

42 - B. N. Bershad et al.

300 -

250 -

Number 200 -

of
Calls 150 -

(thousands)
100 -

50 -

O-r

i/-yI
Maximum Single

Packet Call
5oY0 Cumulative

Distribution
Size (1448)

L
200 500

LL4L-L 0%
750 1000 1450 1800

Total Argument/Result Bytes Transferred

Fig. 1. RPC size distribution.

interfaces, but these were marshaled by system library procedures, rather than
by machine-generated code.

These observations indicate that simple byte copying is usually sufficient for
transferring data across system interfaces and that the majority of interface
procedures move only small amounts of data.

Others have noticed that most interprocess communication is simple, passing
mainly small parameters [2, 4, 81, and some have suggested optimizations for
this case. V, for example, uses a message protocol that has been optimized for
fixed-size messages of 32 bytes. Karger describes compiler-driven techniques for
passing parameters in registers during cross-domain calls on capability systems.
These optimizations, although sometimes effective, only partially address the
performance problems of cross-domain communication.

2.3 The Performance of Cross-Domain RPC

In existing RPC systems, cross-domain calls are implemented in terms of the
facilities required by cross-machine ones. Even through extensive optimization,
good cross-domain performance has been difficult to achieve. Consider the Null
procedure call that takes no arguments, returns no values, and does nothing:

PROCEDURE Null(); BEGIN RETURN END Null;

The theoretical minimum time to invoke Null() as a cross-domain operation
involves one procedure call, followed by a kernel trap and change of the proces-
sor’s virtual memory context on call, and then a trap and context change again
on return. The difference between this theoretical minimum call time and the
actual Null call time reflects the overhead of a particular RPC system. Table II
shows this overhead for six systems. The data in Table II come from measure-
ments of our own and from published sources [6, 18, 191.

The high overheads revealed by Table II can be attributed to several aspects
of conventional RPC:

Stub overhead. Stubs provide a simple procedure call abstraction, concealing
from programs the interface to the underlying RPC system. The distinction
between cross-domain and cross-machine calls is usually made transparent to
the stubs by lower levels of the RPC system. This results in an interface and
ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

Lightweight Remote Procedure Call -

Table II. Cross-Domain Performance (times are in microseconds)

System

Accent
Taos
Mach
V
Amoeba
DASH

Processor

PERQ
Firefly C-VAX
C-VAX
68020
68020
68020

Null
(theoretical
minimum)

444
109
90

170
170
170

Null
(actual)

2,300
464
754
730
800

1,590

Overhead

1,856
355
664
560
630

1,420

execution path that are general but infrequently needed. For example, it takes
about 70 ~LS to execute the stubs for the Null procedure call in SRC RPC. Other
systems have comparable times.

Message buffer overhead. Messages need to be allocated and passed between
the client and server domains. Cross-domain message transfer can involve an
intermediate copy through the kernel, requiring four copy operations for any
RPC (two on call, two on return).

Access validation. The kernel needs to validate the message sender on call and
then again on return.

Message transfer. The sender must enqueue the message, which must later be
dequeued by the receiver. Flow control of these queues is often necessary.

Scheduling. Conventional RPC implementations bridge the gap between ab-
stract and concrete threads. The programmer’s view is one of a single, abstract
thread crossing protection domains, while the underlying control transfer mech-
anism involves concrete threads fixed in their own domain signalling one another
at a rendezvous. This indirection can be slow, as the scheduler must manipulate
system data structures to block the client’s concrete thread and then select one
of the server’s for execution.

Context switch. There must be a virtual memory context switch from the
client’s domain to the server’s on call and then back again on return.

Dispatch. A receiver thread in the server domain must interpret the message
and dispatch a thread to execute the call. If the receiver is self-dispatching, it
must ensure that another thread remains to collect messages that may arrive
before the receiver finishes to prevent caller serialization.

RPC systems have optimized some of these steps in an effort to improve cross-
domain performance. The DASH system [la] eliminates an intermediate kernel
copy by allocating messages out of a region specially mapped into both kernel
and user domains. Mach [7] and Taos rely on handoff scheduling to bypass
the general, slower scheduling path; instead, if the two concrete threads cooper-
ating in a domain transfer are identifiable at the time of the transfer, a direct
context switch can be made. In line with handoff scheduling, some systems
pass a few, small arguments in registers, thereby eliminating buffer copying
and management.3

3 Optimizations based on passing arguments in registers exhibit a performance discontinuity once the
parameters overflow the registers. The data in Figure 1 indicate that this can be a frequent problem.

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

44 l B. N. Bershad et al.

SRC RPC represents perhaps the most ambitious attempt to optimize tradi-
tional RPC for swift cross-domain operation. Unlike techniques used in other
systems that provide safe communication between mutually suspicious parties,
SRC RPC trades safety for increased performance. To reduce copying, message
buffers are globally shared across all domains. A single lock is mapped into all
domains so that message buffers can be acquired and released without kernel
involvement. Furthermore, access validation is not performed on call and return,
simplifying the critical transfer path.

SRC RPC runs much faster than other RPC systems implemented on com-
parable hardware. Nevertheless, SRC RPC still incurs a large overhead due to
its use of heavyweight stubs and run-time support, dynamic buffer management,
multilevel dispatch, and interaction with global scheduling state.

3. THE DESIGN AND IMPLEMENTATION OF LRPC

The lack of good performance for cross-domain calls has encouraged system
designers to coalesce cooperating subsystems into the same domain. Applications
use RPC to communicate with the operating system, ensuring protection and
failure isolation for users and the collective system. The subsystems themselves,
though, grouped into a single protection domain for performance reasons, are
forced to rely exclusively on the thin barriers provided by the programming
environment for protection from one another. LRPC solves, rather than circum-
vents, this performance problem in a way that does not sacrifice safety.

The execution model of LRPC is borrowed from protected procedure call. A
call to a server procedure is made by way of a kernel trap. The kernel validates
the caller, creates a call linkage, and dispatches the client’s concrete thread
directly to the server domain. The client provides the server with an argument
stack as well as its own concrete thread of execution. When the called procedure
completes, control and results return through the kernel back to the point of the
client’s call.

The programming semantics and large-grained protection model of LRPC are
borrowed from RPC. Servers execute in a private protection domain, and each
exports one or more interfaces, making a specific set of procedures available to
other domains. A client binds to a server interface before making the first call.
The server, by allowing the binding to occur, authorizes the client to access the
procedures defined by the interface.

3.1 Binding

At a conceptual level, LRPC binding and RPC binding are similar. Servers export
interfaces, and clients bind to those interfaces before using them. At a lower
level, however, LRPC binding is quite different due to the high degree of
interaction and cooperation that is required of the client, server, and kernel.

A server module exports an interface through a clerk in the LRPC run-time
library included in every domain. The clerk registers the interface with a name
server and awaits import requests from clients. A client binds to a specific
interface by making an import call via the kernel. The importer waits while the
kernel notifies the server’s waiting clerk.
ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

Lightweight Remote Procedure Call l 45

The clerk enables the binding by replying to the kernel with a procedure
descriptor list (PDL) that is maintained by the exporter of every interface. The
PDL contains one procedure descriptor (PD) for each procedure in the interface.
The PD includes an entry address in the server domain, the number of simulta-
neous calls initially permitted to the procedure by the client, and the size of the
procedure’s argument stack (A-stack) on which arguments and return values will
be placed during a call. For each PD, the kernel pairwise allocates in the client
and server domains a number of A-stacks equal to the number of simultaneous
calls allowed. These A-stacks are mapped read-write and shared by both domains.

Procedures in the same interface having A-stacks of similar size can share
A-stacks, reducing the storage needs for interfaces with many procedures. The
number of simultaneous calls initially permitted to procedures that are sharing
A-stacks is limited by the total number of A-stacks being shared. This is only a
soft limit, though, and Section 5.2 describes how it can be raised.

The kernel also allocates a linkage record for each A-stack that is used to
record a caller’s return address and that is accessible only to the kernel. The
kernel lays out A-stacks and linkage records in memory in such a way that the
correct linkage record can be quickly located given any address in the correspond-
ing A-stack.

After the binding has completed, the kernel returns to the client a Binding
Object. The Binding Object is the client’s key for accessing the server’s interface
and must be presented to the kernel at each call. The kernel can detect a forged
Binding Object, so clients cannot bypass the binding phase. In addition to the
Binding Object, the client receives an A-stack list for each procedure in the
interface giving the size and location of the A-stacks that should be used for calls
into that procedure.

3.2 Calling

Each procedure in an interface is represented by a stub in the client and server
domains. A client makes an LRPC by calling into its stub procedure, which is
responsible for initiating the domain transfer. The stub manages the A-stacks
allocated at bind time for that procedure as a LIFO queue. At call time, the stub
takes an A-stack off the queue, pushes the procedure’s arguments onto the A-
stack, puts the address of the A-stack, the Binding Object, and a procedure
identifier into registers, and traps to the kernel. In the context of the client’s
thread, the kernel

-verifies the Binding and procedure identifier, and locates the correct PD,
-verifies the A-stack and locates the corresponding linkage,
-ensures that no other thread is currently using that A-stack/linkage pair,
-records the caller’s return address and current stack pointer in the linkage,
-pushes the linkage onto the top of a stack of linkages kept in the thread’s

control block,4
-finds an execution stack (E-stack) in the server’s domain,

4 The stack is necessary so that a thread can be involved in more than one cross-domain procedure
call at a time.

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

46 l B. N. Bershad et al.

-updates the thread’s user stack pointer to run off of the new E-stack,
-reloads the processor’s virtual memory registers with those of the server

domain, and
-performs an upcall [3] into the server’s stub at the address specified in the PD

for the registered procedure.

Arguments are pushed onto the A-stack according to the calling conventions
of Modula2+ [14]. Since the A-stack is mapped into the server’s domain, the
server procedure can directly access the parameters as though it had been called
directly. It is important to note that this optimization relies on a calling conven-
tion that uses a separate argument pointer. In a language environment that
requires arguments to be passed on the E-stack, this optimization would not be
possible.

The server procedure returns through its own stub, which initiates the return
domain transfer by trapping to the kernel. Unlike the call, which required
presentation and verification of the Binding Object, procedure identifier, and
A-stack, this information, contained at the top of the linkage stack referenced
by the thread’s control block, is implicit in the return. There is no need to verify
the returning thread’s right to transfer back to the calling domain since it was
granted at call time. Furthermore, since the A-stack contains the procedure’s
return values and the client specified the A-stack on call, no explicit message
needs to be passed back.

If any parameters are passed by reference, the client stub copies the referent
onto the A-stack. The server stub creates a reference to the data and places the
reference on its private E-stack before invoking the server procedure. The
reference must be recreated to prevent the caller from passing in a bad address.
The data, though, are not copied and remain on the A-stack.

Privately mapped E-stacks enable a thread to cross safely between domains.
Conventional RPC systems provide this safety by implication, deriving separate
stacks from separate threads. LRPC excises this level of indirection, dealing
directly with less weighty stacks.

A low-latency domain transfer path requires that E-stack management incur
little call-time overhead. One way to achieve this is to statically allocate E-stacks
at bind time and to permanently associate each with an A-stack. Unfortunately,
E-stacks can be large (tens of kilobytes) and must be managed conservatively;
otherwise, a server’s address space could be exhausted by just a few clients.

Rather than statically allocating E-stacks, LRPC delays the A-stack/E-stack
association until it is needed, that is, until a call is made with an A-stack not
having an associated E-stack. When this happens, the kernel checks if there is
an E-stack already allocated in the server domain, but currently unassociated
with any A-stack. If so, the kernel associates the E-stack with the A-stack.
Otherwise, the kernal allocates an E-stack out of the server domain and associates
it with the A-stack. When the call returns, the E-stack and A-stack remain
associated with one another so that they might be used together soon for another
call (A-stacks are LIFO managed by the client). Whenever the supply of E-stacks
for a given server domain runs low, the kernel reclaims those associated with
A-stacks that have not been used recently.
ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

Lightweight Remote Procedure Call l 47

3.3 Stub Generation

Stubs bridge the gap between procedure call, the communication model used by
the programmer, and domain transfer, the execution model of LRPC. A procedure
is represented by a call stub in the client’s domain and an entry stub in the
server’s. Every procedure declared in an LRPC interface defines the terminus of
a three-layered communication protocol: end-to-end, described by the calling
conventions of the programming language and architecture; stub-to-stub, imple-
mented by the stubs themselves; and domain-to-domain, implemented by the
kernel.

LRPC stubs blur the boundaries between the protocol layers to reduce the cost
of crossing between them. Server entry stubs are invoked directly by the kernel
on a transfer; no intermediate message examination and dispatch are required.
The kernel primes E-stacks with the initial call frame expected by the server’s
procedure, enabling the server stub to branch to the first instruction of the
procedure. As a result, a simple LRPC needs only one formal procedure call (into
the client stub) and two returns (one out of the server procedure and one out of
the client stub).

The LRPC stub generator produces run-time stubs in assembly language
directly from Modula2+ definition files. The use of assembly language is possible
because of the simplicity and stylized nature of LRPC stubs, which consist
mainly of move and trap instructions. The LRPC stubs have shown a factor-of-
four performance improvement over Modula2+ stubs created by the SRC RPC
stub generator.

Since the stubs are automatically generated, the only maintenance concerns
arising from this use of assembly language are related to the portability of the
stub generator (the stubs themselves are not portable, but we do not consider
this to be an issue). Porting the stub generator to work on a different machine
architecture should be a straightforward task, although we have not yet had any
reason to do so.

The stub generator emits Modula2+ code for more complicated, but less
frequently traveled, execution paths, such as those dealing with binding, excep-
tion handling, and call failure. Calls having complex or heavyweight parameters-
linked lists or data that must be made known to the garbage collector-are
handled with ModulaB+ marshaling code. LRPC stubs become more like conven-
tional RPC stubs as the overhead of dealing with the complicated data types
increases. This shift occurs at compile time, though, eliminating the need to
make run-time decisions.

3.4 LRPC on a Multiprocessor

The existence of shared-memory multiprocessors has influenced the design of
LRPC. Multiple processors can be used to achieve a higher call throughput and
lower call latency than is possible on a single processor.

LRPC increases throughput by minimizing the use of shared data structures
on the critical domain transfer path. Each A-stack queue is guarded by
its own lock, and queuing operations take less than 2 percent of the total call
time. No other locking occurs, so there is little interference when calls occur
simultaneously.

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

48 - B. N. Bershad et al.

Multiple processors are used to reduce LRPC latency by caching domain
contexts on idle processors. As we show in Section 4, the context switch that
occurs during an LRPC is responsible for a large part of the transfer time. This
time is due partly to the code required to update the hardware’s virtual memory
registers and partly to the extra memory fetches that occur as a result of
invalidating the translation lookaside buffer (TLB).

LRPC reduces context-switch overhead by caching domains on idle processors.
When a call is made, the kernel checks for a processor idling in the context of
the server domain. If one is found, the kernel exchanges the processors of the
calling and idling threads, placing the calling thread on a processor where the
context of the server domain is already loaded; the called server procedure can
then execute on that processor without requiring a context switch. The idling
thread continues to idle, but on the client’s original processor in the context of
the client domain. On return from the server, a check is also made. If a processor
is idling in the client domain (likely for calls that return quickly), then the
processor exchange can be done again.

If no idle domain can be found on call or return, then a single-processor context
switch is done. For each domain, the kernel keeps a counter indicating the
number of times that a processor idling in the context of that domain was needed
but not found. The kernel uses these counters to prod idle processors to spin in
domains showing the most LRPC activity.

The high cost of frequent domain crossing can also be reduced by using a TLB
that includes a process tag. For multiprocessors without such a tag, domain
caching can often achieve the same result for commonly called servers. Even
with a tagged TLB, a single-processor domain switch still requires that hardware
mapping registers be modified on the critical transfer path; domain caching does
not. Finally, domain caching preserves per-processor locality across calls-a
performance consideration for systems having a low tolerance for sudden shifts
in memory reference locality.

Using idle processors to decrease operating system latency is not a new idea.
Both Amoeba and Taos cache recently blocked threads on idle processors to
reduce wakeup latency. LRPC generalizes this technique by caching domains,
rather than threads. In this way, any thread that needs to run in the context of
an idle domain can do so quickly, not just the thread that ran there most recently.

3.5 Argument Copying

Consider the path taken by a procedure’s argument during a traditional cross-
domain RPC. An argument, beginning with its placement on the stack of the
client stub, is copied four times: from the stub’s stack to the RPC message, from
the message in the client’s domain to one in the kernel’s, from the message in
the kernel’s domain to one in the server’s, and from the message to the server’s
stack. The same argument in an LRPC can be copied only once: from the stack
of the client stub to the shared A-stack from which it can be used by the server
procedure.

Pairwise allocation of A-stacks enables LRPC to copy parameters and return
values only as many times as are necessary to ensure correct and safe operation.
Protection from third-party domains is guaranteed by the pairwise allocation
ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

Lightweight Remote Procedure Call 49

that provides a private channel between the client and server. It is still possible
for a client or server to asynchronously change the values of arguments in an
A-stack once control has transferred across domains. The copying done by
message-based RPC prevents such changes, but often at a higher cost than nec-
essary. LRPC, by considering each argument individually, avoids extra copy
operations by taking advantage of argument passing conventions, by exploit-
ing a value’s correctness semantics, and by combining the copy into a check
for the value’s integrity.

In most procedure call conventions, the destination address for return values
is specified by the caller. During the return from an LRPC, the client stub copies
returned values from the A-stack into their final destination. No added safety
comes from first copying these values out of the server’s domain into the client’s,
either directly or by way of the kernel.

Parameter copying can also be avoided by recognizing situations in which the
actual value of the parameter is unimportant to the server. This occurs when
parameters are processed by the server without interpretation. For example, the
Write procedure exported by a file server takes an array of bytes to be written to
disk. The array itself is not interpreted by the server, which is made no more
secure by an assurance that the bytes will not change during the call. Copying is
unnecessary in this case. These types of arguments can be identified to the LRPC
stub generator.

Finally, concern for type safety motivates explicit argument copying in the
stubs, rather than wholesale message copying in the kernel. In a strongly typed
language, such as ModulaB+, actual parameters must conform to the types of the
declared formals; for example, the Modula2+ type CARDINAL is restricted to
the set of nonnegative integers-a negative value will result in a run-time error
when the value is used. A client could crash a server by passing it an unwanted
negative value. To protect itself, the server must check type-sensitive values for
conformity before using them. Folding this check into the copy operation can
result in less work than if the value is first copied by the message system and
then later checked by the stubs.

Table III shows how the use of A-stacks in LRPC can affect the number of
copying operations. For calls where parameter immutability is important and for
those where it is not, we compare the behavior of LRPC against the traditional
message-passing approach and against a more restricted form of message passing
used in the DASH system. In the restricted form, all message buffers on the
system are allocated from a specially mapped region that enables the kernel to
copy messages directly from the sender’s domain into the receiver’s, avoiding an
intermediate kernel copy.

In Table III we assume that the server places the results directly into the reply
message. If this is not the case (i.e., messages are managed as a scarce resource),
then one more copy from the server’s results into the reply message is needed.
Even when the immutability of parameters is important, LRPC performs fewer
copies (three) than either message passing (seven) or restricted message passing
(five).

For passing large values, copying concerns become less important, since by-
value semantics can be achieved through virtual memory operations. But, for the

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

50 l B. N. Bershad et al.

Table III. Copy Operations for LRPC versus
Message-Based RPC

Operation LRPC
Message
passing

Restricted
message
passing

Call (mutable
parameters)

Call (immutable
parameters)

Return

A ABCE ADE

AE ABCE ADE

F BCF BF

Code Copy operation
A Copy from client stack to message (or A-stack)
B Copy from sender domain to kernel domain
C Copy from kernel domain to receiver domain
D Copy from sender/kernel space to receiver/kernel domain
E Copy from message (or A-stack) into server stack
F Copy from message (or A-stack) into client’s results

more common case of small- to medium-sized values, eliminating copy operations
is crucial to good performance when call latency is on the order of only 100
instructions.

LRPC’s A-stack/E-stack design offers both safety and performance. Although
out implementation demonstrates the performance of this design, the Firefly
operating system does not yet support pairwise shared memory. Our current
implementation places A-stacks in globally shared virtual memory. Since map-
ping is done at bind time, an implementation using pairwise shared memory
would have identical performance, but greater safety.

4. THE PERFORMANCE OF LRPC

To evaluate the performance of LRPC, we used the four tests shown in
Table IV. These tests were run on the C-VAX Firefly using LRPC and Taos
RPC. The Null call provides a baseline against which we can measure the added
overhead of LRPC. The procedures Add, BigIn, and BigInOut represent calls
having typical parameter sizes.

Table IV shows the results of these tests when performed on a single node.
The measurements were made by performing 100,000 cross-domain calls in a
tight loop, computing the elapsed time, and then dividing by 100,000. The table
shows two times for LRPC. The first, listed as “LRPC/MP,” uses the idle
processor optimization described in Section 3.4. The second, shown as “LRPC,”
executes the domain switch on a single processor; it is roughly three times faster
than SRC RPC, which also uses only one processor.

Table V shows a detailed cost breakdown for the serial (single-processor) Null
LRPC on a C-VAX. This table was produced from a combination of timing
measurements and hand calculations of TLB misses. The code to execute a Null
LRPC consists of 120 instructions that require 157 ps to execute. The column
labeled “Minimum” in Table V is a timing breakdown for the theoretically
minimum cross-domain call (one procedure call, two traps, and two context
switches). The column labeled “LRPC overhead” shows the additional time
ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

Lightweight Remote Procedure Call 51

Table IV. LRPC Performance of Four Tests (in microseconds)

Test Descrintion LRPC/MP LRPC Taos

Null
Add

BigIn

BigInOut

The Null cross-domain call
A procedure taking two I-byte

arguments and returning one
I-byte argument

A procedure taking one 200-byte
argument

A procedure taking and returning
one 200-byte argument

125 157 464
130 164 480

173 192 539

219 227 636

Table V. Breakdown of Time (in microseconds) for
Sinele-Processor Null LRPC

LRPC
Operation Minimum overhead

ModulaQ+ procedure call 7 -

Two kernel traps 36 -

Two context switches 66 -

Stubs - 21
Kernel transfer - 27

Total 109 48

required to execute the call and return operations described in Section 3.2 and is
the added cost of our implementation. For the Null call, approximately 18 ps are
spent in the client stub and 3 ps in the server’s. The remaining 27 ps of overhead
are spent in the kernel and go toward binding validation and linkage management.
Most of this takes place during the call, as the return path is simpler.

Approximately 25 percent of the time used by the Null LRPC is due to TLB
misses that occur during virtual address translation. A context switch on a
C-VAX requires the invalidation of the TLB, and each subsequent TLB miss
increases the cost of a memory reference by about 0.9 I.LS. Anticipating this, the
data structures and control sequences of LRPC were designed to minimize TLB
misses. Even so, we estimate that 43 TLB misses occur during the Null call.

Section 3.4 stated that LRPC avoids locking shared data during call and return
in order to remove contention on shared-memory multiprocessors. This is dem-
onstrated by Figure 2, which shows call throughput as a function of the number
of processors simultaneously making calls. Domain caching was disabled for this
experiment-each call required a context switch. A single processor can make
about 6,300 LRPCs per second, but four processors can make over 23,000 calls
per second-a speedup of 3.7 and close to the maximum that the Firefly is capable
of delivering. These measurements were made on a Firefly having four C-VAX
processors and one MicroVaxII I/O processor. Measurements on a five-processor
MicroVaxII Firefly showed a speedup of 4.3 with five processors.

In contrast, the throughput of SRC RPC levels off with two processors at
about 4,000 calls per second. This limit is due to a global lock that is held during
a large part of the RPC transfer path. For a machine like the Firefly, a small-
scale shared-memory multiprocessor, a limiting factor of two is annoying, but

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

52 - B. N. Bershad et al.

LRPC Measured

Calls

Fig. 2. Call throughput on a multipro- per
Second

cessor.

O-
Number of Processors

not serious. On shared-memory machines with just a few dozen processors,
though, contention on the critical control transfer path would have a greater
performance impact.

5. THE UNCOMMON CASES

In addition to performing well in the common case, LRPC must perform accept-
ably in the less common ones. This section describes several of these less common
cases and explains how they are dealt with by the LRPC. This section does not
enumerate all possible uncommon cases that must be considered. Instead,
by describing just a few, we hope to emphasize that the common-case
approach taken by LRPC is flexible enough to accommodate the uncommon
cases gracefully.

5.1 Transparency and Cross-Machine Calls

Deciding whether a call is cross-domain or cross-machine is made at the earliest
possible moment: the first instruction of the stub. If the call is to a truly remote
server (indicated by a bit in the Binding Object), then a branch is taken
to a more conventional RPC stub. The extra level of indirection is negligible
compared to the overheads that are part of even the most efficient network
RPC implementation.

5.2 A-Stacks: Size and Number

PDLs are defined during the compilation of an interface. The stub generator
reads each interface and determines the number and size of the A-stacks for each
procedure. The number defaults to five, but can be overridden by the interface
writer. When the size of each of a procedure’s arguments and return values are
known at compile time, the A-stack size can be determined exactly. In the
presence of variable-sized arguments, though, the stub generator uses a default
size equal to the Ethernet packet size (this default also can be overridden).
Experience has shown, and Figure 1 confirms, that RPC programmers strive to
keep the sizes of call and return parameters under this limit. Most existing RPC
protocols are built on simple packet exchange protocols, and multipacket calls
have performance problems. In cases where the arguments are too large to fit
into the A-stack, the stubs transfer data in a large out-of-band memory segment.
ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

Lightweight Remote Procedure Call t 53

Handling unexpectedly large parameters is complicated and relatively expensive,
but infrequent.

A-stacks in a single interface are allocated contiguously at bind time to allow
for quick validation during a call (a simple range check guarantees their integrity).
If the number of preallocated A-stacks proves too few, the client can either wait
for one to become available (when an earlier call finishes), or allocate more.
Waiting is simple, but may not always be appropriate. When further allocation
is necessary, it is unlikely that space contiguous to the original A-stacks will be
found, but other space can be used. A-stacks in this space, not in the primary
contiguous region, will take slightly more time to validate during a call.

5.3 Domain Termination

A domain can terminate at any time, for reasons such as an unhandled exception
or a user action (CTRL-C). When a domain terminates, all resources in its
possession (virtual address space, open file descriptors, threads, etc.) are re-
claimed by the operating system. If the terminating domain is a server handling
an LRPC request, the call, completed or not, must return to the client domain.
If the terminating domain is a client with a currently outstanding LRPC request
to another domain, the outstanding call, when finished, must not be allowed to
return to its originating domain.

When a domain is terminated, each Binding Object associated with that domain
(either as client or server) is revoked. This prevents any more out-calls from the
domain and prevents other domains from making any more in-calls. All threads
executing within the domain are then stopped, and a kernel collector scans all of
the domain’s threads looking for any that had been running on behalf of an
LRPC call; these threads are restarted in the client with a call-failed exception.
Finally, the collector scans all Binding Objects held by the terminating domain
and invalidates any active linkage records. When a thread returns from an LRPC
call, it follows the stack of linkage records referenced by the thread control block,
returning to the domain specified in the first valid linkage record. If any invalid
linkage records are found on the way, a call-failed exception is raised in the
caller. If the stack contains no valid linkage records, the thread is destroyed.

A terminating domain’s outstanding threads are not forced to terminate
synchronously with the domain. Doing so would require every server procedure
to protect the integrity of its critical data structures from external forces, since
a mutating thread could be terminated at any time. More generally, LRPC has
no way to force a thread to return from an outstanding call. Taos does have an
alert mechanism that allows one thread to signal another, but the notified thread
may choose to ignore the alert. It is therefore possible for one domain to “capture”
another’s thread and hold it indefinitely. To address this problem, LRPC enables
client domains to create a new thread whose initial state is that of the original
captured thread as if it had just returned from the server procedure with a call-
aborted exception. The captured thread continues executing in the server domain,
but is destroyed in the kernel when released.

Traditional RPC does not have these problems because the abstract thread
seen by the programmer is provided by two concrete threads, one in each of the
client and server domains. Because premature domain and call termination are
infrequent, LRPC has adopted a “special case” approach for dealing with them.

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

54 l B. N. Bershad et al.

6. SUMMARY

This paper has described the motivation, design, implementation, and perfor-
mance of LRPC, a communication facility that combines elements of capability
and RPC systems. Our implementation on the Firefly achieves performance that
is close to the minimum round-trip cost of transferring control between domains
on conventional hardware.

LRPC adopts a common-case approach to communication, exploiting, when-
ever possible, simple control transfer, simple data transfer, simple stubs, and
multiprocessors. In so doing, LRPC performs well for the majority of cross-
domain procedure calls by avoiding needless scheduling, excessive run-time
indirection, unnecessary access validation, redundant copying, and lock conten-
tion. LRPC, nonetheless, is safe and transparent, and represents a viable com-
munication alternative for small-kernel operating systems.

ACKNOWLEDGMENTS

We would like to thank Guy Almes, David Anderson, Andrew Birrell, Mike
Burrows, Dave Cutler, Roy Levin, Mark Lucovsky, Tim Mann, Brian Marsh,
Rick Rashid, Dave Redell, Jan Sanislo, Mike Schroeder, Shin-Yuan TZOU, and
Steve Wood for discussing with us the issues raised in this paper. We would also
like to thank DEC SRC for building and supplying us with the Firefly. It has
been a challenge to improve on the excellent performance of SRC RPC, but one
made easier by the Firefly’s overall structure. One measure of a system’s design
is how easily a significant part of it can be changed. We doubt that we could
have implemented LRPC as part of any other system as painlessly as we did on
the Firefly.

REFERENCES

1. BIRRELL, A. D., AND NELSON, B. J. Implementing remote procedure calls. ACM Trans. Comput.
Syst. 2, 1 (Feb. 1984), 39-59.

2. CHERITON, D. R. The V distributed system. Commun. ACM 31,3 (Mar. 1988), 314-333.
3. CLARK, D. D. The structuring of systems using upcalls. In Proceedings of the 10th ACM

Symposium on Operating Systems Principles (Orcas Is., Wash., Dec. l-4,1985), ACM, New York,
1985, pp. 171-180.

4. COOK, D. The evaluation of a protection system. Ph.D. dissertation, Computer Laboratory,
Cambridge Univ., Cambridge, U.K., Apr. 1978.

5. DENNIS, J. B., AND VAN HORN, E. C. Programming semantics for multiprogrammed computa-
tions. Commun. ACM 9,3 (Mar. 1966), 143-155.

6. FITZGERALD, R. P. A performance evaluation of the integration of virtual memory management
and inter-process communication in Accent. Ph.D. dissertation, Department of Computer Sci-
ence, Carnegie-Mellon Univ., Pittsburgh, Pa., Oct. 1986.

7. JONES, M. B., AND RASHID, R. F. Mach and Matchmaker: Kernel and language support for
object-oriented distributed systems. In Proceedings of the Conference on Object-Oriented Program-
ming Systems, Languages, and Applications (Portand, Ore., Sept. 29-Oct. 2, 1986), pp. 67-77.

8. KARGER, P. A. Using registers to optimize cross-domain call performance. In Proceedings of the
3rd Conference on Architectural Support for Programming Languages and Operating Systems
(Boston, Mass, Apr. 3-6, 1989), pp. 194-204.

3. LAMPSON, B. W. Hints for computer system design. IEEE Softw. I, 1 (Jan. 1984), 11-28.
10. MEALY, G., WITT, B., AND CLARK, W. The functional structure of OS/360. IBM Syst. J. 5, 1

(Jan. 1966), 3-51.

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

Lightweight Remote Procedure Call l 55

11. RASHID, R. F. From Rig to Accent to Mach: The evolution of a network operating system. In
Proceedings of ACM/ZEEE Computer Society Fall Joint Computer Conference (Dallas, Tex., Nov.
1986). ACM, New York, 1986.

12. REDELL, D. D., DALAL, Y. K., HORSLEY, T. R., LAUER, H. C., LYNCH, W. C., MCJONES, P. R.,
MURRAY, H. G., AND PURCELL, S. C. Pilot: An operating system for a personal computer.
Commun. ACM 23, 2 (Feb. 1980), 81-92.

13. RITCHIE, D., AND THOMPSON, K. The Unix time-sharing system. Commun. ACM 17, 7 (July
1974), 365-375.

14. ROVNER, P., LEVIN, R., AND WICK, J. On extending Modula-2 for building large, integrated
systems. Tech. Rep. 3, Digital Equipment Corporation Systems Research Center, Palo Alto,
Calif., Jan. 1985.

15. SANDBERG, R., GOLDBERG, D., S. KLEIMAN, D. W., AND LYON, B. Design and implementation
of the SUN network filesystem. In Proceedings of the 1985 USENZX Summer Conference, pp.
119-130.

16. SCHROEDER, M. D., AND BURROWS, M. Performance of Firefly RPC. In Proceedings of the 12th
ACM Symposium on Operating Systems Principles (Litchfield Port, Arm., Dec. 3-6, 1989). ACM,
New York, 1989, pp. 83-90.

17. THACKER, C. P., STEWART, L. C., AND SA’ITERTHWAITE, E. H., JR. Firefly: A multiprocessor
workstation. IEEE Trans. Comput. 37,s (Aug. 1988), 909-920.

18. Tzou, S.-Y., AND ANDERSON, D. P. A performance evaluation of the DASH message-passing
system. Tech. Rep. UCB/CSD 88/452, Computer Science Division, Univ. of California, Berkeley,
Oct. 1988.

19. VAN RENESSE, R., VAN STAVEREN, H., AND TANENBAUM, A. S. Performance of the world’s
fastest distributed operating system. Oper. Syst. Rev. 22,4 (Oct. 1988), 25-34.

20. WILLIAMSON, C., Personal communication, Jan. 1989.

Received May 1989; revised September 1989; accepted October 1989

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

