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Lightweight Remote Procedure Call (LRPC) is a communication facility designed and optimized for 
communication between protection domains on the same machine. In contemporary small-kernel 
operating systems, existing RPC systems incur an unnecessarily high cost when used for the type of 
communication that predominates-between protection domains on the same machine. This cost 
leads system designers to coalesce weakly related subsystems into the same protection domain, trading 
safety for performance. By reducing the overhead of same-machine communication, LRPC encourages 
both safety and performance. LRPC combines the control transfer and communication model of 
capability systems with the programming semantics and large-grained protection model of RPC. 
LRPC achieves a factor-of-three performance improvement over more traditional approaches based 
on independent threads exchanging messages, reducing the cost of same-machine communication to 
nearly the lower bound imposed by conventional hardware. LRPC has been integrated into the Taos 
operating system of the DEC SRC Firefly multiprocessor workstation. 
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1. INTRODUCTION 

This paper describes Lightweight Remote Procedure Call (LRPC), a communi- 
cation facility designed and optimized for communication between protection 
domains on the same machine. 
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L.RPC combines the control transfer and communication model of capability 
systems with the programming semantics and large-grained protection model of 
RPC. For the common case of same-machine communication passing small, 
simple arguments, LRPC achieves a factor-of-three performance improvement 
over more traditional approaches. 

The granularity of the protection mechanisms used by an operating system 
has a significant impact on the system’s design and use. Some operating systems 
[lo, 131 have large, monolithic kernels insulated from user programs by simple 
hardware boundaries. Within the operating system itself, though, there are no 
protection boundaries. The lack of strong fire walls, combined with the size and 
complexity typical of a monolithic system, makes these systems difficult to 
modify, debug, and validate. Furthermore, the shallowness of the protection 
hierarchy (typically only two levels) makes the underlying hardware directly 
vulnerable to a large mass of complicated operating system software. 

Capability systems supporting fine-grained protection were suggested as a 
solution to the problems of large-kernel operating systems [5]. In a capability 
system, each fine-grained object exists in its own protection domain, but all live 
within a single name or address space. A process in one domain can act on an 
object in another only by making a protected procedure call, transferring control 
to the second domain. Parameter passing is simplified by the existence of a global 
name space containing all objects. Unfortunately, many found it difficult to 
efficiently implement and program systems that had such fine-grained protection. 

In contrast to the fine-grained protection of capability systems, some distrib- 
uted computing environments rely on relatively large-grained protection mecha- 
nisms: Protection boundaries are defined by machine boundaries [12]. Remote 
Procedure Call (RPC) [ 1] facilitates the placement of subsystems onto separate 
machines. Subsystems present themselves to one another in terms of interfaces 
implemented by servers. The absence of a global address space is ameliorated by 
automatic stub generators and sophisticated run-time libraries that can transfer 
arbitrarily complex arguments in messages. RPC is a system structuring and 
programming style that has become widely successful, enabling efficient and 
convenient communication across machine boundaries. 

Small-kernel operating systems have borrowed the large-grained protection 
and programming models used in distributed computing environments and have 
demonstrated these to be appropriate for managing subsystems, even those not 
primarily intended for remote operation [ll]. In these small-kernel systems, 
separate components of the operating system can be placed in disjoint domains 
(or address spaces), with messages used for all interdomain communication. The 
advantages of this approach include modular structure, easing system design, 
implementation, and maintenance; failure isolation, enhancing debuggability and 
validation; and transparent access to network services, aiding and encouraging 
distribution. 

In addition to the large-grained protection model of distributed computing 
systems, small-kernel operating systems have adopted their control transfer and 
communication models-independent threads exchanging messages containing 
(potentially) large, structured values. In this paper, though, we show that most 
communication traffic in operating systems is (1) between domains on the same 
machine (cross-domain), rather than between domains located on separate 
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machines (cross-machine), and (2) simple rather than complex. Cross-domain 
communication dominates because operating systems, even those supporting 
distribution, localize processing and resources to achieve acceptable performance 
at reasonable cost for the most common requests. Most communication is simple 
because complex data structures are concealed behind abstract system interfaces; 
communication tends to involve only handles to these structures and small value 
parameters (Booleans, integers, etc.). 

Although the conventional message-based approach can serve the communi- 
cation needs of both local and remote subsystems, it violates a basic tenet of 
system design by failing to isolate the common case [9]. A cross-domain procedure 
call can be considerably less complex than its cross-machine counterpart, yet 
conventional RPC systems have not fully exploited this fact. Instead, local 
communication is treated as an instance of remote communication, and simple 
operations are considered in the same class as complex ones. 

Because the conventional approach has high overhead, today’s small-kernel 
operating systems have suffered from a loss in performance or a deficiency in 
structure or both. Usually structure suffers most; logically separate entities are 
packaged together into a single domain, increasing its size and complexity. Such 
aggregation undermines the primary reasons for building a small-kernel operating 
system. The LRPC facility that we describe in this paper arises from these 
observations. 

LRPC achieves a level of performance for cross-domain communication that 
is significantly better than conventional RPC systems, while still retaining their 
qualities of safety and transparency. Four techniques contribute to the perfor- 
mance of LRPC: 

-Simple control transfer. The client’s thread executes the requested procedure 
in the server’s domain. 

-Simple data transfer. The parameter-passing mechanism is similar to that 
used by procedure call. A shared argument stack, accessible to both client and 
server, can often eliminate redundant data copying. 

-Simple stubs. LRPC uses a simple model of control and data transfer, facili- 
tating the generation of highly optimized stubs. 

-Design for concurrency. LRPC avoids shared data structure bottlenecks and 
benefits from the speedup potential of a multiprocessor. 

We have demonstrated the viability of LRPC by implementing and integrating 
it into Taos, the operating system for the DEC SRC Firefly multiprocessor 
workstation [17]. The simplest cross-domain call using LRPC takes 157 ps on a 
single C-VAX processor. By contrast, SRC RPC, the Firefly’s native communi- 
cation system [16], takes 464 ps to do the same call; though SRC RPC has been 
carefully streamlined and outperforms peer systems, it is a factor of three slower 
than LRPC. The Firefly virtual memory and trap handling machinery limit the 
performance of a safe cross-domain procedure call to roughly 109 ps; LRPC adds 
only 48 ps of overhead to this lower bound. 

The remainder of this paper discusses LRPC in more detail. Section 2 describes 
the use and performance of RPC in existing systems, offering motivation for a 
more lightweight approach. Section 3 describes the design and implementation 
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of LRPC. Section 4 discusses its performance, and Section 5 addresses some of 
the concerns that arise when integrating LRPC into a serious operating system. 

2. THE USE AND PERFORMANCE OF RPC SYSTEMS 

In this section, using measurements from three contemporary operating systems, 
we show that only a small fraction of RPCs are truly remote and that large or 
complex parameters are rarely passed during nonremote operations. We also 
show the disappointing performance of cross-domain RPC in several systems. 
These results demonstrate that simple, cross-domain calls represent the common 
case and can be well served by optimization. 

2.1 Frequency of Cross-Machine Activity 

We examined three operating systems to determine the relative frequency of 
cross-machine activity: 

(1) The V System. In V [2], only the basic message primitives (Send, Receive, 
etc.) are accessed directly through kernel traps. All other system functions are 
accessed by sending messages to the appropriate server. Concern for efficiency, 
though, has forced the implementation of many of these servers down into the 
kernel. 

In an instrumented version of the V System, C. Williamson [20] found 
that 97 percent of calls crossed protection, but not machine, boundaries. 
Williamson’s measurements include message traffic to kernel-resident servers. 

(2) Taos. Taos, the Firefly operating system, is divided into two major pieces. 
A medium-sized privileged kernel accessed through traps is responsible for thread 
scheduling, virtual memory, and device access. A second, multimegabyte domain 
accessed through RPC implements the remaining pieces of the operating system 
(domain management, local and remote file systems, window management, 
network protocols, etc.). Taos does not cache remote files, but each Firefly node 
is equipped with a small disk for storing local files to reduce the frequency of 
network operations. 

We measured activity on a Firefly multiprocessor workstation connected to a 
network of other Fireflies and a remote file server. During one five-hour work 
period, we counted 344,888 local RPC calls, but only 18,366 network RPCs. 
Cross-machine RPCs thus accounted for only 5.3 percent of all communication 
activity. 

(3) lJNIX+NFS. In UNIX,’ a large-kernel operating system, all local system 
functions are accessed through kernel traps. RPC is used only to access remote 
file servers. Although a UNIX system call is not implemented as a cross-domain 
RPC, in a more decomposed operating system most calls would result in at least 
one such RPC. 

On a diskless Sun-3 workstation running Sun UNIX+NFS [15], during a 
period of four days we observed over 100 million operating system calls, but fewer 
than one million RPCs to file servers. Inexpensive system calls, encouraging 

’ UNIX is a trademark of AT&T Bell Laboratories. 
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Table I. Frequency of Remote Activity 

Percentage of operations 
that cross machine 

Operating system boundaries 

V 3.0 

Taos 5.3 

Sun UNIX+NFS 0.6 

frequent kernel interaction, and file caching, eliminating many calls to remote 
file servers, are together responsible for the relatively small number of cross- 
machine operations. 

Table I summarizes our measurements of these three systems. Our conclusion 
is that most calls go to targets on the same node. Although measurements of 
systems taken under different work loads will demonstrate different percentages, 
we believe that cross-domain activity, rather than cross-machine activity, will 
dominate. Because a cross-machine RPC is slower than even a slow cross-domain 
RPC, system builders have an incentive to avoid network communication. This 
incentive manifests itself in the many different caching schemes used in distrib- 
uted computing systems. 

2.2 Parameter Size and Complexity 

The second part of our RPC evaluation is an examination of the size and 
complexity of cross-domain procedure calls. Our analysis considers both the 
dynamic and static usage of SRC RPC as used by the Taos operating system and 
its clients. The size and maturity of the system make it a good candidate for 
study; our version includes 28 RPC services defining 366 procedures involving 
over 1,000 parameters. 

We counted 1,487,105 cross-domain procedure calls during one four-day period. 
Although 112 different procedures were called, 95 percent of the calls were to 
10 procedures, and 75 percent were to just 3. None of the stubs for these three 
were required to marshal complex arguments; byte copying was sufficient to 
transfer the data between domains.’ 

In the same four days, we also measured the number of bytes transferred 
between domains during cross-domain calls. Figure 1, a histogram and cumulative 
distribution of this measure, shows that the most frequently occurring calls 
transfer fewer than 50 bytes, and a majority transfer fewer than 200. 

Statically, we found that four out of five parameters were of fixed size known 
at compile time; 65 percent were 4 bytes or fewer. Two-thirds of all procedures 
passed only parameters of fixed size, and 60 percent transferred 32 or fewer bytes. 
No data types were recursively defined so as to require recursive marshaling 
(such as linked lists or binary trees). Recursive types were passed through RPC 

‘SRC RPC maps domain-specific pointers into and out of network-wide unique representations, 
enabling pointers to be passed back and forth across an RPC interface. The mapping is done by a 
simple table lookup and was necessary for two of the top three problems. 
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Fig. 1. RPC size distribution. 

interfaces, but these were marshaled by system library procedures, rather than 
by machine-generated code. 

These observations indicate that simple byte copying is usually sufficient for 
transferring data across system interfaces and that the majority of interface 
procedures move only small amounts of data. 

Others have noticed that most interprocess communication is simple, passing 
mainly small parameters [2, 4, 81, and some have suggested optimizations for 
this case. V, for example, uses a message protocol that has been optimized for 
fixed-size messages of 32 bytes. Karger describes compiler-driven techniques for 
passing parameters in registers during cross-domain calls on capability systems. 
These optimizations, although sometimes effective, only partially address the 
performance problems of cross-domain communication. 

2.3 The Performance of Cross-Domain RPC 

In existing RPC systems, cross-domain calls are implemented in terms of the 
facilities required by cross-machine ones. Even through extensive optimization, 
good cross-domain performance has been difficult to achieve. Consider the Null 
procedure call that takes no arguments, returns no values, and does nothing: 

PROCEDURE Null( ); BEGIN RETURN END Null; 

The theoretical minimum time to invoke Null( ) as a cross-domain operation 
involves one procedure call, followed by a kernel trap and change of the proces- 
sor’s virtual memory context on call, and then a trap and context change again 
on return. The difference between this theoretical minimum call time and the 
actual Null call time reflects the overhead of a particular RPC system. Table II 
shows this overhead for six systems. The data in Table II come from measure- 
ments of our own and from published sources [6, 18, 191. 

The high overheads revealed by Table II can be attributed to several aspects 
of conventional RPC: 

Stub overhead. Stubs provide a simple procedure call abstraction, concealing 
from programs the interface to the underlying RPC system. The distinction 
between cross-domain and cross-machine calls is usually made transparent to 
the stubs by lower levels of the RPC system. This results in an interface and 
ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990. 
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Table II. Cross-Domain Performance (times are in microseconds) 

System 

Accent 
Taos 
Mach 
V 
Amoeba 
DASH 

Processor 

PERQ 
Firefly C-VAX 
C-VAX 
68020 
68020 
68020 

Null 
(theoretical 
minimum) 

444 
109 
90 

170 
170 
170 

Null 
(actual) 

2,300 
464 
754 
730 
800 

1,590 

Overhead 

1,856 
355 
664 
560 
630 

1,420 

execution path that are general but infrequently needed. For example, it takes 
about 70 ~LS to execute the stubs for the Null procedure call in SRC RPC. Other 
systems have comparable times. 

Message buffer overhead. Messages need to be allocated and passed between 
the client and server domains. Cross-domain message transfer can involve an 
intermediate copy through the kernel, requiring four copy operations for any 
RPC (two on call, two on return). 

Access validation. The kernel needs to validate the message sender on call and 
then again on return. 

Message transfer. The sender must enqueue the message, which must later be 
dequeued by the receiver. Flow control of these queues is often necessary. 

Scheduling. Conventional RPC implementations bridge the gap between ab- 
stract and concrete threads. The programmer’s view is one of a single, abstract 
thread crossing protection domains, while the underlying control transfer mech- 
anism involves concrete threads fixed in their own domain signalling one another 
at a rendezvous. This indirection can be slow, as the scheduler must manipulate 
system data structures to block the client’s concrete thread and then select one 
of the server’s for execution. 

Context switch. There must be a virtual memory context switch from the 
client’s domain to the server’s on call and then back again on return. 

Dispatch. A receiver thread in the server domain must interpret the message 
and dispatch a thread to execute the call. If the receiver is self-dispatching, it 
must ensure that another thread remains to collect messages that may arrive 
before the receiver finishes to prevent caller serialization. 

RPC systems have optimized some of these steps in an effort to improve cross- 
domain performance. The DASH system [la] eliminates an intermediate kernel 
copy by allocating messages out of a region specially mapped into both kernel 
and user domains. Mach [7] and Taos rely on handoff scheduling to bypass 
the general, slower scheduling path; instead, if the two concrete threads cooper- 
ating in a domain transfer are identifiable at the time of the transfer, a direct 
context switch can be made. In line with handoff scheduling, some systems 
pass a few, small arguments in registers, thereby eliminating buffer copying 
and management.3 

3 Optimizations based on passing arguments in registers exhibit a performance discontinuity once the 
parameters overflow the registers. The data in Figure 1 indicate that this can be a frequent problem. 
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SRC RPC represents perhaps the most ambitious attempt to optimize tradi- 
tional RPC for swift cross-domain operation. Unlike techniques used in other 
systems that provide safe communication between mutually suspicious parties, 
SRC RPC trades safety for increased performance. To reduce copying, message 
buffers are globally shared across all domains. A single lock is mapped into all 
domains so that message buffers can be acquired and released without kernel 
involvement. Furthermore, access validation is not performed on call and return, 
simplifying the critical transfer path. 

SRC RPC runs much faster than other RPC systems implemented on com- 
parable hardware. Nevertheless, SRC RPC still incurs a large overhead due to 
its use of heavyweight stubs and run-time support, dynamic buffer management, 
multilevel dispatch, and interaction with global scheduling state. 

3. THE DESIGN AND IMPLEMENTATION OF LRPC 

The lack of good performance for cross-domain calls has encouraged system 
designers to coalesce cooperating subsystems into the same domain. Applications 
use RPC to communicate with the operating system, ensuring protection and 
failure isolation for users and the collective system. The subsystems themselves, 
though, grouped into a single protection domain for performance reasons, are 
forced to rely exclusively on the thin barriers provided by the programming 
environment for protection from one another. LRPC solves, rather than circum- 
vents, this performance problem in a way that does not sacrifice safety. 

The execution model of LRPC is borrowed from protected procedure call. A 
call to a server procedure is made by way of a kernel trap. The kernel validates 
the caller, creates a call linkage, and dispatches the client’s concrete thread 
directly to the server domain. The client provides the server with an argument 
stack as well as its own concrete thread of execution. When the called procedure 
completes, control and results return through the kernel back to the point of the 
client’s call. 

The programming semantics and large-grained protection model of LRPC are 
borrowed from RPC. Servers execute in a private protection domain, and each 
exports one or more interfaces, making a specific set of procedures available to 
other domains. A client binds to a server interface before making the first call. 
The server, by allowing the binding to occur, authorizes the client to access the 
procedures defined by the interface. 

3.1 Binding 

At a conceptual level, LRPC binding and RPC binding are similar. Servers export 
interfaces, and clients bind to those interfaces before using them. At a lower 
level, however, LRPC binding is quite different due to the high degree of 
interaction and cooperation that is required of the client, server, and kernel. 

A server module exports an interface through a clerk in the LRPC run-time 
library included in every domain. The clerk registers the interface with a name 
server and awaits import requests from clients. A client binds to a specific 
interface by making an import call via the kernel. The importer waits while the 
kernel notifies the server’s waiting clerk. 
ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990. 
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The clerk enables the binding by replying to the kernel with a procedure 
descriptor list (PDL) that is maintained by the exporter of every interface. The 
PDL contains one procedure descriptor (PD) for each procedure in the interface. 
The PD includes an entry address in the server domain, the number of simulta- 
neous calls initially permitted to the procedure by the client, and the size of the 
procedure’s argument stack (A-stack) on which arguments and return values will 
be placed during a call. For each PD, the kernel pairwise allocates in the client 
and server domains a number of A-stacks equal to the number of simultaneous 
calls allowed. These A-stacks are mapped read-write and shared by both domains. 

Procedures in the same interface having A-stacks of similar size can share 
A-stacks, reducing the storage needs for interfaces with many procedures. The 
number of simultaneous calls initially permitted to procedures that are sharing 
A-stacks is limited by the total number of A-stacks being shared. This is only a 
soft limit, though, and Section 5.2 describes how it can be raised. 

The kernel also allocates a linkage record for each A-stack that is used to 
record a caller’s return address and that is accessible only to the kernel. The 
kernel lays out A-stacks and linkage records in memory in such a way that the 
correct linkage record can be quickly located given any address in the correspond- 
ing A-stack. 

After the binding has completed, the kernel returns to the client a Binding 
Object. The Binding Object is the client’s key for accessing the server’s interface 
and must be presented to the kernel at each call. The kernel can detect a forged 
Binding Object, so clients cannot bypass the binding phase. In addition to the 
Binding Object, the client receives an A-stack list for each procedure in the 
interface giving the size and location of the A-stacks that should be used for calls 
into that procedure. 

3.2 Calling 

Each procedure in an interface is represented by a stub in the client and server 
domains. A client makes an LRPC by calling into its stub procedure, which is 
responsible for initiating the domain transfer. The stub manages the A-stacks 
allocated at bind time for that procedure as a LIFO queue. At call time, the stub 
takes an A-stack off the queue, pushes the procedure’s arguments onto the A- 
stack, puts the address of the A-stack, the Binding Object, and a procedure 
identifier into registers, and traps to the kernel. In the context of the client’s 
thread, the kernel 

-verifies the Binding and procedure identifier, and locates the correct PD, 
-verifies the A-stack and locates the corresponding linkage, 
-ensures that no other thread is currently using that A-stack/linkage pair, 
-records the caller’s return address and current stack pointer in the linkage, 
-pushes the linkage onto the top of a stack of linkages kept in the thread’s 

control block,4 
-finds an execution stack (E-stack) in the server’s domain, 

4 The stack is necessary so that a thread can be involved in more than one cross-domain procedure 
call at a time. 
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-updates the thread’s user stack pointer to run off of the new E-stack, 
-reloads the processor’s virtual memory registers with those of the server 

domain, and 
-performs an upcall [3] into the server’s stub at the address specified in the PD 

for the registered procedure. 

Arguments are pushed onto the A-stack according to the calling conventions 
of Modula2+ [14]. Since the A-stack is mapped into the server’s domain, the 
server procedure can directly access the parameters as though it had been called 
directly. It is important to note that this optimization relies on a calling conven- 
tion that uses a separate argument pointer. In a language environment that 
requires arguments to be passed on the E-stack, this optimization would not be 
possible. 

The server procedure returns through its own stub, which initiates the return 
domain transfer by trapping to the kernel. Unlike the call, which required 
presentation and verification of the Binding Object, procedure identifier, and 
A-stack, this information, contained at the top of the linkage stack referenced 
by the thread’s control block, is implicit in the return. There is no need to verify 
the returning thread’s right to transfer back to the calling domain since it was 
granted at call time. Furthermore, since the A-stack contains the procedure’s 
return values and the client specified the A-stack on call, no explicit message 
needs to be passed back. 

If any parameters are passed by reference, the client stub copies the referent 
onto the A-stack. The server stub creates a reference to the data and places the 
reference on its private E-stack before invoking the server procedure. The 
reference must be recreated to prevent the caller from passing in a bad address. 
The data, though, are not copied and remain on the A-stack. 

Privately mapped E-stacks enable a thread to cross safely between domains. 
Conventional RPC systems provide this safety by implication, deriving separate 
stacks from separate threads. LRPC excises this level of indirection, dealing 
directly with less weighty stacks. 

A low-latency domain transfer path requires that E-stack management incur 
little call-time overhead. One way to achieve this is to statically allocate E-stacks 
at bind time and to permanently associate each with an A-stack. Unfortunately, 
E-stacks can be large (tens of kilobytes) and must be managed conservatively; 
otherwise, a server’s address space could be exhausted by just a few clients. 

Rather than statically allocating E-stacks, LRPC delays the A-stack/E-stack 
association until it is needed, that is, until a call is made with an A-stack not 
having an associated E-stack. When this happens, the kernel checks if there is 
an E-stack already allocated in the server domain, but currently unassociated 
with any A-stack. If so, the kernel associates the E-stack with the A-stack. 
Otherwise, the kernal allocates an E-stack out of the server domain and associates 
it with the A-stack. When the call returns, the E-stack and A-stack remain 
associated with one another so that they might be used together soon for another 
call (A-stacks are LIFO managed by the client). Whenever the supply of E-stacks 
for a given server domain runs low, the kernel reclaims those associated with 
A-stacks that have not been used recently. 
ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990. 
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3.3 Stub Generation 

Stubs bridge the gap between procedure call, the communication model used by 
the programmer, and domain transfer, the execution model of LRPC. A procedure 
is represented by a call stub in the client’s domain and an entry stub in the 
server’s. Every procedure declared in an LRPC interface defines the terminus of 
a three-layered communication protocol: end-to-end, described by the calling 
conventions of the programming language and architecture; stub-to-stub, imple- 
mented by the stubs themselves; and domain-to-domain, implemented by the 
kernel. 

LRPC stubs blur the boundaries between the protocol layers to reduce the cost 
of crossing between them. Server entry stubs are invoked directly by the kernel 
on a transfer; no intermediate message examination and dispatch are required. 
The kernel primes E-stacks with the initial call frame expected by the server’s 
procedure, enabling the server stub to branch to the first instruction of the 
procedure. As a result, a simple LRPC needs only one formal procedure call (into 
the client stub) and two returns (one out of the server procedure and one out of 
the client stub). 

The LRPC stub generator produces run-time stubs in assembly language 
directly from Modula2+ definition files. The use of assembly language is possible 
because of the simplicity and stylized nature of LRPC stubs, which consist 
mainly of move and trap instructions. The LRPC stubs have shown a factor-of- 
four performance improvement over Modula2+ stubs created by the SRC RPC 
stub generator. 

Since the stubs are automatically generated, the only maintenance concerns 
arising from this use of assembly language are related to the portability of the 
stub generator (the stubs themselves are not portable, but we do not consider 
this to be an issue). Porting the stub generator to work on a different machine 
architecture should be a straightforward task, although we have not yet had any 
reason to do so. 

The stub generator emits Modula2+ code for more complicated, but less 
frequently traveled, execution paths, such as those dealing with binding, excep- 
tion handling, and call failure. Calls having complex or heavyweight parameters- 
linked lists or data that must be made known to the garbage collector-are 
handled with ModulaB+ marshaling code. LRPC stubs become more like conven- 
tional RPC stubs as the overhead of dealing with the complicated data types 
increases. This shift occurs at compile time, though, eliminating the need to 
make run-time decisions. 

3.4 LRPC on a Multiprocessor 

The existence of shared-memory multiprocessors has influenced the design of 
LRPC. Multiple processors can be used to achieve a higher call throughput and 
lower call latency than is possible on a single processor. 

LRPC increases throughput by minimizing the use of shared data structures 
on the critical domain transfer path. Each A-stack queue is guarded by 
its own lock, and queuing operations take less than 2 percent of the total call 
time. No other locking occurs, so there is little interference when calls occur 
simultaneously. 
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Multiple processors are used to reduce LRPC latency by caching domain 
contexts on idle processors. As we show in Section 4, the context switch that 
occurs during an LRPC is responsible for a large part of the transfer time. This 
time is due partly to the code required to update the hardware’s virtual memory 
registers and partly to the extra memory fetches that occur as a result of 
invalidating the translation lookaside buffer (TLB). 

LRPC reduces context-switch overhead by caching domains on idle processors. 
When a call is made, the kernel checks for a processor idling in the context of 
the server domain. If one is found, the kernel exchanges the processors of the 
calling and idling threads, placing the calling thread on a processor where the 
context of the server domain is already loaded; the called server procedure can 
then execute on that processor without requiring a context switch. The idling 
thread continues to idle, but on the client’s original processor in the context of 
the client domain. On return from the server, a check is also made. If a processor 
is idling in the client domain (likely for calls that return quickly), then the 
processor exchange can be done again. 

If no idle domain can be found on call or return, then a single-processor context 
switch is done. For each domain, the kernel keeps a counter indicating the 
number of times that a processor idling in the context of that domain was needed 
but not found. The kernel uses these counters to prod idle processors to spin in 
domains showing the most LRPC activity. 

The high cost of frequent domain crossing can also be reduced by using a TLB 
that includes a process tag. For multiprocessors without such a tag, domain 
caching can often achieve the same result for commonly called servers. Even 
with a tagged TLB, a single-processor domain switch still requires that hardware 
mapping registers be modified on the critical transfer path; domain caching does 
not. Finally, domain caching preserves per-processor locality across calls-a 
performance consideration for systems having a low tolerance for sudden shifts 
in memory reference locality. 

Using idle processors to decrease operating system latency is not a new idea. 
Both Amoeba and Taos cache recently blocked threads on idle processors to 
reduce wakeup latency. LRPC generalizes this technique by caching domains, 
rather than threads. In this way, any thread that needs to run in the context of 
an idle domain can do so quickly, not just the thread that ran there most recently. 

3.5 Argument Copying 

Consider the path taken by a procedure’s argument during a traditional cross- 
domain RPC. An argument, beginning with its placement on the stack of the 
client stub, is copied four times: from the stub’s stack to the RPC message, from 
the message in the client’s domain to one in the kernel’s, from the message in 
the kernel’s domain to one in the server’s, and from the message to the server’s 
stack. The same argument in an LRPC can be copied only once: from the stack 
of the client stub to the shared A-stack from which it can be used by the server 
procedure. 

Pairwise allocation of A-stacks enables LRPC to copy parameters and return 
values only as many times as are necessary to ensure correct and safe operation. 
Protection from third-party domains is guaranteed by the pairwise allocation 
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that provides a private channel between the client and server. It is still possible 
for a client or server to asynchronously change the values of arguments in an 
A-stack once control has transferred across domains. The copying done by 
message-based RPC prevents such changes, but often at a higher cost than nec- 
essary. LRPC, by considering each argument individually, avoids extra copy 
operations by taking advantage of argument passing conventions, by exploit- 
ing a value’s correctness semantics, and by combining the copy into a check 
for the value’s integrity. 

In most procedure call conventions, the destination address for return values 
is specified by the caller. During the return from an LRPC, the client stub copies 
returned values from the A-stack into their final destination. No added safety 
comes from first copying these values out of the server’s domain into the client’s, 
either directly or by way of the kernel. 

Parameter copying can also be avoided by recognizing situations in which the 
actual value of the parameter is unimportant to the server. This occurs when 
parameters are processed by the server without interpretation. For example, the 
Write procedure exported by a file server takes an array of bytes to be written to 
disk. The array itself is not interpreted by the server, which is made no more 
secure by an assurance that the bytes will not change during the call. Copying is 
unnecessary in this case. These types of arguments can be identified to the LRPC 
stub generator. 

Finally, concern for type safety motivates explicit argument copying in the 
stubs, rather than wholesale message copying in the kernel. In a strongly typed 
language, such as ModulaB+, actual parameters must conform to the types of the 
declared formals; for example, the Modula2+ type CARDINAL is restricted to 
the set of nonnegative integers-a negative value will result in a run-time error 
when the value is used. A client could crash a server by passing it an unwanted 
negative value. To protect itself, the server must check type-sensitive values for 
conformity before using them. Folding this check into the copy operation can 
result in less work than if the value is first copied by the message system and 
then later checked by the stubs. 

Table III shows how the use of A-stacks in LRPC can affect the number of 
copying operations. For calls where parameter immutability is important and for 
those where it is not, we compare the behavior of LRPC against the traditional 
message-passing approach and against a more restricted form of message passing 
used in the DASH system. In the restricted form, all message buffers on the 
system are allocated from a specially mapped region that enables the kernel to 
copy messages directly from the sender’s domain into the receiver’s, avoiding an 
intermediate kernel copy. 

In Table III we assume that the server places the results directly into the reply 
message. If this is not the case (i.e., messages are managed as a scarce resource), 
then one more copy from the server’s results into the reply message is needed. 
Even when the immutability of parameters is important, LRPC performs fewer 
copies (three) than either message passing (seven) or restricted message passing 
(five). 

For passing large values, copying concerns become less important, since by- 
value semantics can be achieved through virtual memory operations. But, for the 
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Table III. Copy Operations for LRPC versus 
Message-Based RPC 

Operation LRPC 
Message 
passing 

Restricted 
message 
passing 

Call (mutable 
parameters) 

Call (immutable 
parameters) 

Return 

A ABCE ADE 

AE ABCE ADE 

F BCF BF 

Code Copy operation 
A Copy from client stack to message (or A-stack) 
B Copy from sender domain to kernel domain 
C Copy from kernel domain to receiver domain 
D Copy from sender/kernel space to receiver/kernel domain 
E Copy from message (or A-stack) into server stack 
F Copy from message (or A-stack) into client’s results 

more common case of small- to medium-sized values, eliminating copy operations 
is crucial to good performance when call latency is on the order of only 100 
instructions. 

LRPC’s A-stack/E-stack design offers both safety and performance. Although 
out implementation demonstrates the performance of this design, the Firefly 
operating system does not yet support pairwise shared memory. Our current 
implementation places A-stacks in globally shared virtual memory. Since map- 
ping is done at bind time, an implementation using pairwise shared memory 
would have identical performance, but greater safety. 

4. THE PERFORMANCE OF LRPC 

To evaluate the performance of LRPC, we used the four tests shown in 
Table IV. These tests were run on the C-VAX Firefly using LRPC and Taos 
RPC. The Null call provides a baseline against which we can measure the added 
overhead of LRPC. The procedures Add, BigIn, and BigInOut represent calls 
having typical parameter sizes. 

Table IV shows the results of these tests when performed on a single node. 
The measurements were made by performing 100,000 cross-domain calls in a 
tight loop, computing the elapsed time, and then dividing by 100,000. The table 
shows two times for LRPC. The first, listed as “LRPC/MP,” uses the idle 
processor optimization described in Section 3.4. The second, shown as “LRPC,” 
executes the domain switch on a single processor; it is roughly three times faster 
than SRC RPC, which also uses only one processor. 

Table V shows a detailed cost breakdown for the serial (single-processor) Null 
LRPC on a C-VAX. This table was produced from a combination of timing 
measurements and hand calculations of TLB misses. The code to execute a Null 
LRPC consists of 120 instructions that require 157 ps to execute. The column 
labeled “Minimum” in Table V is a timing breakdown for the theoretically 
minimum cross-domain call (one procedure call, two traps, and two context 
switches). The column labeled “LRPC overhead” shows the additional time 
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Table IV. LRPC Performance of Four Tests (in microseconds) 

Test Descrintion LRPC/MP LRPC Taos 

Null 
Add 

BigIn 

BigInOut 

The Null cross-domain call 
A procedure taking two I-byte 

arguments and returning one 
I-byte argument 

A procedure taking one 200-byte 
argument 

A procedure taking and returning 
one 200-byte argument 

125 157 464 
130 164 480 

173 192 539 

219 227 636 

Table V. Breakdown of Time (in microseconds) for 
Sinele-Processor Null LRPC 

LRPC 
Operation Minimum overhead 

ModulaQ+ procedure call 7 - 

Two kernel traps 36 - 

Two context switches 66 - 

Stubs - 21 
Kernel transfer - 27 

Total 109 48 

required to execute the call and return operations described in Section 3.2 and is 
the added cost of our implementation. For the Null call, approximately 18 ps are 
spent in the client stub and 3 ps in the server’s. The remaining 27 ps of overhead 
are spent in the kernel and go toward binding validation and linkage management. 
Most of this takes place during the call, as the return path is simpler. 

Approximately 25 percent of the time used by the Null LRPC is due to TLB 
misses that occur during virtual address translation. A context switch on a 
C-VAX requires the invalidation of the TLB, and each subsequent TLB miss 
increases the cost of a memory reference by about 0.9 I.LS. Anticipating this, the 
data structures and control sequences of LRPC were designed to minimize TLB 
misses. Even so, we estimate that 43 TLB misses occur during the Null call. 

Section 3.4 stated that LRPC avoids locking shared data during call and return 
in order to remove contention on shared-memory multiprocessors. This is dem- 
onstrated by Figure 2, which shows call throughput as a function of the number 
of processors simultaneously making calls. Domain caching was disabled for this 
experiment-each call required a context switch. A single processor can make 
about 6,300 LRPCs per second, but four processors can make over 23,000 calls 
per second-a speedup of 3.7 and close to the maximum that the Firefly is capable 
of delivering. These measurements were made on a Firefly having four C-VAX 
processors and one MicroVaxII I/O processor. Measurements on a five-processor 
MicroVaxII Firefly showed a speedup of 4.3 with five processors. 

In contrast, the throughput of SRC RPC levels off with two processors at 
about 4,000 calls per second. This limit is due to a global lock that is held during 
a large part of the RPC transfer path. For a machine like the Firefly, a small- 
scale shared-memory multiprocessor, a limiting factor of two is annoying, but 
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LRPC Measured 

Calls 

Fig. 2. Call throughput on a multipro- per 
Second 

cessor. 

O- 
Number of Processors 

not serious. On shared-memory machines with just a few dozen processors, 
though, contention on the critical control transfer path would have a greater 
performance impact. 

5. THE UNCOMMON CASES 

In addition to performing well in the common case, LRPC must perform accept- 
ably in the less common ones. This section describes several of these less common 
cases and explains how they are dealt with by the LRPC. This section does not 
enumerate all possible uncommon cases that must be considered. Instead, 
by describing just a few, we hope to emphasize that the common-case 
approach taken by LRPC is flexible enough to accommodate the uncommon 
cases gracefully. 

5.1 Transparency and Cross-Machine Calls 

Deciding whether a call is cross-domain or cross-machine is made at the earliest 
possible moment: the first instruction of the stub. If the call is to a truly remote 
server (indicated by a bit in the Binding Object), then a branch is taken 
to a more conventional RPC stub. The extra level of indirection is negligible 
compared to the overheads that are part of even the most efficient network 
RPC implementation. 

5.2 A-Stacks: Size and Number 

PDLs are defined during the compilation of an interface. The stub generator 
reads each interface and determines the number and size of the A-stacks for each 
procedure. The number defaults to five, but can be overridden by the interface 
writer. When the size of each of a procedure’s arguments and return values are 
known at compile time, the A-stack size can be determined exactly. In the 
presence of variable-sized arguments, though, the stub generator uses a default 
size equal to the Ethernet packet size (this default also can be overridden). 
Experience has shown, and Figure 1 confirms, that RPC programmers strive to 
keep the sizes of call and return parameters under this limit. Most existing RPC 
protocols are built on simple packet exchange protocols, and multipacket calls 
have performance problems. In cases where the arguments are too large to fit 
into the A-stack, the stubs transfer data in a large out-of-band memory segment. 
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Handling unexpectedly large parameters is complicated and relatively expensive, 
but infrequent. 

A-stacks in a single interface are allocated contiguously at bind time to allow 
for quick validation during a call (a simple range check guarantees their integrity). 
If the number of preallocated A-stacks proves too few, the client can either wait 
for one to become available (when an earlier call finishes), or allocate more. 
Waiting is simple, but may not always be appropriate. When further allocation 
is necessary, it is unlikely that space contiguous to the original A-stacks will be 
found, but other space can be used. A-stacks in this space, not in the primary 
contiguous region, will take slightly more time to validate during a call. 

5.3 Domain Termination 

A domain can terminate at any time, for reasons such as an unhandled exception 
or a user action (CTRL-C). When a domain terminates, all resources in its 
possession (virtual address space, open file descriptors, threads, etc.) are re- 
claimed by the operating system. If the terminating domain is a server handling 
an LRPC request, the call, completed or not, must return to the client domain. 
If the terminating domain is a client with a currently outstanding LRPC request 
to another domain, the outstanding call, when finished, must not be allowed to 
return to its originating domain. 

When a domain is terminated, each Binding Object associated with that domain 
(either as client or server) is revoked. This prevents any more out-calls from the 
domain and prevents other domains from making any more in-calls. All threads 
executing within the domain are then stopped, and a kernel collector scans all of 
the domain’s threads looking for any that had been running on behalf of an 
LRPC call; these threads are restarted in the client with a call-failed exception. 
Finally, the collector scans all Binding Objects held by the terminating domain 
and invalidates any active linkage records. When a thread returns from an LRPC 
call, it follows the stack of linkage records referenced by the thread control block, 
returning to the domain specified in the first valid linkage record. If any invalid 
linkage records are found on the way, a call-failed exception is raised in the 
caller. If the stack contains no valid linkage records, the thread is destroyed. 

A terminating domain’s outstanding threads are not forced to terminate 
synchronously with the domain. Doing so would require every server procedure 
to protect the integrity of its critical data structures from external forces, since 
a mutating thread could be terminated at any time. More generally, LRPC has 
no way to force a thread to return from an outstanding call. Taos does have an 
alert mechanism that allows one thread to signal another, but the notified thread 
may choose to ignore the alert. It is therefore possible for one domain to “capture” 
another’s thread and hold it indefinitely. To address this problem, LRPC enables 
client domains to create a new thread whose initial state is that of the original 
captured thread as if it had just returned from the server procedure with a call- 
aborted exception. The captured thread continues executing in the server domain, 
but is destroyed in the kernel when released. 

Traditional RPC does not have these problems because the abstract thread 
seen by the programmer is provided by two concrete threads, one in each of the 
client and server domains. Because premature domain and call termination are 
infrequent, LRPC has adopted a “special case” approach for dealing with them. 
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6. SUMMARY 

This paper has described the motivation, design, implementation, and perfor- 
mance of LRPC, a communication facility that combines elements of capability 
and RPC systems. Our implementation on the Firefly achieves performance that 
is close to the minimum round-trip cost of transferring control between domains 
on conventional hardware. 

LRPC adopts a common-case approach to communication, exploiting, when- 
ever possible, simple control transfer, simple data transfer, simple stubs, and 
multiprocessors. In so doing, LRPC performs well for the majority of cross- 
domain procedure calls by avoiding needless scheduling, excessive run-time 
indirection, unnecessary access validation, redundant copying, and lock conten- 
tion. LRPC, nonetheless, is safe and transparent, and represents a viable com- 
munication alternative for small-kernel operating systems. 
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