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Abstract—Many researchers have observed that TCP’s congestion con-
trol mechanisms can lead to bursty traffic flows on modern high-speed
networks, with a negative impact on overall network efficiency. A pro-
posed solution to this problem is to evenly space, or “pace”, data sent into
the network over an entire round-trip time, so that data is not sent in a
burst. In this paper, we quantitatively evaluate this approach. Pacing of-
fers better fairness, throughput, and lower drop rates in some situations.
However, we show that contrary to intuition, pacing often has significantly
worse throughput than regular TCP because it is susceptible to synchro-
nized losses and it delays congestion signals. We propose and evaluate ap-
proaches for eliminating this effect.

I. I NTRODUCTION

It is well understood from queuing theory that bursty traffic
produces higher queueing delays, more packet losses, and lower
throughput [19]. At the same time, it has been observed that
TCP’s congestion control mechanisms can produce bursty traffic
flows on high bandwidth and highly multiplexed networks [32].
Consequently, several researchers have proposed smoothing the
behavior of TCP traffic by evenly spacing, or “pacing”, data
transmissions across a round-trip time [3], [26], [14], [23], [31],
[27], [13], [20].

Our goal in this paper is to quantify the benefits and limita-
tions of using pacing in TCP. Using simulation, we examine the
impact of pacing on throughput, fairness, queue size, and drop
rate as a function of load, bandwidth-delay product, buffer size,
and variable round-trip times. We also examine the impact of
sharing a bottleneck link between paced and normal TCP flows.

Our intuition starting this study was that pacing would have
the right incentive structure to be adopted in the Internet – it
has the potential to be better for both the individual (because
packets are less likely to be dropped if they aren’t clumped)and
the network (because competing flows will see less queueing
delay and burst losses). While our results show that pacing does
improve performance in some scenarios, for most realistic cases
our intuition proved too simplistic.

First, for most of the topologies, workloads, and router
scheduling policies that we examined, we find that pacing re-
sults in lower throughput andhigher latencies. By evenly
spreading traffic out, pacing is “too good” at reducing queue-
ing delays, delaying the point at which congestion is detected.
Since in TCP all senders continually increase their traffic in the
absence of congestion, pacing can cause “synchronized drops”,
where flows through the bottleneck experience simultaneous
losses. This causes senders to quickly reduce their rate, oscil-
lating the bottleneck between being over-subscribed and under-
subscribed. In essence, pacing can have the opposite effect of
Random Early Detection (RED) gateways [12], which randomly
drop packets to throttle back some sources before congestion be-

comes extreme.
Second, we find that pacing performs poorly when compet-

ing with unmodified TCP. Again, the problem is that pacing is
“too good” at spreading traffic out. A single paced connection,
sharing a congested link with bursty connections, is more likely
to have at least one of its packets encounter severe congestion;
by contrast, the bursty connections will either be lucky enough
to miss other bursts, or unlucky and suffer multiple losses in a
burst.

The rest of the paper discusses these issues in more detail.
Section II describes the previous work in this area. Section III
briefly discusses some TCP congestion control algorithms and
some sources of burstiness in TCP. Section IV describes pacing.
Section V describes the simulation methodology and section VI
describes the simulation results. Finally, we conclude in sec-
tion VII.

II. RELATED WORK

Explicit rate control, which is the intellectual ancestor of pac-
ing, has been explored in many non-TCP protocols [6], [8],
[18], [24]. Instead of sending new data into the network only
when old data is acknowledged to have departed the network,
these approaches send packets at a pre-determined rate. Un-
fortunately, rate control has its own problems. Depending on
the exact mechanism used to set the target rate, rate control can
be less responsive to rapid increases in congestion. In contrast,
TCP senders will immediately stop sending when the network
becomes congested – if no acknowledgments are being returned,
no new data will be clocked into the network.

Pacing is a hybrid between pure rate control and TCP’s use
of acknowledgments to trigger new data to be sent into the net-
work. Zhang et al. initially suggested using pacing in the TCP
context to correct for the compression of acknowledgments due
to cross traffic [32]. Other researchers have suggested using pac-
ing when acknowledgments are not available to use for clocking,
for example, to avoid TCP slow start at the beginning of a con-
nection [3], [26], after a packet loss [14], [23], or when an idle
connection resumes [31]. Similarly, pacing can be used to avoid
burstiness in asymmetric networks caused by batching acknowl-
edgments [5]. More recently, researchers have suggested using
pacing across the entire lifetime of the connection. Partridge
argues that pacing can address problems in TCP performance
on long-latency, high bandwidth satellite links [27] while the
Berkeley WebTP group has combined pacing, receiver-driven
congestion control, and application-level framing into a trans-
port protocol specialized for web traffic [13]. A commercial
company, Packeteer, sells a router that conditions traffic by pac-



ing acknowledgments [20]. Despite this widespread interest,
however, we know of no systematic evaluation of the impact
of pacing on the Internet.

III. B ACKGROUND

In this section, we sketch the TCP mechanisms relevant to
our discussion (see [15], [16], [28] for further details). We then
outline why these mechanisms can cause burstiness. For the
purposes of this discussion, we assume the TCP layer picks the
size of its transfer unit to avoid fragmentation at the IP layer, so
that we can loosely refer to the TCP transfer unit as a packet.

A. TCP Mechanisms

TCP is a sliding window-based protocol. The effective win-
dow used by a TCP sender is the minimum of the congestion
window (cwnd – set to match the bandwidth of the network)
and the receiver’s buffer size. Since the window is the number of
bytes the sender is allowed to send without an acknowledgment,
the average rate at which traffic enters the network is governed
by the window size divided by the round trip time (RTT). The
sender uses the incoming acknowledgments to determine when
to send new data, a mechanism referred to as ack-clocking [16].
In theory, the network bottleneck will cause any clumped pack-
ets to spread out (spaced at the rate the bottleneck serves pack-
ets), resulting in well-spaced traffic during the next round trip.
However, under a wide variety of conditions, packets from the
same connection have been observed to cluster together [32]; we
discuss reasons for this in the next subsection.

The congestion window adjustment algorithm has two phases.
In theslow startphase [16], [28], the sender increases the con-
gestion window rapidly in order to quickly identify the bottle-
neck rate while at the same time theoretically establishing a
stream of well-spaced acknowledgments. The sender typically
starts with a window of one packet; each acknowledgment in-
creases the window by 1, effectively doubling the window every
round trip time. Assuming the sender is not limited by the re-
ceiver’s buffer space, the sender increases its congestion window
until it detects that a packet loss has occurred; the loss is taken
as a signal that the sender is transmitting packets faster than the
network can handle. At this point the window is cut in half, and
the sender enters thecongestion avoidancephase. The sender
then increases the window by1/cwnd on every acknowledg-
ment, effectively increasing it by1 packet every round trip time.
Again, the sender increases the window until it detects a packet
loss; on a loss, the window is cut by half, and the sender resumes
increasing the window by1 packet per round trip.

As a result, the sender’s congestion window (controlling the
rate at which packets are sent) at first increases along an expo-
nential curve during slow start, then over time repeats a saw-
tooth pattern of a factor of two decrease and a subsequent slow,
linear increase. Since the receipt of acknowledgments governs
the rate of increase in the congestion window, connections with
longer round trip times have windows that grow at a slower rate
(both slow start and the sawtooth have a proportionately lower
slope).

Each TCP acknowledgment reports the highest-numbered
packet (more precisely, byte) that had been received along with

all earlier packets. Assuming there are no losses, the infor-
mation in each acknowledgment therefore makes all earlier ac-
knowledgments redundant. As an optimization, TCP receivers
try to reduce the number of acknowledgments by delaying re-
turning an acknowledgment for a single received packet (assum-
ing all prior packets had been correctly received) until either
another packet arrives or a timer fires. Because half as many ac-
knowledgments are received, and since acknowledgments trig-
ger increases in the congestion window, the principal effect of
delayed acknowledgments is to slow the rate at the congestion
window is increased: during slow start from a factor of2 to
a factor of1:5 per round trip and during congestion avoidance
from 1 packet to0:5 packets per round trip.

B. Burstiness in TCP

While ack-clocking in theory causes the sender to spread data
out, a number of factors can cause either short or long term
burstiness in the behavior of a TCP flow. For this discussion,
consider a TCP sender operating over a path with bottleneck
bandwidth ofb. We define one time unit as the time it takes to
transmit one data segment over the bottleneck link. More con-
cretely,1 time unit = TCP packet size=b.

B.1 Slow Start.

During slow start, every successfully acknowledged packet
increases the window size by one packet. Thus, the sender trans-
mits two packets for every new acknowledgment. Since the ac-
knowledgments are generated at the bottleneck rate, this implies
that the sender is bursting data at twice the bottleneck rate, lead-
ing to the formation of a queue at the bottleneck link [27]. When
the sender window isW=2 packets, the sender getsW=2 ac-
knowledgements with a spacing of one time unit between con-
secutive acknowledgments. In response, the sender transmits
two packets for each acknowledgment or a total ofW pack-
ets inW=2 time units. Since the bottleneck can forward only
W=2 packets inW=2 time units, the other half of the packets are
queued. Therefore, during slow start, a sender window size of
W builds up a queue of sizeW=2 at the bottleneck router.

Since the buffer size at the bottleneck router is necessarily
limited, this bursty behavior will cause the router to drop pack-
ets when the window size exceeds the router buffer size by some
small constant factor. For high bandwidth connections, this may
be prior to the point where the sender has reached the bottleneck
bandwidth. Ideally, the first loss should not occur in slow start
until the window reaches the product of the end-to-end round
trip time times the bandwidth, called the delay-bandwidth prod-
uct. If the router buffer size is much less than this product, the
sender will encounter a loss too early and fall out of slow start; it
can then take the sender many round-trips of congestion avoid-
ance, increasing the window by only one packet per round trip,
to finally reach the bottleneck bandwidth.

B.2 Losses

When a lost packet is successfully retransmitted, its acknowl-
edgment may trigger a burst of traffic [11]. At the receiver, the
retransmitted packet will typically fill a “hole” in the sequence
space, enabling the receiver to acknowledge not just the lost
packet but other packets that had been successfully received in



the window. When the acknowledgment arrives at the sender,
the sender will suddenly be able to send a burst of traffic. Al-
though TCP can use duplicate acknowledgments (acknowledg-
ments for packets delivered after the missing packet) to recover
ack clocking, at best the sender transmits new data only during
the second half of the recovery period, thereby bursting a win-
dow of data in one half of the round trip time [14], [23].

B.3 Ack Compression

In the presence of two-way TCP traffic, ack-clocking can be
disrupted due to a phenomenon called ack-compression [32].
Acknowledgments from the receiver, generated at the bottleneck
rate, can get queued behind data packets on the reverse path. As-
suming routers service packets in FIFO order, this can cause the
acknowledgments to lose their spacing and reach the sender in a
burst. This in turn causes bursty transmissions at the sender.

B.4 Multiplexing

Perhaps most importantly, ack-clocking will only spread data
at the bottleneck rate. For high-bandwidth links shared by a
large number of connections, this can result in each connec-
tion transmitting in a burst and remaining idle for the rest of the
round trip time. As a connection starts up, its data packets are
spaced apart at the bottleneck by one time unit (the rate the bot-
tleneck services packets). Each round trip increases the number
of packets, but all of the packets remain clustered together. Un-
less two connections happen to send their cluster of packets so
that they overlap at the bottleneck, the packets for each connec-
tion will tend to stay clustered. When two clusters do overlap at
the bottleneck (for example, because of slow start increases or
if the connections have different round trip times), the result is a
larger burst than either would have generated on its own.

IV. PACING

The goal of pacing is to evenly spread the transmission of a
window of packets across the entire duration of the round trip
time. This can be implemented either by the sender or the re-
ceiver. At the sender, instead of transmitting packets immedi-
ately upon receipt of an acknowledgment, the sender can delay
transmitting packets to spread them out at the rate defined by the
congestion control algorithm – the window size divided by the
estimated round-trip time. Alternatively, a receiver can delay
acknowledgments to spread them across the round trip time, so
that when they arrive at the sender, they will trigger spaced data
packets. Of course, receiver pacing is less effective, since as we
discussed earlier, acknowledgments arriving at the sender can
trigger multiple data sends; with receiver pacing, these packets
will be sent in a burst. Further, receiver pacing is susceptible
to ack compression. Therefore, we only simulate sender-based
pacing in this paper.

As a traditional window based protocol, TCP uses a window
to determine the number of packets that can be sent and uses
the receipt of acknowledgments to trigger the sending of pack-
ets. Pure rate based schemes, on the other hand, use rates to
determine bothhow muchandwhento send. Pacing is a hybrid
between these two approaches – it uses the TCP window to de-
terminehow muchto send but uses rates instead of acknowledg-
ments to determinewhento send. The idea of pacing has been
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Fig. 1. Best and worst case bounds on delay for a queuing system.

proposed or used in a number of different contexts [3], [5], [13],
[14], [20], [23], [26], [27], [31], [32], but none of these quan-
tify the impact of incorporating pacing into the TCP congestion
control algorithm.

A. Implementation

We have incorporated pacing into thens [30] simulation code
for TCP Reno. Thens Reno code closely models the conges-
tion control behavior of most of the TCP implementations in
widespread use. Unlike typical implementations, however, we
disabled delayed acknowledgments for this study. We repeated
several of our experiments with delayed acknowledgments en-
abled and our results were qualitatively similar.

Our implementation of pacing uses a variant of the leaky
bucket algorithm [29] and is very similar to the implementations
in [26], [31]; the only difference being that these implementa-
tions use pacing during specific periods (e.g. after idle time or
at connection start up) while we use it throughout the lifetime
of a flow. Timeouts are scheduled at regular intervals of dura-
tion RTT/window . A packet is transmitted from the window
whenever the timer fires. This ensures that packet transmissions
are spread across the whole duration of the RTT. As new data
is acknowledged (altering the window size) or the RTT estimate
changes, the duration of the current and subsequent intervals
is suitably altered to adjust to the new rate. We compute the
RTT estimate using an exponential weighted moving average
(EWMA). The TCP timestamp option is used to get accurate
RTT samples. Our RTT estimate is separate from the one main-
tained by TCP flow control algorithm, since we assume a fine-
grained timer. Further, we use fine grained timers for sending
data at the appropriate rate. Pacing imposes the extra overhead
of using a timer for each packet transmitted.

B. Why Pacing (Should) Help

One way to understand the impact of pacing is to consider
the router from a queueing theory perspective (figure 1). With
bursty traffic, packets arrive all at once. As a result, queueing
delay grows linearly with load, even when the load is below ca-
pacity. TCP, due to its burstiness, can be thought of as being
close to this worst case curve. With pacing, traffic is evenly
spaced out; so there is minimal queueing until the load matches
the bottleneck capacity. The queueing delay increases linearly
once the bottleneck is saturated. This represents the best possi-
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ble time curve for a queueing system and is theoretically even
better than the curve for a random traffic source. However, we
argue in the paper that contrary to intuition, delaying queueing
until the link is oversubscribed has a negative impact on the per-
formance of pacing. TCP uses feedback from the network to
detect congestion and adjust to it. With pacing, this feedback
is delayed until the network is saturated, making it difficult for
senders to ”avoid” overwhelming the network.

V. SIMULATION SETUP AND METHODOLOGY

We present performance results using our implementation of
pacing in thens network simulator [30]. The topology used for
the simulation experiments is shown in figure 2. One or more
TCP connections are established between a set of senders and
receivers through a single bottleneck link. The bottleneck link
router uses FIFO scheduling and drop tail buffer management,
unless otherwise specified. Further, by default, the delay on the
bottleneck link and the side links is set to40ms and5ms re-
spectively. The bottleneck bandwidth is varied in our experi-
ments and the bandwidth of the side links is set to four times the
bottleneck bandwidth. The buffer size at the sender and receiver
routers is set to a value much higher than the bandwidth-delay
product while that at the bottleneck routers is varied. Similarly,
the maximum advertised window size of a connection is set to a
high enough value so that the actual window is not limited by it.
We use a maximum segment size of576 bytes.

For simulations, we use thens implementation ofTCP Reno
(which contains slow start, congestion avoidance, fast retransmit
and fast recovery) and a paced version of TCP Reno (which we
henceforth refer to asPaced Reno). The receiver acknowledges
every packet.

We evaluate the impact of pacing on the aggregate through-
put for all flows as well as individual flow throughputs, drop rate
and the average queue size at the bottleneck. We also measure
the fairness using a modified version of Jain’s fairness index [7].
Jain’s fairness index is defined as follows: if there aren concur-
rent connections in the network and the throughput achieved by
connectioni is equal toxi, then

f =
(
P

n

i=1
xi)

2

n
P

n

i=1
x2
i

Since the rate of increase of a TCP sender’s window is depen-
dent on its RTT, we define the fair share of a flow to be inversely
proportional to its RTT. Based on this notion of fairness, we
compute the normalized fairness ratio for flows with different
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RTTs as follows:

f =
(
P

n

i=1
xi:RTTi)

2

n:
P

n

i=1
(xi:RTTi)2

VI. RESULTS

We present the simulation results in five parts: section VI-A
compares the performance of TCP Reno and Paced Reno for a
single flow. Sections VI-B and VI-C present results for multiple
flows starting at the same time, with the same as well as with
different round trip times. In section VI-D, we describe the re-
sults of a more realistic model consisting of multiple senders,
with each sender periodically initiating a fixed size flow. In sec-
tion VI-E, we evaluate the interaction between TCP Reno and
Paced Reno. Finally, in section VI-F, we evaluate the effect of
the queueing discipline at the bottleneck on the performance of
pacing.

A. Single Flow

Figure 3 plots the cumulative throughput for a single flow as
a function of time. The buffer size at the bottleneck is limited
to approximately one-fourth the delay-bandwidth product. In
the initial period, pacing achieves much better performance than
Reno. This is because TCP Reno, due to its burstiness in slow
start, overwhelms the limited buffer at the bottleneck router and
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incurs a loss earlier and with a lower window size than Paced
Reno. For TCP Reno, the first loss occurs when the window
size reaches twice the bottleneck buffer size, while Paced Reno
gets a loss only after it saturates the pipe. As a result Reno takes
a long time in congestion avoidance to ramp up to the bottleneck
bandwidth (figure 4). In steady state, however, both Reno and
Paced Reno display the same saw-tooth behavior and achieve
similar throughput.

In order to study how various factors like buffer size and
bandwidth affect the difference in performance of Reno and
Paced Reno, we fixed the length of the flow to the duration of
one saw-tooth.1 Figure 5 plots the difference in the bandwidth
achieved by Paced Reno and TCP Reno as we vary the bottle-
neck bandwidth and buffer size. Two points emerge from the
graph. First, the difference in performance increases with the
delay-bandwidth product for limited buffer sizes. As networks
grow faster, the penalty of falling out of slow start early also in-
creases. Second, the difference disappears when the buffer size
grows beyond half the delay-bandwidth product. In fact, at that
point, pacing performs slightly worse, because it lags behind by
a round trip time. With large buffer sizes, the bursty behavior of
Reno is absorbed by the buffer and it does not get a loss until it
reaches the bottleneck bandwidth.

B. Multiple Flows

To study how multiplexing affects the performance of pacing,
we conducted an experiment in which50 flows, each with a RTT
of 100ms and sharing the same bottleneck link, were started at
approximately the same time (section VI-D considers a more
realistic model in which start times are not synchronized). The
bottleneck bandwidth was set to57Mbps, so that the fair share
of the delay-bandwidth product of each flow was roughly25
packets. Figures 6 and 7 plot the cumulative aggregate through-
put and the cumulative fairness respectively. With limited buffer
size, one would expect Reno flows to experience losses earlier
and perform worse than pacing, just as in the single flow case.
However, contrary to intuition, during the initial period, TCP
Reno achieves better throughput than Paced Reno. Also, Reno

1We compute the cycle time of a saw-tooth wave using the formulaTcycle =

RTT 2:BW=packet size proposed in [21].
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is less fair than Paced Reno during this period. On the other
hand, during steady state, pacing achieves better throughput than
Reno. These two distinct and counter-intuitive phenomena can
be explained by the synchronization and de-synchronization ef-
fects that pacing has in slow start and steady state respectively.

B.1 Synchronization Effect of Pacing

With multiple flows, pacing synchronizes the drops that the
various flows experience during slow start. All the flows con-
tinue in slow start, till the network is beyond saturation. At
this point, everyone drops because of congestion and mixing of
flows, thereby making the bottleneck under-utilized. With Reno,
flows send bursts of packets in clusters. Due to the limited buffer
size, some of the flows drop early (when they “hit” bursts from
another flow) and back-off; allowing the other flows to ramp
up. Thus, different flows experience drops at different times,
thereby utilizing the bottleneck better while sacrificing fairness.
Figure 8 illustrates this using the aggregate window size of all
the flows. All the paced flows behave as a single flow, reducing
their rate at the same time; on the other hand, Reno flows utilize
the link better by dropping at different times and spreading out
the aggregate window.

There are two main reasons for the synchronization effect of
pacing:

1. Late Congestion Signals: Pacing completely spreads out
the transmissions of data; as a result, the queue size at the
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bottleneck router remains negligible until the link is satu-
rated. Therefore, paced flows get congestion signals only
after it is too late causing everyone to drop. With Reno,
owing to bursty transmissions, some of the flows experi-
ence congestion before the bottleneck is utilized. As the
bottleneck buffer size is increased to the delay-bandwidth
product, both Reno and Paced Reno experience synchro-
nization; Reno because the bottleneck queue absorbs its
burstiness.

2. Mixing of Flows: Data from a single Reno flows is clus-
tered together. Therefore, temporary congestion at the bot-
tleneck does not uniformly affect all the flows. With pac-
ing, traffic from all the flows is thoroughly mixed; there-
fore, when the bottleneck link is saturated, all the flows
experience losses.

B.2 De-synchronization Effect of Pacing

In steady state, pacing has a de-synchronizing effect (illus-
trated by the larger aggregate window in figure 8), leading to
slightly higher throughput. Also, this de-synchronization leads
to lower fairness over short time periods (duration of one saw
tooth); over longer periods the fairness is similar to Reno.

In steady state, each flow increases its window size by1
packet every RTT. The new packet that is sent every RTT is not
ack-clocked in Reno; if the bottleneck queue is full, the packet
is dropped. Since, every Reno flows sends at least two packets
back-to-back, each flow gets at least one loss when the queue
is filled. With pacing, all the packets are spread out and flows
are mixed; as a result, there is randomness in the way packets
are dropped. During a particular phase, some flows might get
multiple losses while others might get away without any. This
de-synchronizes the windows of different flows, leading to bet-
ter utilization of the link. This effect persists even when the
buffer size is increased to the delay-bandwidth product.

C. Multiple Flows - Variable RTT

Up to now, we have considered only flows with the same RTT.
This means that even if the individual flows are bursty, the ag-
gregate will tend to be smooth as each flow tries to schedule its
own region in the RTT. To eliminate this effect, we simulated50
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flows with different RTTs – half of them have a RTT of100ms
while the other half have a RTT of280ms. Figures 9, 10 and 11
depict the cumulative throughput, normalized fairness and the
drop rate at the bottleneck for this setup.

Figure 10 shows that pacing achieves much better normalized
fairness than TCP Reno. This increase in fairness does not come
at the cost of performance; as figure 9 shows, both Reno and
Paced Reno achieve similar throughput.

As expected, with variable RTTs, the higher burstiness of
Reno as a result of overlap of packet clusters from different
flows (section III-B.4) becomes visible. Figure 11 shows that
Reno has a higher drop rate (it also forms larger queues at the
bottleneck), while achieving similar throughput as pacing. This
trend of higher drop rates continues even when the buffer size is
increased to the delay-bandwidth product.

D. Variable Length Flows

The scenarios considered so far consisted of flows with unlim-
ited data starting at approximately the same time. In this section,
we study a more realistic environment in which new flows enter
the system over time. In our experiment, a constant size flow
is established between each of20 sender nodes and the corre-
sponding receiver nodes. As a particular flow finishes, a new
flow is established between the same nodes after a think time
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Fig. 11. Drop rate for 50 flows with variable RTTs.
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Fig. 12. Normalized latency for flows initiated from20 nodes with a mean think
time of1 sec. The buffer size is one fourth the delay-bandwidth product.

that is exponentially distributed with mean1sec. Thus, at any
time, there are at most20 flows sharing a single bottleneck link.
This model de-synchronizes the start time of various flows and
leads to interaction between flows in various stages of comple-
tion. We vary the size of the flows in our experiments and use the
average latency of completion of flows as the performance met-
ric. In order to compare performance for different flow sizes, we
normalize the latency using an estimate of the ”ideal latency”.
We define ideal latency as the latency of a flow that does slow
start until it reaches its fair share of the bandwidth and then con-
tinues with a constant window. Note that in some case the ideal
latency can be worse than the actual latency since a flow can
in reality overshoot its fair share; further, ideal latency assumes
perfect fairness while in reality, flows can achieve better mean
latency at the expense of fairness. Our intent in using ideal la-
tency is only to normalize the latencies to facilitate comparison.

Figure 12 plots the normalized latencies for Reno and Paced
Reno as a function of the flow size. The graph can be divided
into four distinct phases:

1. In phase 1, neither Reno nor Paced Reno flows experience
any losses. The latency of Paced Reno flows is slightly
higher because they spread packets throughout the RTT and
hence lag behind a standard Reno sender.

2. In phase 2, with a limited buffer size, Reno experiences
more losses in slow start because of its bursty behavior.
As a result, more Reno flows are forced to timeout before
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Fig. 13. Normalized latency for flows initiated from20 nodes with a mean think
time of1 sec. The buffer size is equal to the delay-bandwidth product.

they complete the data transfer and pacing has some perfor-
mance advantage over Reno. With large buffer sizes, this
effect disappears.

3. The synchronization effect of pacing becomes visible in
phase 3. New flows starting in slow start, saturate the
network. Due to late congestion signals and mixing, all
the flows drop packets, including those that are in conges-
tion avoidance. These synchronized drops happen regu-
larly during the duration of a flow, severely diminishing its
performance.

4. In phase 4, the length of the flows becomes so large that
the synchronizing events have an insignificant impact on
the overall performance. New flows start very infrequently
during the lifetime of a flow.

Even with a buffer space equal to the delay-bandwidth prod-
uct, pacing shows synchronization effects which diminish its
performance (figure 13). Reno performs better because Reno
flows send packets in clusters, a burst from a particular flow in
slow start only has a local effect; it does not affect all the flows.
Also, with the large buffer size, Reno performs uniformally bet-
ter than pacing because it does not fall out of slow start earlier,
thereby eliminating the effect that occurred inphase 2for lim-
ited buffer size. In section VI-F, we discuss ways of eliminating
the synchronization effect of pacing.

E. Interaction of Paced and non-Paced Flows

In this section, we present results related to the interaction
between Reno and Paced flows. Figure 14 plots the latency of
Reno and Paced flows when the two are mixed together. Each
flow has a size of300 packets and starts at the same time. Since
pacing spreads out packets throughout the duration of the RTT,
a paced flow is very likely to experience a drop as a result of one
of its packets landing in a burst from a Reno flow. Reno flows,
on the other hand, are less likely to be affected by bursts from
other flows, as their packets are clustered. As a result, they have
much better latency than paced flows, when both are competing
for bandwidth in a mixed flow environment.

Figure 15 plots the ratio between the mean latencies of Reno
and Paced flows for different scenarios. With a large flow size
of 5000 packets, pacing still performs worse. Our hypothesis is
that the paced flows introduce enough spreading out and mix-
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the model described in section VI-D. Line A corresponds to figure 14.

ing of packets that in steady state, the flow that gets a loss is
randomly distributed and not deterministic. Since Reno flows
transmit in bursts, they have a smaller probability of experienc-
ing a drop as opposed to Paced flows which spread their packets
uniformally in the whole RTT. The performance of pacing as
compared to Reno deteriorates even further when we use the
model from section VI-D in which nodes continuously initiate
new flows. These new flows in slow start, cause the old paced
flows to regularly drop packets, further diminishing the perfor-
mance of pacing.

F. Effect of Queueing Discipline

Pacing performs well in some scenarios. For links with a
high delay-bandwidth product and limited buffering, pacing has
the potential for significant performance gains. With sufficient
buffering, pacing improves fairness and drop rates, especially
when the RTTs are variable. However, in a number of cases,
pacing performs significantly worse than the ”non-paced” ver-
sion of TCP. We attribute this degradation to two main charac-
teristics of pacing. First, by evenly spreading traffic out, pacing
delays the congestion signals to a point where the network is
already over-subscribed. This can have a performance impact,
especially if some of the flows are in slow start. Second, owing
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Fig. 16. The normalized latency as a function of flow size using different queue-
ing disciplines at the bottleneck.

to mixing of traffic, pacing synchronizes drops, especially with
drop tail queues.

Both the above problems can be reduced by intelligent active
queue management techniques. Intelligent schemes for choos-
ing the packet to drop coupled with probabilistic dropping of
packets (like RED) can alleviate the synchronization problem
due to mixing. Further, since, pacing does not build up the queue
until it reaches the link capacity, a better trigger for dropping
packets might be the link utilization rather than the queue size.
BLUE [9] proposes a similar technique; it uses the link idle time
and packet losses to manage congestion.

We have evaluated the impact of RED on pacing with differ-
ent parameter values for RED. Figure 16 shows the normalized
latency for the model in section VI-D, using RED at the bottle-
neck buffer. The performance is very sensitive to the choice of
parameters. Using high values for the minimum threshold does
not perform well. Pacing builds up a queue when the network
is already saturated; therefore, with pacing even a small queue
size should be interpreted as congestion. In our experience, fix-
ing themin andmax thresholds to very low and high values
respectively, with a low maximum packet marking probability
works best.

VII. C ONCLUSIONS

The idea of pacing is appealing; intuitively, it seems to be bet-
ter for individual flows as well as the network. In this paper, we
have quantitatively evaluated the effect of incorporating it into
the TCP congestion control algorithm using extensive simula-
tions. While pacing improves fairness and throughput in some
cases, it can have significantly worse performance as compared
to Reno in a lot of cases – both with a mixture of paced and
non-paced flows and even when all flows are paced. Further,
the paper tries to gain intuition into the causes of the counter-
intuitive performance of pacing.
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