Understanding the Performance of TCP Pacing

Amit Aggarwal, Stefan Savage, Thomas Anderson
{amit, savage, to@cs.washington.edu
Department of Computer Science and Engineering
University of Washington
Seattle, WA 98195 USA

Abstract—Many researchers have observed that TCP’s congestion con- COmMes extreme.
trol mechanisms can lead to bursty traffic flows on modern high-speed Second, we find that pacing performs poorly when compet-
networks, with a negative impact on overall network efficiency. A pro- . ith ' dified TCP. Agai h bl is th . .
posed solution to this problem is to evenly space, or “pace”, data sent into N9 With unmodified TCP. Again, the problem is that pacing is
the network over an entire round-trip time, so that data is not sent in a “to0 good” at spreading traffic out. A single paced connection,
burst. In this paper, we quantitatively evaluate this approach. Pacing of- gsharing a congested link with bursty connections, is more likely
fers better fairness, throughput, and lower drop rates in some situations. . P
However, we show that contrary to intuition, pacing often has significantly to have at least one of its packets enc_:ou_nter severe congestion;
worse throughput than regular TCP because it is susceptible to synchro- Dy contrast, the bursty connections will either be lucky enough
nized losses and it delays congestion signals. We propose and evaluate apto miss other bursts, or unlucky and suffer multiple losses in a
proaches for eliminating this effect. burst
The rest of the paper discusses these issues in more detail.

I. INTRODUCTION Section Il describes the previous work in this area. Section Il
E)riefly discusses some TCP congestion control algorithms and
pe sources of burstiness in TCP. Section IV describes pacing.

r higher in I mor ket nd | . . . ) X
fh?oduugcr?;ut ?19? unte ;Jhee ga(:r?eai/i?ﬁ e ?t?]gzcb:;nozst)ise’rseg t% c?ctlon V describes the simulation methodology and section VI
. ' scribes the simulation results. Finally, we conclude in sec-

TCP’s congestion control mechanisms can produce bursty tra e
flows on high bandwidth and highly multiplexed networks [32 1on VI
Consequently, several researchers have proposed smoothing the
behavior of TCP traffic by evenly spacing, or “pacing”, data
transmissions across a round-trip time [3], [26], [14], [23], [31], Explicit rate control, which is the intellectual ancestor of pac-
[27], [13], [20]. ing, has been explored in many non-TCP protocols [6], [8],
Our goal in this paper is to quantify the benefits and limitd18], [24]. Instead of sending new data into the network only
tions of using pacing in TCP. Using simulation, we examine thehen old data is acknowledged to have departed the network,
impact of pacing on throughput, fairness, queue size, and dtbpse approaches send packets at a pre-determined rate. Un-
rate as a function of load, bandwidth-delay product, buffer sizertunately, rate control has its own problems. Depending on
and variable round-trip times. We also examine the impact tfe exact mechanism used to set the target rate, rate control can
sharing a bottleneck link between paced and normal TCP floieg less responsive to rapid increases in congestion. In contrast,
Our intuition starting this study was that pacing would havECP senders will immediately stop sending when the network
the right incentive structure to be adopted in the Internet —iecomes congested — if no acknowledgments are being returned,
has the potential to be better for both the individual (because new data will be clocked into the network.
packets are less likely to be dropped if they aren’t clum gt Pacing is a hybrid between pure rate control and TCP’s use
the network (because competing flows will see less queueinigacknowledgments to trigger new data to be sent into the net-
delay and burst losses). While our results show that pacing degsk. Zhang et al. initially suggested using pacing in the TCP
improve performance in some scenarios, for most realistic cagestext to correct for the compression of acknowledgments due
our intuition proved too simplistic. to cross traffic [32]. Other researchers have suggested using pac-
First, for most of the topologies, workloads, and routéng when acknowledgments are not available to use for clocking,
scheduling policies that we examined, we find that pacing rer example, to avoid TCP slow start at the beginning of a con-
sults in lower throughput andhigher latencies. By evenly nection [3], [26], after a packet loss [14], [23], or when an idle
spreading traffic out, pacing is “too good” at reducing queueennection resumes [31]. Similarly, pacing can be used to avoid
ing delays, delaying the point at which congestion is detectdalirstiness in asymmetric networks caused by batching acknowl-
Since in TCP all senders continually increase their traffic in tleglgments [5]. More recently, researchers have suggested using
absence of congestion, pacing can cause “synchronized dropsiting across the entire lifetime of the connection. Partridge
where flows through the bottleneck experience simultaneaargues that pacing can address problems in TCP performance
losses. This causes senders to quickly reduce their rate, osmil-long-latency, high bandwidth satellite links [27] while the
lating the bottleneck between being over-subscribed and undgerkeley WebTP group has combined pacing, receiver-driven
subscribed. In essence, pacing can have the opposite effeatarfgestion control, and application-level framing into a trans-
Random Early Detection (RED) gateways [12], which randomport protocol specialized for web traffic [13]. A commercial
drop packets to throttle back some sources before congestiondmnpany, Packeteer, sells a router that conditions traffic by pac-

It is well understood from queuing theory that bursty traffi
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ing acknowledgments [20]. Despite this widespread intereat| earlier packets. Assuming there are no losses, the infor-
however, we know of no systematic evaluation of the impanotation in each acknowledgment therefore makes all earlier ac-

of pacing on the Internet. knowledgments redundant. As an optimization, TCP receivers
try to reduce the number of acknowledgments by delaying re-
I11. BACKGROUND turning an acknowledgment for a single received packet (assum-

ing all prior packets had been correctly received) until either

In this section, we sketch the TCP mechanisms relevant g, packet arrives or a timer fires. Because half as many ac-

our discussion (see [15], [16], [28] for further details). We the owledgments are received, and since acknowledgments trig-

outline why these mechanisms can cause burstiness. For increases in the congestion window, the principal effect of

purposes of this d|scgssmn, We assume the TCP layer picks i@?ayed acknowledgments is to slow the rate at the congestion
size of its transfer unit to avoid fragmentation at the IP layer,

. Window is increased: during slow start from a factor2ofo
that we can loosely refer to the TCP transfer unit as a packet.a factor of1.5 per round trip and during congestion avoidance
A TCP Mechanisms from 1 packet ta).5 packets per round trip.
TCP is a sliding window-based protocol. The effective wir: Burstiness in TCP
dow used by a TCP sender is the minimum of the congestionwWhile ack-clocking in theory causes the sender to spread data
window (cwnd — set to match the bandwidth of the networkdut, a number of factors can cause either short or long term
and the receiver’s buffer size. Since the window is the numbertmirstiness in the behavior of a TCP flow. For this discussion,
bytes the sender is allowed to send without an acknowledgmaminsider a TCP sender operating over a path with bottleneck
the average rate at which traffic enters the network is goverrteghdwidth ofb. We define one time unit as the time it takes to
by the window size divided by the round trip time (RTT). Théransmit one data segment over the bottleneck link. More con-
sender uses the incoming acknowledgments to determine whegtely,1 time unit = T'C P packet size/b.
to send new data, a mechanism referred to as ack-clocking [16].
In theory, the network bottleneck will cause any clumped pacR-1 Slow Start.
ets to spread out (spaced at the rate the bottleneck serves packuring slow start, every successfully acknowledged packet
ets), resulting in well-spaced traffic during the next round trifncreases the window size by one packet. Thus, the sender trans-
However, under a wide variety of conditions, packets from thgits two packets for every new acknowledgment. Since the ac-
same connection have been observed to cluster together [32] kvewledgments are generated at the bottleneck rate, this implies
discuss reasons for this in the next subsection. that the sender is bursting data at twice the bottleneck rate, lead-
The congestion window adjustment algorithm has two phasésgj to the formation of a queue at the bottleneck link [27]. When
In the slow startphase [16], [28], the sender increases the cothe sender window i$1/2 packets, the sender gef§/2 ac-
gestion window rapidly in order to quickly identify the bottleknowledgements with a spacing of one time unit between con-
neck rate while at the same time theoretically establishingsacutive acknowledgments. In response, the sender transmits
stream of well-spaced acknowledgments. The sender typicallyo packets for each acknowledgment or a totali6fpack-
starts with a window of one packet; each acknowledgment iets in1¥/2 time units. Since the bottleneck can forward only
creases the window by 1, effectively doubling the window eveiy’/2 packets in#//2 time units, the other half of the packets are
round trip time. Assuming the sender is not limited by the rejueued. Therefore, during slow start, a sender window size of
ceiver’'s buffer space, the sender increases its congestion winddwbuilds up a queue of siZ&’/2 at the bottleneck router.
until it detects that a packet loss has occurred; the loss is takeisince the buffer size at the bottleneck router is necessarily
as a signal that the sender is transmitting packets faster thanlitméted, this bursty behavior will cause the router to drop pack-
network can handle. At this point the window is cut in half, andts when the window size exceeds the router buffer size by some
the sender enters tlomngestion avoidancehase. The sendersmall constant factor. For high bandwidth connections, this may
then increases the window ycwnd on every acknowledg- be prior to the point where the sender has reached the bottleneck
ment, effectively increasing it by packet every round trip time. bandwidth. Ideally, the first loss should not occur in slow start
Again, the sender increases the window until it detects a packetil the window reaches the product of the end-to-end round
loss; on a loss, the window is cut by half, and the sender resunr@stime times the bandwidth, called the delay-bandwidth prod-
increasing the window by packet per round trip. uct. If the router buffer size is much less than this product, the
As a result, the sender’s congestion window (controlling treender will encounter a loss too early and fall out of slow start; it
rate at which packets are sent) at first increases along an exga? then take the sender many round-trips of congestion avoid-
nential curve during slow start, then over time repeats a samnce, increasing the window by only one packet per round trip,
tooth pattern of a factor of two decrease and a subsequent stowijnally reach the bottleneck bandwidth.
linear increase. Since the receipt of acknowledgments governs
the rate of increase in the congestion window, connections wir? L0SSes
longer round trip times have windows that grow at a slower rateWhen a lost packet is successfully retransmitted, its acknow!-
(both slow start and the sawtooth have a proportionately lowsdgment may trigger a burst of traffic [11]. At the receiver, the
slope). retransmitted packet will typically fill a “hole” in the sequence
Each TCP acknowledgment reports the highest-numbemgzhce, enabling the receiver to acknowledge not just the lost
packet (more precisely, byte) that had been received along wihicket but other packets that had been successfully received in



the window. When the acknowledgment arrives at the sender, Random
the sender will suddenly be able to send a burst of traffic. Al-
though TCP can use duplicate acknowledgments (acknowledg-
ments for packets delivered after the missing packet) to recover
ack clocking, at best the sender transmits new data only during
the second half of the recovery period, thereby bursting a win-
dow of data in one half of the round trip time [14], [23].

Wo
rst C‘%
8,
R\ Can

Response Time

B.3 Ack Compression

In the presence of two-way TCP traffic, ack-clocking can be 1 N
disrupted due to a phenomenon called ack-compression [32]. Load
Acknowledgments from the receiver, generated at the bottleneck
rate, can get queued behind data packets on the reverse path. As-
suming routers service packets in FIFO order, this can cause the

acknowledgments to lose their spacing and reach the Senderﬂ?é’posed or used in a number of different contexts [3], [5], [13]
burst. This in turn causes bursty transmissions at the sender.[14] [20], [23], [26], [27], [31], [32], but none of these qL,Jan— '
tify the impact of incorporating pacing into the TCP congestion

. ) _ control algorithm.
Perhaps most importantly, ack-clocking will only spread data

at the bottleneck rate. For high-bandwidth links shared bysa |mplementation

large number of connections, this can result in each connec- ) . . .
tion transmitting in a burst and remaining idle for the rest of the VW& have incorporated pacing into the [30] simulation code

round trip time. As a connection starts up, its data packets &6 TCP Reno. Thes Reno code closely models the conges-
spaced apart at the bottleneck by one time unit (the rate the Big0 control behavior of most of the TCP implementations in
tleneck services packets). Each round trip increases the nunftjigiespread use. Unlike typical implementations, however, we
of packets, but all of the packets remain clustered together. (fisabled delayed acknowledgments for this study. We repeated
less two connections happen to send their cluster of packetSg¥eral of our experiments with delayed acknowledgments en-
that they overlap at the bottleneck, the packets for each conn@led and our results were qualitatively similar.

tion will tend to stay clustered. When two clusters do overlap at OUr implementation of pacing uses a variant of the leaky
the bottleneck (for example, because of slow start increasedBfket algorithm [29] and is very similar to the implementations
if the connections have different round trip times), the result i [26], [31]; the only difference being that these implementa-

larger burst than either would have generated on its own.  tions use pacing during specific perioasd. after idle time or
at connection start up) while we use it throughout the lifetime

IV. PACING of a flow. Timeouts are scheduled at regular intervals of dura-
The goal of pacing is to evenly spread the transmission of'gn RTT/wmdqw : A packe_t is transmitted from the W'”d.OW.
window of packets across the entire duration of the round t enever the timer fires. This ensures that packet transmissions
fire spread across the whole duration of the RTT. As new data

time. This can be implemented either by the sender or the _ X . .
P y acknowledged (altering the window size) or the RTT estimate

ceiver. At the sender, instead of transmitting packets immedi- ) .
ately upon receipt of an acknowledgment, the sender can defhanges, the duration of the current and subsequent intervals
i, suitably altered to adjust to the new rate. We compute the

transmitting packets to spread them out at the rate defined by : ; i . :
estimate using an exponential weighted moving average

congestion control algorithm — the window size divided by th . S
WMA). The TCP timestamp option is used to get accurate

estimated round-trip time. Alternatively, a receiver can del T les. Our RTT estimate i tof h ;
acknowledgments to spread them across the round trip time, S0 sampies. Lur estimate IS separate from the oné main-
ed by TCP flow control algorithm, since we assume a fine-

that when they arrive at the sender, they will trigger spaced d!ﬁg]_ : . . . .
packets. Of course, receiver pacing is less effective, since as ined timer. Further, We use f|_ne gralned timers for sending
discussed earlier, acknowledgments arriving at the sender .at the.appropnate rate. Pacing IMPOSes the extra overhead
trigger multiple data sends; with receiver pacing, these pack8 dising a timer for each packet transmitted.
will be sent in a burst. Further, receiver pacing is susceptible :
to ack compression. Therefore, we only sFi)muIa%e sender—%abéédWhy Pacing (Should) Help
pacing in this paper. One way to understand the impact of pacing is to consider
As a traditional window based protocol, TCP uses a windatlve router from a queueing theory perspective (figure 1). With
to determine the number of packets that can be sent and usesty traffic, packets arrive all at once. As a result, queueing
the receipt of acknowledgments to trigger the sending of padelay grows linearly with load, even when the load is below ca-
ets. Pure rate based schemes, on the other hand, use ratpac¢ity. TCP, due to its burstiness, can be thought of as being
determine botthow muchandwhento send. Pacing is a hybridclose to this worst case curve. With pacing, traffic is evenly
between these two approaches — it uses the TCP window to sigaced out; so there is minimal queueing until the load matches
terminehow mucho send but uses rates instead of acknowledtiie bottleneck capacity. The queueing delay increases linearly
ments to determinehento send. The idea of pacing has beeance the bottleneck is saturated. This represents the best possi-

Fig. 1. Best and worst case bounds on delay for a queuing system.

B.4 Multiplexing
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Fig. 2. The network topology used for the simulation experiments.
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arg.ue n _the_paper that cqntrary to IntUItIOI_ﬂ, d.elaymg ClueueIln- . 3. Cumulative throughput for a single flow as a function of time. Note that
until the link is OV'erSUbSC”bed has a negative impact on the per-pjike cumulative data transferred, cumulative throughput decreases if time
formance of pacing. TCP uses feedback from the network to elapses without forward progress.
detect congestion and adjust to it. With pacing, this feedback
is delayed until the network is saturated, making it difficult for 20 ‘ ‘ ‘ ‘ ‘ ‘ ‘ Top reno
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V. SIMULATION SETUP AND METHODOLOGY

150

We present performance results using our implementation of
pacing in thens network simulator [30]. The topology used for
the simulation experiments is shown in figure 2. One or more ; [
TCP connections are established between a set of senders ang j
receivers through a single bottleneck link. The bottleneck link 3 o/ RTT = 100ms 1
router uses FIFO scheduling and drop tail buffer management, el iy~ B product & 108 packets
unless otherwise specified. Further, by default, the delay on the puffer size = 26 packets
bottleneck link and the side links is set40ms and5ms re-
spectively. The bottleneck bandwidth is varied in our experi-
ments and the bandwidth of the side links is set to four times the
bottleneck bandwidth. The buffer size at the sender and receiver
routers is set to a value much higher than the bandwidth-defgyTs as follows:
product while that at the bottleneck routers is varied. Similarly,
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Fig. 4. Window size for a single flow as a function of time.

the maximum advertised window size of a connection is set to a (i %.RTT;)?
high enough value so that the actual window is not limited by it. f= n.>w, (2;.RTT;)?
We use a maximum segment size5@6 bytes.

For simulations, we use thes implementation ofCP Reno VI. REsULTS

(which contains slow start, congestion avoidance, fast retransmifye present the simulation results in five parts: section VI-A
and fast recovery) and a paced version of TCP Reno (which Wempares the performance of TCP Reno and Paced Reno for a
henceforth refer to aBaced Renp The receiver acknowledgessjngle flow. Sections VI-B and VI-C present results for multiple
every packet. flows starting at the same time, with the same as well as with
We evaluate the impact of pacing on the aggregate througfiferent round trip times. In section VI-D, we describe the re-
put for all flows as well as individual flow throughputs, drop rateults of a more realistic model consisting of multiple senders,
and the average queue size at the bottleneck. We also meagtitie each sender periodically initiating a fixed size flow. In sec-
the fairness using a modified version of Jain’s fairness index [fibn VI-E, we evaluate the interaction between TCP Reno and
Jain’s fairness index is defined as follows: if therem@ncur- Paced Reno. Finally, in section VI-F, we evaluate the effect of
rent connections in the network and the throughput achievedthy queueing discipline at the bottleneck on the performance of

connection is equal tax;, then pacing.
f (i m)? A. Single Flow
Cony Ll Figure 3 plots the cumulative throughput for a single flow as

a function of time. The buffer size at the bottleneck is limited
Since the rate of increase of a TCP sender’s window is depém-approximately one-fourth the delay-bandwidth product. In
dentonits RTT, we define the fair share of a flow to be inverselye initial period, pacing achieves much better performance than
proportional to its RTT. Based on this notion of fairness, wigeno. This is because TCP Reno, due to its burstiness in slow
compute the normalized fairness ratio for flows with differerstart, overwhelms the limited buffer at the bottleneck router and
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Fig. 5. Difference in throughput between Paced Reno and TCP Reno for a  Fig. 6. Cumulative throughput for 50 flows as a function of time.
single flow as a function of delay-bandwidth product. The different lines are
for different ratios between the buffer size and delay bandwidth product.

T
TCP Reno
Paced Reno ---—----

incurs a loss earlier and with a lower window size than Paced
Reno. For TCP Reno, the first loss occurs when the window
size reaches twice the bottleneck buffer size, while Paced Reno ¢
gets a loss only after it saturates the pipe. As a result Reno takesz
a long time in congestion avoidance to ramp up to the bottleneck S
bandwidth (figure 4). In steady state, however, both Reno and =

ss Ratio

Paced Reno display the same saw-tooth behavior and achieveg 50 Flows
similar throughput. 3 Bottl eneck BW = 57Mbps

In order to study how various factors like buffer size and oot e 8 ve Sy ke P
bandwidth affect the difference in performance of Reno and °5 P n‘lﬁ . (mﬁé" 20 250

Paced Reno, we fixed the length of the flow to the duration of

one saw-tootH. Figure 5 plots the difference in the bandwidtlkig. 7. Fairess with respect to cumulative throughput for 50 flows as a function
achieved by Paced Reno and TCP Reno as we vary the bottleof time.

neck bandwidth and buffer size. Two points emerge from the

graph. First, the difference in performance increases with €055 fair than Paced Reno during this period. On the other

delay-bandwidth product for I_|m|ted buffer sizes. As networ_kﬁand' during steady state, pacing achieves better throughputthan
grow faster, the penalty of falling out of slow start early also "NReno. These two distinct and counter-intuitive phenomena can

creases. Second, the difference disappears when the buffer S%Z%xplained by the synchronization and de-synchronization ef-

grows beypnd half the dglay-bandmdth producjc. In fact, a.t th cts that pacing has in slow start and steady state respectively.
point, pacing performs slightly worse, because it lags behind by

a round trip time. With large buffer sizes, the bursty behavior ¢f 1 Synchronization Effect of Pacing
Reno is absorbed by the buffer and it does not get a loss until it

reaches the bottleneck bandwidth. With multiple flows, pacing synchronizes the drops that the
various flows experience during slow start. All the flows con-
B. Multiple Flows tinue in slow start, till the network is beyond saturation. At

. . ._this point, everyone drops because of congestion and mixing of
To study how multiplexing affects the performance of IOacm%bws, thereby making the bottleneck under-utilized. With Reno,

we conducted an e_xpenment in whishflows, ?‘a"h witha RTT ﬂciws send bursts of packets in clusters. Due to the limited buffer
of 100ms and sharing the same bottleneck link, were started a L
size, some of the flows drop early (when they “hit” bursts from

app.ro>.<|mately Fhe same tlme'(sectlon VI-D con5|de_rs a MOIR sther flow) and back-off; allowing the other flows to ramp
realistic model in which start times are not synchronized). The

otteneck b was s )1y, S0t h i shave 7 [, Seent o experenc drops ot dfeent s
of the delay-bandwidth product of each flow was roughdy y g 9 :

. . Figure 8 illustrates this using the aggregate window size of all
packets. Figures 6 and 7 plot the cumulative aggregate throug@— flows. All the paced flowg beha\?gasga single flow, reducing

put and the cumulative fairness respectively. With limited buf'frTEeir rate at the same time: on the other hand, Reno flows utilize

size, one would expect Reno flows to experience losses ear]jer . . . : .
S . ; e link better by dropping at different times and spreading out
and perform worse than pacing, just as in the single flow cage

RN ; S . € aggregate window.
However, contrary to intuition, during the initial period, TC ggreg . o
. There are two main reasons for the synchronization effect of
Reno achieves better throughput than Paced Reno. Also, R%gging'
we compute the cycle time of a saw-tooth wave using the forffia;. = 1. Late Congestion Signals: Pacing completely spreads out
RTT?.BW /packet_size proposed in [21]. the transmissions of data; as a result, the queue size at the
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bottleneck router remains negligible until the link is satu-
rated. Therefore, paced flows get congestion signals only
after it is too late causing everyone to drop. With Reno,
owing to bursty transmissions, some of the flows experi-
ence congestion before the bottleneck is utilized. As the
bottleneck buffer size is increased to the delay-bandwidth
product, both Reno and Paced Reno experience synchro-2
nization; Reno because the bottleneck queue absorbs its 2
burstiness.

2. Mixing of Flows: Data from a single Reno flows is clus-
tered together. Therefore, temporary congestion at the bot- ‘ ‘ ‘
tleneck does not uniformly affect all the flows. With pac- ° w0 % * Ti me {sec) * * 0 %
ing, traffic from all the flows is thoroughly mixed; there-
fore, when the bottleneck link is saturated, all the ﬂov\}gg. 1Q. Normalized fairness with respect to cumulative throughput for 50 flows

. with variable RTTSs.
experience losses.

rmal i zed Fairness
o
&

50 Flows
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Buffer Size = 312 pkts
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Cumul at

B.2 De-synchronization Effect of Pacing flows with different RTTs — half of them have a RTT ti0ms

In steady state, pacing has a de-synchronizing effect (mdghile the other half have a RTT @B0ms. Figures 9, 10 and 11
trated by the larger aggregate window in figure 8), leading gepict the cumulative throughput, normalized fairness and the
slightly higher throughput. Also, this de-synchronization lead¥0P rate at the bottleneck for this setup.
to lower fairness over short time periods (duration of one sawFigure 10 shows that pacing achieves much better normalized
tooth): over longer periods the fairness is similar to Reno.  fairness than TCP Reno. This increase in fairness does not come

In steady state, each flow increases its window sizel byat the cost of performance; as figure 9 shows, both Reno and
packet every RTT. The new packet that is sent every RTT is fioced Reno achieve similar throughput.
ack-clocked in Reno; if the bottleneck queue is full, the packetAs expected, with variable RTTs, the higher burstiness of
is dropped. Since, every Reno flows sends at least two pack@@$10 as a result of overlap of packet clusters from different
back-to-back, each flow gets at least one loss when the quéaws (section Ill-B.4) becomes visible. Figure 11 shows that
is filled. With pacing, all the packets are spread out and flok&£no has a higher drop rate (it also forms larger queues at the
are mixed; as a result, there is randomness in the way packgleneck), while achieving similar throughput as pacing. This
are dropped. During a particular phase, some flows might ¢e&nd of higher drop rates continues even when the buffer size is
multiple losses while others might get away without any. Thigcreased to the delay-bandwidth product.
de-synchronizes the windows of different flows, leading to bet-
ter utilization of the link. This effect persists even when the. Variable Length Flows

buffer size is increased to the delay-bandwidth product. The scenarios considered so far consisted of flows with unlim-

ited data starting at approximately the same time. In this section,
we study a more realistic environment in which new flows enter
Up to now, we have considered only flows with the same RTihe system over time. In our experiment, a constant size flow
This means that even if the individual flows are bursty, the aig- established between each2tf sender nodes and the corre-
gregate will tend to be smooth as each flow tries to schedulesfgonding receiver nodes. As a particular flow finishes, a new
own region in the RTT. To eliminate this effect, we simulaiéd flow is established between the same nodes after a think time

C. Multiple Flows - Variable RTT
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Fig. 11. Drop rate for 50 flows with variable RTTs. Fig. 13. Normalized latency for flows initiated frobd nodes with a mean think
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/ they complete the data transfer and pacing has some perfor-
- Cf mance advantage over Reno. With large buffer sizes, this
o ! \ .
g effect disappears.
g s X 1 3. The synchronization effect of pacing becomes visible in
3 phase 3 New flows starting in slow start, saturate the
N = . . ..
= ot ) Phase 3 Phase 4 network. Due to late congestion signals and mixing, all
g e 2 the flows drop packets, including those that are in conges-
sl 20 S mul at ancour Fl ous ] tion avoidance. These synchronized drops happen regu-
Bot ¢ eneck BW= 25Mops larly during the duration of a flow, severely diminishing its
Buffer Size = 0.25 Del ay- BW Product performance.
"1 9 How si 2% packets) 100000 4. Inphase 4th_e_|ength of the flows l:_)ec_om_gs S0 !arge that
the synchronizing events have an insignificant impact on
Fig. 12. Normalized latency for flows initiated fro20 nodes with a mean think the overall performance. New flows start very infrequently

time of 1 sec. The buffer size is one fourth the delay-bandwidth product. during the lifetime of a flow.

Even with a buffer space equal to the delay-bandwidth prod-

that is exponentially distributed with medrec. Thus, at any uct, pacing shpws synchronization effects which diminish its
time, there are at mog0 flows sharing a single bottleneck link.Performance (figure 13). Reno performs better because Reno
This model de-synchronizes the start time of various flows aflgWs send packets in clusters, a burst from a particular flow in
leads to interaction between flows in various stages of compR2W start only has a local effect; it does not affect all the flows.
tion. We vary the size of the flows in our experiments and use 0, With the large buffer size, Reno performs uniformally bet-
average latency of completion of flows as the performance mi&L than pacing because it does not fall out of slow start earlier,
fic. In order to compare performance for different flow sizes, wiereby eliminating the effect that occurredghase Zor lim-
normalize the latency using an estimate of the "ideal latencyted buffer size. In section VI-F, we discuss ways of eliminating
We define ideal latency as the latency of a flow that does sIdf Synchronization effect of pacing.
start until it reaches its fair share of the bandwidth and then con-
tinues with a constant window. Note that in some case the idgal
latency can be worse than the actual latency since a flow cann this section, we present results related to the interaction
in reality overshoot its fair share; further, ideal latency assumigstween Reno and Paced flows. Figure 14 plots the latency of
perfect fairness while in reality, flows can achieve better me®&eno and Paced flows when the two are mixed together. Each
latency at the expense of fairness. Our intent in using ideal fisw has a size 0800 packets and starts at the same time. Since
tency is only to normalize the latencies to facilitate comparisopacing spreads out packets throughout the duration of the RTT,
Figure 12 plots the normalized latencies for Reno and Pace@aced flow is very likely to experience a drop as a result of one
Reno as a function of the flow size. The graph can be dividedlits packets landing in a burst from a Reno flow. Reno flows,
into four distinct phases: on the other hand, are less likely to be affected by bursts from
1. Inphase 1neither Reno nor Paced Reno flows experienogher flows, as their packets are clustered. As a result, they have
any losses. The latency of Paced Reno flows is slightiguch better latency than paced flows, when both are competing
higher because they spread packets throughoutthe RTT &mdbandwidth in a mixed flow environment.
hence lag behind a standard Reno sender. Figure 15 plots the ratio between the mean latencies of Reno
2. In phase 2 with a limited buffer size, Reno experiencesand Paced flows for different scenarios. With a large flow size
more losses in slow start because of its bursty behaviof.5000 packets, pacing still performs worse. Our hypothesis is
As a result, more Reno flows are forced to timeout befotbat the paced flows introduce enough spreading out and mix-

Interaction of Paced and non-Paced Flows
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Fig. 14. Latency when Reno and Paced flows are mixed. All flows start at thig. 16. The normalized latency as a function of flow size using different queue-
same time and send 300 packets each. ing disciplines at the bottleneck.
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P e Sioa = 5800 (36 odes aamorstn roas) . to mixing of traffic, pacing synchronizes drops, especially with
Hr < drop tail queues.

Both the above problems can be reduced by intelligent active
gueue management techniques. Intelligent schemes for choos-
1 ing the packet to drop coupled with probabilistic dropping of

packets (like RED) can alleviate the synchronization problem

06 [ B

Lat ency( Reno) / Lat ency( Paced)

P due to mixing. Further, since, pacing does not build up the queue
oa | P ) i until it reaches the link capacity, a better trigger for dropping
T 0 Fows packets might be the link utilization rather than the queue size.
oz BoLt] eneck BY= 25Mbps 1 BLUE [9] proposes a similar technique; it uses the link idle time
, ‘ ‘ Buffer Size = 0.25 Delay-BWproduct and packet losses to manage congestion.

10 20 0 90 100

We have evaluated the impact of RED on pacing with differ-
Fio 15 Ratio of th it R d Paced i hen th ent parameter values for RED. Figure 16 shows the normalized
1g. . atio o € mean latency o eno an ace ows wnen they H H _ H _
mixed. For the lines marked A and B, 20 flows start simultaneously wit?ﬂlifrl(ﬁ:"nCy for the model in section VI-D, using RED at the bqttle
different flow sizes. For the line marked C, 20 nodes generate flows usiigck buffer. The performance is very sensitive to the choice of
the model described in section VI-D. Line A corresponds to figure 14. parameters. Using high values for the minimum threshold does
not perform well. Pacing builds up a queue when the network
. ] is already saturated; therefore, with pacing even a small queue
ing of packets that in steady state, the flow that gets a losssige should be interpreted as congestion. In our experience, fix-
randomly distributed and not deterministic. Since Reno flowgq the min andmaa thresholds to very low and high values

transmit in bursts, they have a smaller probability of EXpefief\(éspectively, with a low maximum packet marking probability
ing a drop as opposed to Paced flows which spread their packgisks best.

uniformally in the whole RTT. The performance of pacing as

compared to Reno deteriorates even further when we use the VIl. CONCLUSIONS

model from section VI-D in which nodes continuously initiate ] o o ]

new flows. These new flows in slow start, cause the old paced! "€ idea of pacing is appealing; intuitively, it seems to be bet-

flows to regularly drop packets, further diminishing the perfofer for individual flows as well as the network. In this paper, we
mance of pacing. have quantitatively evaluated the effect of incorporating it into

the TCP congestion control algorithm using extensive simula-
tions. While pacing improves fairness and throughput in some
cases, it can have significantly worse performance as compared

Pacing performs well in some scenarios. For links with @ Reno in a lot of cases — both with a mixture of paced and
high delay-bandwidth product and limited buffering, pacing hatn-paced flows and even when all flows are paced. Further,
the potential for significant performance gains. With sufficiemihe paper tries to gain intuition into the causes of the counter-
buffering, pacing improves fairness and drop rates, especidhlyuitive performance of pacing.
when the RTTs are variable. However, in a number of cases,
pacing performs significantly worse than the "non-paced” ver- REFERENCES
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