
Quartz: A Tool for Tuning Parallel Program Performance

Thomas E. Anderson and Edward D. Lazowska
Department of Computer Science and Engineering

University of Washington
Seattle WA 98195

September 1989

Abstract

Initial implementations of parallel programs typically yield disappointing performance. Tuning to improve performance is thus a
significant part of the parallel programming process. The effort required to tune a parallel program, and the level of performance that
eventually is achieved, both depend heavily on the quality of the instrumentation that is available to the programmer.

This paper describes Quartz, a new tool for tuning parallel program performance on shared memory multiprocessors. The philosophy
underlying Quartz was inspired by that of the sequential UNIX tool gprof: to appropriately direct the attention of the programmer by
efficiently measuring just those factors that are most responsible for performance and by relating these metrics to one another and to the
structure of the program. This philosophy is even more important in the parallel domain than in the sequential domain, because of the
dramatically greater number of possible metrics and the dramatically increased complexity of program structures.

The principal metric of Quartz is normalized processor time: the total processor time spent in each section of code divided by the number
of other processors that are concurrently busy when that section of code is being executed. Tied to the logical structure of the program, this
metric provides a “smoking gun” pointing towards those areas of the program most responsible for poor performance. This information
can be acquired efficiently by checkpointing to memory the number of busy processors and the state of each processor, and then
statistically sampling these using a dedicated processor.

In addition to describing the design rationale, functionality, and implementation of Quartz, the paper examines how Quartz would be
used to solve a number of performance problems that have been reported as being frequently encountered, and describes a case study in
which Quartz was used to significantly improve the performance of a CAD circuit verifier.

Index Terms - multiprocessor, performance, measurement, parallel programming, tuning

1. Introduction

The primary motivation behind building multiprocessors is to
cost-effectively improve system performance. Even moderately
increasing a uniprocessor’s power can require substantial
additional design effort as well as faster, and thus more expensive,
hardware components. By contrast, once a scheme for
interprocessor communication has been added to a uniprocessor
design, the system’s peak processing power can be increased
linearly simply by adding processors. The incremental cost per
processor has been reported to be as little as 15% of the initial
system cost for small to moderate numbers of processors [Thacker
et al. 19881, and larger but still close to linear for greater numbers
of processors [BBN 1985; Pfister et al. 19851.

This material is based an work supported by the National Sciwce Foundation
(Grants No. CCR-8619663, CCR-8703049. and CCR-8700106). the Naval
Ocean Systems Center. the Washington Technology Center. Digital Equip-
ment Corporation (the Systems Research Center and the Extemal Research
Program), and IBM (a Graduate F&wsbip).

Authors’ address: Department of Computer Science and Engineering FR-35.
University of Washington. Seattle WA 98195; (206) 545-2675;
~omltozowsko@cs.warhingron.cdu. Quartz sounx code is available by
a”o”ymous ftp from cs.washingtcwdu.

permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and it?, date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, 01 to republish, requires a fee
and/or specific permission.
0 ,990 ACM 089791-359-O/90/0005/01 I5 $1.50

Of course, multiprocessors lose their advantage if this
processing power is not effectively utilized, and while it is
relatively easy to get good performance when there are multiple
independent sequential job streams, it can be difficult to achieve
good performance from parallel applications. The literature
describes many attempts to parallelize algorithms and
applications. (Burkhart and Millen [1989] survey some of this
experience.) Typically, an initial implementation results in
disappointing performance, but significant improvements can bc
obtained with subsequent effort. Sequent, for example, tells of a
major customer whose first attempt at parallelizing a “dusty deck”
resulted in a program that, given 8 processors, executed only 50%
as fast as the original sequential program. After considerable
effort by skilled engineers, nearly perfect speedup (a factor of
nearly 8 on an 8 processor machine) was achieved [Rodgers
19861.

A major factor contributing to the large amount of skilled effort
typically required to achieve good parallel program performance
is the shortage of good performance analysis tools. In the absence
of such tools, performance problems must be identified through a
combination of guesswork, folklore, and application-specific
ins@urnentation. The subject of this paper is the design rationale,
functionality, implementation, and use of a new tool for tuning
parallel program performance.

The philosophy underlying our work is that an effective tool for
tuning parallel program performance must be based on a clear
view of the causes of poor performance, and on a specific
methodology for improving that performance. By being selective
about what it measures and presents, the tool can focus the
programmer’s attention on the information needed to tune
performance, eliding details about second-order effects.

115

Measurement efficiency also is improved by designing the tool to
record just the important behavior.

Selectivity is possible because, although parallel performance in
general is much more complex than sequential performance,
experience (discussed in Section 3.2) suggests that poor parallel
performance typically arises from a relatively small number of
factors. For applications whose performance is dominated by
periods of limited parallelism, the tool should identify those
sections of code that account for most of this time so that these
sections can either be re-structured to increase concurrency or
optimized to reduce their impact on overall performance. Time
spent spin- (or “busy”-) waiting must be correctly represented,
since spinning processors appear to be busy even though they are
not computing useful results. Finally, for applications with large
amounts of real parallelism, performance can only be improved
by optimizing (but not further parallelizing) the code that executes
for the greatest proportion of time.

Based on these observations, we propose a new way to view
parallel program performance on shared memory multiprocessors.
We focus on both the total processor time devoted to each section
of code and the number of other processors concurrently busy (as
opposed to idle or spin-waiting) when that section of code is being
executed. Routines can be compared by considering their
normalized processor time: their processor time divided by the
concurrent parallelism (a precise definition is given in Section 3).
This metric usually reflects the relative importance of different
sections of code to the overall elapsed time of the program: a
routine that executes while no other processors are busy can be
responsible for a large percentage of the runtime of a program,
even though it uses only a small fraction of the total processor
time. Further, by measuring both parallelism and processor time,
we can determine whether performance can be improved by re-
structuring to increase parallelism, or only by simple
optimization.

We tie these measurements to the logical structure of the
program’s procedures. Good engineering practice demands that
large programs, whether sequential or parallel, be structured using
hierarchical abstractions [Graham et al. 19821. We report our
performance measures for each procedure and for all the work
done on its behalf, either synchronously via a normal procedure
call or asynchronously through parallelization. The programmer
can use this to walk through the hierarchy, focusing on just those
procedures that, along with their children, account for most of the
poor performance. We expect that for parallel programs as for
sequential ones, a relatively small proportion of the code will be
responsible for most of the runtime.

These measurements can be made efficiently on a shared
memory multiprocessor by checkpointing to memory the number
of busy processors and the state of each processor, and then
statistically sampling this information using a dedicated
processor.

We have developed a tool to test these ideas, called @arlz.
Quartz was built by modifying the application-level thread
package described in [Anderson et al. 19891. Quartz uses only the
normal profiling support available on UNIX-like shared memory
multiprocessors; it currently runs on the Sequent Symmetry
multiprocessor [Sequent 19881.

The remainder of the paper discusses these ideas in more detail.
Section 2 examines existing measurement tools for tuning
program performance. Section 3 describes Quartz: its
motivation, its functionality, its applicability to a number of
performance problems that have been reported as being frequently
encountered, and its implementation. Section 4 describes a case

study in the use of Quartz to improve the performance of a
specific parallel application, a CAD circuit verifier. Section 5
considers the implications of our work for the monitoring of
sequential programs and non-shared-memory multiprocessors.
Section 6 summarizes our results.

2. Existing Tools for Tuning Program Performance

2.1. Tools for Sequential Programs

The philosophy underlying Quartz owes much to the experience
of UNIX gprof [Graham et al. 19821, a tool for tuning the
performance of sequential programs running on uniprocessors.

Years of experience tuning sequential programs indicate that the
major difficulty is focus: it is relatively easy for the programmer
to improve the processing time of a small section of code, but lots
of effort is commonly wasted in the wrong places - tweaking
code that has only a small impact on overall performance.

Gprofs solution is to highlight the “hot spots” of the program,
and to do so in a way that exploits the hierarchical structure of
large programs. Gprof presents to the programmer the total
processor time of each procedure, including time spent on its
behalf if it calls other routines. With this information, the
programmer can tune the program in a top-down fashion, focusing
effort on those functions that have the greatest impact on
performance.

Gprof is relatively efficient. It periodically interrupts the
program to sample the program counter, thereby estimating the
execution time of each procedure. While sampling produces only
an estimate, the approach is most accurate just where it needs to
be: for those routines where the program spends most of its time.
Gprof also collects the call graph: who called whom how many
times. This is done by using compiler support that makes each
procedure execute a monitoring routine during its prologue.
Gprof then computes its central metric, the processor time spent
on a procedure’s behalf, by making the assumption that all calls to
the same procedure take the same amount of time. Processing
time is propagated bottom-up from callee to caller according to
the caller’s proportion of the total calls.

Gprof seems so natural in retrospect that it is easy to forget the
alternative approach taken by a number of other tools: to
(expensively) measure everything that could conceivably be of
relevance to program performance, and to report these
measurements without concern for how they relate to each other
or to the structure of the program.

Our goal for Quartz was to achieve a tool for tuning parallel
program performance that is analogous to gprof in that it
efficiently measures exactly what is important, and relates these
measurements to one another and to the structure of the program.
This philosophy is even more important in the parallel domain
than in the sequential domain, because of the dramatically greater
number of performance metrics and the dramatically increased
complexity of program structures. The next two sub-sections
discuss, in this context, existing approaches to tools for tuning
parallel program performance.

2.2. Non-Integrated Tools for Parallel Programs

Many useful measures of parallel program performance have
been proposed. Each provides a view of some important aspect of
program behavior. However, in many existing tools, their lack of
integration with each other and with program structure limits their
usefulness.

116

Perhaps the simplest approach to parallel program measurement
is to extend sequential UNIX gprof to run on a multiprocessor. In
place of processor time on one processor, multiprocessor gprof
measures the sum of the time spent on each processor [Aral &
Gertner 19881. Unfortunately, as we have noted, a procedure’s
total processor time is not related in a simple way to parallel
runtime. Something more than a straightforward adaptation of
sequential UNIX gprof clearly is necessary.

Another common tool displays the number of busy processors
across time by periodically sampling the number of runnable
processes. Assuming that all activity is due to the program in
question, this allows the programmer to see if there are periods of
time when there is too little parallelism to keep all the processors
busy [Halstead 19861. A significant shortcoming of tools lie thii
is that it can be difficult to relate the periods of poor parallelism to
specific sections of code that can be changed. Further, the fact
that some processors are not doing useful work can be concealed,
since spin-waiting processors appear to be busy.

The DEC SRC Firefly has a tool that measures the time spent
waiting for each lock protecting a shared data structure Facker
et al. 19881. A lock ensures that threads manipulating the shared
data structure have mutually exclusive access to it. This serial
execution can limit performance. By measuring the wait time, the
tool can determine which critical sections are the worst
bottlenecks; these can then be re-structured to increase
parallelism. This information is useful, but long waits for a lock
will not affect performance if there is always other work to do
during the wait, and monitoring a lock can increase the length of
time that the lock is held, creating “artificial bottlenecks” when
monitoring is enabled.

Quartz provides many of the same metrics as these tools, but
correlates the metrics to one another and to the sbucture of the
program. For example, Quartz measures not only how many
processors are busy, but also which procedures execute during
periods of low and high parallelism.

2.3. Trace-Based Tools for Parallel Programs

The issue of determining in advance exactly what information
will be needed to tune the performance of a parallel program can
be finessed by recording a trace of every interprocessor
synchronization event with a timestamp of when the event
occurred. The behavior of the program can be completely
reconstructed from such a trace [Fowler et al. 19881. t Arbitrary
metrics (whether general or application-specific) can be computed
using a common interface to the trace data. Finally, the metrics
obtained from the trace can be integrated with each other and with
the structure of the program.

One drawback to this approach is that both the collection and
the post-processing of trace files is expensive. For programs that
perform frequent synchronization, the trace files can be
prohibitively large. Consider a program running on a hypothetical
shared memory multiprocessor with 20 S-MIPS processors, each
of which on average performs a monitorable event (such as
acquiring or releasing a spin lock) every 500 instructions, and
where each event record is 10 bytes. If the program being
monitored executes for one minute, the trace file will be 100
megabytes. Similar estimates appear in [Malony et al. 19891 to

f Origidly, Fowler et al. impluwnwd trace coUe~ti~ to aid debugging the
comctness of parallel pmgmnams; they then showed that the same support
could be used for progmam tuning. An implication of our wodr is that the sup-
port needed for correctness debugging is not necessary for performance tun-
ing.

justify hardware support for recording traces.

Nevertheless, tools have been developed that collect trace data
and post-process it into useful measures. We argue later that the
much of the information provided by these tools can be measured
or approximated more efficiently by sampling.

Monit [Kerola & Schwetman 19871, for example, uses a trace
file to compute the behavior of higher-level objects, such as the
number of busy processors or the number of threads waiting to
enter each critical section. The behavior of each object is then
plotted on a timeline. After identifying those phases of execution
with few busy processors, the programmer can visually correlate
these phases to the behavior of other objects (discovering, for
example, that parallelism is low while a specific critical section
has a large number of waiting threads).

Although Monit’s display is at a higher level than the raw trace
data, it still can present a massive amount of data to the
programmer. Only a few timelines will fit on a screen at a time,
but Monit provides little help in identifying those containing
information relevant to the measured lack of parallelism. As the
complexity of the application increases, so does the number of
objects to monitor, making focusing more important.

IPS [Miller & Yang 19871 attempts both to guide the
programmer to performance problems and to provide useful
statistics about those problems. Its central focusing metric is the
time each process and procedure spends executing the critical
path. The critical path is the longest path through the task graph -
the series of sequential pieces of code (that cannot be done in
parallel because they communicate one to the next) that takes the
longest to execute. By definition, the elapsed execution time of
the program can be reduced only by shortening the length of the
critical path.

One drawback to critical path analysis is its expense: it requires
a complete trace of all interprocessor communication. (To be fair,
IPS was originally designed to measure programs running on local ,
area networks of uniprocessors. Because of the high latency and
low bandwidth communication on these systems, only programs
with relatively infrequent synchronization can run efficiently.
Under these conditions, the size of the trace file would be
manageable.) Yet critical path analysis is still just a heuristic:
there is no guarantee that reducing the critical path will actually
reduce the execution time of the program. There may be another
path through the task graph with almost the same length that will
be unaffected by the change. Critical path analysis also does not
indicate how to reduce a procedure’s completion time. One way
is to reduce its sequential execution time. Another is to
parallelize it. But parallelization will only be of benefit if there
are idle processors to exploit when the procedure runs.

3. Quartz: Its Functionality, Applicability, and
Implementation

Our goals for a tool for tuning parallel program performance
are:

- It should identify the sections of source code most responsible
for poor performance.

- It should present its measurements hierarchically, to allow top-
down tuning according to the logical structure of the program.

-It should measure parallelism (properly representing spin-
waiting as a loss of parallelism) and it should tie this to the
source code, identifying where re-structuring to increase
parallelism is necessary and where code optimization is
appropriate.

117

-It should measure program behavior in sufficient detail to
provide some insight into the type of re-structuring that will
work.

-It should do all this efficiently and without significantly
affecting the behavior of the measured program.

Quartz meets these criteria. Before describing it, we must
define some terms. A thread (or “lightweight process”) is a
sequential execution stream; it is the basic unit of parallel work.
A thread starts another thread by giving it a procedure to run; the
initial thread continues in parallel with the created thread. Thread
creation is thus essentially an asynchronous procedure call. If
threads are implemented as part of an application library, they can
be within an order of magnitude of the cost of a procedure call
[Anderson et al. 19891; they can thus be used for procedure-level
parallelism.

Threads can synchronize with one another. One type of
synchronization object is a lock, used to ensure mutually
exclusive access to a shared data structure. Another is a condition
or barrier used to enforce a data dependency, as when one thread
reads data produced by some other thread. In both cases,
synchronization may cause the thread to wait, either because the
lock is busy or because the data it requires has not been produced.
Since there may be more threads than processors, a waiting thread
has a choice: either spin until the lock is free or the data is
available, or block, relinquishing the processor to run another
thread. Thus, there is a difference between a program’s effective
parallelism, the number of busy (not idle or spinning) processors,
and its nominal parallelism, the number of runnable threads, some
of which may be spinniig. Our measurements refer to the activity
of just the processors executing the application, and not any
processors concurrently executing other applications.

The remainder of this section is divided into three sub-sections.
The first describes the functionality of Quartz: the specific
metrics that it reports. The second shows how these metrics can
be used to detect and fix a number of performance problems that
have been identified by others as commonly occurring. The third
provides an overview of the implementation of Quartz. A case
study in which Quartz was used to tune a specific application is
described in Section 4.

3.1. The Functionality of Quartz
The principal measurement made by Quartz is normalized

processor time, defined in Equation 1, where P is the number of
processors. Measuring this weighting function for every
procedure allows us to compare them according to their effect on
overall performance.

’ Processor time with i processors concurrently busy c
i=l i

Equation 1: Normalized Processor Time

To understand the rationale for this metric, consider a program
with two functions, one that always executes sequentially when
no other processors are busy and one that computes its result
completely in parallel. If each function takes the same total
processor time, the sequential one requires a factor of P greater
elapsed time (where P is the number of processors) and will have
a much greater impact on program performance. If the two
functions take the same elapsed time, then the same percentage
improvements in either will have equal impact on performance.

Further, knowing the concurrent effective parallelism while a
routine executes is more important than knowing the effective

parallelism it generates: a serial routine that is always overlapped
with other computation will have little effect on performance
compared to a serial routine that always executes by itself. This is
despite the fact that the ehxpsed time of the two functions is the
same.

Normalized processor time reflects these observations. Quartz
also measures other program behavior; the principal performance
measurements in Quartz are summarized in Table 1.

For each procedure, synchronization object, and thread, and
for the work done on its behalf:

Normalized processor time. Each term of the sum is
measured separately.

Elapsed time spent in each state (busy, spinning, blocked, or
ready), along with the average and the distribution of the
number of runnable threads while it is in each state.

Table 1: Principal Performance Measurements in Quartz

To focus the programmer’s attention on those areas of the
program that have the greatest impact on performance. we sort
procedures by their normalized processor time plus that of the
work done on their behalf. This includes work done
synchronously or asynchronously (via threads). The program’s
top-level procedure, then, has a normalized processor time equal
to the elapsed time of the program; the functions it calls to do the
work of the program divide that weight among them. Quartz’s
ordering is analogous to what gprof does with processor time,
except that Quartz uses a weighting function related to parallel
performance. In both Quartz and gprof, the programmer can trace
performance top-down through the program.

Normalized processor time indicates where improvements can
be made. Quartz also provides information about what can be
done to improve performance. Part of this information comes
from the measurement of concurrent parallelism needed for
normalized processor time. This indicates whether performance
can be improved by re-structuring to increase effective
parallelism, or only by simple optimization. Certainly, procedures
that always execute when all processors are busy will not benefit
from further parallelism.

Given that re-structuring is necessary, an accounting of the
elapsed time spent by a procedure can help identify what kind of
re-structuring is most likely to succeed. Quartz measures each
procedure’s elapsed time spent busy, spinning, blocked, or ready
to run, along with the average and the distribution of the number
of threads that are available to run while the procedure is in each
state. For example, if a procedure is busy executing and there are
few other busy processors, then the nominal parallelism indicates
whether the other processors are idle or spinning. If idle, then
performance can be improved by parallelizing the procedure
(creating threads to do its work), provided this is possible. If
spinning, then there is no benefit to creating more threads.
Similarly, threads that are blocked or spinning represent deferred
work; if the program were re-structured to reduce or eliminate
waiting, then parallelism would increase.

Quartz makes the above measurements separately for each
procedure, synchronization object, and thread. Measurement
based purely on procedures would ignore the fact that parallel
performance can depend more on the data object passed to a
procedure than on the implementation of the procedure itself. It is
only mildly interesting to know the total time spent waiting at all
barriers; it is much more useful to know that some specific barrier

118

accounted for most of that time. As a special case, the time spent
executing in a critical section is attributed to the lock on that
critical section. (Quartz also measures queue length distributions
for synchronization objects.) Per-thread information allows us to
determine if different threads executing the same procedure (on
different data objects) have different performance.

By measuring synchronization objects and threads in the same
way as procedures, we can present the programmer a uniform
focusing metric. All are ranked in the same way to simplify
tracing performance through the program. For example, if
contention for a lock determines performance, the lock object will
have a high normalized processor time since its critical section is
always executing while few other processors are. (Spin time is
factored out in computing normalized processor time.)

An important difference from gprof is that we explicitly
measure the work done on behalf of a procedure or lock object.
Gprof explicitly measures only the work done within each
procedure, making the assumption that the processor time of its
children is independent of who called them. Gprof uses the call
graph (who called whom, and how many times) to propagate
processor times from callee to caller according to the caller’s
percentage of the total calls to the callee. We cannot make a
similar assumption. The effective and nominal parallelism while
a procedure executes depend not only on what that procedure
does, but also on the parallelism when it is called. Different calls
to a low-level formatting routine might have vastly different
concurrent parallelism. Still, even though it is not useful for
propagating our measurements, Quartz does record the call graph
(including calls to/from synchronization objects) to help the
programmer in tracing performance top-down through the
program.

3.2. Detecting Frequently Encountered Performance
Problems Using Quartz

In this section, we argue by example that Quartz is useful for
detecting and fixing a number of common parallel program
performance problems. We asserted in Section 1 that although
parallel performance in general is much more complex than
sequential performance, experience suggests that poor parallel
performance typically arises from a relatively small number of
factors. One piece of evidence for this is Table 2, which lists the
performance problems most frequently encountered by three
“vendors” of parallel computing systems who participated in a
working group concerned with “Sources of Performance
Degradation” at the NSFKMU Workshop on Performance-
E#icient Parallel Programming in 1986. The key observation is
that none of the problems involve subtle timing issues that might
require a complete trace of synchronization activity.

The first issue in tuning any parallel program is to identify
which segments are responsible for the poor performance. As
with sequential programs, we would expect that of the large
number of functions in a parallel program, a relative few will be
responsible for most of the program’s runtime. By computing a
weight based on both processor time and parallelism, and by
accounting for all of the activity done on behalf of a function,
Quartz allows the programmer to walk through the program
hierarchy to find those few functions. Once the general area of
difficulty has been located, the approach to tuning depends on the
situation:

3.2.1. Functional Decomposition

Some computations have several functionally distinct parts,
each assigned to a distinct processor. An example of this is a
pipelined compiler: separate threads (and processors) execute the

Sequent

l.A problem decomposition that puts most of the work in
one thread (e.g., the optimizing phase of a concurrent
compiler or a “busy” region in a ray-tracing algorithm), so
that little real concurrency can be realized.

2.Memory thrashing due to a poor choice of operating
system parameters.

3.Excessive I/O that is not overlapped with computation.

4.A synchronous software structure, such as might arise
from a very large granularity, a producer-consumer
relationship with a small number of buffers, or the use of
an unnecessarily restrictive synchronization construct (e.g.,
barriers where critical sections would suffice).

Harris

l.Synchronization overhead.

2.Contention for shared variables, including counting
semaphores, task queues, and the “problem heap”.

3.Starvation due to a small problem size.

WaTp
l.Excessive I/O that is not overlapped with computation.

2.Data dependencies in loops.

Table 2: Frequently Encountered Performance Problems
(NSFICMU Workshop on Performance-Ejjkieti

Parallel Programming)

scanner, parser, optimizer, and code generator, streaming results
one to the next (Sequent #l in Table 2). Performance difficulties
usually relate to load imbalance. If one phase has more work to
do than the others, the others must sit idle waiting for it. If the
optimizer is the bottleneck, the scanner and parser will have to
wait for buffer space to forward their partial results, while the
code generator must also periodically wait for results to be
completed.

Quartz would identify this problem: the thread executing the
optimizer would have a longer execution time, spend more time
executing when few other processors are busy, and thus have a
larger normalized processor time than the threads executing the
other phases. Other tools would also handle this case. For
example, a display of processor activity across time would show
that the processor executing the optimizer was always busy, while
the other processors sometimes wait. (Of course, many tools that
display processor activity fail to relate processors to procedures.)
Similarly, a critical path analysis would show that the execution
of the optimizer constituted most of the critical path.

It is also easy with Quartz to identify the phase that is the
secondary bottleneck - in the compiler example, the one that
would limit performance if the optimizer were improved. If the
code generator ran for almost as long as the optimizer, then it
would have slightly less normalized processor time, indicating
that attention should be focused on improving both phases. It is
difficult to extract this information from a timeline. since all
phases but the optimizer periodically block. Critical path analysis
only identifies the primary bottleneck, so iteration would b=e
required.

Another performance problem with pipelines is starvation
(Harris #3). This occurs if the problem size is small relative to the
time for each phase to start streaming results. In this case, the

119

later phases spend much of the total time waiting to start; the
earlier phases finish well before the program completes. Quartz
would show that each phase spends much of its elapsed time idle.
(Normalized processor time would highlight the first and last
stages, since their work is the least overlapped with other stages.)
A solution is to reduce the time before each phase starts streaming
its first results.

3.2.2. Data Decomposition

Some programs compute the same function on many pieces of
data. These programs can be parallelized by assigning different
pieces of data to different processors. Unlike functional
decomposition, each processor executes the same function at the
same time. Again, a frequent issue is load balancing: the
required computation may vary widely for different pieces of
data. An example of this is ray-tracing where part of the picture
has the majority of the activity (Sequent #l); another is a fluid
dynamics computation where turbulence is concentrated in certain
regions. In such situations, performance is limited by the
processor assigned to the data regions with the longest execution
times.

Whether a different thread is used to run the function on each
object, or on collections of objects, Quartz will show if the
execution times are balanced. If they are not, one of the threads
will execute while other processors are idle, and there will be long
average queue lengths at the barrier that checks that all threads
have completed before continuing.

It can be difficult to relate the performance of a thread to the
symbolic names of the data objects it works on, particularly in
conventional (non-object-oriented) languages. For instance, the
procedure a thread is to execute can be passed an index that only
implicitly refers to the object it is to work on. As a result, we rely
on the programmer to make this connection by providing a
symbolic name when each thread is created. In an object-oriented
language such as C++ we could extend Quartz not only to keep
track of the symbolic names of data objects passed to threads, but
also to explicitly take measurements for each procedure-data
object pair, to allow both an object-oriented and a procedure-
oriented view of performance. We intend to port Quartz to Presto
[Bershad et al. 19881, a C++ based parallel programming system,
to further explore this topic.

3.2.3. Synchronization

The need to synchronize the work of different processors can
cause another class of performance problems. For instance,
execution time is increased by the overhead of parallelizing the
job: distributing work to various processors, serializing access to
shared data structures, and enforcing data dependencies (Harris
#I). Even if the program is perfectly parallel, this time can
dominate. Fortunately, it is easy to measure. If there is a
sequential version of the program, many of its functions will
correspond to equivalent functions in the parallel version, and the
execution time of each function can be directly compared to
determine the effect of overhead. (The execution time added by
monitoring must of course be factored out.) Alternately, given
measurements of the performance of the thread package, the
number of calls to each thread function, such as to create a thread
or to acquire a lock, can be used to compute overhead.

Performance can also be affected by waiting for data
dependencies to be satisfied (Warp #2; Sequent #4) or for access
to a busy critical section (Harris #2). Waiting threads represent
deferred parallelism; Quartz identifies this by measuring queue
lengths and the average wait time (the total elapsed time spent
waiting divided by the number of accesses to that synchronization

object). For example, if a loop data dependency limits
parallelism, there will be a long queue length at the point where
the data dependency is enforced. Note that two of the examples
of contention cited in Table 2 are for locks within the thread
package; we measure contention for these locks in the same way
that we measure locks in the application code.

Even if there are many threads waiting on a synchronization
object, the question of whether it makes sense to re-structure the
program to release that parallelism depends on whether the time is
spent spinning or blocked, and on the nominal parallelism. When
there are at least as many runnable threads as processors, blocked
threads have no impact on Performance beyond the initial context
switch. Re-structuring to increase the number of ready threads
does not help in this case. By contrast, spin-waiting always
wastes processing cycles, regardless of the number of runnable
threads, but if there are excess runnable threads then performance
could be improved by blocking instead of spinning.

If re-structuring is necessary, the number of threads waiting at a
lock can be decreased by any of: reducing the number of accesses
(from the call graph), thereby reducing contention; decreasing the
size of the critical section (its busy time); distributing accesses
more evenly across time (if the queue length is sometiies zero
and sometimes very long); or modifying the protected data
structure to allow parallel accesses (for example, by giving each
processor a separate copy).

Waiting for data dependencies can be reduced by computing the
data earlier, or, if an overly restrictive synchronization construct
was used, by allowing the thread to continue temporarily without
it. Fuzzy barriers are a special case of the latter [Gupta 19891.

3.2.4. Input/Output

The time spent doing I/O was mentioned twice in Table 2
(Sequent #2, Warp #l). If a program reads a significant amount
of data from an I/O device, then the reads should be overlapped
with the computation; in other words, the reads should be started
early so that they complete before the data is needed. The natural
style, however, is synchronous: when the data is referenced, start
a disk read and wait until it returns.

As a result of the operating system interface on the Sequent, the
current implementation of Quartz measures time spent doing I/O
as processor time, attributed to the procedure that performs the
I/O. If the I/O is not overlapped, the relative importance of the
time spent waiting in the kernel will be increased because
processors will be idle waiting for the I/O to finish. Given kernel
support for threads, Quartz could monitor the kernel disk queue as
a normal synchronization object.

If a program spends a lot of time doing disk accesses, it may
benefit from exploiting parallelism in the disk sub-system.
Tuning a program’s use of parallel disks is in many ways similar
to tuning its use of parallel processors, although initial file
placement is an issue as well. We expect that some of the
techniques we have described in this paper could be applied to
this problem.

3.2.5. Limitations

We have designed Quartz to measure only those aspects of
program behavior that are needed to detect and fix frequently
occurring parallel performance problems. The tradeoff is that
Quartz therefore does not help with every performance problem
that can occur in parallel applications.

When threads execute at the same time, Quartz weights each
equally even though only one is on the critical path. As an

120

example, consider a program with a critical section that restricts
parallelism. The processor time spent executing outside of the
critical section can appear important, because there are few other
processors concurrently executing, even though reducing or
parallelizing it will have no effect on program’s performance.
Although this can seem anomalous, Quartz’s metric can help in
this case by identifying code that may be a secondary bottleneck.
We are currently investigating ways of augmenting Quartz’s
measurements to address this limitation. For instance, each time a
processor goes idle, we could measure how long it stays idle, and
then add that time to processor time of the code that causes the
processor to become busy. This metric correctly handles busy
critical sections (the time spent waiting for the lock would be
attributed to the critical section), but it does worse than
normalized processor time in other situations.

Quartz also does not measure thread scheduling decisions
(although problems can sometimes be identified, for instance, if a
thread spends a long time waiting for a processor and then
executes serially) or contention for the bus or memory, even
though these can affect performance.

33. The Implementation of Quartz

We have implemented Quartz on a Sequent Symmetry shared
memory multiprocessor [Sequent 19881. The Sequent runs
DYNIX, a multiprocessor adaptation of UNIX. Since DYNIX
processes are too expensive to use directly as threads, we built our
system by adding monitoring code to the thread package
described in [Anderson et al. 19891. That thread package works
by creating a DYNIX process for each processor, and then
multiplexing threads onto the DYNIX processes. Our
implementation did not modify DYNIX or the C compiler; it used
only the support they provide for gprof.

Our implementation addresses the twin concerns of efficiency
and accuracy. Because program tuning is iterative and interactive,
a tool’s usability depends on the elapsed time from program
compilation to report production. Accuracy is trickier. Unlike
sequential programs where the execution overhead due to
monitoring is easily factored out, a change to a parallel program
can alter its behavior in subtle ways. For instance, monitoring
code that increases the time that a lock is held may increase the
contention for the lock. Analogously, instrumentation added
outside of a critical section will cause a net decrease in the
contention for that critical section,

Our approach is to use statistical sampling by a dedicated
processor. A set of processors executes the program normally,
maintaining their state in shared memory by special code executed
during thread operations and at procedure entry and exit. This
state is then sampled by a dedicated processor that does not
participate in executing the program. We impose no
synchronization beyond hardware interlocks between the
sampling processor and the other processors; rarely-accessed
locks are used by the normally executing processors in building
the call graph.

We sample by means of a dedicated processor rather than
interrupts because interrupts cannot provide accurate correlations
between processor state and overall program state. On the
Sequent, as with most multiprocessors, interrupts are fielded by
each processor asynchronously; by the time the program state is
sampled, it may have changed in a way affected by the fact that
there was an interrupt. For example, if the interrupted processor
is holding a lock, the queue length at the lock will be greater than
a purely random sample would indicate. Similarly, measuring a
procedure’s execution time directly with timestamps does not
allow us to correlate that time to the number of busy processors.

Of course, although it reduces the effect of monitoring on the
measured program, sampling by a dedicated processor does not
eliminate distortion. Updating state adds time to the computation,
and even the recording of samples by the dedicated processor can
increase bus and cache coherence traffic, thereby slowing other
processors.

The nominal and effective parallelism are maintained in
centralized counters, updated when a thread is added to the ready
queue and when a processor becomes idle or starts or stops
spinning. The counters are maintained with atomic increment and
decrement instructions, to avoid making access to them a
bottleneck. Most multiprocessors, including the Sequent, support
such instructions.

In addition to the execution stack, we maintain a profile stack of
monitored procedures for each thread. This allows us to record
both the time spent in a procedure and the time spent on behalf of
the procedure. The dedicated processor copies the number of
busy and ready threads, copies the profile stack, and then bumps
the appropriate measurement record for each different procedure
on the stack. (Recursive procedures are counted only once.)
While the stack may have changed between recording the number
of busy threads and copying the stack, reducing consistency,
sampling itself is only an approximation. In particular, we do not
lock the profile stack to prevent changes from occurring; this
would unnecessarily perturb the execution of the program. Note
that locking would be harder to avoid if we were to sample
directly from the execution stack since that would require tracing
the chain of frame pointers.

The profile stacks are of fixed size, established at compile time.
Overflows are caught, prevented, and later reported to the
programmer. We expect that overflows will occur only rarely,
since we push a procedure onto the stack only if the previous
entry is different, eliminating immediately recursive calls, the
most common cause of arbitrarily deep stacks. This also has the
effect of reducing the work of the sampling processor.

We use only the normal compiler support provided for gprof. A
monitoring routine is called in the prologue of each profiled
procedure. Exactly as gprof does, we use this routine to update
the count of calls to the procedure from its caller; we also push the
procedure onto the profile stack. Because the compiler inserts
only a prologue call, we manipulate the execution stack so that
when the procedure returns, it returns first to our code that pops
the profile stack, and then to the caller procedure. This is a bit
inefficient, but easy to implement.

To simplify mapping from the entries on the profile stack to the
measurement data for each procedure, we assign each procedure a
unique ID. The gprof monitoring routine is passed a pointer to a
procedure-specific location; this was originally used to count the
number of calls to the procedure. After the program has been
linked, we modify the object file so that each procedure’s location
holds a unique ID; this ID is what is pushed onto the stack and
used to index the procedure’s data record. Gprof, by contrast,
uses the address in the program counter to index the data record
for a procedure; this requires space proportional to the size of the
code segment. By using procedure IDS, Quartz requires space
proportional to the number of procedures times the number of
processors.

The synchronization routines in our thread library are specially
modified. Each object has a data record containing the call graph
and execution time information. When the object is accessed, the
call graph is updated and a pointer to the synchronization object is
pushed, the pointer is popped when the thread no longer must
wait. Locks are handled as a special case. Normally, the

121

procedure that acquires a lock is the one that releases it, in which
case we are safe to push the lock before it is accessed and pop it
after it is released. This attributes the time spent waiting for and
holding the lock to the lock object, and only adds two instructions
to the inside of the critical section: setting the state of the thread
to no longer spinning, and incrementing the number of busy
processors.

When a thread is created, we copy the profile stack from the
creating thread to the new thread. This allows the sampling
processor to attribute execution time across asynchronous
procedure calls.

Quartz has two other useful features. More than one processor
can be dedicated to sampling to improve measurement accuracy
and resolution. Quartz automatically removes from its
measurements most of the time spent by the normally executing
processors in updating their monitored state.

Our system does not currently provide for interactive control of
which routines are to be profiled. This would be easy to add, but
in truth, we doubt that it is the right approach. Aral and Germer
[1988] argue that gprofs overhead is too high to allow only
compile-time control. They use this to motivate Parasight, a
system for execution-time code modification and re-linking. But
the overhead of gprof. and of our system, could be dramatically
reduced with a small amount of compiler support. For example,
most of the time in gprof is spent building the call graph; it crawls
up the execution stack to find the caller address, hashes on it,
checks the callee address, etc. A simpler method is to determine
caller-callee pairs at compile time and to simply bump a statically
allocated counter before each call. Calls made via function
pointers, a rarer case, could use the current, slower approach.

4. A Case Study: Using Quartz to Tune a CAD Circuit
Verifier

We argued “abstractly” in Section 3.2 that Quartz is well-suited
to detecting and fixing a spectrum of parallel program
performance problems that have been identified by others as
commonly occurring. Of course, the crucial question is whether
Quartz is an effective tool in practice. In this section, we describe
our experience in using Quartz to tune an existing parallel
application.

The application we tuned, called Verify [Ma et al. 19871,
compares two different circuit implementations to determine
whether they are functionally (Boolean) equivalent. It was
written for a dissertation to demonstrate that an existing
production CAD program could be parallelized with good
speedup. The program has 2900 lines of C code, and was written
for a Sequent Balance with twelve processors. The circuits we
used as inputs in our teats were combinational benchmarks for
evaluating test generation algorithms.

The initial speedup of Verify on our Sequent Symmetry was
already good: 9.2 using 18 processors. (Because no sequential
version of the program was available, speedup was measured as
the time to run the program, including process creation and I/O,
on one processor divided by the time to run it on 18 processors.)
Even though neither of us was familiar with the program or with
CAD algorithms in general, over the course of several hours we
were able to improve its performance by 40%. Its initial runtime
was 114.4 seconds on one processor and 12.4 seconds on 18; with
our changes, the runtime dropped to 7.7 seconds on 18 processors.
Most of this improvement came within the first few minutes of
using Quartz, demonstrating the utility of using normalized
processor time as a weighting function.

Figure 1 shows a portion of the Quartz outnut when run on the
initial version of Verify. After the data has been collected, Quartz
can interactively draw a graph (on an X Window display) of the
total normalized processor time of any monitored procedure or
synchronization object as a function of the number of
concurrently busy processors. Normalized processor time is
based on each routine’s processor time divided by its wncurrent
parallelism, whether the parallelism is due to that routine or to
other activity in the program. The top-level routine “main”,
however, is responsible for all of the activity in the program; its
graph of normalized processor time is equivalent to the elapsed
time the program spent with each number of busy processors.
Different shadings highlight the role of the routine itself, and its
children, in the routine’s total normalized processor time.

Procedure: main
Normalized processor time: 16.36 sec. (100%)

8

1

1 2 3 . . . 15 16 17 18
number of concurrently busy processors

Name Normalized Calls
processor time

awork 10.43 (64%) 18

f$#/ create - cone 3.62 (22%) 2

q input 1.93 (12%) 2

n main self .31 (2%)

Figure 1: Initial Quartz Output for Verify “main”

The Quartz output for Verify shows that although most of the
program is indeed highly parallel, a significant portion of its
runtime is spent executing serial code. Further, Quartz identifies
“create-cone” as being responsible for most of this serial
execution time. By examining the graph for “create-cone”, and in
turn the graph for its child with the largest normalized processor
time, we found that the program was spending a quarter of its time
executing print routines in order to log a trace of shared data
structures as they were created.

While Quartz easily identified this performance problem, gprof
would not have. The logging routines accounted for less than 2%
of the program’s sequential processor time, but because they
occurred during the serial initialization phase of the program, they
accounted for a much larger share of the parallel performance.
Before Quartz pointed it out, we did not know that the program
was even doing logging.

Quartz allowed us to make an informed choice about a
performance tradeoff: we could substantially improve
performance by removing logging, or if this functionality was

122

central to the program, at least we would know by how much it
reduced performance. Hypothesizing that it was not important,
we made logging a command line option. With logging turned
off, the program’s parallel performance improved by close to the
amount predicted by Quartz, while its serial performance
improved only slightly. As a result, the program’s speedup
improved from 9.2 to 12.2.

When we re-profiled the modified program, Quartz showed that
a significant fraction of the program’s runtime was still spent in
the sequential initialization phase. To reduce this, we read in and
allocated data structures for the two input circuits in parallel with
each other and with the operating system process creation needed
to start the program running on all 18 processors. This improved
performance somewhat to a speedup of 12.9.

At this point, we stopped trying to further pamllelize the
program. Once a program’s speedup is high, further
improvements become much more difficult. The routines
responsible for the difference from ideal speedup account for only
a small fraction of the total program runtime; thus even radical
improvements to these routines can reduce overall runtime only
slightly.

In our case, Quartz showed that virtually all of the program’s
runtime was now being spent executing entirely in parallel. The
remaining time was split between processor starvation during
initialization and termination. During initialization, Quartz
showed that performance was limited by the fact that the input
files were not balanced (one circuit was larger and therefore took
longer to read in than the other). During termination, the problem
was that some processors finished early and had to wait for the
rest to finish; dividing the problem into smaller size sub-problems
might help this problem. Fixing these problems seemed to be
more effort than it was worth.

Instead, we noted that small changes in the routines that account
for most of the parallel execution time would have a large relative
effect on runtime. According to Quartz, two routines accounted
for over half the execution time of the modified program, and we
were able to improve performance somewhat with a few quick
tweaks to these routines. (These routines were already highly
tuned from the original sequential program.)

Table 3 summarizes the changes that we made to Verify and
their effects on sequential and parallel performance. Note that our
last improvement in fact decreased the program’s speedup. By
reducing the execution time of the parallel portion of the program,
we increase the relative importance of the program’s sequential
component.

Table 3: Performance Effect of Changes to Verify

A major motivation behind Quartz is efficiency. We measured
the overhead Quartz added to this application. Quartz increased
the elapsed runtime of Verify by roughly the same amount as
gprof: about 70%. (While Quartz is able to remove most of this
overhead from its measurements, some overhead does appear in
the graph in Figure 1.) Quartz is as fast as gprof because even
though Quartz does more work on each procedure call and
synchronization event, it need not periodically interrupt (and

thereby slow) the execution of the program, because a dedicated
processor is used for sampling instead. Verify makes stringent
demands on Quartz: it generates roughly 9 million procedural and
synchronization events (roughly 1 million per second when
running on 18 processors). Even with 18 processors running, a
single dedicated sampling processor was able to sample each
processor’s activity every 6 milliseconds, faster than gprof’s
sampling rate on DYNIX.

Something that we did not expect was demonstrated by using
Quartz on a real application: there is less “performance locality”
in parallel programs than in sequential ones. The top eight
procedures account for 95% of the elapsed time of Verify on one
processor. With 18 processors, though, it takes over 20
procedures to reach the same 95% level. In retrospect, the reason
is obvious. The routines that account for most of the time on one
processor are parallel&d and therefore account for much less of
the program’s runtime on multiple processors; at the same time,
routines that take only a small amount of processor time can
become important if they run sequentially.

5. Implications for Other Systems

While we have implemented Quartz on a shared memory
multiprocessor, our work has implications for other systems.

On multiprocessors with distributed memory, such as the Intel
Hypercube, a dedicated sampling processor would not have
efficient access to the state of other processors. Explicit messages
would have to be used to update the counts of effective and
nominal parallelism, as well as the procedures each processor was
executing. A further problem is that programs on these systems
are often explicitly written to use a specific number of processors
because of the need to explicitly control the communication
pattern; removing one for sampling might require re-writing the
program.

Alternative approaches also have significant drawbacks on such
systems. In particular, recording and post-processing a complete
trace may already be impractical for some programs, and will
become more so as distributed memory multiprocessors support
faster rates of interprocessor communication.

Efficient sampling could be implemented given hardware
support for stopping all processors at close to the same time (i.e.,
by allowing a host computer to send parallel interrupts each
processor). One of the reasons for using a dedicated processor is
that interrupting any single processor to do sampling can distort
the behavior being measured. If all were stopped together, the
sample could be taken from that snapshot without measurement
error. The sampling could be implemented efficiently by using
the processing power of the stopped processors.

Absent hardware support, it may be possible to exploit the
characteristics of parallel programs on distributed memory
multiprocessors. Because of the requirement that interprocessor
communication be explicitly programmed using messages, these
systems are most commonly used for highly data-parallel
applications with regular communication patterns. For these types
of programs, at any point during the computation, each processor
executes roughly the same section of code, although one may
finish before another. As a result, sampling the behavior of each
individual processor, and not the global state, may yield a
sufficiently detailed picture of program performance.

The techniques used in Quartz also solve some problems with
traditional approaches to tuning sequential program performance.
One limitation to gprof is that it cannot be used to tune the
implementation of operating system kernel-level routines, since
interrupt-driven sampling cannot measure code that runs with

123

interrupts disabled. By using a separate processor to do sampling,
however, we would be able to accurately measure kernel-level
execution. Note that by avoiding synchronization between the
executing processors, or between them and the sampling
processor, the processor in the kernel can execute the profiling
code even if it holds the low level scheduler lock.

Similarly, by using a profile stack for sampling, we are able to
account correctly for execution time spent out of the monitored
address space. Because of the way gprof propagates execution
time spent on behalf of a procedure, it carmot accurately attribute
time spent executing in non-profiled code, or in the operating
system on behalf of the program. However, a trend in the design
of operating systems and large applications is to decompose them
into separate modules in different address spaces, so that
hardware protection mechanisms can be used for failure isolation.
Much of the execution time of an editor, for instance, might be
spent in another address space responsible for updating the
display. The Performance of the entire decomposed system could
be measured by sampling profile stacks shared among all address
spaces.

Data-oriented measurement can be helpful for tuning sequential
programs as well as parallel programs. For some programs,
knowing that a particular procedure accounts for a large
proportion of the processing time may not be as useful as knowing
that a particular object is expensive. For example, there is better
graphics resolution in a more finely tiled sphere, but it also costs
more to draw. Gprof introduces a systematic bias in measuring
object-oriented program behavior because it assumes that a
procedure call always takes the same amount of time to execute
(i.e., that the time does not depend on the data that is passed).
Quartz avoids this bias by propagating execution times explicitly.
While we currently make only limited measurements of data-
oriented performance behavior, our design is extensible to a more
thorough object-oriented implementation.

6. Conclusions
Achieving good performance from parallel applications is both

crucial and challenging. We have discussed the design rationale,
functionality, implementation, and use of Quartz, a tool for tuning
parallel program performance on shared memory multiprocessors.

The philosophy underlying our work is that an effective tool for
tuning parallel program performance must be based on a clear
view of the causes of poor performance, and on a specific
methodology for improving that performance. By being selective
about what it measures and presents, Quartz can focus the
programmer’s attention on the information needed to tune
performance. Measurement efficiency also results from designing
the tool to record just the important behavior.

By relating the execution of sections of code and the use of
certain data objects with the concurrent behavior of other
processors, Quartz assists in identifying areas of the program
where re-structuring is necessary to improve performance, and in
gaining insight into the types of re-structuring that will work.
Because Quartz organizes performance information according to
the logical structure of the program, the programmer can tune
performance in a top-down fashion.

Acknowledgments
We would like to thank Hi-Keung Tony Ma for donating the

application program we used for our case study, and Brian
Bershad, Henry Levy, and John Zahorjan for their extensive
comments.

References
[Anderson et al. 19891

Thomas E. Anderson, Edward D. Lazowska, and Henry M.
Levy. The Performance Implications of Thread Management
Alternatives for Shared Memory Multiprocessors. IEEE
Transactions on Comptiers 38,12 (December 1989). pp. 1631-
1644.

[Aral& Gertner 19881
Ziya Aral and Ilya Germer. Non-Intrusive and Interactive
Profiling in Parasight. Proc. ACMJSIGPUN PPEALS 1988, pp.
21-30.

[BBN 19851
BBN Laboratories. Butterfly Parallel Processor Overview.
1985.

[Bershad et al. 19881
Brian Bershad, Edward Lazowska, and Henry Levy. Presto: A
System for Object-Oriented Parallel Programming. Sohare:
Practice and Experience 18,8 (Aug. 1988), pp. 713-732.

[Burkhart & Millen 19891
H. Burkhart and R. Millen. Performance Measurement Tools in
a Multiprocessor Environment. IEEE Transactions on
Computers 38,5 (May 1989), pp. 725-737.

[Carpenter 19871
R.J. Carpenter. Performance Measurement Instrumentation for
Multiprocessor Systems. In High Performance Computer
Systems, ed. E. Gelenbe. North-Holland, pp. 81-92, 1987.

[Fowler et al. 19881
Robert J. Fowler, Thomas J. LeBlanc, and John M. Mellor-
Crummey. An Integrated Approach to Parallel Program
Debugging and Performance Analysis on Large-Scale
Multiprocessors. Proc. ACM SIGPLANISIGOPS Workshop on
Parallel and Distributed Debugging, May 1988.

[Graham et al. 19821
S.L. Graham, P.B. Kessler, and M.K. McKusick. GproE A
Call Graph Execution Profiler. Proc. ACM SIGPLAN
Symposium on Compiler Construction, June 1982.

[Gupta 19891
R. Gupta. The Fuzzy Barrier: A Mechanism for High Speed
Synchronization of Processors. Proc. 3rd International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-III), pp. 54-63,
April 1989.

[Halstead 19861
R. Halstead, Jr. An Assessment of Multilisp: Lessons from
Experience. International Journal of Parallel Programming
1.5,6 (Dec. 1986).

[Kerola & Schwetman 19871
Teemu Kerola and Herb Schwetman. Monit: A Performance
Monitoring Tool for Parallel and Pseudo-Parallel Programs.
Proc. 1987 ACM SIGMETRICS Conference, May 1987.

[Ma et al. 19871
H.T. Ma, S. Devadas, R. Wei, and A. Sangiovanni-Vincentelli.
Logic Verification Algorithms and Their Parallel
Implementation. Proc. 24th Design Automation Conference,
July 1987, pp. 283-290.

[Malony et al. 19891
Allen Malony. Daniel Reed, James Arendt, Ruth Aydt,
Dominique Grabas, and Brian Totty. An Integrated
Performance Data Collection, Analysis, and Visualization
System. Proc. 4th Conference on Hypercubes, Concurrent
Computers, and Applications, 1989.

124

[Miller &Yang 19871
Barton P. Miller and C.-Q. Yang. IPS: An Interactive and
Automatic Performance Measurement Tool for Parallel and
Distributed programs. Proc. 7th International Conference on
Distributed Computing Systems, September 1987.

[Moeller-Nielsen & Staunstrup 19871
P. Moeller-Nielsen and J. Staunstrup. problem-Heap: A
Paradigm for Multiprocessor Algorithms. Parallel Compuring
4. North-Holland, 1987, pp. 63-74.

[Pfister et al. 19851
G. Pfister. W. Brantley, D. George, S. Harvey, W. Kleinfelder,
K. McAuliffe. E. Melton, V. Norton, and J. Weise. The IBM
Research Parallel processor prototype (RP3): Introduction and
Architecture. Proc. 1985 International Conference on Parallel
Processing, August 1985.

[Rodgers 19861
David P. Rodgers. Personal communication.

[Se@& Rudolph 19851
Zary Segall and Larry Rudolph. PIE: A Programming and
Instrumentation Environment for Parallel processing. IEEE
Software 2,6 (November 1985).

[Sequent 19881
Sequent Computer Systems, Inc. Symmetry Technical
SUmm~.

[Thacker et al. 19881
Charles Thacker, Lawrence Stewart, and Edward Satterthwaite
Jr. Firefly: A Multiprocessor Workstation. IEEE Transaction
on Computers 37.8 (Aug. 1988), pp. 909-920.

[Yang & Miller 19881
Cui-Qing Yang and Barton Miller. Critical Path Analysis for
the Execution of Parallel and Distributed programs. Proc. 9th
International Corference on Distributed Computing Systems,
pp. 366-373, June 1988.

125

