
A System Architecture for Pervasive Computing

Robert Grimm, Tom Anderson, Brian Bershad, and David Wetherall

Department of Computer Science and Engineering
University of Washington, Seattle

{rgrimm, tom, bershad, djw}@cs.washington.edu

Abstract

Pervasive computing, with its focus on users and their tasks
rather than on computing devices and technology, provides
an attractive vision for the future of computing. But, while
hardware and networking infrastructure to realize this vision
are increasingly becoming a reality, precious few applications
run in this infrastructure. We believe that this lack of ap-
plications can be attributed to three characteristics that are
inadequately addressed by existing systems. First, devices
are heterogeneous, ranging from wearable devices to con-
ventional computers. Second, network connectivity often
is limited and intermittent. And, third, interactions typi-
cally involve several autonomous administrative domains. In
this paper, we introduce a system architecture that directly
addresses these challenges. Our architecture is targeted at
application developers and administrators, and it supports
mobile computations, persistent storage, and resource dis-
covery within a single, comprehensive framework.

1 Introduction

Pervasive computing [9, 34] promises a computing environ-
ment that seamlessly and ubiquitously supports users in ac-
complishing their tasks and that renders the actual comput-
ing devices and technology largely invisible. Hardware and
networking infrastructure to realize this vision are increas-
ingly becoming a reality. Cell phones now include a proces-
sor and storage; palm-sized computing devices are widely
available and increasingly powerful; and, devices with new
form factors, such as pads, are about to be commercially
released. Moreover, wireless networking standards, such as
IEEE 802.11 or Bluetooth [3], provide local connectivity for
mobile nodes, while the Internet provides world-wide con-
nectivity.

At the same time, precious few distributed applications
run in this infrastructure. Notable exceptions are electronic
mail for communication and the World Wide Web as a
medium for electronic publishing and as a client interface
for multi-tier applications. We believe that this lack of ap-
plications can be attributed to three main reasons. First,
hardware devices span a wide range of platforms, computing
power, storage capacity, form factors, and user interfaces.
Second, network connectivity generally is limited, intermit-
tent, and, at best, fluctuating. Third, this infrastructure
represents an amalgam of autonomous and independently
managed administrative domains. Taken together, these
three characteristics create an environment in which it is dif-

ficult to design, build, and deploy distributed applications.
A number of research projects have been exploring how

to build distributed applications in a global computing in-
frastructure. Several efforts focus on an object-oriented pro-
gramming model and infrastructure [11, 20, 33] as well as
on extending traditional operating system abstractions to
the wide area [32]. But, these systems are targeted at
conventional computers running conventional operating sys-
tems and are unlikely to scale over the range of devices in
a pervasive computing environment. Other efforts focus
on managing replicated state [15, 17, 29] and on manag-
ing autonomous mobile computations, or agents [23]. While
these technologies are clearly useful, they either address how
to manage distributed state or how to manage distributed
computations. They thus lack an integrated framework for
building applications and require additional services, which,
presumably, are provided by some operating system.

We argue that existing operating system abstractions
and services are neither sufficient nor necessarily appropri-
ate for a pervasive computing infrastructure. Rather, to
overcome the three challenges posed by this infrastructure,
it is necessary to define a comprehensive new computing
platform, or system architecture, that runs across all de-
vices. This architecture needs to be simple, so that it can
be implemented across the range of devices. It needs to,
at a minimum, integrate support for mobile computations
and persistent storage, so that applications can work reli-
ably under limited connectivity. And, it needs to be easy to
encapsulate, so that applications can be effectively secured
and managed while also preserving local autonomy.

To this end, we present a first cut at a system archi-
tecture for pervasive computing that directly addresses the
concerns of heterogeneous devices, limited connectivity, and
autonomous administration in order to make it feasible to
design, develop, and deploy applications on a global scale.
Our architecture is targeted at application developers and
administrators, and it is based on three main abstractions:
Tasks represent computations, tuples represent persistent
data, and environments provide structure and control.

The rest of this paper is structured as follows. Section 2
motivates our research with an example scenario and de-
scribes the challenges posed by a pervasive computing en-
vironment in more detail. Section 3 develops a strategy for
overcoming these challenges and describes the core function-
ality of a system architecture for pervasive computing. Sec-
tion 4 presents the design of our solution. Finally, Section 5
concludes this paper with a discussion of future work.



2 Motivation

A pervasive computing infrastructure provides an attractive
environment for distributed applications other than elec-
tronic mail and the World Wide Web. To better illustrate
the potential of such an infrastructure, consider the follow-
ing scenario, which describes how Alyssa P. Hacker relies on
this infrastructure to seamlessly and unobtrusively provide
personal information management, in the widest sense of the
term.

2.1 An Example Scenario

Since resigning from her position at MIT and moving from
Cambridge to the Bay Area, Alyssa has been highly suc-
cessful as a speaker and consultant on the social impact
of computing technology. Her clients include many local
high-tech companies, professional organizations, as well as
governmental institutions around the world. As part of her
job, Alyssa visits different organizations around the Silicon
Valley almost daily and frequently travels across the world.

For managing her complex schedule and her numerous
contacts as well as for communicating with clients she re-
lies on a number of devices. At her office, Alyssa uses a
conventional PC. In her opinion, keyboard, mouse, and a
window-based interface still represent a very effective user
interface, especially when writing reports and developing
presentations. At home, her PlayStation 3 not only func-
tions as a digital VCR and music jukebox, but also provides
her with access to her contacts, schedule, and electronic
mail. On the road, Alyssa prefers smaller, more portable
devices. Her 4-band cell phone is the most important; in
addition to global voice communications, it lets her access
her personal information manager and provides her with a
music player to entertain her during those long international
flights. At a client’s location, she typically uses the client’s
computing facilities to make presentations, and, when stay-
ing at a hotel, she uses the in-room information appliance
to access her office workspace. But, for travel to less tech-
nologically developed parts of the world, she also relies on a
pad with an optional keyboard.

Across all these devices, Alyssa can access basically the
same information and functionality. Her schedule and con-
tacts are automatically synchronized between them. And,
when accessing her workspace from a client’s computer or a
hotel’s information appliance, she is presented with her desk-
top, featuring the same applications, data, and customiza-
tions as those on her office PC. Furthermore, many of the
tasks centered around personal information management are
performed automatically and often without human interac-
tion. For example, after agreeing on a meeting, the actual
date and time for the meeting are automatically scheduled
by her and her client’s personal information managers. And,
her manager reacts to a successfully scheduled out-of-town
meeting by making the necessary travel arrangements, book-
ing appropriate flights and hotels, all based on Alyssa’s pref-
erences, but without directly involving her (besides notifying
her of the results).

2.2 Challenges

While this scenario represents an attractive application of
pervasive computing, it also poses three major challenges
in the form of heterogeneous devices, limited connectivity,
and autonomous administration. Computing devices cover

a wide range of form factors, ranging from traditional com-
puters to information appliances to small, mobile devices,
such as cell phones, and employ different user interfaces,
ranging from window- and keyboard-based to pen-based to
voice-based interaction. They also differ in computing plat-
form and in available computing power, storage capacity,
and network connectivity. At the same time, given current
technology trends, we can realistically expect that all de-
vices in this infrastructure command reasonable amounts of
processing power, storage capacity, and networking band-
width [9].

Connectivity is affected by several factors. First, in
a global network the speed of light becomes tangible—a
roundtrip between diametrically opposed points on earth
takes at least 0.13 seconds. Second, many nodes, notably
mobile devices using wireless technology, connect through
relatively high latency, low bandwidth links and, for tech-
nical as well as economical reasons, cannot remain contin-
uously connected. Third, as the overall networking infra-
structure is composed of many smaller networks, yet used
as a single, shared medium, changes in load or location typ-
ically result in fluctuations of available bandwidth. Finally,
node and network failures [18, 26] are indistinguishable from
lost connectivity and further limit access to resources. As
a result, connectivity is limited, intermittent, and, at best,
fluctuating. However, it is not necessarily unpredictable.
For example, network connectivity for Alyssa’s cell phone
and pad depends on her current location and can thus be
correlated to her schedule. More generally, overall Internet
traffic patterns can be correlated to human factors, such as
working hours and lunch breaks [30].

The need for autonomous administration is a direct re-
sult of the structure of a global computing infrastructure,
which spans different organizations and is composed of many
smaller networks. For example, in our scenario, Alyssa re-
lies on the computing facilities in her home, at her office,
at a client’s location and at hotels. The different facilities
typically cooperate in exchanging network traffic and in pro-
viding application services, for example, to let a personal
information manager schedule meetings and make reserva-
tions. But, each network is usually owned by a separate
organization and thus managed independently.

3 Strategy

Individually, heterogeneous devices, limited connectivity,
and autonomous administration raise the specific issues of
how to effectively implement applications across the range
of devices in a pervasive computing infrastructure, how to
reliably provide application functionality even when connec-
tivity is limited and intermittent, and how to safely and
securely deliver application services across administrative
domains while also preserving local autonomy. Taken to-
gether, heterogeneous devices, limited connectivity, and au-
tonomous administration make us question the very way ap-
plications are structured.

The approach used for client-server and multi-tier com-
puting statically partitions application logic amongst nodes
and relies on distributed state for coordinating the different
nodes. But, limited connectivity and autonomous adminis-
tration exacerbate the problems associated with managing
distributed state [24] in a statically partitioned system and
raise serious doubts about the scalability of this approach
in a global computing infrastructure.



Several projects [11, 20, 33] address the inflexibility of
a static application partitioning by using an object-oriented
programming model, together with an infrastructure specif-
ically designed for wide-area computing. As a result, these
systems can hide some of the complexity of building glob-
ally distributed applications and offer more flexibility than
client-server or multi-tier computing. But, the very flexibil-
ity of a largely unconstrained object-based framework eas-
ily leads to unmanageable systems. Furthermore, as these
projects are mostly targeted at conventional computers run-
ning conventional operating systems, it is unclear how they
would scale over the range of devices in a pervasive comput-
ing environment.

Mobile code systems, such as Java [13, 21], make it
possible to dynamically move functionality between nodes
and can thus be used to overcome the limitations of a
static application partitioning. Furthermore, by providing
a platform-independent execution environment, they repre-
sent an attractive solution to the heterogeneity of devices
found in a pervasive computing infrastructure. At the same
time, mobile code systems, by themselves, lack a compre-
hensive programming model. Agent systems [23] provide
such a programming model for mobile computations. But,
they also lack integration with state-based services as well as
specific infrastructure for building, deploying, and managing
application on a global scale.

We argue that a viable alternative for structuring perva-
sive computing applications is to build them within a system
architecture that provides a select few, yet integrated ser-
vices and that is specifically targeted at this environment.
The system architecture, in turn, relies on a mobile code
system to provide the basic, platform-independent execu-
tion environment. Such an architecture needs to be simple,
so that it can be implemented across the range of devices
in a pervasive computing infrastructure. It also needs to be
easy to encapsulate, so that applications can be effectively
secured and managed while also preserving local autonomy.
Furthermore, we argue that the core services of this sys-
tem architecture should be support for mobile computations,
persistent storage, and discovery.

Mobile computations address three major needs in a
global computing infrastructure. First, they enable the au-
tomatic distribution and installation of applications as well
as application upgrades. As a result, Alyssa does not need
to worry about maintaining her personal information man-
agement software; rather, upgrades are distributed auto-
matically across all her devices. Second, they let applica-
tions move between nodes. So, when Alyssa accesses her
workspace from a hotel in India, her applications can ac-
tually move to the in-room information appliance. Third,
mobile computations can serve as software agents and au-
tonomously perform tasks on remote nodes. For example,
Alyssa’s personal information manager can use an agent to
make travel arrangements for her, even while it is discon-
nected from the travel agency’s site.

Persistent storage is obviously necessary to store appli-
cation data, such as Alyssa’s schedule and contacts. But, it
is also useful for saving the state of mobile computations so
that they can survive node failures as well as reliably mi-
grate between nodes. And, persistent storage can serve as a
repository for the exchange of data in a loosely coupled sys-
tem, thus simplifying the interaction between mobile com-
putations. These uses suggest that persistent storage should
be implemented by an object store that provides function-
ality closer to tuple spaces [12, 35] than to the raw bytes

accessible through conventional file systems. In particular,
the store should preserve the structure of application data,
provide associative access to this data, and support atomic
operations as well as transactions.

Discovery [1, 2, 7] provides applications with access to
resources whose location or name they do not necessarily
know, but whose characteristics match their needs. In a per-
vasive computing environment, discovery lets mobile devices
access resources on the network. For example, discovery lets
Alyssa’s cell phone access a hotel’s in-room information ap-
pliance and synchronize schedule and contact information
with it. But, discovery should also be applied to resources
local to a device, excluding the services for mobile compu-
tations and persistent storage. For example, an instance
of Alyssa’s personal information manager can use discovery
to determine the type of user interface supported by the
hosting device and consequently adjust how information is
communicated to Alyssa.

4 Our Architecture

Our architecture is based on three main abstractions: Tasks
represent computations, tuples represent persistent data,
and environments provide structure and control. These ab-
stractions are similar to those of the ambient calculus [5, 6].
But, while the ambient calculus defines a formal framework
for reasoning about mobile computations in a global net-
work, we focus on building practical systems for pervasive
computing.

Tasks execute code, possibly, using multiple threads, and
have their own, private state. The basic operations on tasks
are create, start, and destroy, as well as check-point to save
a task’s execution state and move to transfer a task to a dif-
ferent location. Tasks, like processes in traditional operating
systems, are isolated from each other, and local tasks inter-
act by exchanging tuples. Tuples are immutable records and
are strongly typed in that both their fields and the tuples
themselves are typed. The basic operations on tuples are
write, read, and take (which reads a tuple and deletes it in
one atomic operation). Furthermore, tasks can request to
be notified when (specific) tuples are added or written.

In addition to tasks and tuples, our architecture needs a
way to group computations and data, to change such group-
ings, to support interaction between different groupings, and
to move both computations and data. It also needs to con-
trol the resources consumed by tasks and tuples and to en-
sure the security of all operations. Environments address
these concerns by providing structure and control.

Environments provide structure for computations and
data by encapsulating tasks, tuples, and other environments.
Tasks execute within an environment and, by default, access
only tuples in the same environment. But, in order to enable
remote interaction, tasks can explicitly request to access tu-
ples in other environments. Besides the obvious create and
destroy operations, the basic operations on environments are
move, which moves an environment and all its contents ei-
ther within a local hierarchy or to a different location, and
open, which moves all contents of an environment into the
enclosing environment and deletes the emptied environment.
Furthermore, tasks can request to be notified when other en-
vironments are moved into or out of their environment.

Like nested process structures in other systems [4, 10,
31], the hierarchical nesting of environments provides con-
trol. In particular, environments use leases [14] and quotas



to limit the resources available to enclosed tasks, tuples, and
other environments and to facilitate the effective reclama-
tion of these resources. To ensure security, they also subject
all relevant operations to access control and auditing.

To simplify the task of building reliable applications, all
operations on tasks, tuples, and environments are fully se-
rializable and support transactions to group several opera-
tions into a single, atomic unit. Furthermore, environments
provide persistent and recoverable tuple storage as well as
the ability to restart tasks from saved check-points. Because
operations are fully serializable, we assume that environ-
ments that directly contain tasks or tuples reside on a single
node or across a local cluster of cooperating nodes. Applica-
tions that require data to be replicated across several sites
thus need to implement their own replication algorithms,
though we plan to support a default replication mechanism
as part of our implementation. Environments that solely
contain other environments may span several nodes. Such
environments can be used to provide functionality similar to
that of distributed virtual machines [27] within our architec-
ture by enforcing a uniform policy across all nodes within
an organization and by providing a single point of adminis-
trative control.

As described so far, our architecture represents a closed
system in that it provides just the necessary abstractions to
represent computations and data as well as to provide struc-
ture and control for them across the network. By default,
all other abstractions and services, such as a user interface
or an electronic mail service, are outside the scope of our ar-
chitecture and inaccessible from within it. This closed world
assumption [28] is a conscious design decision and trades
off scalability and manageability (including security) against
flexibility. But, as discussed in Section 3, tasks, as well as an
implementation of the architecture itself, legitimately need
to discover and access such resources, whether they are avail-
able locally or within the current networking environment.
Environments thus include a well-defined interface for dis-
covering and accessing external resources, which subjects
access requests to the same hierarchical controls as those for
internal resources.

Naming in our architecture generally is associative. As
for tuple spaces, we use templates to describe tasks, tuples,
environments, as well as external resources, and, if several
resources match a specified template, any of the matching
resources can be selected. Generally, a resource matches
a template if its type is a subtype of the template and if
all fields specified by the template match the corresponding
fields of the resource. Field matching is by equality for arbi-
trary objects, though simple comparison operations, such as
larger-than or matches-pattern, are supported for primitive
types, such as numbers or strings. To simplify replication,
tasks, tuples, and environments can also be named by a
unique identifier [19].

To summarize, our architecture is based on three abstrac-
tions. Tasks represent computations, tuples represent data,
and environments provide structure and control by encap-
sulating tasks, tuples, and other environments. Because of a
closed world assumption, all other resources, by default, are
outside the scope of our architecture; though, they can be
made accessible through a well-defined discovery interface.
Operations are atomic and may use transactions. Finally,
naming is associative, using simple matching rules.

4.1 Discussion

Our design reflects the three challenges of heterogeneous de-
vices, limited connectivity, and autonomous administration
as follows. First, our architecture has a small application
programming interface (API); it is based on only three main
abstractions with relatively simple operations. The small
API makes it possible to implement the architecture on de-
vices with limited resources, such as cell phones. At the
same time, it does not prevent high-performance implemen-
tations, such as a cluster of workstations that replicates all
tuples in an environment and load-balances tasks across the
cluster. Consequently, applications, including Alyssa’s per-
sonal information manager, can be written against a single
API and can use the same binaries across all devices; though,
they need to support the different user interfaces.

Second, environments integrate computations with per-
sistent data and provide mobility for both. Applications and
their data can thus easily move between nodes and avoid
slow links or a future loss of connectivity. So, as pointed
out in Section 3, while Alyssa is staying at a hotel in India,
her applications and data can actually move to the in-room
information appliance. And, her personal information man-
ager can send out a software agent to make travel arrange-
ments for her return to the USA. Furthermore, the use of
typed records, that is, tuples, and associative naming simpli-
fies the exchange of data between applications. For example,
Alyssa’s personal information manager can easily exchange
schedule information with a client’s scheduling agent, sim-
ply by granting it (limited) access to the tuples representing
Alyssa’s schedule.

Third, nodes in our system are locally autonomous. Any-
one can run an implementation of our architecture on any
node and populate it with tasks, tuples, and environments.
Different nodes can use discovery to connect with each other,
and only the participants need to agree on granting each
other access. Furthermore, the nesting of environments and
discovery in an otherwise closed system makes it possible to
effectively control applications. For example, the in-room
information appliance in Alyssa’s hotel room can use this
nesting to ensure that her applications only consume a rea-
sonable amount of resources, only interact with networked
services she is authorized to use, such as the hotel’s printer,
and are purged from the appliance after Alyssa checks out
of the hotel.

5 Future Work

We have presented a first cut at an architecture for per-
vasive computing. Our architecture combines the manage-
ment of mobile computations, the management of persistent
data, and resource discovery into a comprehensive frame-
work and uses a small, yet powerful API based on tasks, tu-
ples, and environments. To evaluate whether this design, in
fact, meets the challenges of heterogeneous devices, limited
connectivity, and autonomous administration, we obviously
need to build an implementation as well as applications that
run within it. As part of this effort, we plan to address three
important issues, namely, security, routing, and validation.

First, to be effective, security in a global computing in-
frastructure must be cryptographically strong. This raises
the questions of how to effectively manage the necessary
keys [22], how to convey authorization [8], and how to en-
sure the integrity of mobile computations and their data [16].
Second, we expect the transfer of computations and data to



be a relatively frequent event in a global computing infras-
tructure. But, while our architecture provides basic support
for moving tasks and environments between nodes, it does
not provide a dedicated routing service. This raises the ques-
tion of how to efficiently support routing, especially when
nodes are only intermittently connected, thus suggesting a
store-and-forward architecture akin to the one used for elec-
tronic mail [25]. Third, while a qualitative evaluation cer-
tainly is an important part of an implementation effort, it
is not sufficient, by itself, to validate a design. It is thus
necessary to develop benchmarks which capture important
performance aspects of a pervasive computing environment
and which, ideally, also enable the comparison between dif-
ferent architectures.
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