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Abstract—Several analytic models describe the steady-state throughput a dramatic performance impact.

of bulk transfer TCP flows as a function of round trip time and packet This paper proposes a new model for TCP performance that
loss rate. These models describe flows based on the assumption that they t tes th Its f both cl f dels. | ti
are long enough to sustain many packet losses. However, most TCP trans-iNt€grates the results irom both classes of models. [n parucu-

fers across today’s Internet are short enough to see few, if any, losses andlar, we extend the steady-state results from [34] by deriving new
consequently their performance is dominated by startup effects such as models for two aspects that can dominate TCP latency: the con-
connection establishment and slow start. This paper extends the steady- : :

state model proposed in [34] in order to capture these startup effects. The ,neCtl(_)n eSt‘,”lb“Shmem three_way handshake a”O,' slow start. Us-
extended model characterizes the expected value and distribution of TCP INg simulation, controlled measurements, and live Web traces
connection establishment and data transfer latency as a function of trans- we show that our new slow start model works well for TCP
fer size, round trip time, and packet loss rate. Using simulations, con- flows of any Iength that suffer no packet losses. and the model
trolled measurements of TCP transfers, and live Web measurements we '

show that, unlike earlier steady-state models for TCP performance, our ex- 110M [34] often works well for flows of any length that do suffer

tended model describes connection establishment and data transfer latency packet losses. Thus our combined approach, which integrates

under a range of packet loss conditions, including no loss. these two models, is appropriate for predicting the performance
of both short and long flows under varying packet loss rate con-
I. INTRODUCTION ditions. In addition, we suggest a technique for estimating the

Many of today’s popular Internet applications, including théistribution of of data transfer latencies. _
World-Wide Web, e-mail, file transfer, Usenet news, and remote T he rest of this paper is organized as follows. Section Il de-
controls a large fraction of flows, packets, and bytes that traVkls descended. Section Il compares the connection establish-
over wide-area Internet paths [41, 10]. ment model with simulations and Section IV compares the data

Recently researchers have proposed a number of analffifhsfer model to simulations, TCP measurements, and HTTP
models to characterize TCP performance in terms of round-tHgces. Finally, Section V summarizes our conclusions.
delay and packet loss rate [12, 24, 18, 27, 22, 25, 21, 34, 30,

33, 40, 9]. Beyond achieving a better understanding of the sen-

sitivity of TCP performance to network parameters, these mod: Assumptions
els have helped inform the design of active queue manageme
schemes [13, 32] and TCP-friendly multicast protocols [6, 42].

Il. THE MODEL

n

'Fhe extended model we develop here has exactly the same
The analytic models proposed to date can be split into t s(;mllptlons e:bggt tr;ien%[])mptﬁ an_d netw<t)_rk ads the .Sbtea?%' state

broad classes: models for steady-state bulk transfer throughgﬁcf, € ptr_esen'edlrl ['I ] | g. 0 OV\?ng section tlescn ets tetsfj

and models for short flows that suffer no packet loss. assumptions n detatl, inciuding a tew assumptions not state

The majority of models fit in the first class; they focugxplicitly in [34], since these details can have a large impact on

on characterizing bulk transfer throughput. While these mo 1e latency of short TCP flows. Throughout our presentation of
i:f model we use the same terminology and notation as [34].

els are very successful at predicting steady-state through
[5, 38], many re_cent studies have noted that the majority Tl Assumptions about Endpoints
TCP flows traveling over the wide-area Internet are very short,
with mean sizes around 10KB and median sizes less than 10KEirst, we assume that the sender is using a congestion control
[11, 4, 23, 16, 41, 10]. Because these flows are so short, tle@gorithm from the TCP Reno family; we refer readers to [37,
often spend their entire lifetime in TCP’s slow start mode, witt2, 20] for details about TCP and Reno-style congestion control.
out suffering a single loss. Since the steady-state models assWiidle we describe the model in terms of the simpler and more
flows suffer at least one loss, they are undefined for this comm@emmon TCP Reno algorithm, it should apply just as well to
case. newer TCP implementations using NewReno, SACK, or FACK
The second class of models focuses on these short flows {Adt 28, 26]. Previous measurements suggest the model should
suffer no packet losses [18, 24, 35]. However, these modbk even more faithful to these more sophisticated algorithms, as
do not consider delayed acknowledgments, sender or receivey are more resilient to bursts of packet losses [27, 5].
buffering limitations, alternative initial congestion windows, or Since we are focusing on TCP performance rather than gen-
losses during connection establishment, each of which can haval client-server performance, we do not model sender or re-



ceiver delays due to scheduling or buffering limitations. Instead, i Eailures {\

we assume that for the duration of the data transfer, the sender \* Passive

sends full-sized segments (packets) as fast as its congestion win- * Opener

dow allows, and the receiver advertises a consistent flow control S?/V*

window. Similarly, we do not account for effects from the Nagle '

algorithm or silly window syndrome avoidance, as these can be OAC“"e _

minimized by prudent engineering practice [17, 29]. penet /}’ Failures
We assume that the receiver has a “typical” delayed acknowl- * -~

edgment implementation, whereby it sends an acknowledgment Connection Pcﬂ‘*

(ACK) for everyb = 2 data segments, or whenever its delayed Effectively —= 9@\“

ACK heartbeat timer expires, whichever happens first. Although Established Aok

Linux 2.2, for example, uses a more adaptive implementation of x

delayed ACKs, for very short flows this technique can be mod-

eled well withb = 1, and for longer flows the effect of this

approach is only to shave off at most one or two round trips. Fig. 1. TCP connection establishment example.

A.2 Assumptions about the Network B. Model Overview

L Our model describes two aspects of TCP performance. First,
We model TCP behavior in terms of “rounds,” where a rourw P P

tarts when th der beains the t . f ind ﬂe{derive expressions for the expected value and distribution of
starts when the sender begins the transmission ol a window;gl, required for the connection establishment handshake that

packets and ends when the sender receives an acknowle_dgrgg ins a TCP connection. Second, we derive an expression for
for one or more of these packets. We assume that the timeyf expected latency to transfer a given amount of data and then

S?nd al tge p?ﬁ?tf;ﬁ adW|nSow '? smalle(; fchz_indthe dgratt"a%scribe our methodology for extrapolating the distribution of
ot around and that the duration ot a round 1S INdependent giq o sfer latency. Separating connection establishment la-

Eﬂ.e W'ndOV\ll ngeé Notehtha';r:/v ':,T TC.:P R?P(I)I CO???SUO,[?‘ conttr ncy from data transfer latency allows us to apply the model
IS can only be true when the flow 1S not fully utilizing the pa ?o applications that establish a single TCP connection and use it

bandwidth. for several independent data transfers.
We assume that losses in one round are independent of the

losses in any other round, while losses in the same round &reConnection Establishment

correlated, in the sense that any time a packet is lost, all further i . . .
packets in that round are also lost. These assumptions are idedFVery successful TCP connection begins with a “three-way

izations of observations of the packet loss dynamics of paths lgndshake” in which the endpoints exchange initial sequence
ing FIFO drop-tail queuing [7, 36, 44] and may not hold for link@umbers. I_:lgure 1 shows an _example. The |r_1|t|at|ng host, typi-
using RED queuing [15] or paths where packet loss is largefflly the client, performs aactive operby sending a SYN seg-
due to link errors rather than congestion. We assume that fHENt With its initial sequence number, The server performs
probability of packet loss is independent of window size; agaid Passive openwhen it receives a SYN segment it replies with

this can only hold for flows that are not fully utilizing a link. @ SYN segment of its own, containing its initial sequence num-
ber,y, as well as an ACK for the active opener’s initial sequence

Whenl m_odtﬁhn(?_ dattf?‘ tre}nsfer, w%anume that p"f‘r%k.et loss haliber. When the active opener receives this SYN/ACK packet,
pens only in the direction from Sender {o reCeIver. ThIS asSUMP i, o ys that the connection has been successfully established.
tion is accepta_lble becau_se low levels of ACK loss have OnlyItaconfirms this by sending an ACK of the passive opener’s ini-
small effect with large windows, and network paths are oft al sequence number. At each stage of this process, if either

mu;:_h mofrig?(nﬁesteilm ;ge dgectlon of datlf‘ II?W thsn thef Ié\rty does not receive the ACK that it is expecting within some
rec 'Og 0 ! ?’lNd[ - 1 e(t:_ause ?ak;' eh OSSt as a gy timeout, T, initially three seconds [8], it retransmits its
more drastic result during connection establishment, we mod&l\ .1\d waits twice as long for a response.

tp;;:;e;r:]oes;ln both directions when considering connection ®570 model this process in the presence of packet loss in either

direction, we defing; as the “forward” packet loss rate along
the path from passive opener to active opener (“forward” since
A.3 Assumptions about the Transfer this is usually the primary direction of data flow) apdas the
“reverse” packet loss rate. L&T'T be the average round trip
Though we share the assumptions of [34] about the endpoifieday between the two hosts.
and network, we relax several key assumptions about the dat®ur model of the three-way handshake consists of the follow-
transfer. Namely, we allow for transfers short enough to sufferg stages. First, the active opener transmits its $¥NO times
a few packet losses, or zero losses, and thus to be dominatedibguccessfully, until thé + 1)-th SYN arrives successfully at
connection establishment delay and the initial slow start phagbe passive opener. Next the passive opener will ignore further



SYNs from the active opener while it repeatedly retransmits idlsta transfer. From this we can deduce the time spent in slow
SYN/ACK until it receives a response. In general it will send itstart, the final congestion window in slow start, and thus the ex-
SYN/ACK j > 0times unsuccessfully until finally thg +1)-th  pected cost of loss recovery, if any. Then we use the steady-state
SYN/ACK arrives successfully at the active opener. For the puhroughput from [33] to approximate the cost of sending the re-
poses of the model, we consider the connection to be establisheining data, if any. Finally, we add any extra cost from delayed
at this point, since, in most application protocols, immediateACKs. We discuss each of these aspects in turn.
after sending the AClg + 1, the active opener sends a data se%- »
ment to the passive opener that contains a redundantA€k.  D-1 Initial Slow Start

Let P, (i, j) be the probability of having a three-way hand- \we assume that the transfer is either the first transfer of a con-

%r\](a|\l|(§ ?orl)llg\?v%% g;’nosr'lse“ggcgésg?jcgyﬁ'I‘#gﬁgv\}g%ngym'g(g%“ ection, or a later transfer on a connection that has experienced

j failures transmitting SYN/ACKSs, followed by one successfullo losses yet. Under these circumstances, TCP begins in slow
SYN/ACK. Then start mode, where it quickly increases its congestion window,

cwnd, until it detects a packet loss.

Pu(i,3) =y - (L =pr) - pp - (1 —py) @ B[T,,], the expected latency for the initial slow start phase,
depends on the structure of the slow start episode. There are two
The latencyLy (i, j), for this process is important cases. In the first case, the sendewisd grows con-
_ tinuously until it detects a packet loss. In the second case, the
o =L . Eh . sender'scwnd is eventually bounded by a maximum window,
Ln(ig) = RIT+ ZQ Ts | + ZZ Ts Winae, Imposed by sender or receiver buffer limitations. To de-
k=0 k=0

, ‘ termine which case is appropriate, we need to calculgtk;],

= RIT+(2' - 1T + (2 - VT the number of data segments we expect the sender to send before
RTT + (2" + 27 = 2)T @  losing a segment. From this we can dedfi§#’, ], the window

we would expect TCP to achieve at the end of slow start, were
there no maximum window constraint. B[Wss] < Wiz,

then the window limitation has no effect, a@flT,] is simply

the time for a sender to serfd,;] in the exponential growth
mode of slow start. On the other handBfW;] > Wi, then
E|[Ts] is the time for a sender to slow start uptond = Wiqa

and then send the remaining data segments at a rdfé,gf.

Most TCP implementations abort connection establishment 8€gments per round.

tempts after 4-6 failures. For loss rates low enough that mosf 'St e calculateF[d;,], the number of data segments we
ect to send in the initial slow start phase before a loss occurs

handshakes succeed before TCP gives up, it can be shown ?ﬁgf including the lost segment). Lete the data segment loss
(4) is a good approximation for the expected handshake timefate. Ifp = 0, we expect to be able to send dlsegments in

slow start, saf[dss] = d. On the other hand, i > 0, and we
L —pr n L—p;y 2) (4) assume that the loss rate is independent of sender behavior, then
1- 2pr 1- 2pf

The probability thatZ;,, the overall latency for a three-way
handshake episode,tiseconds or less is:

PlLy<t] = > Puli,j) (3)
Lp(i,5)<t

E[Ly] = RTT + T, (

d—1
This model assumes the TCP implementation complies with Eldss] = (Z (1-p*-p- k) +(1-p)?-d
the TCP specification [37]. It does not model non-compliant k=0
implementations, such as current versions of Linux 2.2, that . a-@-pHa-p
. . . ; = +1 (5)
achieve slightly better performance by responding to retransmit- p

ted SYN segments with retransmitted SYN/ACK segments.

Next we deduce the time spent in slow start. During slow
D. Data Transfer start, as always, each round the sender sends as many data seg-
. . . ___ments as itgwnd allows. Since the receiver sends one ACK for
As defined here, a data transfer begins when an applicatigjery b-th data segment that it receives, each round the sender

places data in its send buffer and ends when TCP receivesadihget approximatelywnd/b ACKs. Because the sender is in
acknowledgment for the last byte in the buffer. We assume ttsdow start, for each ACK it receives, it increases:is:d by one

; ; ; it ; ment. Thus, if we usevnd; to denote the sender’s conges-
during this transfer the sending application places data in e Window at the be?inning of rounidand, following [1], use

send buffer quickly enough that the sending TCP can sendqaﬁJ denote the rate of exponential growtheafnd during slow
fast as its window allows. start , we have:

We decompose the data transfer latejf], for d data seg-
ments into four aspects: the initial slow start phase, the resulting
packet loss (if any), the transfer of any remaining data, and the
added delay from delayed acknowledgments. We begin by cal- = v-cwnd; ©)

culating the amount of data we expect to send in the initial slow 5 sender starts with an initiakund of w; segments, then
start phase before encountering a packet loss or finishing thdata;, the amount of data sent by the end of slow start round

cwndit1 = cwnd; + cwnd;/b
= (1+1/b)-cwnd;



i, can be closely approximated by a geometric series as D.2 The First Loss

o ) 2 el For some TCP flows, the initial slow start phase ends with the
sdotai = Wit Wiy wET vy () detection of a packet loss. Since slow start ends with a_Packet

A @© lossifand onlyif aflow has at least one loss, the probability of

y—-1 this occurrence is:
Solving for ¢, the number of slow start rounds to transfer lss = 1—(1—p) (16)
ssdata; segments of data, we arrive at:

i = o (SSdat(li('y i 1) © . There are two ways that TCP detects losses: retransmission

= %y w1 timeouts (RTOs) and triple duplicate ACKs. [34] gives a deriva-

) . tion of the probability that a sender in congestion avoidance will
From (7) and (9) it follows thai¥,,(d), the window TCP detect a packet loss with an RTO, as a function of packet loss

achieves after sendingsegments in unconstrained slow starkate and window size. They denote this probability@, w):
is

dlv — 1 o 1+0-pPQ-(01-p»?)
Wes(d) = wi- (th) + 1) oyl Q(p,w) = min (1, -0 -p")/a-0-p? 17)
_ do-Y 4w @0y  The probability that a sender will detect a loss via triple dupli-
v v cate ACKs is simplyl —Q(p, w). AlthoughQ (p, w) was derived

under the assumption that the sender is in congestion avoidance

Given typical parameters of = 1.5 andl < w; < 3, équa- mode and has an unbounded amount of data to send, our expe-
tion (10) implies that¥s(d) ~ §. Put another way, to reachrience has shown that it is equally applicable to slow start and
any congestion windowy, a flow needs to send approximatelsenders with a limited amount of data. This is largely because
3w. Interestingly, this implies that to reach full utilization for &) p, w) is quite insensitive to the rate of growth @fnd, and
bandwidth-delay product like 1.5MbpgOms = 13KBytes, & senders with a limited amount of data are already at high risk
TCP flow will need to transfer 39KBytes, a quantity larger thagyr RTOs because they will usually have small windows. In
most wide-area TCP flows transfer. From this it is easy to Sggactice, we suspect that the fast recovery strategy used by the
why many Internet flows spend most of their lifetimes in sloWender has a far greater impact; senders using SACK, FACK,

start, as observed in [3]. . ; .
From (5) and (10) we can calculate the window size we wou NewReno should be able to achieve the behavior predicted

expectto have at the end of slow start, if we were not constrain@4 @ (», w), while Reno senders will have difficulty achieving

by Winae: this performance when they encounter multiple losses in a sin-
gle round [26, 27]. ) ) _
Ew,,] = Zlsl=D  wn a1  The expected cost of an RTO is also derived in [34]:
v v
G(p)Tt
so we can now determine whether we expeetd to be con- E[Z70] = l(f)po (18)

strained by during slow start. . . . . .
If E[IW,.] T>MI§V t%en slow start proceeds in two phasesWhereTO is the average duration of the first timeout in a se-
88 max H

First, cwnd grows up toW,,a.; from (10) the flow will send g;_ence of one or more successive timeouts, @) is given
g = Wmae—wi (12) G(p) =1+ p+2p° +4p® + 8p* + 16p° + 32p° (19)
y—-1
segments during this phase. From (9), this will take The expected cost of a fast recovery period depends on the
Wonan number of packets lost, the fast recovery strategy of the sender’s
ri = log, (—wl )+1 (13)  TCP implementation, and whether the receiving TCP imple-

. . mentation is returning selective acknowledgment (SACK) op-
rounds. During the second phase, the flow sends the remaining . )
data at a rate of,,., packets per round, which will take lons. In the best case, where there is a single loss or the sender

. can use SACK information, fast recovery often takes only a sin-
r2o= (dss — d1) (14) gle RTT; in the worst case, NewReno will require oRd™T’
mas for each lost packet. Our experience indicates that which of

rounds. these possibilities actually occurs is usually not important to the

Combining (12), (13), and (14) for the case where when ¢ predictions, so, as in the model of [34], for the sake of
E[Wgs] > Wpae, and using (9) for the simpler case where. licit that fast I tak inal
E[We] < Wi, the time to sendE[d,.] data segments in Simplicity, we assume that fast recovery always takes a single

i i RTT.
slow startis approximately Combining these results, the expected cost for any RTOs or
RTT - [1 (WL) L1t fast recovery that happens at the end of the initial slow start
%87\ wy phase is:
- 1 (E[dss] _ WVm’Y‘z%;wl '
E[TSS] = whenE[Wss] > Winaa (19) Tioss = lss- (Q(pyE[Wss]) . E[ZTO]+
Eldss —1
RTT -log,, (FHef0=2 4-1) (1 — Q(p, E[Wss])) - RTT) (20)

WhenE[Wss] S Winaz



D.3 Transferring the Remainder Another source of error derives from the fact that (22) does

In order to approximate the time spent sending any data E: model SISW Sti;} afther retranimlgsmndtlmeou:]s (Fggs)' Folrl
maining after slow start and loss recovery, we estimate tifeS ates above 1%, the error this introduces should be small,

amount of remaining data and apply the steady-state model fraince for these loss rates congestion avoidance has throughput

34). that is similar to that of slow start after RTOs. For lower loss
The amount of data left after slow start and any following log@tes, RTOs should be uncommon. However, when they occur,
recovery is approximately their long delays may overwhelm the details:afnd growth.
Finally, RTO durations vary widely. Using an average RTO to
Eldeq] = d — E[dss] (21)

model the duration of a specific short TCP flow will introduce
significant error.

This is qn_ly an_approxmatlon, because_ the act_ual amount6f4 Delayed Acknowledgments
data remaining will also depend on where in the window the loss _ _
occurs, how many segments are lost, the size of the congestioRelayed acknowledgments comprise the final component of
window at the time of l0sS¥,,.., and the recovery algorithm. TCP latency that we consider in our model. There are a number
However, since the model seems accurate in most cases eé¥egircumstances under which delayed acknowledgments can

with this simplification, for the sake of simplicity we use Equacause relatively large delays for short transfers. The most com-
tion (21). mon delay occurs when the sender sends an initiadd of 1

When there ar&[d.,] > 0 segments left to send, we approxiMSS. In this case the receiver waits in vain for a second seg-
mate the time to transfer this data using the steady-state througient, until finally its delayed ACK timer fires and it sends an
put model from [33]. This model gives throughput, which wa\ck '|n BSD-derived implementations this delay is uniformly

will denote R(p, RTT, Ty, Winaz), s a function of loss rate, .. . P
round trip time,RT'T, average RTOT}, and maximum window distributed between Oms and 200ms, while in Windows 95 and

constraintV,, . : Windows NT 4.0 this delay is distributed uniformly between
100ms and 200ms. Delayed ACKs may also lead to large de-
122+ W 1Q(p, W () lays when the sender sends a small segment and then the Nagle
RTT(3W (p)+1)+ LRI algorithm prevents it from sending further segments [17, 29],
B= it W(p) < Wmaz 22) or when the sender sends segments that are not full-sized, and
1op | Wonew 10 (p,Winas) the receiver implementation waits for two full-sized segments
RTT(E Winas + gyl +2)+ 227 mas) G@IT) before sending an ACK.
e otherwise For our simulations and measurements, when senders use an

o _ o _ initial cwnd of 1 MSS we model the expected cost of the first de-
_WTﬁfeQ(p, wt) |§g|ven lnt_(17)G_(%) is g“tlgiﬂ lnt_(19), afﬂl(W(P) IIgt}é/ted ACK, which we denot&[T}.;...], as the expected delay
IS the expecied congestion winaow at the ime 0f l0SS evefishyeen the reception of a single segment and the delayed ACK
when in congestion avoidance, also from [33]: for that segment — 100ms for BSD-derived stacks, and 150ms

_ > for Windows.
W(p):2+b+\/8(1 p)+(2+b) 23

3b 3bp 3b D.5 Combining the Results

ina th its for th dth h . To model the expected time for data transfer, we use the sum
Using these results for the expected throughput, we approgf-the expected delays for each of the components, including

mate the expected time to send the remaining d&ié,.] > 0, (15), (20), (24), and the delayed ACK cost:
as

E[Tca] = Eldcal/R(p, RTT, To, Wimaz) @4 E[T] = E[Tss] + E[Tioss] + E[Teal + E[Tuerack] (25)

Using a model for steady-state throughput to characterize the
cost of transferring the remaining data introduces several errgs. Modeling Distributions

First, when the sender detects a loss in the initial slow starLI_he model as given in (25) is a prediction of latency given

phase, itswnd will often be much larger than the steady—statﬁ1 rticular parameters experienced b ricular flow. In
averagecwnd. Combining (10) and the analysis of [27], the € particuiar parameters experienced by a particu’ar Tow.

q il h to detect hi sp | indi our experience, for a set of transfers of the same size over the
sender will have o detect roughlye, \/3/(2bp) 0SS INAICa same high bandwidth-delay path, the most important determi-

tions to bringcwnd from its value at the end of slow statt/3p, nants of overall latency are the number of losses, the average
to its steady state valug/3/(2bp). For loss rates of 5% andtimeout duration, and the cost of delayed ACKs. As a result, to
higher, the sender exits slow start at nearly the steady-state vdpproximate the distribution of latency for a set of flows, one
dow value, so the error in our approach should be small. Fean consider the range of possible loss rates and delayed ACK
loss rates of 0.1% and below, it can take three or more loss inddsts, and estimate the likelihood of each scenario, along with
cations — corresponding to megabytes of data — to reach stetttylatency expected with that scenario. In section IV-A.2 we ap-
state, so our approach will often overestimate the latency of suali this method to simulations using a Bernoulli loss model and
transfers. delayed ACK costs uniformly distributed between 0 and 200ms.
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Fig. 2. Comparing the throughput predicted by the steady state models to g 3. Distribution and mean of connection establishment times from the model
throughput predicted by our proposed model for varying transfer sizes. Here (3), the approximate model (4), and 10688 simulations withp; = 0.3,
MSS = 1460 bytes,RTT = 100 ms,w; = 1segmenty = 1.5,7p = 1 pr =0.2.
seC,Wmaz = 10 MBytes.
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F. Comparison with Earlier Models ;
10 Simulated  + iS4
Our proposed model, (25), is a generalization of two previous ~ Modeled ——- /
approaches. In the case where there are no packet losses, (25), | ~ APProximate Model =
reduces to (15), a model for the time to selskgments in slow <
start mode. This special case corresponds closely to the simp%er 6L Iy
models derived in [18, 24]. In the case whéris very large, the £
total time given by (25) is dominated by (24), the time to transfér al
data after the first loss. In this case, the behavior corresponds A
very closely with the underlying throughput model, (22), from | ‘ T
[34] . i /,,»4’/'

Figure 2 explores the relationship between our proposed | ..— T ‘ ‘ ‘ ‘
model and the models of [27] and [34]. It gives the through- 0 005 01 015 02 025 03 035 04 045
put predicted by the proposed model, (25), for each of several Forward loss rate

transfer sizes, as well as the steady-state throughputs predlﬂg.dA Expected connection establishment latency fnsnsimulations (1000

by the expressio/3/4- M SS/(RTT'/p), from[27], and (22), trials at each loss rate), the model (3), and the approximate model (4).
from [34]. As mentioned earlier, when there is at least one ex-

pected loss, our proposed model agrees closely with [34], which

has been shown to work well for flows that suffer even a feinate model, comparing them against 10@0trials in scenar-
losses [5]. On the other hand, when there are no losses, the ps-with p, = 0.0 and0 < p; < 0.45. The full model fits
posed model predicts that short flows suffer because they do wetl across these simulations, but the approximate model di-
have time to reach a steady-statend, whereas long flows will verges sharply ag; approaches 0.5, where its assumption of
do well because theirwnd grows beyond its steady-state valueunbounded wait times fails.

Il. VERIFYING THE CONNECTION ESTABLISHMENT IV. VERIFYING THE DATA TRANSFERMODEL

MODEL A. Simulations

Figure 3 compares the mean and distribution of connecti n1 Flows Without Loss
establishment times given by (3) and the mean given by thé
approximate model (4) to the mean and distribution for 1000 For simulated TCP flows that do not suffer packet loss, the
ns [31] simulations withRTT = 70 ms and Bernoulli packet expression (15) describes TCP behavior very closely, as Fig-
losses withpy = 0.3 andp, = 0.2. These simulations used theure 5 shows. This figure depicts the simulated and modeled la-
FullTCP implementation, modeled closely after the 4.4BSfkency for 2,376 TCP transfers simulatedria. In each sim-
TCP implementation. Both the model and the approximation fitation, aFullTCP sender transfers data over a 1Gbit link
well. Results are similar for other scenarios with bpftandp, to aFullTCP receiver. The link buffers were provisioned to
well below 0.5. prevent packet loss. The trials consisted of the cross-product

Figure 4 summarizes the performance of the full and appra wy, = {2,3,4} segments;y = {1.5,2} (with and with-
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Fig. 5. The simulated latency for 2,376 TCP data transfers that experience

. 7. The distribution and mean of latencies from the experiment described in
packet loss, compared with the modeled latency from (25) (or, equivalently, P

Figure 6.
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Fig. 6. Scatter plot of simulated performance with model predictions ove'ﬁg' 8 Scatter plot of simulated performance with model predictions over-
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4MBytes, w, = 1 segmenty = 1.5, RTT = 100 ms,Tp = 519 ms, ~ AMOYles, w1 — 1 segmenty = 1.5, RTT = 100 ms,To = 450 ms,
ps = 0.05 andp, = 0. py = 0.001 andpr = 0.
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out delayed ACKs)d = {1,2,4,...1024} segmentsM SS = 0.9 1 ! r
{536, 1460, 4312} bytes,W,... = {8,32, 128,512} segments, 08 1 1
andRTT = {16,64,256} ms. The model agrees quite closelyC :

with the S|mulat|ons the average error is 0.B9'T's, and the %
average relative error is 22%. The three outliers at 37, 72, afnd
143 RTT's correspond to trials with a window of just 8 seg2 05 1
ments, where throughput was hurt because the 200ms delaged 0.4 -
ACK timer of the recipient was mis-aligned with the 256m§
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Figures 6 and 7 illustrate how well [34] and (25) match the ~ ° 0 1 3 4 s 6
performance of flows that suffer moderate-to-high levels of loss. Time (sec)

Figure 6 shows a scatter plot depicting the bandwidth and loss
rate experienced by each of the 100 simuld&atTCP flows, Fig. 9 The distribution and mean of latencies from the experiment described in
with the model predictions overlaid. Each flow transferred 98
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Fig. 10. Measured and modeled latencies for 403 transfers from the Univerdiig- 11. The errorimodeled- measureyy/ RT'T, between the proposed model,
of Washington to the UC-Davis. (25), and the HTTP measurements, for all 33,208 flows (97%) that suffered

no packet losses. Note that thisR§ T-normalized error, so the model is

within 1 RT'T of the actual time for 85% of flows.
64KBytes over a path with synthetically-generated Bernoulli
losses with an average loss ratepgf= 0.05 andp, = 0. The
proposed model, (25) fits the trials that experience no packet
loss, while both [34] and (25) provide a reasonable fit to those 0-8
trials that do experience loss. Figure 7 shows the distribution gf 0.7 -
latencies for these trials. Both [34] and (25) capture the avera'@e 0.6
latency, and the modeled distribution, derived using the tec}-
nique described in Section II-E, provides a reasonable chargc-
terization of the distribution of latencies. There is considerab °4 1
variance in the latency in this case, with 25% of flows comple§ 0.3 -
ing in half the average time, and 25% of flows taking half again g |
as long as the average time. In our experience, this technique
yields a good approximation to the latency distribution when-
ever there are enough packet losses for [34] to provide a good fit  °© ' ' '
for the average latency. i e Remi\,oe Error

Figures 8 and 9 provide the corresponding view of long trans-

fers (1 MByte) over paths with low loss rates. The proposeth. 12. The relative error between the models and the HTTP measurements,
model, (25), captures the average latency as well as the |atency‘or all 357 flows (1%) that suffered triple duplicate ACKs but no RTOs.
experienced by the half of flows that see no loss. However, nei-

ther [34] nor (25) predicts the performance seen by flows that tf fered no | 25) fit it I
experience a single loss, as these flows enter congestion av 1sequence most flows suffered no losses, (25) fits quite well,

ance with azwnd far larger than the steady-state value. We havg1ereas [34] does not.

preliminary results characterizing the dynamicscefd as it
converges to the steady-state value after slow start. It shouIdCfJe
possible to capture aspects of the behavior of these long flowsn order to undestand how well the various TCP models de-
that suffer only a few losses by using an approach along thegeibe typical TCP data transfers, we compared them to a set
lines. of HTTP traces. These traces consist of client-side packet-level
traces of 34,318 TCP flows transporting single HTTP GET op-
erations made frorwget web clients at three well-connected

In order to examine how well our proposed model, (25), fitd.S. universities — the University of Washington-Seattle, the
TCP behavior in the Internet, we performed a number of TGbhiversity of California-Berkeley, and Duke University — to
transfers from a Linux 2.0.35 sender at the University of WasB0 web servers spread throughout the US. Twenty-five of the
ington to other Internet sites. Figure 10 shows an examp$ervers were chosen from the web’s most popular sites, as de-
It depicts the latency of 403 transfers of varying sizes to thermined by the analysis of web proxy logs [19]. The remain-
University of California at Davis, together with the predictiongng 25 servers were chosen at random from Yahoo!’s database
from (25) and [34], using the average packet loss rate acradsweb sites [43]. Each HTTP GET operation fetched the
all trials. Since the average loss rate was only 0.02%, and aisidex.html object from the given site; the average size of

1 ! ! !
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! T o V. CONCLUSION
o9 In this paper we presented new models for TCP connection
0.8 1 | establishment and TCP slow start. We used these models to ex-
8 071 I tend the steady-state model from [34], which assumes at least
g 06 1 L one packet loss, to characterize the latency of TCP flows that
Z; 05 | | suffer no packet losses. Using simulation and measurement, we
B found that the connection establishment model seems promis-
g 04 1 | ing, and that the new, extended data transfer model characterizes
3 03 Proposed Model r flows of varying lengths under varying loss conditions.
[PFTK98] - ) ) S .
0.2 4 [MSMOQ7] - H Furthermore, we described a technique for estimating the dis-
01 | | tribution of latencies for TCP transfers and showed simulations
0 suggesting that this method can approximate the often wide dis-
1 o5 ' 05 , tribution of data transfer latencies under a range of conditions.

Relative Error

Fig. 13. The relative error between the models and the HTTP measurement
for all 753 flows (2%) that suffered RTOs.
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